Stenotic FAV: Success of the Collaboration Between Spoke and HUB

Abstract

The arteriovenous fistula constitutes the vascular access of first choice in hemodialysis. We present three clinical cases that highlight the resolution in interventional radiology of venous stenosis, one of the major complications.
Clinical monitoring and instrumental diagnostics with color Doppler ultrasound have prevented the failure of the AVF due to high risk of thrombosis.
The angiographic interventions, thanks to the collaboration between Spoke and Hub, were completed without complications.

Keywords: hemodialysis, stenosis, AVF, interventional radiology, color Doppler ultrasound, PTA

Sorry, this entry is only available in Italian.

Introduzione

La fistola artero-venosa (FAV) per il paziente in dialisi costituisce l’accesso vascolare di prima scelta, in quanto meno gravato da complicanze a medio-lungo termine e per la maggiore sopravvivenza rispetto alla protesi e al catetere venoso centrale permanente [1]. L’Ecocolordoppler (ECD) ormai da anni rappresenta l’esame diagnostico meno invasivo per il mapping dei vasi pre-confezionamento FAV e per il monitoraggio delle complicanze (stenosi, trombosi, ematomi, aneurismi e pseudoaneurismi) venose e arteriose [26]. Sono più frequenti le stenosi venose che le stenosi arteriose [7, 8]; si distingue poi ulteriormente tra stenosi dell’inflow (vaso afferente) e stenosi dell’outflow (vaso efferente). Tra le stenosi venose, le stenosi iuxta-anastomotiche (entro i 2 cm dall’anastomosi) sono più frequenti rispetto alle stenosi distali [7, 8].

Il primum movens della stenosi venosa è l’iperplasia neointimale. Costituiscono fattori concomitanti lo stress chirurgico, lo stato pro-infiammatorio legato alla malattia renale cronica, la predisposizione genetica, le venipunture ripetute. Il processo che si determina è un’anomala proliferazione e migrazione delle cellule muscolari lisce, con espressione di citochine, chemochine, e mediatori come l’endotelina, il TGFβ, l’ossido nitrico, l’osteopontina e l’apolipoproteina. Spiegherebbe la riduzione del lume vascolare anche la migrazione di fibroblasti dall’avventizia all’intima [911]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Lactobacillemia: A Rare Entity in Immunocompromised Patients. Description of a Clinical Case and Literature Review

Abstract

Bacteremia caused by Lactobacillus is rare, data on its clinical significance are based only on case reports and a limited number of studies, often difficult to interpret.
Lactobacillus species is a commensal colonizer of the mouth, gastrointestinal and genitourinary tract. Its significance as a pathogen is overlooked frequently.  The diagnosis of these infections requires a mutual relationship between the physician and the microbiologist to rule out contamination risk.
Most patients with Lactobacillus bacteremia are immunosuppressed or patients at increased risk of symptomatic bacteremia with comorbidities, treated with broad-spectrum antibiotics and have indwelling venous catheters.
Risk factors related to Lactobacillus bacteremia include impaired host defenses and severe underlying diseases, as well as prior surgery and prolonged antibiotic therapy ineffective for lactobacilli.
We describe an unusual case of a woman, on chronic hemodialysis treatment, with a sepsis due to Lactobacillus casei and review the literature.

Keywords: Lactobacillus, bacteremia, hemodialysis, immunocompromised patients

Sorry, this entry is only available in Italian.

Introduzione

Il Lactobacillus è un batterio gram-positivo, anaerobico facoltativo, a forma di bastoncello. È un comune commensale dei tessuti della mucosa umana (cavità orale, tratto gastrointestinale e tratto genitale femminile) e non fa parte della flora cutanea. È ampiamente distribuito anche nell’acqua, nelle acque reflue e negli alimenti quali latticini, carne, pesce e cereali. La sua presenza, come commensale del tratto gastrointestinale, è associata alla protezione contro gli agenti patogeni e alla stimolazione del sistema immunitario. Per questo è utilizzato in tutto il mondo come probiotico [1, 2].

La batteriemia causata da lattobacilli è rara e i dati sul suo significato clinico si basano solo su casi clinici e su un numero limitato di studi [3, 4].

Essendo i lattobacilli comuni commensali è verosimile che l’incidenza reale possa essere sottostimata e, talora, può essere difficile interpretarne la presenza in sedi abitualmente sterili. Pertanto, il significato clinico è ancora argomento di discussione. Infatti alcuni Autori [5] ritengono che questo batterio non dovrebbe mai essere considerato un contaminante, mentre altri Autori [6] lo considerano un contaminante occasionale. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Protected: Metodiche convettive verso metodiche diffusive: superiorità definita?

Abstract

The technique of dialysis has seen enormous advancements over the past fifty years, evolving from an initial phase,primarily based on diffusion through a semipermeable membrane to the current preference for high-efficiency convection, involving the removal of several liters of ultrafiltrate. Diffusive dialysis, due to its relative simplicity in execution, has allowed the treatment of millions of individuals with ESRD, ensuring them a certain quality of life. However, it is not considered optimal in terms of survival and has some complications inherent to the uremic state. Convection, by removing toxic substances through solvent drag, has enabled the purification of not only small molecules but also medium-to-large molecular weight molecules. As a result, hemodiafiltration techniques have shown improvements in both mortality and intradialytic complications such as cramps and intradialytic hypotension. These results, however, involve fluid exchanges that far exceed 20 liters per session, thus increasing technical complexity and not being applicable to all patients, particularly those with vascular access problems. The recent discovery of so-called medium cut-off (MCO) membranes appears to maintain the benefits of hemodiafiltration techniques without the need for high convective flows. Therefore, the debate between convection and diffusion seems far from over and may hold more surprises in the near future.

Keywords: diffusion, convection, hemodialysis, hemodiafiltration, medium cut-off membranes.

This content is password protected. To view it please enter your password below:

Clinical Thermography for the Management of Hemodialysis Vascular Access

Abstract

The arteriovenous fistula (AVF) represents the favorite vascular access in individuals with chronic kidney disease (CKD). Because AVF is a guarantee of survival for these patients, proper surgical packing and a timely follow-up program is crucial.
Although a good objective examination of the limb site of FAV provides useful information both in planning the fistula surgery and in its surveillance and monitoring, it is now well established that the advent of instrumental diagnostics (ultrasonography, digital angiography, Angio-TC, MRI) has contributed significantly to improving primary and secondary patency of FAV and early diagnosis of vascular access complications.
In this area, clinical thermography, a noninvasive and nondestructive diagnostic technique for assessing minute surface temperature differences, has shown good potential for the assessment of AVF. In fact, thermographic analysis of a limb site of AVF shows an increase in temperature at the site of the anastomosis and along the course of the arterialized vein.
In this article we report our experience on the use of thermography in preoperative evaluation and postoperative surgical packing of an AVF.
Further studies could validate the use of clinical thermography as a diagnostic technique to be used in the field of hemodialysis vascular accesses.

Keywords: Thermography, Haemodialysis, Arteriovenous Fistula (AVF),   AVF Pre-Postoperative Examination, Post-Operative AVF Management

Sorry, this entry is only available in Italian.

Introduzione

Ogni corpo, a una temperatura superiore allo zero assoluto, emette delle radiazioni nel campo dell’infrarosso. Queste radiazioni non sono visibili ad occhio nudo, ma possono essere captate da una termocamera e rese visibili su un comune schermo LCD. L’intensità delle radiazioni aumenta con l’incremento della temperatura del corpo in esame.

Il corpo umano ha una temperatura media di circa 36,5 °C, una termocamera è quindi in grado di captare le radiazioni emesse e di evidenziare le variazioni di temperatura dei vari distretti corporei.

Esiste una branca della medicina chiamata “termografia clinica” che studia, per mezzo di una termocamera, le variazioni di temperatura del corpo umano indotte da fenomeni fisiologici o patologici. La termografia clinica trova applicazione principalmente nella diagnostica dermatologica, neuropsicologica, angiologica e reumatologica.

La temperatura degli arti è direttamente condizionata dalla circolazione ematica: più un arto è perfuso più è caldo. Questa caratteristica rende gli arti suscettibili allo studio termografico (Figura 1). 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

“Green” Hemodialysis: The Centralized Acidic Concentrate from the Dialysis Center of Policlinico of Modena

Abstract

Introduction and aim of the study. The centralized preparation and distribution system of acidic concentrate represents a true innovation in hemodialysis, when compared to acid bags, in terms of convenience and eco-sustainability. The aim of this study is to compare the use of traditional acid bags with the centralized distribution system of acidic concentrate, with particular attention to differences in terms of eco-sustainability and convenience.
Methods. At the Nephrology Dialysis and Renal Transplantation Unit of the University Hospital of Modena was installed the Granumix system® (Fresenius Medical Care, Bad Homburg, Germany). Data collected before the introduction of the Granumix® system (including the used acid bags, boxes and pallets used for their packaging, liters of acid solution used and kilograms of waste generated from wood, plastic, cardboard and residual acid solution) were compared with those collected after the implementation of the Granumix® system. Factors such as material consumption, volume of waste generated, unused and wasted products, time required for dialysis session preparation and nurses’ satisfaction were analyzed to document which system was more environmentally sustainable.
Results. Data collected in 2019 at our Dialysis Center showed a consumption of 30,000 acid bags, which generated over 20,000 kg of waste from wood, plastic and cardboard, and approximately 12,000 liters of residual acid solution to be disposed of, with a handling weight by operators reaching nearly 160,000 kg. The use of the centralized distribution system of acidic concentrate resulted in a significant reduction in waste generated (2,642 kg vs 13,617 kg), residual acid solution to be disposed of (2,351 liters vs 12,100 liters) and weights handled by operators (71,522 kg vs 158,117 kg).
Conclusions. The acidic concentrate appears to be better suited to the sustainability challenge that dialysis must faces today, particularly due to the significant increase in the number of patients, which leads to a higher number of treatments and, therefore, a growing demand for eco-sustainable products.

Keywords: Hemodialysis, Innovation, Sustainability, Acidic Concentrate, Central Dialysis Fluid Delivery System

 

Sorry, this entry is only available in Italian.

Introduzione

Dopo circa 80 anni dal primo trattamento emodialitico, sono tante le sfide che la dialisi deve ancora affrontare. Tra le più importanti va menzionato il significativo trend dell’aumento del numero di pazienti in dialisi che di conseguenza porterà a un aumento nell’utilizzo di risorse naturali e nella produzione di rifiuti [1].  La consapevolezza che la maggior parte dei rifiuti della dialisi viene smaltita senza entrare nel processo del riciclaggio (materiale contaminato da sangue o fluidi biologici, prodotti assimilabili a farmaci) è uno stimolo a una crescente necessità di sviluppare e adottare soluzioni ecosostenibili che riducano l’impatto ambientale e l’inquinamento. Inoltre, l’adozione di soluzioni eco-friendly rappresenta un investimento per le aziende del settore sanitario poiché può generare vantaggi economici nel lungo periodo. Una recente innovazione tecnologica in ambito emodialitico è l’implementazione di un sistema automatizzato per la produzione e distribuzione del concentrato acido.  

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Executive Dysfunction in Patients Undergoing Chronic Haemodialysis Treatment: A Possible Symptom of Vascular Dementia

Abstract

Introduction. Patients undergoing chronic haemodialysis (HD) treatment have an 8-10 times higher risk of experiencing stroke events and developing cognitive impairment. The high vascular stress they are subjected to may be the basis for the development of vascular dementia (VaD).
Objective. The aim of the study is to investigate the executive functions, typically impaired in VaD, of patients undergoing chronic haemodialysis treatment.
Method. HD patients were recruited from the U.O.C. of Nephrology and Dialysis (ASP Ragusa). Risk factors for VaD were collected and then the Frontal Assessment Battery (FAB) was administered.
Results. 103 HD patients were included (males = 63%, age 66 ± 14 years). Risk factors for VaD included a high percentage of patients with anaemia (93%), hypertension (64%) and coronary artery disease (68%).  The cognitive data obtained via FAB show a percentage of 55% deficit scores. All risk factors found a significant association with cognitive scores. Anemia, hypertension, intradialytic hypotension, coronary artery disease, and homocysteine are negative predictors of executive function integrity.
Conclusions. More than half of the patients had deficit scores on the FAB. Reduced cognitive flexibility, high sensitivity to interference, poor inhibitory control and impaired motor programming with the dominant hand were evident. In conclusion, a marked impairment of the executive functions, generally located in the frontal lobes of the brain, was detected in the HD patient, which could be a symptom of a dementia of a vascular nature.

Keywords: hemodialysis, cognitive, impairment, vascular, dementia

Sorry, this entry is only available in Italian.

Introduzione

I pazienti affetti da malattia renale cronica (CKD) sono solitamente più a rischio della popolazione generale di sviluppare deterioramento cognitivo [1], con una prevalenza che varia dal 13% al 58% [2-4]. L’associazione tra malattia renale cronica e funzioni cognitive è stata recentemente indagata e prove collettive dimostrano che una diminuzione del tasso di filtrazione glomerulare stimato (eGFR) aumenta la probabilità di incorrere in deterioramento cognitivo [5, 6]. Sono molti i meccanismi eziopatogenetici sottostanti questo fenomeno, come la disfunzione vascolare, l’infiammazione, l’accumulo di tossine uremiche, l’anemia e le anomalie elettrolitiche [7]. I pazienti in End Stage Renal Disease (ESRD) hanno un rischio maggiore di sviluppare patologie cerebrovascolari e cardiovascolari [8]. In particolare, studi hanno dimostrato che i pazienti allo stadio terminale della malattia e in trattamento emodialitico cronico (HD) hanno un’incidenza di ictus 8-10 volte maggiore rispetto alla popolazione generale, con una prevalenza di ictus emorragico rappresentante il 20% di tutti gli eventi ictali nel dializzato, e presentano una autoregolazione cerebrale alterata [912]. Nello specifico, l’emodialisi induce una significativa riduzione del flusso sanguigno cerebrale (CBF) in tutti i lobi durante le sedute emodialitiche [10]. Dunque, l’ingente stress vascolare a cui sono sottoposti questi pazienti potrebbe costituire la base per lo sviluppo del deterioramento cognitivo constatato in questa popolazione e, in particolare, per quadri di demenza vascolare [13].  

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Palliative and Supportive Dialysis: Current Practices and Recommendations for Best Clinical Practice

Abstract

“Palliative dialysis” is defined as the renal replacement therapy directed to patients living the most critical phases of illness and the end-of-life stage. Offering targeted dialysis prescriptions becomes imperative when health conditions, along with comorbidities, unfavorable prognosis and complications, do not allow standard dialysis to be started or continued. Management should also integrate adequate supportive care measures in both incident and prevalent patients.

This document summarizes nephrological recommendations and scientifical evidence regarding the palliative approach to dialysis, and proposes operative tools for a good clinical practice. After planning and sharing the route of care (“shared-decision-making”), which includes multidimensional evaluation of the patient, a pathway of treatment should be started, focusing on combining the therapeutical available options, adequacy and proportionality of care and patients’ preferences.

We propose a framework of indications that could help the nephrologist in practicing appropriate measures of treatment in patients’ frailest conditions, with the aim of reducing the burden of dialysis, improving quality of life, providing a better control of symptoms, decreasing the hospitalization rates in the end-of-life stage and promoting a home-centered form of care. Such a decisional pathway is nowadays increasingly needed in nephrology practice, but not standardized yet.

Keywords: palliative care, chronic kidney disease, end-of-life, palliative dialysis, hemodialysis, peritoneal dialysis, shared-decision-making

Sorry, this entry is only available in Italian.

Introduzione

L’applicazione dei principi della medicina palliativa nei pazienti affetti da malattia renale ha lo scopo di alleviare le sofferenze legate alla malattia e al suo trattamento, ed è appropriata lungo l’intera traiettoria di malattia, incluso (ma non limitato a) il fine vita [1]. L’attenzione è focalizzata sul trattamento dei sintomi e sul sollievo dell’impatto psicologico, sociale e funzionale della malattia. Poiché le cure palliative trovano indicazione ben oltre gli ultimi giorni di vita, quando sono ancora in atto cure volte a prolungare la sopravvivenza, come la dialisi, le linee guida nefrologiche internazionali ne hanno definito i criteri per la popolazione affetta da malattia renale cronica (Chronic Kidney Disease, CKD), e hanno introdotto il termine di “Kidney Supportive Care” (cure nefrologiche di supporto o cure simultanee), in luogo di “cure palliative” [2, 3].

Se confrontati con i pazienti oncologici, i pazienti affetti da CKD avanzata hanno più probabilità di morire in ospedale, meno probabilità di ricevere istruzioni sul fine vita, e sono gravati da analoga incidenza di sintomi severi, quale il dolore moderato-severo [4].

In Italia nel 2015 viene pubblicato un documento intersocietario (SIN-SICP) da nefrologi e palliativisti, che riassume i criteri prognostici e di identificazione precoce dei bisogni di cure di supporto nella fase finale della CKD, e suggerisce un percorso condiviso con i palliativisti di presa in carico di questi pazienti, percorso che contempla anche la rimodulazione e la sospensione della dialisi, quando in atto [5]. Questo documento ha gettato le basi per l’implementazione delle cure palliative e simultanee nel nostro paese, consentendo di sviluppare le prime esperienze condivise: presso l’Azienda Provinciale per i Servizi Sanitari di Trento dal 2017 è stato attuato un protocollo integrato di cura per la gestione della fine della vita dei nostri nefropatici e dializzati [6]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Role of the Opinions of the Nephrologist and Structural Factors in Dialysis Modality Selection. Results of a Peritoneal Dialysis Study Group Questionnaire

Abstract

Background. The use of PD depends on economic, structural and organizational factors. The nephrologist’s opinion is that peritoneal dialysis is less used than it shold be. In Italy, PD is not carried out in private Centers, but neither is it in around one third of Public Centers. The aim of this study was to investigate the opinions of nephrologists on PD in Public Centers only, thereby nullifying the influence of the economic factors.
Materials and Methods. The investigation was carried out by means of an online questionnaire (Qs) via mail, and during meetings and Congresses in 2006-07. The Qs investigated the characteristics of the Centers, the nephrologists interviewed, and opinions on the various aspects of the choice of Renal Replacement Therapy Renal Replacement Therapy (RRT) (26 questions). Responses were received from 454 nephrologists in 270 public Centers. Among these, 205 centers (370 Qs) report PD (PD-YES), 36 (42 Qs) do not (PD-NO) and 29 (42 Qs) do not use it but send patients selected for PD to other Centers (PD-TRANSF).
Results. The PD-NO and PD-TRANSF Centers are significantly smaller, with greater availability of beds. In the PD-YES Centers the presence of a pre-dialysis pathway, early referral and nurses dedicated solely to PD are associated with a higher use of PD.
The nephrologists in the PD-NO Centers rate PD more negatively in terms of both clinical and non-clinical factors. The belief that more than 40% of patients can do either PD or HD differs among the nephrologists in the PD-YES (74.3%), PD-TRANSF (45.2%) and PD-NO (28.6%) Centers. Likewise, the belief that PD can be used as a first treatment in more than 30% of cases differs among the nephrologists in PD-YES (49.2%), PD-TRANSF (33.3%) and PD-NO (14.3%) Centers.
Conclusions. The use of PD in Public Centers is conditioned by both structural and organizational factors, and by the opinions of nephrologists on the use and effectiveness of the technique.

 

 

Graphical abstract

 

Keywords: Peritoneal Dialysis, Hemodialysis, Modality selection, Physicians opinion, Chronic Kidney Disease

Background

The use of peritoneal dialysis (PD) in the world is limited to a prevalence of approximately <10% [1]. It has long been known [2] how the use of PD in different countries depends on factors which are unrelated to the patient, such as the type of National Health System and the relationship between the public and private sectors in each single country, the reimbursements envisaged for hemodialysis (HD) and PD, the standard of material and social development, and the cost of labor compared with materials [25]. In the absence of financial and structural barriers, the use of PD can be influenced by other factors, such as the type of referral (early or late), the availability of structured educational programs for patients suffering from CKD, PD training during studies and the availability of assisted PD programs, but they presuppose a system which favors the method.

For Italy, a significant contribution to the understanding of the factors influencing the use of PD was made by the Census of the Italian Society of Nephrology (SIN) relating to the state of dialysis in Italy in 2004 [5], which showed that the factors negatively affecting the use of PD were the presence of private centers (which do not use PD), the number of stations available for HD compared to the number of patients on hemodialysis, and the small size of Centers (evaluated by the number of prevalent patients on dialysis). Even considering public Centers alone however, considerable variability was shown in the use of PD, with Centers of limited overall size but relatively extensive PD programs and large Centers without or with small PD programs. This variability suggested that there were other factors capable of influencing the use of PD, such as the so-called “opinion of the doctor”, the importance of which was highlighted by Hingwala [6].

The numerous papers [716] which have investigated the role of doctors in the choice of dialysis modality show a considerable discrepancy between their opinions – generally favorable – and the actual use of PD in their country, which is at times marginal. These papers often show selection bias, in that they are limited to Nephrologists who use PD in some way.

Objectives of the study

In order to investigate “the opinion of doctors on PD and modality selection” and any role this may have in the actual use of PD in a Center, in 2006-2007 what was then SIN’s Peritoneal Dialysis Study Group (GSDP) devised and carried out research – in the form of a questionnaire (Qs) – limited to Public Centers in order to reduce the influence as far as possible of economic factors on the results, but also involving the Centers which did not use PD.

The main aim of the study was to compare opinions relating to PD and modality selection by analyzing the perspective of Nephrologists who work in Centers which use and those which do not use PD.

As the situation relating to PD remains substantially the same 20 years since the first SIN Census, the current PD Project Group decided to attach the results of this survey – which was never published – to the analysis of the 2022 Census data, as besides remaining valid its depth of analysis and the number of Nephrologists involved make it quite unique.

 

Materials and methods

Recruitment of Centers

The study was carried out by means of an on-line questionnaire (Qs) submitted to all non-pediatric Public Dialysis Centers. Aimed at all the Nephrologists in the Center, the filling out of at least 1 per Center was strongly requested. The completion of the Qs took place between January and October 2007, and was incentivized during Congresses and Conferences held during the period. The results were presented partially at Congresses and Conferences at the time, but have never been published.

The list of dialysis Centers eligible for the research was taken from the SIN Census relating to 2004 [5] (2004-SIN-Cens). In short, the 2004-SIN-Cens had documented the presence in Italy of 658 Dialysis Centers. After excluding private and pediatric Centers, the questionnaire was sent to the remaining 346. However, 15 of these 346 Centers had “special statute” status (research Centers) and 6 had no patients on dialysis and were therefore not considered. So as for the 2004-SIN-Cens, the 325 public, non pediatric, ordinary status Centers with a dialysis – PD and HD – incidence of other than zero have been considered in this analysis. As regards the Nephrologists, only “structured” doctors have been considered in this analysis, excluding specialty trainee and attendant doctors.

Breakdown of Centers

The Centers which did not use PD and those which did had been divided in the 2004-SIN-Cens on the basis of a PD incidence of other than or equal to 0 respectively: it was not used in 116 Centers, and was used in 209. The Qs asked again whether or not the Center the interviewee belonged to had a PD program: of the 270 (83.1%) of the respondent Centers, 65 did not use PD. However, 6 of these 65 had been classified in 2004 as Centers using PD, while 13 of the 205 which stated they had a PD program had been classified in 2004 as Centers which did not use it. It is to be remembered that the 2004 classification had been based on PD incidence, a criterion which no longer seemed correct to us today. We therefore reclassified the 2004-SIN-Cens Centers taking account of the prevalence at 31/12/2004 as well, and comparing the data with those of the GSDP Census of 2005 [17], and subsequent years where necessary. Following this reclassification, the number of inconsistencies was reduced to 4 Centers which had terminated their PD programs, and 6 Centers which had started one after 2004.

In the discussion at the time furthermore, a situation had emerged which was more complex than a simple distinction between Centers which used and those which did not use PD. Indeed, some of the Centers not using PD sent patients with indication (clinical or by choice) for PD to other Centers. The Qs took this distinction – not considered in the 2004-SIN-Cens – into account by dividing the Centers into Centers which use PD (PD-YES Centers), Centers which do not use PD but send patients with indication for it to other Centers (PD-TRANSF Centers) and Centers which do not consider it at all (PD-NO Centers).

In conclusion, 270 of the 325 Centers considered took part in the research with at least 1 Qs. Of these, 205 were PD-YES Centers, 36 were PD-NO Centers and 29 were PD-TRANSF Centers. Of the 55 Centers which did not respond to the Qs, 11 had been classified in 2004 as PD-YES Centers and 44 as PD-NO Centers, although their status at the time of the survey is not actually known as they failed to respond to the Qs.

The study did not relate in any way to patients, only to doctors whose participation was voluntary.

The questionnaire and the fields of investigation

The Qs was composed of 26 questions divided into 2 parts. The first defined the characteristics of the Nephrologist interviewed and the Center in which they worked; the second investigated the opinions of the Nephrologist on the validity of PD and the factors which can influence modality selection.

 

Part 1

Characteristics of the Nephrologist

The characteristics of the Nephrologist considered were: 1) training received in PD – 2) actual experience with PD (none, occasional and discontinuous, continuous for less or more than 3 years) – 3) hierarchical role within the Center (head of department/department director, manager, resident doctor) – 4) time effectively dedicated to dialysis (none; <25%; 25-50%; 50-75%; >75% of working hours) and, on a scale of between 1 and 5 (where 1 is only HD, 3 HD and PD equally, 5 only PD), how much time is dedicated to HD and how much to PD – 5) involvement in the choice of dialysis modality (yes/no), and if yes with which tasks (information, clinical evaluation, psychosocial-aptitude evaluation) and the degree of any such involvement, also on a scale of from 1 (little) to 5 (a lot).

Characteristics of the Center

The characteristics of the Center considered were: 1) the existence of a structured dialysis modality selection program (educational and informative, as well as clinical) – 2) the activities performed by the PD nurses (pre-dialysis, day hospital, inpatients, HD) for the PD-YES Centers – 3) the percentage of early referral patients – 4) an opinion on the level of information received by early referral patients in their Center on the different dialysis modalities – 5) the professional roles involved in their Center in the choice of treatment (head of department, HD doctor, PD doctor, HD nurse, PD nurse, nurses with other functions, psychologist). For the last question, the interviewee also had to express an opinion on the weight the professionals involved in the choice of the method had on a scale of from 1 (negligible) to 5 (decisive). For the first three questions (existence of a structured dialysis modality selection program, activities performed by the PD nurses and percentage of early referrals), in the Centers in which more than one Nephrologist responded, the responses did not always match. In the event of disagreement, the value attributed to the Center was determined on a hierarchical scale (in order: response of the Director if available, of the department manager if available, of the doctor with greater involvement in dialysis activities and finally, if there was still no agreement, of the majority). As the percentage of early referrals is numerical, inconsistencies were excessive, so it was not considered in this analysis.

For the last two questions (information provided to patients and weight of the different professional roles in their Center), as the responses involve opinions more than objective values they were considered individually and not adjusted into one sole value per Center.

 

Part 2

This part was divided into three sub-groups of questions. The first investigated the opinion of the doctor on the general factors which can influence the choice of modality, including the validity of the method; the second the opinion on certain conditions – clinical and non-clinical – of the single patients; and the third PD drop-out and duration.

General NON patient-associated factors

The general factors the interviewee had to give a personal evaluation of were: 1) the weight, on a scale of from 1 (none) to 5 (decisive), the doctor, nurse, patient, family members and other patients on RRT have on the choice of treatment for patients without required indications/contraindications for HD or PD. This assessment was requested for both patients with and without barriers to self-care of the PD – 2) the percentage of PD considered optimal on a scale of from <10% to >50% – 3) if they feel conditioned in the choice of mdality by the risk of peritonitis – 4) a comparison of PD with HD in terms of both dialysis efficiency and survival – 5) how much the total cost of the treatment, a shortage of nurses, private centers in the vicinity, the limited size of the Center (number of prevalent patients on dialysis) and HD station occupancy rates can affect the choice on a scale of from 1 (greatly in favor of HD) to 5 (greatly in favor of PD) – 6) the weight that the following incentives can have on favoring the use of PD: financial reimbursement for the caregivers of patients with barriers who are not suitable for self-care of PD (assisted PD), the development of remote care technology (telemedicine), full-time (24H) nursing phone support for patients on PD, home nursing support for patients on PD, financial incentives for residential care homes to assist patients on PD. Opinions were expressed on a scale of from 1 (no weight) to 5 (considerable weight).

Patient-associated factors

This part investigated opinions on certain specific conditions of patients which can represent an indication or contraindication for PD. In detail: 1) the percentage of patients who are eligible for both modalities – 2) the role of clinical and non-clinical factors associated with the patient and listed in Table 1 (the interviewee had to express an opinion on each of the factors listed on a scale of from 1 to 5 according to the following criteria: 1 = high indication for HD; 2 = moderate indication for HD; 3 = indication for either HD or PD; 4 = moderate indication for PD; 5 = high indication for PD).

CLINICAL FACTORS NON-CLINICAL FACTORS
Congestive heart disease Motivation for self-care
Ischemic heart disease Between 65 and 75 years of age
Diabetes Age > 75 years
Obesity (BMI > 30) Not self-sufficient with caregiver available
Malnutrition (BMI < 20) Living alone
Diverticulosis spread beyond the sigma Body image in patients of < 50 years of age
Polycystic nephropathy Working activity
Flexibility in lifestyle and free time
Quality of life
Table 1. Clinical and non-clinical factors influencing the choice which participants were asked to give an opinion on.

Duration of PD / Drop Out

In this last section, the interviewee had to give an opinion on 1) the duration of the PD – 2) the annual percentage of drop out considered “physiological” – 3) if drop out to HD could be influenced by the number of patients being treated.

Analysis

The responses were divided into the 3 types of Center, and compared using the chi-square method or non-parametric tests where indicated. The results were considered significant for p<0.05 up to 0.00001.

 

Results

Participant Centers and nephrologists

Overall the Qs was completed by 454 Nephrologists in 270 Centers (83.1% of the 325 public Centers considered) with a mean participation of 1.68 Nephrologists per Center, which was higher in the PD-YES Centers (Table 2). The percentage of responses in the PD-YES Centers (205 Centers out of 216 = 94.9%) was significantly higher than in the other Centers (65 Centers out of 109 = 59.6%) (p<0.00001). Of the Centers which do not use PD, 29 send patients to other Centers. The number and percentages of Centers which responded and of completed Qs are given in Table 2 and in Figure 1.

CENTERS / Qs PD-YES PD-TRANSF PD-NO TOTAL
Centers (2004-SIN-Cens)* 209 116 325
Qs-Centers ** 216 109 325
Qs-participant Centers *** 205 29 36 270
Nephrologists 370 42 42 454
Qs per Center 1,80 1,45 1,17 1,68
Table 2. At least one nephrologist responded to the Qs in 270 of the 325 Public Centers resulting from the 2004 SIN Census. The participation in the Census was significantly higher in the Centers using PD.
* Centers (2004-SIN-Cens) shows the breakdown of Centers as per the 2004 SIN Census (5). The distinction within the 116 public Centers not using PD of a sub-group of Centers which “rely” on other Centers for PD was not considered at the time. It is to be remembered that this classification was based on the use of PD for incident patients. The breakdown of Centers in the Qs is slightly different for the reasons given under Materials and Methods.
** “Qs Centers” are the Centers reclassified according to the criteria given under Materials and Methods
*** “Qs participant Centers” are the Centers which took part in the survey with at least 1 questionnaire completed
Participation in the survey of Centers with at least 1 Qs completed.
Figure 1. Participation in the survey of Centers with at least 1 Qs completed. In the middle, the division of the 325 non pediatric, ordinary status public Centers. On the right, Qs respondents in the 216 Centers using PD, and on the left in the 109 not using it.

Table 3 (represented in Figure 3) gives the characteristics of the 270 participant Centers taken from the 2004 SIN Census data. HD bed occupancy and Center size (HD + PD patients) were higher (p<0.0001) in the PD-YES Centers than in the others, while there are significant differences between the PD-NO and PD-TRANSF Centers (Qs-YES in Table 3). The comparison with the Centers which did not respond was significantly different (Qs-NO in Table 3 and in Figure 2).

CENTERS PD INCIDENCE (HD+PD) PREVALENCE (HD+PD) HD pt/PL
ALL NO 109 11,9±9,4 50,0±35,3 2,9±0,9
YES 216 28,7±18,4 116,1±65,9 3,4±0,8
Qs YES NO 36 11,4±7,4 48,9±29,9 3,0±1,0
TRASF 29 11,7±9,9 54,4±36,5 2,9±0,7
YES 205 28,9±18,5 116,6±65,8 3,4±0,8
    p<0,0001 p<0,0001 p<0,0001
   
Qs NO NO 44 12,5±10,6 47,8±39 2,9±1,0
YES 11 25,6±16,1 106,9±69,4 3,4±0,8
Table 3. General characteristics (taken from the 2004-SIN-Cens) of the 270 Centers which responded to the Qs (Qs-YES) and the 55 Centers which did not respond (Qs-NO). The comparison was significant between PD-YES Centers and PD-NO and PD-TRANSF Centers, but not between PD-NO and PD-TRANSF Centers or between Qs-YES and Qs-NO.
verall dialysis (HD + PD) incidence and prevalence, and HD prevalent patients per HD bed or station.
Figure 2. Overall dialysis (HD + PD) incidence and prevalence, and HD prevalent patients per HD bed or station. The data are broken down into PD-YES Centers and Centers which do not use PD (NO), in this case whether they do not consider PD or they transfer candidates for PD to other Centers. The same variables have been considered for all the Centers (ALL) and comparing the Centers which took part in the survey (Qs YES) or did not (Qs NO). For those which did take part, the NO Centers have been divided between those which transfer (TRANSF) and those which do not consider PD at all (NO). This distinction was clearly not possible for the Centers which did not respond. As can be seen, among the Centers which took part there was no difference between the PD-NO and PD-TRANSF Centers. The data are as reported in the 2004-SIN-Cens, so they relate to the year 2004.

Dividing the Centers by size and percentage of use of PD (Table 4) at 31/12/2004, though having an extensive dialysis program 17.5% of the Centers do not use PD or use it in less than 10% of patients, while 13.8% of Centers use it in a significant percentage of patients even though they are small in size. As regards the 4 Italian macro areas they belong to, analysis of the 2004-SIN-Cens data had shown how the use of PD was lower in the regions with a higher number of private Centers. The smaller size of the public Centers in these regions was also attributable to the presence of private Centers. Although the relationship between size and use of PD remains, the Centers using PD in the SOUTH are smaller, but with a higher percentage of patients on PD, which is likely to be compensation for the effect of private Centers and the greater number of Centers not using PD. These observations are summarized in Table 5 and Figure 2. The geographical breakdown of the Centers which took part in the Qs is shown in Figure 4.

At the time of the survey, reclassification was not possible due to not having the 2007 prevalence data, so the only variable considered remains the type of Center as defined above.

PD PREVALENCE (%)
0 <10% 10-<20% ≥20%
CENTERS 102 74 76 73
PATIENTS ON DIALYSIS ≤45 81 18.2 3.4 1.8 1.5
46-80 83 7.7 7.4 4.3 6.2
81-130 80 4.3 5.8 6.5 8.0
>130 81 1.2 6.2 10.8 6.8
Table 4. Breakdown of Centers by size (quartiles of the total number of patients on dialysis per Center) and percentage prevalence of PD at 31/12/2004.
NORTH CENTER SOUTH ISLANDS ALL
CENTERS (number) 116 72 93 44 325
HD (prevalent pts) 13,951 5,509 4,911 1,959 26,330
PD (prevalent pts) 2,368 785 761 286 4,200
SIZE (PTS/CENTER) 140.7 87.4 61.0 51.0 93.9
% PD 14.5 12.5 13.4 12.7 13.8
PD-NO/PD-TRANSF CENTERS 17 26 38 21 102
% of ALL Centers 14.7 36.1 40.9 47.7 31.4
HD (prevalent pts) 1,432 1,479 1,214 813 4,938
PD (prevalent pts) 0 0 0 0 0
SIZE (PTS/CENTER) 84.2 56.9 31.9 38.7 48.4
% PD 0 0 0 0 0
PD-YES CENTERS 99 46 55 23 223
% of ALL Centers 85.3 63.9 59.1 52.3 68.6
HD (prevalent pts) 12,519 4,030 3,697 1,146 21,392
PD (prevalent pts) 2,368 785 761 286 4,200
SIZE (PTS/CENTER) 150.4 104.7 81.1 62.3 95.9
% PD 15.9 16.3 17.1 20.0 16.4
Table 5. Characteristics of Centers divided by geographical macro area and distinguishing between the Centers not using PD (PD-NO and PD-TRANSF were not separate in the 2004-SIN-Cens) and those using it (PD-YES). The data are taken from the 2004-SIN-Cens and therefore refer to 2004 and not to the time of the survey (2007).
Breakdown of the 325 Centers in Italy into 4 macro areas as defined by ISTAT
Figure 3. Breakdown of the 325 Centers in Italy into 4 macro areas as defined by ISTAT (NORTH = Valle d’Aosta, Piemonte, Lombardia, Trentino Alto Adige, Friuli Venezia Giulia, Veneto, Emilia Romagna, Liguria – CENTER = Toscana, Marche, Umbria, Lazio – SOUTH = Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria – ISLANDS = Sicily, Sardinia). On the left (A), the average size of the Centers and the percentage PD prevalence (substantially similar). In the middle (B) at the top, the percentage of Centers not using PD (in black) and at the bottom the average size of the Centers that use (grey) and do not use PD (black). As can be seen, the Centers not using PD are always smaller than those using it in the same macro area, but with a gradual reduction from the NORTH to the ISLANDS. So though the principle that the smaller the Center the less PD is used is valid, it can be seen on the right (C) that when only the Centers using PD are considered, those in the SOUTH and ISLANDS use it more even though they are smaller.

Figure 4. Breakdown of the 325 Centers in Italy into 4 macro areas. On the left (A), the 270 Centers which took part, and on the right (B) the 325 eligible Centers. Qs-YES and Qs-NO refer to the Centers which took part in the survey (with at least 1 respondent) and those which did not.

 

PART 1 – CHARACTERISTICS OF THE NEPHROLOGISTS INTERVIEWED AND OF THEIR CENTERS

Characteristics of the Nephrologists

The general characteristics of the Nephrologists taking part are shown in Table 6. There are no significant differences between the 3 types of Center as regards gender (2/3 male) or age (superimposable), while the geographical area where the Center of the interviewee is based (p<0.0001) reflects the distribution of the Centers and the use of PD, which had already been analyzed in the 2004-SIN-Cens (Figures 2 and 3) [5].

CENTERS

(type, number)

NEPHROLOGISTS
(number)
FEMALE
(%)
AV. AGE
(years ± DS)
NORTH
(%)
CENTER

(%)

SOUTH

(%)

ISLANDS

(%)

PD-NO 36 42 38,1 50,8±6,4 14,3 26,2 31,0 28,6
PD-TRANSF 29 42 33,3 51,0±5,4 7,1 7,1 47,6 38,1
PD-YES 205 370 34,1 51,2±6,8 46,5 18,1 19,7 15,7
ALL 270 454 34,4 51,2±6,6 39,9 17,8 23,3 18,9
Table 6. General characteristics of the 454 Nephrologists who responded to the Qs.

Hierarchical role. As regards the hierarchical role of the interviewees, 20.9% hold a top position (Director, Head of Department, Operating Unit manager), 19.6% Department manager (likely to be, but not necessarily, in PD). Specialty trainee and non-resident attending doctors – at the time only present in University Centers – were not considered in this analysis. With regard to the Centers, taking part in 29.3% of cases was the Director/Head or Manager of the Nephrology and Dialysis Operating Unit, in 23.3% of cases the Sub-Department Manager, and in 5.9% both (Table 7). Overall therefore, the Director and/or a Sub-Department Manager took part in 58.5% of the Centers.

Table 7 also shows the age and gender according to different hierarchical roles.

ROLE % PD-NO PD-TRANSF PD-YES AGE Female(%)
HEAD OF DEPT. 95 20.9 38.1 28.6 18.1 53.3±5.7 11.6
SUB-DEPT. MAN. 89 19.6 7.1 14.3 21.6 53.5±4.2 30.3
RESIDENT 270 59.5 54.8 57.1 60.3 48.6±6.3 43.7
ALL 42 42 370 51.2±6.6 34.4
p<0.01 p<0.00001 p<0.00001
Table 7. Hierarchical role of the 454 participants in the survey.

Training and experience. The majority stated that they had received no or insufficient preparation for PD (score “1” or “2”) during their studies.

Interestingly, the percentage of Nephrologists with no or little preparation for PD (sum of the “None”, “1”, “2” percentages given in Table 8) increases significantly from the PD-NO Centers (38.0%) to the PD-TRANSF Centers (47.5%), and reaching 57.6% in the PD-YES Centers (Table 8 and Figure 5-A).

Vice versa, and in this case as expected, their experience with PD (Table 9) is unsurprisingly significantly greater and with continuity in the PD-YES Centers than the others. In particular, more than 3 years experience with PD had been acquired by 16.7% of the Nephrologists in the PD-NO Centers, by 26.2% in the PD-TRANSF Centers and by 65.1% in the PD-YES Centers (Table 9) (Figure 5-B).

Insufficient                                 Suitable for managing
None 1 2 3 4 5
PD-NO 19.0 7.1 11.9 28.6 11.9 21.4
PD-TRANSF 33.3 7.1 7.1 21.4 14.3 16.7
PD-YES 39.5 7.3 10.8 15.1 8.9 18.4
ALL 37.0 7.3 10.6 17.0 9.7 18.5
p<0.04
Table 8. Preparation received on PD while studying.
      Continuous
None Discontinuous <3 years >3 years
PD-NO 40.5 26.2 16.7 16.7
PD-TRANSF 35.7 19.0 19.0 26.2
PD-YES 6.5 20.3 8.1 65.1
ALL 12.3 20.7 9.9 57.0
Table 9. Experience of the 454 participants gained with PD (p<0.0001).
Characteristics of the Nephrologists who took part in the study.
Figure 5. Characteristics of the Nephrologists who took part in the study. A. Training in PD received during the course of their studies (interestingly, the percentage of those who received no training increases from the PD-NO Centers to the PD-YES Centers). B. Experience of more than 3 years with PD of the 454 Nephrologists interviewed by hierarchical role.

Working activity. As regards their area of work, practically all the interviewees (97.0%) handled dialysis. In detail, more than 50% of their working hours were spent on it by 71.4% of those in PD-NO Centers, 76.2% in PD-TRANSF Centers and 64.4% in PD-YES Centers.

While dialysis can be considered as focused only on HD in the Centers which do not use PD, in the PD-YES Centers the percentage of those working mainly or exclusively with PD is 28.6% (106 of 370 Nephrologists), with 18.6% (69 of 370 Nephrologists) dedicating more than 50% of their working time (Table 10).

0 < 25% 26 – 50% 51 – 75% > 75%
NO 0 0 28.6 26.2 45.2
TRANSF 0 11.9 11.9 21.4 54.8
SI 3.0 10.0 22.7 29.5 34.9
only HD 1.4 0.3 1.1 4.6
mainly HD 1.9 3.5 4.6 7.0
HD and PD 4.3 11.4 14.3 14.1
mainly PD 1.1 4.6 6.5 5.4
only PD 1.4 3.0 3.0 3.8
ALL 2.4 9.3 22.2 28.4 37.7
Table 10. Engagement with dialysis – the differences between the three types of Center are not significant. The modality the Nephrologist is involved with clearly only regards the PD-YES Centers.

Engagement in the choice of dialysis modality. Overall, 94.7% (430 interviewees) feel involved in the dialysis modality choice process, with no significant differences between the 3 types of Center (Table 11) either in the extent of their involvement (on a scale of from 1, “little”, to 5, “a lot”: PD-NO 3.7±1.1; PD-NO-TRANSF 4.2 ± 1.2; PD-YES 3.7 ± 1.4; p = NS).

With regard to the 3 aspects of the selection process (information, clinical assessment and aptitude assessment), most of the doctors in the Centers not using PD feel involved in the information (Table 11). Considering only the interviewees involved in the information process, checking the content of the information shows how 42.1% of those in PD-NO Centers say they provide information on both modalities. Although this is lower than the 75.0% in PD-TRANSF Centers and the 84.5% in PD-YES Centers, it was not expected as the percentage relates to Centers which do not use PD and do not send any possible candidates for PD to other Centers (Figure 6). The number of activities performed in the choice process is shown in Table 12.

ASSESSMENT
Not involved Information Clinical Aptitude
PD-NO 2.4 90.5 28.6 28.6
PD-TRANSF 4.8 85.7 59.5 52.4
PD-YES 5.7 73.2 78.9 68.4
ALL 5.3 76.0 72.5 63.2
Table 11. Engagement in the dialysis modality selection process. The differences between the three types of Center are not significant for the percentage of those involved in some way, but neither are they with regard to the degree to which they feel involved in this aspect. Significant, on the other hand, are the differences as regards the method of involvement (information, clinical assessment and social-aptitude assessment). Meanwhile, the different level of engagement in the three activities is to be expected: it is only natural that there is a negligible level of clinical assessment for indications and contraindications for PD in the Centers not using PD, and even more so aptitude assessment.
ACTIVITIES PERFORMED
CENTERS 0 1 2 3
PD-NO 2.4 69.0 7.1 21.4
PD-TRANSF 4.8 40.5 7.1 47.6
PD-YES 5.7 23.0 16.5 54.9
ALL 5.3 28.9 14.8 51.1
p<0.0001
24 131 67 232
DEGREE 0 3.7±1.2 3.8±1.0 4.1±1.1
Table 12. Engagement in the choice of dialysis modality. The numbers show the activities performed in the modality selection process. These activities are information, clinical assessment and social-aptitude assessment. As can be seen, 51.1% (mainly in the PD-YES Centers) say they are involved in all 3 activities with a medium-high level of engagement.
Involvement in dialysis modality selection.
Figure 6. Involvement in dialysis modality selection. A. Percentages of the 430 interviewees involved in the THREE areas of evaluation (information on the methods available, clinical and social-aptitude evaluation) – B. For the 345 Nephrologists involved in information, the modality(ies) illustrated by the interviewee to the patient. As can be seen, more than 40% of the Nephrologists in the PD-NO Centers say they also provide information on PD.

Characteristics of their Centers

The responses to this part of the survey can in some cases be considered opinions, as will be specified in the individual aspects. For some questions, in some Centers in which more than one Nephrologist took part conflicting assessments emerge between the Nephrologists in the same Center. These cases were resolved as reported under Materials and Methods.

Dialysis modality selection pathway. The existence of a pre-dialysis pathway increases from 47.2% in PD-NO Centers and 55.2% in PD-TRANSF Centers to 73.2% in the 205 PD-YES Centers (p<0.00005) (Figure 7). Of the 97 Centers with more than one Qs, the response of all the participants in 61 Centers (62.9% – 3.1 Qs per Center) is in agreement, while in the remaining 36 Centers (37.1% – 2.6 Qs per Center) there is at least one response which is not in agreement with the other Nephrologists in the same Center. In 6 of these 36 Centers, the response of the head of department or department manager is not in agreement with that of the majority; in particular, in 1 case for the Head of Department/Director there is no pathway while the majority confirm there is, with the opposite in 5 cases.

 Presence of a structured pathway
Figure 7. Presence of a structured pathway (with dedicated personnel and a pre-defined assessment program) in the different types of Center.

Other activities performed by the PD nurse. Of the 205 Centers performing PD, the nurse is dedicated exclusively to PD in just 26 (12.7%), while for the activities considered (pre-dialysis, day hospital activities, inpatients and HD) the PD nurse is responsible for 1, 2, 3 and all 4 in 45.4% (93 centers), 28.8% (59 centers), 10.7% (22 centers) and 2.4% (5 centers) respectively of the remaining 244 Centers (Figure 8). The main activity the PD nurse is engaged in is Pre-dialysis (Figure 8). The size of the PD program is inversely proportional to the number of “other activities” (Figure 9).

Other activities carried out by the nurses who are involved with PD.
Figure 8. Other activities carried out by the nurses who are involved with PD. The data obviously refer to the 205 PD-YES Centers. A. Number of other activities performed (the nurses are exclusively dedicated to PD in only 13% of the Centers). B. Type of activity carried out as a proportion of “other activities”.
The number of “other activities” performed by PD nurses increases as the patients treated with PD reduces
Figure 9. The number of “other activities” performed by PD nurses increases as the patients treated with PD reduces. Obviously the chart can also be read in reverse: the higher the number of other activities performed, the lower the number of patients on PD.

Completeness of the information provided to patients (opinion). Incident HD patients are adequately informed on HD, but not on PD in all three types of Center, though as regards the latter the level improves from the PD-NO Centers to the PD-YES Centers (Table 13). For incident PD patients, the level of information on the two methods is equivalent (not considering, obviously, the PD-NO Centers). The result does not change when the responses given by doctors involved in dialysis activities for more than 50% of their working time are considered.

HD INCIDENT PD INCIDENT
INFORMATION PROVIDED HD PD HD PD
NO 4.4 2.8
NO-TRANS 4.4 3.3 3.0 3.2
YES 4.2 3.7 4.3 4.7
ALL 4.2 3.6 4.0 4.3
N.S. p<0.00005 p<0.00001 p<0.00001
Table 13. Information provided to early referral incident patients.

Influence of different healthcare practitioners in the choice of modality (opinion). The healthcare practitioners considered as having a decisive role in their Center in the choice remain the head of department and the HD doctor for all Centers, while the PD doctor and nurse only have influence in the PD-YES Centers (Figure 10). For the psychologist, the response (some weight only in the PD-YES Centers) depends clearly on the availability of this service, confirming the presence in the PD-YES Centers of a more well-structured pre-dialysis pathway. The Head of Department is recognized as having a decisive role, even though the weight attributed depends on the role of the interviewee (Figure 11).

Opinion on the weight (from left to right) of the Head of
Figure 10. Opinion on the weight (from left to right) of the Head of Department (Director or Operating Unit Manager), the HD Doctor, the PD Doctor, a Doctor not involved with Dialysis, the HD nurse, the PD nurse, a Nurse not directly involved with Dialysis and lastly the Psychologist. The differences relating to PD Doctor and Nurse are as expected, as is the superimposable opinion between PD-NO and PD-TRANSF Centers. The interviewees in all the three types of Center agree on the role of the Head of Department.
Opinion on the role of the Head of Department in the choice depending on the role of the interviewee
Figure 11. Opinion on the role of the Head of Department in the choice depending on the role of the interviewee (Head of Department, Sub-department Manager or resident doctor). The weight is expressed as the mean (± DS) of the weight score attributed by the three professionals to the Head of Department (scores from 0 – no weight – to 5, decisive).

 

PART 2 – THE OPINIONS OF THE NEPHROLOGISTS

General non patient-dependent factors

Weight of different parties, including patient and family members (opinion) in self-sufficient and NON self-sufficient patients. Overall (considering all 3 types of Center together), the “weight” attributed to the doctor and nurse is the same whether the patient is self-sufficient or not. As expected, the “weight” attributed to the patient is greater when the patient is self-sufficient, while for those who are not self-sufficient the family member’s opinion is even more important than that of the doctor (Figure 12). The role of other patients is less important, and minimal for non self-sufficient patients.

Differences in the type of Center they belong to are highlighted in the opinion expressed on the importance of the nurse, patient and family members in the choice of modality (Figure 13) (Figure 14). For self-sufficient patients all three of these are assigned a significantly greater role by the interviewees in the PD-YES Centers than in the other Centers. For NON self-sufficient patients, the difference between PD-YES Centers and the others only relates to the nurse and family member (Figure 14).

Overall opinion (all Centers) on the role that the main professionals
Figure 12. Overall opinion (all Centers) on the role that the main professionals involved have in dialysis modality selection in patients who are self-sufficient or need a caregiver for PD. The value is the mean score (in this case the scale is from 1 – absent or irrelevant – to 5, decisive).
Opinion by type of Center on the weight the main professionals involved have in dialysis modality selection
Figure 13. Opinion by type of Center on the weight the main professionals involved have in dialysis modality selection in self-sufficient patients. The value is the mean score (in this case the scale is from 1 – absent or irrelevant – to 5, decisive).
Figure 14. Opinion by type of Center on the weight the main professionals involved have in dialysis modality
Figure 14. Opinion by type of Center on the weight the main professionals involved have in dialysis modality selection in NON self-sufficient patients (need for a caregiver for PD). The value is the mean score (in this case the scale is from 1 – absent or irrelevant – to 5, decisive).

Optimal percentage of PD. The responses relating to the percentage considered optimal confirm the importance of the type of Center in which the Nephrologist works (Table 14). Those working in Centers which do not use PD express significantly lower percentages as optimal for the use of PD compared to the others. The percentage does not change when only the 350 Nephrologists spending more than 50% of their time on dialysis and heads of department are considered (Figure 15).

OPTIMAL % NO TRANSF SI
=< 10 21.4 2.4 0.3
between 11 and 20 28.6 31.0 19.5
21 – 30 35.7 33.3 31.1
31 – 40 7.1 11.9 28.6
41 – 50 7.1 21.4 13.8
> 50 0.0 0.0 6.8
Table 14. Evaluation of the percentage of patients on dialysis with PD considered optimal (p<0.00001).
Optimal percentage use of PD according to Nephrologists in the different types of Center.
Figure 15. Optimal percentage use of PD according to Nephrologists in the different types of Center. In B, only the 350 Nephrologists with high involvement in dialysis (more than 50% of work time dedicated to dialysis) are considered. There are no significant differences between A and B.

 Fear of peritonitis. Of the 454 interviewees, 24 were not considered because they are not involved in any way in the modality selection process. Being conditioned by a fear of peritonitis is referred to by 48.8%, 19.5% and 15.5% respectively of the Nephrologists in PD-NO, PD-TRANSF and PD-YES Centers (Table 15). Considering only those with more than 3 years of experience with PD, the difference is not more significant, but the limited number of interviewees with >3 years experience in the PD-NO and PD-TRANSF Centers (a total of 16 out of 82), intriguing though it may be, does not allow for the drawing of certain conclusions in this regard, while in the PD-YES Centers there is no significant difference between those who have more or less than 3 years of experience in PD (Figure 16).

FEAR OF PERITONITIS NO TRANSF SI
NO 21 32 295
YES 20 8 54
Table 15. The fear of peritonitis diminishes from the PD-NO Centers (48.8%) to the PD-TRANSF (20.0%) and PD-YES Centers (15.5%).
 Influence of the fear of peritonitis in the choice process,
Figure 16. Influence of the fear of peritonitis in the choice process, considering only the 430 Nephrologists involved in the choice. A. All participants – B. Breakdown by having less or more than 3 years experience.

Validity of the method: adequacy. Table 16 gives the percentages of the different opinions expressed by the interviewees on the validity of clearance adequacy in PD compared to HD. The majority of PD-NO Centers consider it to be lower, while in the PD-TRANSF and PD-YES Centers the majority considered it to be the same or superior (Figure 17). The result does not change if only the interviewees with a high level of involvement in the modality selection pathway are considered.

DIALYSIS ADEQUACY SURVIVAL
CENTERS LOWER EQUAL HIGHER LOWER EQUAL HIGHER
NO 57.1 40.5 2.4 45.2 47.6 7.1
TRANSF 35.7 45.2 19.0 21.4 54.8 23.8
YES 25.7 61.4 13.0 14.1 64.9 21.1
ALL 29.5 57.9 12.6 17.6 62.3 20.0
Table 16. Evaluation of the validity of PD compared to HD. Both are evaluated in a significantly different way in the three types of Center (dialysis adequacy p<0.0005 – survival p<0.00002).
Figure 17. Evaluation of dialysis adequacy in PD compared to HD.
Figure 17. Evaluation of dialysis adequacy in PD compared to HD.

Validity of the method: survival. The results for survival are similar to those for adequacy, though less marked (Table 16) (Figure 17). The majority of participants believe it to be the same in all three types of Center, but only a few fewer in the PD-NO Centers believe it to be worse (47.6% the same – 45.2% worse). The opposite is true in the PD-YES Centers (64.9% the same – 14.1% worse) and in between in the NO-TRANSF Centers (54.8% the same – 28.1% worse). The result does not change when only the 300 interviewees with high involvement in dialysis are considered (lower survival rate – NO = 43.3% – TRANSF = 21.9% – YES = 13.0% – same survival rate – NO = 53.3% – TRANSF = 50.0% – YES = 64.3%)

Structural factors conditioning the use of PD. Of the 5 factors considered (cost, shortage of nurses, closeness to private Centers, limited overall size of Center, excess HD beds) the majority in all three types of Center agree that private Centers in the vicinity, limited size of Center and excess HD beds are factors favoring HD (Table 17) (Figures 18, 19). The majority belonging to PD-NO Centers do not consider cost to be an important factor, while in the PD-TRANSF and PD-YES Centers they consider it an indication for PD. This difference in opinion on costs is no longer significant when only the highly-involved Nephrologists are considered. The opinion expressed on the shortage of nurses as a conditioning factor is similar: the majority (38.1%) in the PD-NO Centers consider it a deciding factor, while in the TRANSF and YES Centers (61.9% and 66.8% respectively) it is considered an indication for PD, both overall and by just Nephrologists with high involvement in dialysis. In the PD-NO Centers however, more than a quarter of the interviewees (26.1%) consider it an indication for HD.

INDICATION FOR HD (1 – 2); INDIFFERENT (3); INDICATION FOR PD (4 – 5)
  1 2 3 4 5
COST (p<0.05)
NO 4.8 4.8 59.5 23.8 7.1
TRANSF 7.1 4.8 28.6 33.3 26.2
YES 3.0 3.8 36.2 26.8 30.3
ALL 3.5 4.0 37.7 27.1 27.8
SHORTAGE OF NURSES (p<0.0001)
NO 11.9 14.3 38.1 26.2 9.5
TRANSF 14.3 7.1 16.7 42.9 19.0
YES 3.0 5.7 24.6 33.8 33.0
ALL 4.8 6.6 25.1 33.9 29.5
PRIVATE CENTERS IN THE VICINITY (N.S.)
NO 47.6 14.3 38.1 0.0 0.0
TRANSF 28.6 19.0 42.9 7.1 2.4
YES 33.5 12.2 43.5 5.4 5.4
ALL 34.4 13.0 43.0 5.1 4.6
LIMITED SIZE OF CENTER (N.S.)
NO 28.6 23.8 31.0 14.3 2.4
TRANSF 33.3 9.5 35.7 14.3 7.1
YES 18.1 22.4 35.7 14.1 9.7
ALL 20.5 21.4 35.2 14.1 8.8
EXCESS HD BEDS (N.S.)
NO 54.8 16.7 23.8 2.4 2.4
TRANSF 38.1 19.0 28.6 7.1 7.1
YES 36.2 17.6 33.5 6.2 6.5
ALL 38.1 17.6 32.2 5.9 6.2
Table 17. Evaluation, as indication for PD or HD, of the structural factors given in the Table. If only the interviewees (300) with high involvement in the choice process (data not shown) are considered, the difference regarding the opinion between the three types of Center on cost is no longer significant.
Overall evaluation (454 Nephrologists) of indication for PD or HD
Figure 18. Overall evaluation (454 Nephrologists) of indication for PD or HD for each of the structural factors reported above on a scale of from 1 to 5.
Evaluation of indication for PD or HD
Figure 19. Evaluation of indication for PD or HD for each of the structural factors reported above on a scale of from 1 to 5. Participants have been divided by the type of Center they belong to.

Possible incentives for PD. The majority of interviewees (Figure 20) (Table 18) judge all 5 incentives considered positively. Analysis by type of Center shows significant differences regarding financial support for assisted PD, telemedicine and the application of financial incentives for residential care homes willing to manage PD: financial support for assisted PD and residential care homes is warmly supported by those belonging to PD-TRANSF and PD-YES Centers, and telemedicine by the PD-NO Centers (Figure 21).

from no importance (1) to considerable weight (5)
  1 2 3 4 5
FINANCIAL SUPPORT FOR ASSISTED PD (p<0.00001)
NO 33.3 16.7 16.7 21.4 11.9
TRANSF 14.3 4.8 28.6 26.2 26.2
YES 4.9 6.8 15.4 28.4 44.6
ALL 8.4 7.5 16.7 27.5 39.9
TELEMEDICINE (p<0.0005)
NO 7.1 7.1 14.3 54.8 16.7
TRANSF 2.4 7.1 31.0 31.0 28.6
YES 11.1 17.0 26.2 25.9 19.7
ALL 9.9 15.2 25.6 29.1 20.3
24H NURSE PHONE SUPPORT (N.S.)
NO 2.4 4.8 14.3 57.1 21.4
TRANSF 0.0 7.1 16.7 38.1 38.1
YES 3.2 9.2 17.0 34.1 36.5
ALL 2.9 8.6 16.7 36.6 35.2
HOME NURSING SUPPORT (N.S.)
NO 4.8 4.8 16.7 40.5 33.3
TRANSF 0.0 2.4 14.3 38.1 45.2
YES 2.4 3.8 9.7 29.5 54.6
ALL 2.4 3.7 10.8 31.3 51.8
FINANCIAL SUPPORT FOR RESIDENTIAL CARE HOMES (p<0.0005)
NO 7.1 4.8 28.6 42.9 16.7
TRANSF 2.4 7.1 19.0 33.3 38.1
YES 3.5 4.9 10.8 26.5 54.3
ALL 3.7 5.1 13.2 28.6 49.3
Table 18. Evaluation of the weight that the incentives for PD given in the Table have on the choice for PD according to Nephrologists by type of Center.
Figure 20. Opinion of the effectiveness
Figure 20. Opinion of the effectiveness of various initiatives generally considered to be incentives for PD: financial support for Caregivers in assisted PD; telemedicine; 24H nurse phone support; home nurse support; financial support for residential care facilities willing to accept and manage patients on PD. All interviewees (454 Nephrologists).
Opinion of Nephrologists of the effectiveness of various initiatives generally considered to be incentives for PD
Figure 21. Opinion of Nephrologists of the effectiveness of various initiatives generally considered to be incentives for PD divided by the type of Center they belong to.

General patient-dependent factors

Together these represent the most common clinical and social-aptitude indications and contraindications to PD which are normally evaluated during the pre-dialysis process.

Percentage of patients with no conditioning. The percentage of early referral patients who are free to choose between HD and PD is evaluated in a significantly different way depending on the type of Center a nephrologist belongs to (Table 19). In particular, while it is believed to be less than 50% of incident patients for 92.8% of interviewees in the PD-NO Centers, 47.6% in the PD-YES Centers believe it to be more than 50% (Figure 22), with the result not changing taking into account only the 300 interviewees with high involvement in dialysis (96.7% and 48.3% respectively).

≤40% 40-50% 50-60% 60-70% ≥70%
NO 71.4 21.4 4.8 0.0 2.4
NO-TRANSF 54.8 23.8 9.5 4.8 7.1
YES 25.7 26.8 21.1 14.1 12.4
ALL 32.6 26.0 18.5 11.9 11.0
Table 19. Percentage of patients free to choose dialysis modality (p<0.00001).
Opinion of the percentage of total incident patients in dialysis with no clinical or social conditioning
Figure 22. Opinion of the percentage of total incident patients in dialysis with no clinical or social conditioning and therefore able to choose either PD or HD.

Particular clinical conditions. Figure 23 compares the assessments given by those belonging to NO and TRANSF Centers considered together (82 interviewees) with those belonging to YES Centers (370 interviewees), considering together high or moderate indication for HD (responses 1 and 2) and PD (responses 4 and 5). On ischemic heart disease, malnutrition and diverticulosis, the responses – indication for PD for CAD and contraindication for PD for BMI<20 and diverticulosis spread beyond the sigma – do not differ significantly between the different types of Center. Opposite evaluations, on the other hand, were given by the majority of the interviewees for heart failure (indication for the PD-YES Centers and contraindication or indifferent for the PD-NO/TRANSF Centers) and polycystic nephropathy (contraindication for the PD-NO/TRANSF Centers and indifferent for the PD-YES Centers) (Figure 24). With regard to Type 2 DM, the proportion among those in the PD-NO/TRANSF Centers who expressed indifference or consider it an indication for PD (indifferent 41.7% – indication 35.7%) is higher than among those belonging to the PD-YES Centers (indifferent 52.4% – indication 21.9%). For obesity too, which is considered by over 75% in both groups to be a contraindication for PD, indifference is higher in the NO/TRANSF Centers (17.9% vs 8.4%). The difference between NO and TRANSF Centers was only significant with regard to Polycystic nephropathy (Figure 24); for all the other conditions the differences in evaluation between NO and TRANSF Centers were not significant.

The results for all three types of Center with the responses on a scale of from 1 to 5 are given in detail in Table 20.

INDICATION FOR HD (1 – 2); INDIFFERENT (3); INDICATION FOR PD (4 – 5)
1 2 3 4 5
CONGESTIVE HEART FAILURE (p<0.005)
NO 28.6 14.3 16.7 33.3 7.1
TRANSF 23.8 14.3 19.0 31.0 11.9
YES 11.1 10.8 17.6 29.2 31.4
ALL 13.9 11.5 17.6 29.7 27.3
ISCHEMIC HEART DISEASE (p<0.0005)
NO 14.3 7.1 26.2 45.2 7.1
TRANSF 2.4 4.8 21.4 52.4 19.0
YES 1.6 5.4 30.0 38.9 24.1
ALL 2.9 5.5 28.9 40.7 22.0
DIABETES (p<0.01)
NO 14.3 11.9 47.6 23.8 2.4
TRANSF 7.1 11.9 35.7 31.0 14.3
YES 5.1 20.5 52.4 15.9 5.9
ALL 6.2 18.9 50.4 18.1 6.4
OBESITY – BMI>30 kg/m² (N.S.)
NO 57.1 16.7 21.4 4.8 0.0
TRANSF 50.0 33.3 14.3 0.0 2.4
YES 52.4 35.1 8.4 3.2 0.8
ALL 52.6 33.3 10.1 3.1 0.9
MALNUTRITION – BMI<20 kg/m² (p<0.05)
NO 38.1 14.3 9.5 35.7 2.4
TRANSF 31.0 23.8 19.0 14.3 11.9
YES 24.1 23.2 25.7 19.7 7.3
ALL 26.0 22.5 23.6 20.7 7.3
DIVERTICULOSIS SPREAD BEYOND THE SIGMA (p<0.01)
NO 57.1 16.7 21.4 0.0 4.8
TRANSF 66.7 19.0 7.1 2.4 4.8
YES 41.9 35.9 17.3 3.5 1.4
ALL 45.6 32.6 16.7 3.1 2.0
APKD (p<0.00001)
NO 35.7 23.8 35.7 0.0 4.8
TRANSF 50.0 33.3 11.9 0.0 4.8
YES 15.4 25.7 50.3 5.9 2.7
ALL 20.5 26.2 45.4 4.8 3.1
Table 20. Detailed evaluation of the single clinical factors (in percentages) on which the opinion of the Nephrologists was requested.
Evaluation of the main clinical factors which can condition the choice of modality.
Figure 23. Evaluation of the main clinical factors which can condition the choice of modality. 1. «CHF» Congestive heart failure; 2. «CAD» Ischemic heart disease; 3. «DM» type 2 Diabetes Mellitus; 4. «BMI>30» Obesity; 5. «BMI<20» Malnutrition; 6. «Diverticulosis», understood as diverticulosis spread beyond the sigma; 7. «ADPKD» Polycystic nephropathy. NOTE – The interviewees in the NO and TRANSF Centers (82) were considered together and compared with those of the PD-YES Centers (370).
Polycystic nephropathy and congestive heart failure in the opinion of the interviewees divided by type of Center.
Figure 24. Polycystic nephropathy and congestive heart failure in the opinion of the interviewees divided by type of Center.

Particular social conditions (NON-clinical factors associated with the patient). Figure 25 and Figure 26 compare the assessments given by those belonging to NO and TRANSF Centers considered together (82 interviewees) with those belonging to YES Centers (370 interviewees), considering together high or moderate indication for HD (responses 1 and 2) and PD (responses 4 and 5). The interviewees agree (p= N.S.) that motivation for self-care, working activity, a need for flexibility in times for dialysis and – in the case of NON self-sufficient patients – the availability of a caregiver all represent indications for PD, just as not sticking with the therapy (NON compliance) is a valid indication for HD. Opinions are significantly different between the three groups, on the other hand, with regard to the importance of body image, age, quality of life and living alone. Body image in particular is considered an indication for HD by 52.4% in PD-NO/TRANSF Centers, while 62.7% in the PD-YES Centers consider it to be an indication for PD or are indifferent (p<0.05); while Quality of Life is considered an indication for PD by 51.2% in the PD-NO/TRANSF Centers, with the percentage rising to 67.3% in the PD-YES Centers (p<0.01); an age of between 65 and 75 is considered an indication for HD or indifferent by 15.5% and 50.0% respectively in the PD-NO/TRANSF Centers, while in the PD-YES Centers these percentages are 4.1% and 57.3% respectively (p<0.0005); the difference is more marked for > 75 years of age, considered an indication for HD by 48.8% of the interviewees in PD-NO/TRANSF Centers compared with 24.3% in the PD-YES Centers (p<0.00005); finally, living alone is an indication for HD for 78.6% in PD-NO/TRANSF Centers compared with 51.6% in PD-YES Centers (p<0.00005).

NON clinical conditions evaluated according to level of indication for HD or PD.
Figure 25. NON clinical conditions evaluated according to level of indication for HD or PD. «MOTIVAT. SELF-CARE»: patient motivated for self-care dialysis; «FLEXIBILITY» in treatment times; «Q of L»: Quality of Life; «NON COMPLIANCE»: limited compliance with prescriptions. NOTE – The interviewees in the NO and TRANSF Centers (84) were considered together and compared with those of the PD-YES Centers (370).
 NON clinical conditions evaluated according to level of indication for HD or PD.
Figure 26. NON clinical conditions evaluated according to level of indication for HD or PD. «ASSIST-PD»: NON self-sufficient patient needing a CareGiver (CG) who is available. NOTE – The interviewees in the NO and TRANSF Centers (82) were considered together and compared with those of the PD-YES Centers (370).

For all the NON clinical conditions considered, the differences in evaluation between PD-NO and PD-TRANSF Centers was not significantly different. The results for all three types of Center are given in detail in Table 21, with the responses on a scale of from 1 to 5. The results of the analysis limited to the 300 Nephrologists with high involvement in dialysis activities proved to be superimposable with those given in Table 21.

INDICATION FOR HD (1 – 2); INDIFFERENT (3); INDICATION FOR PD (4 – 5)
1 2 3 4 5
MOTIVATION FOR SELF-CARE (p<0.00001)
NO 2.4 0.0 0.0 64.3 33.3
TRANSF 0.0 0.0 4.8 31.0 64.3
YES 0.8 0.5 2.4 13.0 83.2
ALL 0.9 0.4 2.4 19.4 76.9
AGED BETWEEN 65 AND 75 (p<0.0005)
NO 7.1 9.5 57.1 21.4 4.8
TRANSF 4.8 9.5 42.9 35.7 7.1
YES 0.3 3.8 57.3 25.9 12.7
ALL 1.3 4.8 55.9 26.4 11.5
AGE > 75 (p<0.00001)
NO 40.5 11.9 19.0 21.4 7.1
TRANSF 21.4 23.8 23.8 14.3 16.7
YES 5.1 19.2 40.0 24.6 11.1
ALL 9.9 18.9 36.6 23.3 11.2
NOT SELF-SUFFICIENT WITH CAREGIVER AVAILABLE (p<0.005)
NO 11.9 7.1 11.9 61.9 7.1
TRANSF 19.0 4.8 19.0 40.5 16.7
YES 8.6 6.2 10.3 40.5 34.3
ALL 9.9 6.2 11.2 42.5 30.2
LIVING ALONE (p<0.005)
NO 50.0 26.2 21.4 0.0 2.4
TRANSF 42.9 38.1 11.9 4.8 2.4
YES 25.1 26.5 40.3 5.4 2.7
ALL 29.1 27.5 35.9 4.8 2.6
BODY IMAGE (p<0.05)
NO 26.2 31.0 35.7 7.1 0.0
TRANSF 23.8 23.8 40.5 9.5 2.4
YES 8.6 28.6 50.3 9.2 3.2
ALL 11.7 28.4 48.0 9.0 2.9
WORK (p<0.05)
NO 2.4 4.8 19.0 59.5 14.3
TRANSF 2.4 4.8 19.0 38.1 35.7
YES 1.6 1.9 17.3 33.5 45.7
ALL 1.8 2.4 17.6 36.3 41.9
TIME FLEXIBILITY (p<0.005)
NO 7.1 0.0 14.3 61.9 16.7
TRANSF 0.0 2.4 14.3 47.6 35.7
YES 1.4 0.5 10.8 34.3 53.0
ALL 1.8 0.7 11.5 38.1 48.0
QUALITY OF LIFE (p<0.00001)
NO 2.4 2.4 47.6 45.2 2.4
TRANSF 0.0 11.9 33.3 40.5 14.3
YES 1.4 1.9 29.5 28.6 38.6
ALL 1.3 2.9 31.5 31.3 33.0
NON COMPLIANCE (p= N.S.)
NO 71.4 11.9 14.3 2.4 0.0
TRANSF 66.7 14.3 11.9 4.8 2.4
YES 67.6 17.0 12.2 1.6 1.6
ALL 67.8 16.3 12.3 2.0 1.5
Table 21. Detailed evaluation of the single NON clinical factors (in percentages) on which the opinion of the Nephrologists was requested.

Duration of PD and drop-out to HD

Duration of PD. When asked if drop-out from PD was to be considered a probable event after 2, 4 or 5 years, or whether PD has no definable time limit a priori, the responses were significantly different, as reported in Table 22. Rather than being a division between those who believe it has a predetermined duration and those who do not (p=N.S.) however, the difference relates to the estimate of the duration given by the former (Figure 27). Limited to the 300 interviewees with high involvement in dialysis, the result of the same analysis was not significant.

2 years 3 years 5 years UNDEFINED
NO 14.3 19.0 19.0 47.6
TRANSF 2.4 21.4 19.0 57.1
YES 2.7 11.6 30.5 55.1
ALL 3.7 13.2 28.4 54.6
 Table 22. Duration of PD.
The duration of PD in the opinion of the interviewees divided by type of Center.
Figure 27. The duration of PD in the opinion of the interviewees divided by type of Center.

Duration of PD and size of PD program. The majority of the interviewees (63.7%) believe that the size of a Center’s PD program (total number of patients treated and/or in treatment) has no influence on the percentage of drop-out to HD (Figure 28-A), with no significant differences among the three types of Center (or when considering only the 300 with high involvement in dialysis).

Figure 28. The response on annual drop-out rate is similar to that on the duration of PD (A). In B, the opinion of the Nephrologists, divided by type of Center, on the influence the size of PD program can have on drop-out.
Figure 28. The response on annual drop-out rate is similar to that on the duration of PD (A). In B, the opinion of the Nephrologists, divided by type of Center, on the influence the size of PD program can have on drop-out.

Percentage of annual drop-out. The interviewees in the three types of Center also gave a similar response to this question (Figure 28-B). Overall, 48.9% believe there is no PHYSIOLOGICAL drop-out percentage, while among the remainder 17.6% and 19.6% respectively consider it to be lower than 6% or between 6 and 10%.

Interest for the subject. When asked “In future, would you like to be informed of the results of this questionnaire and any new initiatives which may follow?”, a total of 91.6% expressed interest, though there was a strongly significant difference between the types of Center. Indeed, while almost all those belonging to YES Centers (98.6%) expressed interest, in the NO Centers the percentage of those interested drops to 47.6% (Figure 29).

Figure 29. The response to this question, asked more out of courtesy than as part of the survey, can be an indicator of interviewee interest in PD.
Figure 29. The response to this question, asked more out of courtesy than as part of the survey, can be an indicator of interviewee interest in PD.

 

Discussion

The 2004-SIN-Cens had shown the importance of structural factors (number of private Centers, size of Center and HD station occupancy rate) in the use of PD: Centers not using PD are smaller, have a lower HD bed occupancy rate and are located in regions where there are numerous private Dialysis Centers. If structural factors alone counted, opinions on PD would be no different between those using PD and those not using it; however, they were shown to be significantly different depending on the type of Center respondents belonged to: negative when it does not use PD and positive in those that do.

As choosing a place to work generally precedes work experience, opinions on PD seem to be defined according to experience gained with the method, confirming the importance of structural factors on use of the modality. However, the importance alongside structural factors of positive opinions of the modality is shown by the fact that there are Centers (PD-TRANSF) which have the same structural characteristics as Centers which do not consider PD at all due to size (small) and HD bed occupancy (low), yet send candidates for PD to other Centers.

In short, the use of PD in public Centers in Italy seems to be the result of balancing structural factors and opinions, with the latter however being conditioned – though only partially – by the former as opinions are enhanced with the gaining of experience in PD.

The main results of the study are summarized in Table 23.

Characteristics of the Nephrologists and their Centers

As regards the Nephrologists in the three types of Center, the only significant difference relates – naturally – to experience with PD, while their personal characteristics, training and engagement with dialysis, and degree of involvement in the choice of modality are substantially similar. The Centers which took part in the survey are not significantly different to those which did not. The main difference between the 3 types of Center regards the presence to a lesser extent of a structured modality selection pathway in the PD-NO Centers than in the PD-YES Centers, and in between the two in the PD-TRANSF Centers. Matching this is the percentage of those involved in all the 3 components of the choice (information, clinical evaluation and social-aptitude evaluation). If this concurs with the nature of the Center (choice is not an issue where PD is not performed), the level of participation of those who define themselves as being involved in the choice is medium-high in all three types of Center. This contradiction could represent a different cultural approach essentially limiting the choice in the PD-NO Centers to information. Strangely however, even in the PD-NO Centers HD incident patients are informed on PD, although insufficiently. Despite this, the difference between PD-NO and PD-YES Centers in regard to the information provided to patients is of note (2.8 vs 3.7 respectively on a scale of from 1 to 5). As the question on information provided related to early referral patients, but did not specify an absence of contraindications for PD, this information may be influenced by these contraindications, which are logically more numerous in HD incident patients in PD-YES Centers (in everyday practice, the existence of contraindications for PD is considered grounds for making informing the patient on this method “unnecessary”).

Opinions: roles played in making the choice

In accordance with the above, there is a clear difference in the way the percentage of patients who could do either PD or HD (with no contraindications) is assessed by Nephrologists in the three types of Center. If the choice is influenced by the healthcare practitioners, everyone recognizes as regards their own Center the decisive role played by the Director, while the weight attributed to other professionals, such as the PD doctor or nurse and psychologist, depends obviously on the type of Center and availability of the Service. Of interest is the role of the psychologist, which is important only in the PD-YES Centers, indicating a more well-structured selection pathway in these Centers. As regards the roles in general of the doctor, nurse, patient, family members and other patients, everyone agrees that the doctor is key, the patient or family members (depending on whether the patient is self-sufficient or not) are important, and other patients are irrelevant. The main difference between the three types of Center lies in the assessment of the role of the nurse, which is seen as NON marginal only by 14.3% of the Nephrologists in the PD-NO Centers compared to 60.5% in the PD-YES Centers.

Opinions: validity of the method, optimal percentage and drop-out

Opinions on adequacy and survival in PD compared to HD also differ considerably in the three types of Center: worse for the PD-NO Centers, the same or better than HD in the PD-YES Centers. Around half believe that PD has no predefined duration, with no differences between the Centers; however, the percentage of the other half who give it a maximum duration of 2 or 3 years compared to 5 years is significantly higher in the PD-NO Centers. It is therefore only natural that just 14.3% in the PD-NO Centers consider a proportion of patients treated with PD of more than 30% optimal, while the proportion is below 10% in 21.4% in these Centers, unlike the others. This means, however, that for 64.3% in the PD-NO Centers the optimal proportion of patients treated with PD is between 10 and 30% (the actual percentage of PD in the PD-YES Centers)[18].

For this aspect, as for several others, the evaluation given by the Nephrologists in PD-TRANSF Centers is similar to that of those in PD-YES Centers.

Opinions: general factors conditioning modality selection

Fear of peritonitis is most felt in the PD-NO Centers, least in the PD-YES Centers and in between the two in the PD-TRANSF Centers. Of interest is the finding that the difference is no more significant when considering only the interviewees with > 3 years of experience with PD. Size of Center, less pressure on HD beds and closeness to private Centers are recognized as factors that favor or are indications for the use of HD with no significant differences between the Centers, while cost and shortage of nurses are indications for PD in the PD-YES and PD-TRANSF Centers, but not in the PD-NO Centers, where to the contrary for the majority they represent an indication for HD or have no importance. This may be justified by the different perspective Nephrologists have in different types of Center. In fact, though the nurses/patients ratio clearly favors PD, and therefore a shortage of nurses should represent an incentive for this method, the perspective taken in PD-NO Centers is of having to start a PD program with an initial investment which is known to always involve a greater use of resources rather than a saving, as becomes evident only after the program has started.

Opinions: patient-specific factors conditioning modality selection

While practically everyone agrees that diverticulosis and obesity are an indication for HD, that coronary artery disease is an indication for PD and that it makes no difference in the case of malnutrition and diabetes, there is no agreement on congestive heart failure (clear indication for PD in the PD-YES Centers) or polycystic nephropathy (clear indication for HD in the PD-YES and DP-TRANSF Centers). For the non-clinical factors, everyone agrees that motivation for self-care, having a work activity and the need for flexible treatment times are all indications for PD, while poor compliance is an indication for HD. The differences regard body image, which is considered an indication for HD in the PD-NO and TRANSF Centers while 50% in the PD-YES Centers are indifferent, and Quality of Life, which is considered better in PD by everyone, but even more positively in the PD-YES Centers. An age of between 65 and 75 is considered as making no difference or an indication for PD by the majority, while an age of over 75 and living alone are judged differently by those in the 3 types of Center. For the majority in the PD-NO Centers, being >75 years of age is an indication for HD, but not in the PD-YES Centers, while living alone represents an indication for HD for everyone, but much more so in the PD-NO Centers. However, if the patient is not self-sufficient and has a caregiver available PD is recognized by everyone as the recommended modality. Clearly, the availability of a caregiver is considered very rare in the PD-NO Centers. As regards possible incentives for PD, financial support for the caregiver or residential care facility is considered most important in the PD-YES Centers, while interestingly the most important for the interviewees in the PD-NO Centers are telemedicine and technological innovation.

PD-NO PD-TRANSF PD-YES
CHARACTERISTICS OF THE NEPHROLOGIST
existence of a structured choice pathway (YES, %) 47.2 55.2 73.2
involvement in all three pre-dialysis activities (%) 21.4 47.6 54.9
experience in PD of >3 years (%) 16.7 26.2 65.1
information on PD provided to pts on HD (score from 1 to 5) 2.8 3.3 3.7
THE CHOICE – ROLES
>40% of incident pts who could do PD (%) 28.6 45.2 74.3
NON marginal role of nurse in the choice (%) 14.3 31.0 60.5
THE VALUE OF PD
lower dialysis adequacy than HD (%) 57.1 35.7 25.7
lower survival rate than HD (%) 45.2 21.4 14.1
drop-out expected after 2 or 3 years (%) 33.3 23.9 14.3
optimal percentage of pts treated with PD of >30% 14.3 33.3 49.2
optimal percentage of pts treated with PD of <10% 21.4 2.4 0.3
FACTORS WHICH CONDITION THE CHOICE – indications for PD
cost (%) 41.0 59.5 57.0
shortage of nurses (%) 35.7 61.9 66.8
congestive heart failure (%) 40.4 42.9 60.6
Quality of Life (%) 47.6 54.8 67.2
pt not self-sufficient with caregiver available (%) 69.0 57.2 84.8
FACTORS WHICH CONDITION THE CHOICE – indications for HD
age > 75 years (%) 52.4 45.2 24.3
living alone (%) 76.2 81.0 51.6
ADPKD 59.5 83.3 41.1
body Image indication for HD 57.2 47.6 37.2
fear of peritonitis 48.8 20.0 15.5
Table 23. Summary of the main differences (considering only significant ones) of opinion between Nephrologists in the three types of Center.

 

Limitations of the study

The study has several limitations. The data were re-analyzed a number of years following their collection, so some findings linked to the time at which the survey was carried out may not have been highlighted or discussed. The prevalence and incidence data refer to 2004, and not to the year of the study. Finally, the participants were selected on a voluntary basis. However, the large size of the sample cohort, the inclusion of a substantial number of Nephrologists who do not prescribe PD and the different aspects considered undoubtedly represent a strength.

 

Conclusions

The study confirms the importance of the opinions or “preconceptions” of Nephrologists associated with the type of Center they work in. Compared with Centers in which PD is performed, in Centers in which it is not the opinion of PD is more negative, if there is a pre-dialysis choice pathway it is simplified to just providing information and the percentage of patients considered optimal for treatment with PD is lower. However, opinions vary in these Centers too (not everyone has the same view), conditioned as they are by the experience the Nephrologist has with PD, and can even be positive on various specific aspects. Together with the existence of Centers which send patients who may have an indication for PD to other Centers though they do not perform it themselves, as is highlighted for the first time by this study, all this suggests that the use of PD depends on a combination of structural factors (size, neighboring private facilities and HD beds) and opinions, in which the latter however are only partially conditioned by the former.

 

Bibliography

  1. United States Renal Data System. 2023 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2023. https://usrds-adr.niddk.nih.gov/2023.
  2. Nissenson AR, Prichard SS, Cheng IK, Gokal R, Kubota M, Maiorca R, Riella MC, Rottembourg J, Stewart JH. Non-medical factors that impact on ESRD modality selection. Kidney Int Suppl. 1993 Feb;40:S120-7. PMID: 8445833.
  3. van de Luijtgaarden MW, Jager KJ, Stel VS, et al. Global differences in dialysis modality mix: the role of patient characteristics, macroeconomics and renal service indicators. Nephrol Dial Transplant. 2013 May;28(5):1264-75. https://doi.org/10.1093/ndt/gft053.
  4. Karopadi AN, Mason G, Rettore E, Ronco C. The role of economies of scale in the cost of dialysis across the world: a macroeconomic perspective. Nephrol Dial Transplant. 2014 Apr;29(4):885-92. https://doi.org/10.1093/ndt/gft528.
  5. Viglino G, Neri L, Alloatti S, Cabiddu G, Cocchi R, Limido A, Marinangeli G, Russo R, Teatini U, Schena FP. Analysis of the factors conditioning the diffusion of peritoneal dialysis in Italy. Nephrol Dial Transplant. 2007 Dec;22(12):3601-5. https://doi.org/10.1093/ndt/gfm416.
  6. Hingwala J, Diamond J, Tangri N, Bueti J, Rigatto C, Sood MM, Verrelli M, Komenda P. Underutilization of peritoneal dialysis: the role of the nephrologist’s referral pattern. Nephrol Dial Transplant. 2013 Mar;28(3):732-40. https://doi.org/10.1093/ndt/gfs323.
  7. Jung B, Blake PG, Mehta RL, Mendelssohn DC. Attitudes of Canadian nephrologists toward dialysis modality selection. Perit Dial Int. 1999 May-Jun;19(3):263-8. https://doi.org/10.1177/089686089901900313.
  8. Mendelssohn DC, Mullaney SR, Jung B, Blake PG, Mehta RL. What do American nephologists think about dialysis modality selection? . Am J Kidney Dis. 2001 Jan;37(1):22-29. https://doi.org/10.1053/ajkd.2001.20635.
  9. Charest AF, Mendelssohn DC. Are North American nephrologists biased against peritoneal dialysis? Perit Dial Int. 2001 Jul-Aug;21(4):335-7. PMID: 11587394.
  10. Jassal SV, Krishna G, Mallick NP, Mendelssohn DC. Attitudes of British Isles nephrologists towards dialysis modality selection: a questionnaire study. Nephrol Dial Transplant. 2002 Mar;17(3):474-7. https://doi.org/10.1093/ndt/17.3.474.
  11. Zhao LJ, Wang T. Attitudes of Chinese chief nephrologists toward dialysis modality selection. Adv Perit Dial. 2003;19:155-8. PMID: 14763053.
  12. Ledebo I, Ronco C. The best dialysis therapy? Results from an international survey among nephrology professionals. NDT Plus. 2008 Dec;1(6):403-408. https://doi.org/10.1093/ndtplus/sfn148.
  13. Bouvier N, Durand PY, Testa A, Albert C, Planquois V, Ryckelynck JP, Lobbedez T. Regional discrepancies in peritoneal dialysis utilization in France: the role of the nephrologist’s opinion about peritoneal dialysis. Nephrol Dial Transplant. 2009 Apr;24(4):1293-7. https://doi.org/10.1093/ndt/gfn648.
  14. Desmet JM, Fernandes V, des Grottes JM, Spinogatti N, Collart F, Pochet JM, Dratwa M, Goffin E, Nortier JL. Perceptive barriers to peritoneal dialysis implementation: an opinion poll among the French-speaking Belgian nephrologists. Clin Kidney J. 2013 Jun;6(3):358-62. https://doi.org/10.1093/ckj/sft041.
  15. Fluck RJ, Fouque D, Lockridge RS Jr. Nephrologists’ perspectives on dialysis treatment: results of an international survey. BMC Nephrol. 2014 Jan 15;15:16. https://doi.org/10.1186/1471-2369-15-16.
  16. Lorcy N, Turmel V, Oger E, Couchoud C, Vigneau C. Opinion of French nephrologists on renal replacement therapy: survey on their personal choice. Clin Kidney J. 2015 Dec;8(6):785-8. https://doi.org/10.1093/ckj/sfv093.
  17. Marinangeli G, Cabiddu G, Neri L, Viglino G, Russo R, Teatini U; Italian Society of Nephrology Peritoneal Dialysis Study Group. Old and new perspectives on peritoneal dialysis in Italy emerging from the Peritoneal Dialysis Study Group Census. Perit Dial Int. 2012 Sep-Oct;32(5):558-65. https://doi.org/10.3747/pdi.2011.00112.
  18. Neri L, Viglino G, Vizzardi V, Porreca S, Mastropaolo C, Marinangeli G, Cabiddu G. Peritoneal Dialysis in Italy: the 8th GPDP-SIN census 2022. G Ital Nefrol. 2023 Jun 29;40(3):2023-vol3. PMID: 37427898.

Calcified Fibrin Sheath After Stuck Catheter Removal: Case Report and Literature Review

Abstract

The prevalence of central venous catheters (CVC) in hemodialysis patients is around 20-30%. In this scenario, complications related to the use of the CVC are commonly observed, requiring active management by nephrologists. These include infectious complications as well as those related to CVC malfunction. Among the latter, the formation of a fibrin sheath around the catheter linked to foreign body reaction could cause CVC malfunction in various ways. Even after the removal of the catheter, the fibrin sheath can remain inside the vascular lumen (ghost fibrin sheath) and rarely undergo calcification. We describe the clinical case of a hemodialysis patient who, following the removal of a malfunctioning, stuck CVC, presented a calcified tubular structure in the lumen of the superior vena cava, diagnosed as calcified fibrin sheath (CFS). This rare occurrence, described in the literature in 8 other cases, although rare, is certainly underdiagnosed and can lead to complications such as sepsis resulting from CFS, pulmonary embolisms, and vascular thrombosis. Therapeutic approaches should be considered only in symptomatic cases and involve an invasive surgical approach.

Keywords: CVC complication, fibrin sleeve, fibrin sheath, calcified fibrin sheath, stuck catheter, hemodialysis

Sorry, this entry is only available in Italian.

Introduzione

La malattia renale cronica (MRC) rappresenta un crescente problema di sanità pubblica a livello mondiale, associata a morbilità, mortalità e incremento dei costi per la sanità [1, 4]. Nel 2017 è stato stimato che circa 850 milioni di individui fossero affetti da malattia renale cronica, ovvero il doppio della prevalenza stimata del diabete a livello mondiale e oltre venti volte la prevalenza globale stimata dell’HIV o dell’AIDS [5].

I dati derivanti dallo studio Global Burden of Disease (GBD) mostrano come la prevalenza della MRC è aumentata del 19,6% nell’ultima decade [6]. Oltre a questo, come logico aspettarsi, si è osservato un incremento della prevalenza della malattia renale cronica terminale (End-stage renal disease ‒ ESRD), raggiungendo più di 2 milioni di pazienti in trattamento sostitutivo della funzione renale di cui circa l’87% in emodialisi [7]. L’aumento dell’aspettativa di vita e l’incremento di patologie croniche hanno determinato una modifica del fenotipo eziopatogenetico della MRC contando un incremento di ipertensione arteriosa, diabete e cardiopatia quali principali cause di MRC [8].

L’accesso vascolare di prima scelta adatto all’esecuzione della terapia dialitica è rappresentato dalla fistola artero-venosa distale con vasi nativi (FAV), poiché, in confronto agli innesti protesici (graft) e ai cateteri venosi centrali (CVC), presenta una minore incidenza di complicanze infettive e trombotiche oltreché una ridotta morbilità e mortalità e una maggiore durata [9, 10]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Therapeutic Plasma Exchange in a Patient with Chronic Hemodialysis and a New Diagnosis of Myasthenia Gravis

Abstract

Case Report. C.S.T. (♂, 71 years old) is a patient with multiple and severe comorbidities, undergoing thrice-weekly chronic hemodialysis since 2008 due to the progression of post-lithiasic uropathy. Over the past 2 months, the patient had been experiencing progressive ptosis of the eyelids, muscle weakness, and ultimately dysphagia and dysarthria that emerged in the last few days. Urgently admitted to the Neurology department, electromyography (EMG) was performed, leading to a diagnosis of predominant cranial myasthenia gravis (with borderline anti-acetylcholine receptor antibody serology). Prompt treatment with pyridostigmine and steroids was initiated.
Considering the high risk of acute myasthenic decompensation, therapeutic plasma exchange (TPE) with centrifugation technique was promptly undertaken after femoral CVC placement. TPE sessions were alternated with hemodialysis. The patient’s condition complicated after the third TPE session, with septic shock caused by Methicillin-Sensitive Staphylococcus Aureus (MSSA). The patient was transferred to the Intensive Care Unit (ICU). Due to hemodynamic instability, continuous veno-venous hemodiafiltration (CVVHDF) with citrate anticoagulation was administered for 72 hours.
After resolving the septic condition, intermittent treatment with Acetate-Free Biofiltration (AFB) technique was resumed. The patient completed the remaining three TPE sessions and, once the acute condition was resolved, was transferred back to Neurology. Here, the patient continued the treatment and underwent a rehabilitation program, showing significant motor and functional recovery until discharge.
Conclusions. The multidisciplinary interaction among Nephrologists, Neurologists, Anesthesiologists, and experts from the Immunohematology and Transfusion Medicine Service enabled the management and treatment of a rare condition (MG) in a high-risk chronic hemodialysis patient.

Keywords: Myasthenia Gravis, Plasmapheresis, Therapeutic Plasma Exchange, Hemodialysis, Continuous Renal Replacement Therapy

Sorry, this entry is only available in Italian.

Introduzione

La Miastenia Gravis (MG) è una patologia della giunzione neuromuscolare a genesi autoimmune, causata da anticorpi contro i diversi componenti della placca neuromuscolare [1]. Gli anticorpi contro la giunzione neuromuscolare inducono debolezza dei muscoli volontari, la quale rappresenta la fondamentale manifestazione della malattia [2, 4]. La caratteristica distintiva è inoltre l’affaticabilità, per cui l’attività muscolare incrementa la debolezza muscolare [5, 6], determinando una fluttuazione della sintomatologia nell’arco di una giornata, con carattere ingravescente dalla mattina alla sera.

Spesso l’esordio può essere focale, nella maggior parte dei casi a carico della muscolatura oculare estrinseca, determinando conseguente diplopia e ptosi. Se le manifestazioni rimangono limitate ai muscoli oculari, il quadro viene definito “miastenia oculare”; tale condizione ricorre in circa il 20% dei casi. Circa il 75 % dei pazienti può sviluppare un interessamento generalizzato, solitamente entro 2-3 anni dall’esordio di malattia [5, 7, 8]. Nella forma generalizzata, vi è principalmente un coinvolgimento dei muscoli del distretto bulbare, di quelli del collo e della muscolatura prossimale degli arti. I pazienti possono presentare difficoltà nella masticazione e nella deglutizione, con conseguente disfagia prevalentemente per i liquidi, disartria, testa cadente; può inoltre comparire dispnea per affaticabilità dei muscoli respiratori [8, 9]. Nel 15-20% dei casi il paziente può presentare un quadro definito di “crisi miastenica”, con insufficienza respiratoria e conseguente necessità di supporto ventilatorio non invasivo o di ventilazione meccanica; tale quadro si associa a deficit dei muscoli del distretto bulbare e del collo.

La MG è una malattia rara. L’incidenza è stimata tra i 5 e i 30 casi per milione di abitanti/anno [10, 11]. La prevalenza è stimata tra 10 e 20 casi per 100.000 abitanti, con una tendenza all’incremento di tale dato, per il miglioramento dei trattamenti nelle decadi più recenti e conseguente maggior sopravvivenza [12, 13]. La MG può insorgenze in ogni fascia di età, ma presenta tipicamente due picchi di incidenza, rispettivamente nella terza decade e dalla sesta all’ottava decade [14].

Presentiamo un caso clinico di un paziente complesso, con plurime e severe comorbidità, in trattamento emodialitico cronico e con nuova diagnosi di MG.

 

Caso clinico

C.S.T. (♂, 71 anni) è un paziente in trattamento emodialitico cronico presso l’Emodialisi della UO di Nefrologia dell’Ospedale ‘Maurizio Bufalini’ di Cesena. In anamnesi, il paziente presenta molteplici comorbidità:

1) cardiovascolari: una insufficienza cardiaca cronica a frazione d’eiezione conservata secondaria a una cardiopatia ischemica post-infartuale (angioplastica con posizionamento di stent medicati nel 2014 e 2019 sui rami interventricolare anteriore e circonflessa) e ad una stenosi aortica severa (trattata nel 2021 con valvuloplastica aortica percutanea). Il paziente è inoltre portatore di pacemaker per blocco atrio-ventricolare di I grado;

2) oncologiche: adenocarcinoma prostatico diagnosticato nel 2020 e trattato con radioterapia stereotassica e ormonoterapia (Leuprolide);

3) metaboliche: Diabete Mellito di tipo 2, obesità di grado I e dislipidemia;

4) polmonari: broncopneumopatia a fenotipo restrittivo;

5) altre: una gastrite cronica Helicobacter Pylori relata (patogeno trattato con terapia eradicante), una diverticolosi del sigma.

Dal punto di vista nefrologico, il paziente presenta una malattia renale cronica in stadio G5 secondo la classificazione della ‘Kidney Disease: Improving Global Outcomes’ (KDIGO) [15] secondaria a uropatia ostruttiva su base litiasica bilateralmente. Inizia il trattamento emodialitico nel giugno 2008 previo confezionamento di fistola artero-venosa (FAV) distale destra.

Tre anni fa, il paziente aveva lamentato la comparsa di diplopia transitoria, insorta secondariamente a una condizione riferita di forte stress personale e risoltasi spontaneamente nel giro di 3 giorni. In tale occasione veniva eseguita valutazione neurologica che non riscontrava all’esame obiettivo neurologico (EON) deficit stenici focali o bilaterali e le prove di affaticabilità risultavano negative. Veniva inoltre richiesto dosaggio sierico del TSH, fT3, fT4 e degli anticorpi anti-recettore dell’acetilcolina che risultavano nella norma. Una valutazione oculistica e ortottica inoltre faceva porre diagnosi di diplopia verticale ai vetri striati ben compensata ad angolo corretto per cui non veniva iniziata alcuna terapia specifica.

Da circa due mesi il paziente accusa una sintomatologia di nuova insorgenza, caratterizzata dapprima da ptosi all’occhio sinistro e dopo alcune settimane interessante anche il controlaterale. Tale disturbo tende a peggiorare nel corso della giornata. Con il passare delle settimane compare astenia con progressivo calo della forza prevalentemente agli arti inferiori, tanto che il paziente non è più in grado di deambulare ed è costretto a usare la carrozzina. Infine, è insorta una difficoltà nella deglutizione con episodi di disfagia e nell’articolazione della parola (disartria) per cui viene richiesta ed eseguita valutazione neurologica urgente al termine di una regolare seduta emodialitica.

All’EON si riscontra ptosi palpebrale bilaterale più evidente all’occhio di destra, peggiorata dopo prove di affaticabilità, non diplopia, lieve disartria, spianamento del solco naso-genieno dell’emivolto destro e una ipostenia prossimale dei quattro arti (4/5 agli arti inferiori e 2-3/5 agli arti inferiori scala Medical Research Council) con impossibilità a mantenere il Mingazzini II. Viene eseguita una emogasanalisi arteriosa che non rileva alterazioni elettrolitiche e dell’equilibrio acido-base (pH 7,37, pO2 78,4 mmHg, pCO2 41,2 mmHg, Na+ 140 mmol/L, K+ 4,2 mmol/L, HCO3- 24 mmol/L). Viene inoltre eseguita TC encefalo urgente che mostra “presenza di un esito malacico cortico-sottocorticale in regione parietale paramediana sinistra cui si associano alcune lacune suggestive di spazi perivascolari ampliati in regione capsulo insulare bilaterale e talamica destra. Sistema ventricolare e spazi liquorali di normale morfologia e contenuto. Strutture della linea mediana in asse’’. Tali reperti vengono valutati suggestivi di encefalopatia vascolare cronica compatibile con la storia clinico-anamnestica del paziente, ma non tali da giustificare la sintomatologia acuta insorta negli ultimi due mesi. Nel forte sospetto di una patologia della giunzione neuromuscolare, il paziente si ricovera nel reparto di Neurologia dell’Ospedale “M. Bufalini” di Cesena.

Nel corso del ricovero si eseguono numerosi accertamenti, in particolare in relazione all’ipotesi eziologica:

  • dosaggio degli anticorpi anti-recettore dell’acetilcolina (0,48, valori normali [[vn]] <0,45, borderline da 0,45 a 1,50, positivo >1,50 nmol/L), anti-chinasi muscolo specifica (MusK) (0,06, vn <0,4 U/mL), anti LRP4, anti-rianodina, anti-titina e anti-canali del calcio inviati all’ Istituto “Carlo Besta” di Milano (risultati negativi);
  • TC torace-addome negativa per masse mediastiniche e addominali;
  • EMG: quadro compatibile con sindrome miasteniforme prevalente nel distretto cranico (esame non completo in quanto il paziente è portatore di PM).

Viene dunque iniziata terapia con piridostigmina (dose ridotta del 25% in relazione all’insufficienza renale) e steroide alla dose iniziale di 1 mg/kg/die, con parziale beneficio. Dato che la sintomatologia neurologica appare ancora significativa con interessamento del settore cranico e ritenendo elevato il rischio di scompenso miastenico acuto, si considera per implementazione terapeutica con ciclo di immunoglobuline per via endovenosa (IgV) o di TPE. Dopo valutazione collegiale tra Neurologi, Nefrologi e Medici del Servizio di Immunoematologia e Medicina Trasfusionale si opta per ciclo di 6 sedute di TPE.

La tecnica aferetica scelta è la plasma-centrifugazione. Pertanto, viene reperito un nuovo accesso vascolare con posizionamento in ecoguida di catetere venoso centrale (CVC) di calibro 12 French e 24 centimetri di lunghezza in vena femorale destra e inizia il ciclo di TPE presso il Servizio di Immunoematologia e Medicina Trasfusionale. Si decide di eseguire le sedute di TPE a giorni alternati a quelli delle regolari sedute di HD.

Eseguite le prime 3 sedute, si assiste a un netto miglioramento del quadro neurologico; tuttavia, il paziente va incontro a episodio di ipossiemia acuta necessitante prima ossigenoterapia ad alti flussi e successivamente intubazione orotracheale. Il quadro si complica con l’insorgenza di shock emodinamico per il quale il paziente viene trasferito in Terapia Intensiva per il monitoraggio e il supporto vitale avanzato. Nel forte sospetto di uno shock settico secondario a batteriemia CVC relata, il device viene prontamente rimosso previa esecuzione di emocolture e si inizia terapia antibiotica empirica con Linezolid e Piperacillina/Tazobactam a dosaggio adeguato al filtrato glomerulare. Dato il successivo isolamento agli esami colturali di Staphylococcus Aureus Meticillino-Sensibile (MSSA), veniva sostituita la terapia antibiotica empirica con una terapia mirata con Oxacillina su indicazione infettivologica.

Nel corso della degenza in TI, a causa dell’instabilità emodinamica secondaria allo shock settico con necessità di supporto con amine, si sospende temporaneamente il trattamento con plasmaferesi e si inizia un trattamento con Continuous Renal Replacement Therapy (CRRT) in sostituzione delle sedute di emodialisi intermittente. Viene posizionato un CVC da HD di calibro 12 French e della lunghezza di 15 centimetri in giugulare destra e si inizia il trattamento di CVVHDF. Dopo un ciclo di 72 ore di CRRT, il paziente registrava un significativo miglioramento del quadro emodinamico con progressivo svezzamento dal supporto aminico. Inoltre, conseguentemente al miglioramento degli scambi respiratori, si procede a estubazione del paziente e si riprende il trattamento emodialitico intermittente con AFB. Nei giorni successivi vengono riprese le sedute di TPE, sempre alternate a quelle di HD, fino alla conclusione del ciclo plasmferetico previsto.

Dimesso dalla Terapia Intensiva, il paziente torna nel reparto Neurologia dove prosegue la terapia antibiotica, il monitoraggio clinico e inizia il trattamento riabilitativo con discreto recupero motorio e funzionale. Nello specifico, all’EON, il paziente tiene il Mingazzini I senza difficoltà, tiene il Mingazzini II per 25 secondi, prove in espirium fino a 40 secondi senza disartria o affaticamento, ROT presenti e simmetrici. Si è assistito a un recupero della capacità di deambulazione con marcia cauta, con necessità talvolta di ausilio con deambulatore a causa di residuo ipostenico del muscolo ileo-psoas. Si è inoltre assistito a una completa risoluzione della disfagia.

Il programma alla dimissione dalla Neurologia prevede terapia specifica con prednisone 75 mg/die a dosaggio a scalare e piridostigmina 30 mg 4 volte/die e plasmaferesi di mantenimento ogni 3 settimane.

Il paziente prosegue le regolari sedute di HD cronica come di consueto.

 

Materiali e Metodi

Le sedute di plasmaferesi sono state eseguite con tecnica di plasmacentrifugazione tramite macchina Spectra Optia (SPO, Terumo BCT, Lakewood, CO, USA). L’accesso vascolare è stato prima un CVC femorale destro e poi un CVC giugulare destro. La sostanza di scambio soluzione fisiologica albuminata al 4% per volume. L’anticoagulazione del circuito è stata locoregionale con citrato.

Le sedute dialitiche croniche sono state eseguite con tecnica di emodiafiltrazione online tramite macchina Dialog iQ con dializzatore Xevonta Hi 23 (B. Braun Melsungen AG, Melsungen, Germany). L’accesso vascolare è stata la FAV distale destra. L’anticoagulazione del circuito è stata eseguita con eparina a basso peso molecolare (EBPM).

La seduta di CVVHDF è stata eseguita tramite macchina Multifiltrate con dializzatore AV 1000 (Fresenius Medical Care AG, Bad Homburg vor der Höhe, Germany). L’accesso vascolare è stato un CVC giugulare destro. L’anticoagulazione del circuito è stata regionale con citrato.

La seduta di dialisi intermittente in TI è stata eseguita con tecnica di Acetate Free Biofiltration tramite macchina Gambro Artis con dializzatore Gambro Evodial 1.6 (Gambro, Deerfield, Illinois, USA). L’accesso vascolare è stato la FAV distale destra. L’anticoagulazione del circuito è stata con EBPM.

 

Discussione

La MG è una malattia cronica della giunzione neuromuscolare, a volte molto invalidante ma che può essere trattata efficacemente una volta diagnosticata. Infatti, molti pazienti possono raggiungere una remissione sostenuta dei sintomi e un pieno recupero delle loro capacità funzionali. Per i pazienti con forme lievi-moderate, gli inibitori delle acetilcolinesterasi e la terapia immunosoppressiva cronica con corticosteroidi rappresentano la terapia di scelta. Tuttavia, nei pazienti con crisi miastenica e nei quadri più gravi con segni di pericolo di vita come l’insufficienza respiratoria o la disfagia, il TPE e le IgV sono indicati come trattamenti a breve termine in associazione alla terapia immunomodulante e immunosoppressiva [16].

L’uso di IgV presenta ampia applicazione nel trattamento delle forme più gravi di miastenia e nella crisi miastenica; presentano un rapido effetto terapeutico entro pochi giorni, risposta massima entro 7-10 giorni e il loro effetto dura 28-60 giorni. Possibili complicanze più gravi, seppur non frequenti, sono la meningite asettica, il danno renale acuto (AKI) ed eventi tromboembolici [17, 18]. La plasmaferesi è stata introdotta nel trattamento della MG nel 1976 e la sua efficacia è correlata principalmente alla rimozione diretta degli anticorpi [19, 20]. Viene spesso preferita alle IgV nei pazienti altamente critici per la rapidità di efficacia già dopo pochissimi giorni dall’inizio del trattamento. Le complicanze che possono insorgere sono correlate alla procedura o dovute al posizionamento di un accesso venoso centrale [21]. Molti studi hanno dimostrato un’efficacia sovrapponibile tra i due trattamenti [22, 23]. La scelta dipende in primis dalle caratteristiche del paziente e dal suo quadro clinico, ma anche dall’esperienza clinica del Neurologo, dalla disponibilità di esecuzione di plasmaferesi e anche da aspetti economici. Nel 2016 il gruppo di esperti internazionali che hanno redatto la guida per il trattamento della MG suggeriscono che nella crisi miastenica la plasmaferesi si presenta più efficace e più rapida [24].

Il TPE è una terapia extracorporea che prevede la rimozione del plasma e dei suoi componenti solubili dal sangue del paziente (plasmaferesi) in cambio di un fluido di sostituzione, che di solito è costituito dal plasma o dalle soluzioni albuminate. Questa terapia mira a rimuovere immunocomplessi, allo- ed auto-anticorpi o immunoglobuline che contribuiscono alla patogenesi di alcune patologie. Inoltre, sembra avere un effetto stimolante su vari sistemi come quello immunitario. Esistono due principali metodiche per eseguire il TPE: la plasmafiltrazione e la centrifugazione [25, 26].

La plasmafiltrazione prevede la rimozione non selettiva del plasma e dei suoi costituenti dal sangue attraverso una membrana semipermeabile. È una tecnica simile all’ultrafiltrazione isolata in HD. Infatti, può essere eseguita con le macchine da HD standard utilizzando la loro modalità di ultrafiltrazione isolata senza bagno dialisi e montando membrane ad elevata permeabilità. Inoltre, la plasmafiltrazione può essere eseguita utilizzando le macchine per la CRRT. A differenza dell’HD e dell’emofiltrazione, che rimuovono sostanze con peso molecolare medio e basso, la plasmafiltrazione rimuove le molecole ad alto peso molecolare, tra cui gli anticorpi implicati nella MG. La centrifugazione, invece, è in grado non solo di separare il plasma dal siero, ma può separare anche ciascuna delle altre componenti del sangue, come gli eritrociti o le piastrine, ed è quindi la tecnica di elezione quando sono richieste specifiche frazioni del sangue. Inoltre, quest’ultima sembra essere più efficace nella rimozione di molecole a peso molecolare molto alto come le IgM, il fibrinogeno e gli immunocomplessi. La plasmafiltrazione sfrutta un flusso sangue elevato, da 150 a 200 ml/min, e necessita pertanto di un accesso vascolare a portata più elevata come un CVC o una FAV. Nella centrifugazione, invece, il flusso sangue varia da 50 a 120 mL/min e può essere eseguita sia tramite CVC che catetere venoso periferico (CVP). Sebbene un CVP possa essere più tollerato dai pazienti e consente di evitare complicanze CVC relate, è associato a sedute più lunge e può portare a lungo termine a un depauperamento del patrimonio venoso [25 – 27]. Entrambe le tecniche sono in grado di garantire sedute efficaci e sicure di TPE; generalmente, la centrifugazione è la tecnica di preferenza dei Medici del Servizio Trasfusionale mentre la plasmafiltrazione risulta più affine ai Nefrologi. Nel caso in questione, infatti, dato che le sedute di TPE sono state gestite dal Servizio di Immunoematologia e Medicina Trasfusionale, che, nel nostro Centro, ha più esperienza clinica con la tecnica di plasmacentrifugazione, questa è stata la tecnica aferetica di scelta. In letteratura sono presenti studi di comparazione tra le due tecniche di plasmaferesi, che non hanno mostrato differenze significative di efficacia nella rimozione delle molecole a medio ed elevato peso molecolare tra di esse, mentre la plasmacentrifugazione solitamente risulta in sedute più brevi a fronte di una più elevata Plasma Removal Efficacy [27, 28].

Per quanto non frequente, non è del tutto inusuale per i Nefrologi la contingenza di dover gestire pazienti in cui il trattamento emodialitico e quello plasmaferetico procedano di pari passo. Infatti, sebbene le attuali linee guida della KDIGO raccomandino l’utilizzo della TPE solo per la malattia causata dagli anticorpi anti-membrana basale glomerulare (anti-GBM) (grading 1C) e le linee guida dell’American Society of Apherisis per le vasculiti ANCA (grading 1B) e per la malattia da anticorpi anti-GBM (grading 1 C),  nella pratica clinica, trova impiego in una più ampia gamma di patologie nefrologiche come la microangiopatia trombotica, le stesse vasculiti ANCA associate, il mieloma multiplo e le crioglobulinemie [29, 31]. Queste patologie sono spesso associate ad AKI o a danno d’organo terminale che richiedono la terapia renale sostitutiva. Per far fronte a questa condizione, alcuni centri si sono addirittura specializzati nell’utilizzo in combinazione di queste tecniche in una singola seduta [32, 35]. Povera invece è la letteratura scientifica per quanto riguarda casi di pazienti emodializzati cronici che hanno avuto la necessità di sottoporsi a trattamento aferetico per patologie di nuova insorgenza non di pertinenza nefrologica (come, ad esempio nel nostro caso, la Miastenia Gravis).

 

Conclusioni

Il presente caso insegna che, nonostante le complicanze insorte nel percorso clinico di un paziente complesso, con plurime comorbidità, in HD cronica e con nuova diagnosi di MG con gravi sintomi neurologici, la gestione multidisciplinare e la collaborazione tra vari servizi specialistici permette di gestire con successo l’iter diagnostico-terapeutico di una patologia rara ma che può mettere a rischio la sopravvivenza del paziente a breve termine.

 

Bibliografia

  1. Dresser L, Wlodarski R, Rezania K, Soliven B. Myasthenia Gravis: Epidemiology, Pathophysiology and Clinical Manifestations. J Clin Med. 2021;10(11):2235. Published 2021 May 21. https://doi.org/10.3390/jcm10112235.
  2. Gilhus NE, Skeie GO, Romi F, Lazaridis K, Zisimopoulou P, Tzartos S. Myasthenia gravis – autoantibody characteristics and their implications for therapy. Nat Rev Neurol. 2016;12(5):259-268. https://doi.org/10.1038/nrneurol.2016.44
  3. Gilhus NE, Verschuuren JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol. 2015;14(10):1023-1036. https://doi.org/10.1016/S1474-4422(15)00145-3.
  4. Querol L, Illa I. Myasthenia gravis and the neuromuscular junction. Curr Opin Neurol. 2013;26(5):459-465. https://doi.org/10.1097/WCO.0b013e328364c079.
  5. Gilhus NE. Myasthenia Gravis. N Engl J Med. 2016;375(26):2570-2581. https://doi.org/10.1056/NEJMra1602678.
  6. Binks S, Vincent A, Palace J. Myasthenia gravis: a clinical-immunological update. J Neurol. 2016;263(4):826-834. https://doi.org/10.1007/s00415-015-7963-5.
  7. Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve. 2008;37(2):141-149. https://doi.org/10.1002/mus.20950.
  8. Hehir MK, Silvestri NJ. Generalized Myasthenia Gravis: Classification, Clinical Presentation, Natural History, and Epidemiology. Neurol Clin. 2018;36(2):253-260. https://doi.org/10.1016/j.ncl.2018.01.002.
  9. Juel VC, Massey JM. Myasthenia gravis. Orphanet J Rare Dis. 2007;2:44. Published 2007 Nov 6. https://doi.org/10.1186/1750-1172-2-44.
  10. McGrogan A, Sneddon S, de Vries CS. The incidence of myasthenia gravis: a systematic literature review. Neuroepidemiology. 2010;34(3):171-183. https://doi.org/10.1159/000279334.
  11. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol. 2010;10:46. Published 2010 Jun 18. https://doi.org/10.1186/1471-2377-10-46.
  12. Phillips LH. The epidemiology of myasthenia gravis. Semin Neurol. 2004;24(1):17-20. https://doi.org/10.1055/s-2004-829593.
  13. Salari N, Fatahi B, Bartina Y, et al. Global prevalence of myasthenia gravis and the effectiveness of common drugs in its treatment: a systematic review and meta-analysis. J Transl Med. 2021;19(1):516. Published 2021 Dec 20. https://doi.org/10.1186/s12967-021-03185-7.
  14. Heldal AT, Owe JF, Gilhus NE, Romi F. Seropositive myasthenia gravis: a nationwide epidemiologic study. Neurology. 2009;73(2):150-151. https://doi.org/10.1212/WNL.0b013e3181ad53c2.
  15. Stevens PE, Levin A; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825-830. https://doi.org/10.7326/0003-4819-158-11-201306040-00007.
  16. Narayanaswami P, Sanders DB, Wolfe G, et al. International Consensus Guidance for Management of Myasthenia Gravis: 2020 Update. Neurology. 2021;96(3):114-122. https://doi.org/10.1212/WNL.0000000000011124.
  17. Gajdos P, Chevret S, Toyka KV. Intravenous immunoglobulin for myasthenia gravis. Cochrane Database Syst Rev. 2012;12(12):CD002277. Published 2012 Dec 12. https://doi.org/10.1002/14651858.CD002277.pub4.
  18. Ahsan N, Wiegand LA, Abendroth CS, Manning EC. Acute renal failure following immunoglobulin therapy. Am J Nephrol. 1996;16(6):532-536. https://doi.org/10.1159/000169055.
  19. Qureshi AI, Suri MF. Plasma exchange for treatment of myasthenia gravis: pathophysiologic basis and clinical experience. Ther Apher. 2000;4(4):280-286. https://doi.org/10.1046/j.1526-0968.2000.004004280.x.
  20. Guptill JT, Juel VC, Massey JM, et al. Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity. 2016;49(7):472-479. https://doi.org/10.1080/08916934.2016.1214823.
  21. Ebadi H, Barth D, Bril V. Safety of plasma exchange therapy in patients with myasthenia gravis. Muscle Nerve. 2013;47(4):510-514. https://doi.org/10.1002/mus.23626.
  22. Gajdos P, Chevret S, Clair B, Tranchant C, Chastang C. Clinical trial of plasma exchange and high-dose intravenous immunoglobulin in myasthenia gravis. Myasthenia Gravis Clinical Study Group. Ann Neurol. 1997;41(6):789-796. https://doi.org/10.1002/ana.410410615.
  23. Liew WK, Powell CA, Sloan SR, et al. Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis. JAMA Neurol. 2014;71(5):575-580. https://doi.org/10.1001/jamaneurol.2014.17.
  24. Sanders DB, Wolfe GI, Benatar M, et al. International consensus guidance for management of myasthenia gravis: Executive summary. Neurology. 2016;87(4):419-425. https://doi.org/10.1212/WNL.0000000000002790.
  25. Santoro A. L’aferesi è ancora un’arma efficace nella terapia delle malattie nefrologiche? G Ital Nefrol. 2019;36(2):2019-vol2.
  26. Cervantes CE, Bloch EM, Sperati CJ. Therapeutic Plasma Exchange: Core Curriculum 2023. Am J Kidney Dis. 2023;81(4):475-492. https://doi.org/10.1053/j.ajkd.2022.10.017.
  27. Kes P, Janssens ME, Bašić-Jukić N, Kljak M. A randomized crossover study comparing membrane and centrifugal therapeutic plasma exchange procedures. Transfusion. 2016;56(12):3065-3072. https://doi.org/10.1111/trf.13850.
  28. Hafer, C., Golla, P., Gericke, M., Eden, G., Beutel, G., Schmidt, J. J., Schmidt, B. M., De Reys, S., & Kielstein, J. T. (2016). Membrane versus centrifuge-based therapeutic plasma exchange: a randomized prospective crossover study. International urology and nephrology, 48(1), 133–138. https://doi.org/10.1007/s11255-015-1137-3.
  29. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021;100(4S):S1-S276. https://doi.org/10.1016/j.kint.2021.05.021.
  30. Connelly-Smith, L., Alquist, C. R., Aqui, N. A., Hofmann, J. C., Klingel, R., Onwuemene, O. A., Patriquin, C. J., Pham, H. P., Sanchez, A. P., Schneiderman, J., Witt, V., Zantek, N. D., & Dunbar, N. M. (2023). Guidelines on the Use of Therapeutic Apheresis in Clinical Practice – Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Ninth Special Issue. Journal of clinical apheresis, 38(2), 77–278. https://doi.org/10.1002/jca.22043.
  31. Clark WF, Huang SS, Walsh MW, Farah M, Hildebrand AM, Sontrop JM. Plasmapheresis for the treatment of kidney diseases. Kidney Int. 2016;90(5):974-984. https://doi.org/10.1016/j.kint.2016.06.009.
  32. Bhowmik D, Jain PK, Masih JA, et al. Tandem plasmapheresis and hemodialysis. Ther Apher. 2001;5(5):439-441. https://doi.org/10.1046/j.1526-0968.2001.0303r.x.
  33. Pérez-Sáez MJ, Toledo K, Ojeda R, et al. Tandem plasmapheresis and hemodialysis: efficacy and safety. Ren Fail. 2011;33(8):765-769. https://doi.org/10.3109/0886022X.2011.599912.
  34. Dechmann-Sültemeyer T, Linkeschova R, Lenzen K, Kuril Z, Grabensee B, Voiculescu A. Tandem plasmapheresis and haemodialysis as a safe procedure in 82 patients with immune-mediated disease. Nephrol Dial Transplant. 2009;24(1):252-257. https://doi.org/10.1093/ndt/gfn434.
  35. Mahmood A, Sodano D, Dash A, Weinstein R. Therapeutic plasma exchange performed in tandem with hemodialysis for patients with M-protein disorders. J Clin Apher. 2006;21(2):100-104. https://doi.org/10.1002/jca.20068.