Protected: Impact of dialysis on the acid-base balance


In patients on hemodialysis, the reduced alkali urinary loss makes metabolic acidosis less severe. Unexpected is the large occurrence of respiratory alkalosis and acidosis.
During the therapy, the convective/diffusive inward fluxes of CO2 and bicarbonate and the loss of organic anions affect acid-base homeostasis.
In bicarbonate-dialysis, the neutralization of acids by bicarbonate and gain of gaseous CO from the dialysate cause an increase of CO2 content in the body water, which requires an increase in lung ventilation (>10%) to prevent hypercapnia. In on-line hemodiafiltration, the infusate drags additional CO2 into bloodstream, while in acetate – free biofiltration the dialysate is CO2 – free and this prevents any addition of CO2.
Bicarbonate and acetate diffuse into extracellular fluid according to their bath-to-blood concentration gradients. The initially large bicarbonate flux decreases rapidly because of the rapid increase in blood concentration. The smallest acetate flux is instead constant with time providing a constant source of alkali.
Rapid alkalinization elicits H+ mobilization that consumes most of the bicarbonate added. Some H+ are originated by back-titration of body buffers, but others are originated by new organic acid production, a maladaptive event that wastes metabolic energy. In addition, organic anions diffuse into dialysate causing a substantial increase in net acid production.
A novel dialysis protocol prescribes a low initial bath bicarbonate concentration and a stepwise increase during the therapy. Such a staircase protocol ensures a smoother increase of blood bicarbonate concentration avoiding the initial rapid growth and reducing the rate of organic acid production, thus making the treatment more effective.

Keywords: Acid-base, Bicarbonate, Carbon Dioxide, Dialysate, Hemodialysis

This content is password protected. To view it please enter your password below:

Triple stenosis of brachio-basilic arteriovenous fistula: percutaneous transluminal angioplasty utility, case report and literature review


The major haemodialysis arteriovenous fistula (AVF) complication is stenotic disease. It is represented by a reduction of the arterial or venous caliper forming the AVF. Most frequently it is located in the juxta- anastomotic region of the venous segment.

There are a lot of mechanisms responsible for the stenosis formation; some are correlated by the shear stress in the wall of venous tract with a lot of biochemical mechanisms, others are associated with the repetition of venipuncture during haemodialisys treatment.

It is recommended that each dialysis center activate an AVF monitoring program capable of identifying and treating stenosis.

We describe a clinical case of a young woman with a multiple stenosis disease of a brachio-basilical transposed AVF.

Keywords: AVF, haemodialysis, stenosis, PTA, ecoguided PTA

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


Tra le complicanze della fistola arterovenosa (FAV) per emodialisi (Tabella I), vanno annoverate le stenosi; trattasi di una complicanza strutturale a cui è esposta la FAV. Le stenosi delle FAV native possono interessare sia il versante venoso che quello arterioso. L’incidenza di stenosi coinvolgenti il sistema venoso della FAV risulta essere di gran lunga maggiore rispetto a quello arterioso [15]. Le stenosi sono senza dubbio la causa più frequente di failure della fistola arterovenosa; la caduta di portata di cui sono responsabili riduce l’efficienza dialitica con calo del Kt/V, inoltre sono causa di un incremento della pressione negativa nel circuito, ostacolano il ritorno venoso, favoriscono il ricircolo [6, 7]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

The COVID-19 emergency management in Nephrology: a cross-sectional survey on the procedures management to deal with the pandemic


From mid-March 2020, the pandemic caused by COVID 19 has placed health facilities in front of the need to implement a rapid and profound reorganization. However, many hospitals have not had time to organize a rapid and effective response, both for the speed of spread of the virus, and for the lack of previous experience with a pandemic of this magnitude. With the aim of assessing the knowledge and adoption of the procedures and recommendations disseminated by hospitals during the COVID-19 pandemic, in the dialysis and hemodialysis services of Italian centers, a cross-sectional survey was designed by the Society of Nurses in Nephrology (SIAN). The online survey was conducted among nurses who work in the Italian services of dialysis and hemodialysis during the first and second waves.

The online survey was completed by 150 nurses. Although hospitals have set up protocols and procedures for patient management during the COVID-19 pandemic, among participants not all were aware of it. With regard to the training of personnel in the use of personal protective equipment, 18.6% declared that they have not received it. The majority implemented specific precautions for patient management, awareness and information.

Keywords: hemodialysis, peritoneal dialysis, nursing skills procedures, COVID-19

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


La malattia da coronavirus (COVID-19) è stata identificata a dicembre 2019 a Wuhan, in Cina, e si è diffusa rapidamente, con oltre 81 000 casi confermati in tutta la Cina. Nel febbraio 2020, l’organizzazione mondiale della sanità (OMS) ha introdotto la sua definizione [1]. L’11 marzo 2020 l’OMS, dopo aver valutato i livelli di gravità e la diffusione globale dell’infezione, ha dichiarato che l’epidemia da COVID-19 doveva essere considerata una pandemia [2]. L’Italia è stata tra i Paesi più gravemente colpiti dalla pandemia da COVID-19 [13], con una crescita schiacciante di casi attivi e mortalità, uno dei più alti al mondo [4]. Il primo paziente italiano positivo al COVID-19 è stato confermato il 21 febbraio 2020 all’Ospedale di Codogno in Lombardia. Inizialmente, il COVID-19 si era diffuso rapidamente in tutto il Paese, ma in modo eterogeneo, con maggiore diffusione nelle regioni del Nord e minore nelle regioni meridionali e nelle isole principali [5]. La relazione tra infezione da SARS-CoV-2 e la comorbilità è complessa, sfaccettata e ulteriormente complicata da un numero imprecisato di casi asintomatici [6]. Tuttavia, i casi più gravi e mortali sono spesso riportati nei pazienti anziani, specialmente in quelli con comorbilità [7]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Could incremental haemodialysis be a new standard of care? A suggestion from a long-term observational study


Introduction: The term incremental haemodialysis (HD) means that both dialysis dose and frequency can be low at dialysis inception but should be progressively increased, to compensate for any subsequent reduction in residual kidney function. Policy of the Matera Dialysis Center is to attempt an incremental start of HD without a strict low-protein diet in all patients choosing HD and with urine output (UO) >500 ml/day. The present study aimed at analyzing the results of this policy over the last 20 years.
Subjects and methods: The dataset of all patients starting HD between January 1st, 2000 and December 31st, 2019 was retrieved from the local electronic database. Exclusion criteria were: urine output <500 ml/day or follow-up <3 months after the start of the dialysis treatment.
Results: A total of 266 patients were retrieved; 64 of them were excluded from the study. The remaining 202 patients were enrolled into the study and subdivided into 3 groups (G1, G2 and G3) according to the frequency of treatment at the start of dialysis: 117 patients (57.9%) started with once-a-week (1HD/wk) (G1); 46 (22.8%) with twice-a-week (2HD/wk) (G2); 39 (19.3%) with thrice-a-week (3HD/wk) dialysis regimen (G3). Patients of G1 remained on 1HD/wk for 11.9 ±14.8 months and then transferred to 2HD/wk for further 13.0 ±20.3 months. Patients of G2 remained on 2HD/wk for 16.7 ±23.2 months. Altogether, 25943 sessions were administered during the less frequent treatment periods instead of 47988, that would have been delivered if the patients had been on 3HD/wk, thus saving 22045 sessions (45.9%). Gross mortality of the entire group was 12.6%, comparable to the mean mortality of the Italian dialysis population (16.2%). Survival at 1 and 5 years was not significantly different among the 3 groups: 94% and 61% (G1); 83% and 39% (G2); 84% and 46% (G3). Conclusions: Our long-term observational study suggests that incremental HD is a valuable option for incident patients. For most of them (80.7%) it is viable for about 1-2 years, with obvious socio-economic benefits and survival rates comparable to that of the Italian dialysis population. However, randomized controlled trials are lacking and therefore urgently needed. If they will confirm observational data, incremental HD will be a new standard of care.

Keywords: haemodialysis, incremental haemodialysis, kidney urea clearance, urea kinetic modeling, urine output


There is growing interest in an incremental approach to haemodialysis (HD) for incident end-stage kidney disease (ESKD) patients, starting with one (1HD/wk) or two sessions per week (2HD/wk) [14]. Such an approach not only seems to preserve residual kidney function (RKF) and improve health-related quality of life with similar or higher survival rates than those observed in patients receiving the standard thrice weekly HD (3HD/wk) regimen, but also allows saving economic resources [57]. The term “incremental HD” means that, in the presence of substantial RKF, both dialysis dose and frequency can be low at dialysis inception but should be progressively increased, to compensate for any subsequent reduction in RKF [8, 9].

RKF in dialysis patients plays important roles in fluid and salt removal, effective phosphorus excretion, middle molecule clearance, and endogenous vitamin D and erythropoietin production [1, 2]. There is increasing evidence to suggest that clearance of some uraemic solutes, particularly middle molecules such as β2-microglobulin, is highly dependent on RKF. This extends even to very low levels of RKF: patients with kidney urea clearance (KRU) <0.5 ml/min have significantly higher serum β2-microglobulin levels than those with values between 0.5 and 1 ml/min [10]. Furthermore, residual renal tubular function may represent important removal pathways for these and other compounds, such as hippurate, phenylacetylglutamine, indoxyl sulfate, and p-cresol sulfate [11, 12].

Loss of RKF is linked to decreased survival [13, 14], likely from poorer uraemic solute clearance [13], volume and blood pressure control [15, 16], higher erythropoietin requirements [17], more inflammation [13] and higher left ventricular mass [18]. The benefits of preserving KRU appear to be greater that one would expect from simply enhanced small solute clearance: a multivariate survival analysis of patients on incremental HD suggested that 1 ml/min of KRU resulted in greater survival benefit compared to 1 ml/min of dialysis urea clearance, possibly due to greater removal of middle molecules by native kidneys and improved volume control [15]. Finally, the available literature suggests greater preservation of RKF with infrequent dialysis [5, 7, 19].

The Matera Dialysis Center has adopted over the last 20 years the policy of attempting to start HD always incrementally in all ESKD patients in relatively stable conditions and with preserved diuresis. Over the years, a lot of data has accumulated on patients who received incremental HD in our Center. The present study aims to compare the long-term results of such a policy.


Subjects and methods

Policy of the Matera Dialysis Center

As mentioned above, the policy of our Center over the last 20 years has been to try to initiate HD incrementally in almost all patients with advanced chronic kidney disease (CKD-5D), in relatively stable conditions and with preserved diuresis. All patients treated in our Center give their written informed consent to the choice of HD as first mode of renal replacement therapy (RRT); furthermore, they give written informed consent to starting with the incremental regimen. They also receive the information that a less frequent treatment can be harmful, especially in the presence of insufficient RKF. Two important corollaries complete this information:

  1. the need of collecting periodically the 24-hour urine output (UO) to quantify RKF;
  2. the need of promptly increasing dialysis frequency if RKF falls below established levels, even in the absence of clear symptoms and signs of clinical worsening.

In brief, the dialysis treatment is started with 1 or 2 sessions per week and can be empirically increased to 2 or 3, based on the trend of clinical and biochemical data, with particular regard to the state of nutrition, the values of KRU, dialysis dose (Kt/V) and normalized protein catabolic rate (PCRn), which are assessed monthly.

Inclusion/exclusion criteria

For decades, all the main clinical, biochemical and epidemiological data of patients treated at the Hospital of Matera’s Division of Nephrology, have been managed and archived with the GEPADIAL® software (La Traccia, Matera, Italy). This allowed us to retrieve the dataset of all patients who had started HD in the Matera Dialysis Center from January 1st, 2000 to December 31st, 2019 (with a prolongation of the follow-up until June 30th, 2021). In particular, for each patient, the duration of the follow-up was calculated from the difference (in months) between the date of the first and last dialysis session in our Center.

Patients who had a follow-up <3 months after the start of the dialysis treatment were excluded from the study to avoid enrolling patients affected by acute kidney injury, or severely sick, or transiently treated in our Center. Patients with a follow-up >3 months but with UO <500 ml/day at the start of treatment were also excluded from the study.

Patients were divided into three groups (G), which were determined exclusively by the weekly regimen at the start of dialysis treatment: G1: once-a-week (1HD/wk); G2: twice-a-week (2HD/wk); G3: thrice-a-week (3HD/wk), and regardless of subsequent rhythm variations, if any, thus creating a kind of intervention arm of an “intention to treat” study, taking into account the policy of our Center, i.e., that of trying to initiate HD incrementally in almost all patients.

Measurement of the main parameters of UKM

The measurement of the main parameters of urea kinetic modeling (UKM) (Kt/V, PCRn and KRU if UO >200 ml/day) was performed on a monthly basis in all patients, using the specific software GEPADIAL®, based on the so-called modified algorithm of UKM [20]. The software automatically calculates also the “equivalent renal urea clearance” (EKR) corrected for a urea distribution volume of 40 l (EKRc) [21]. The latter has been converted into the new version of EKR, which is corrected for a urea distribution volume of 35 l with the following formula: EKR35 = EKRc x 35/40 [22]. The calculation of the post-rebound equilibrated Kt/V (eKt/V) and of the most recent version of the standardized Kt/V (stdKt/V) has been utilized in the present study using the formulas recommended by the KDOQI Clinical Practice Guideline for Hemodialysis Adequacy 2015 [9]. Furthermore, the latter proposed the following criteria of adequacy of stdKt/V: a target value of 2.3 and a minimum value of 2.1 volumes/week (v/wk) for non-thrice-a-week dialysis rhythms [9]. Similarly, Casino and Basile have proposed the following criteria of adequacy of EKR35: a target and a minimum value, as described by the following equations:

  1. target EKR35 = 12 – KRUN (EKRT12) [22, 23]
  2. minimum EKR35 = 10 – 1.5 x KRUN (EKRT10) [23, 24]

where KRUN = KRU (ml/min)/V (l) x 35 (l) [23].

Two sets of kinetic data were obtained for each patient, at two different time points of the treatment. The first one (T3), corresponding to approximately 3 months of dialysis, coincides with the third measurement of the main parameters of UKM, and should reflect the initial, but already fairly stabilized, stage of treatment; the second one (T_end) changes from one patient to another: it corresponds to the time point at which a last value of UO >200 ml/day was available during the study, or just before the exit of the patient from the study because of death, kidney transplant, transfer to another center or end of the study (June 30th, 2021), the patient being alive.


Means and standard deviations (SD) were obtained using Excel®; χ2 test, graphics, Student’s t-test, ONE-WAY ANOVA and survival analyses (Kaplan-Meier) were performed with the statistical package R of CRAN project [2527].



Data related to 266 patients were retrieved from the local electronic database, representing the set of all patients who started maintenance HD at the Matera Dialysis Center in the study period considered: of them, 45 (17%) were excluded because their follow-up after the start of the dialysis treatment was <3 months; 12 (4%) were excluded because they had started the dialysis treatment in the setting of continuous renal replacement therapy; lastly, 7 (3%) were excluded because their baseline UO was either <500 ml/day or had not been reported. All in all, 202 patients were enrolled into the study. The main demographic, clinical and laboratory data of the 202 patients enrolled into the study are reported in Table I.

They were subdivided into 3 groups (G), according to their weekly regimen at the start of dialysis treatment: 117 were on a once-a-week (G1), 46 on a twice-a-week (G2), and 39 on a thrice-a-week schedule (G3).

Age (years) 66 ±15 Serum albumin (g/l) 29.7±11.7
Gender (male/female) 120/82 Diabetic nephropathy 42 (20.8 %)
Body weight (kg) 63.2 ±13.3 Glomerulonephritis 40 (19.8%)
Body mass index (kg/m2) 24.6 ±4.4 Hypertensive nephropathy 52 (25.7%)
Body surface area (m2) 1.65 ±0.197 Interstitial nephropathy 29 (14.4%)
Blood urea nitrogen (mg/dl) 99 ±33 Polycystic kidney disease 9 (4.5%)
Serum creatinine (mg/dl) 8.0 ±3.1 Other/Unknown 30 (14.9%)
KRU (ml/min/1.73 m2) 4.5 ±1.6 Charlson comorbidity index 6.9 ±2.6
ClCr (ml/min/1.73 m2) 8.0 ±2.9 Late referral (<3 months) 33 (16.3%)
GFRm (ml/min/1.73 m2) 6.2 ±2.1 Group 1 (G1): start on 1HD/wk 117 (57.9%)
Urine Output (ml/day) 1800 ±700 Group 2 (G2): start on 2HD/wk 46 (22.8%)
Proteinuria (g/day) 3.0 ±3.0 Group 3 (G3): start on 3HD/wk 39 (19.3%)
Table I: It reports the main demographic, clinical and laboratory data of the 202 patients enrolled into the study. Means ±SD; KRU = residual kidney urea clearance; ClCr = creatinine clearance; GFRm = mean of KRU and ClCr.

Table II shows the comparison of the main demographic, clinical and laboratory data between the groups of patients starting HD incrementally (G1+G2) and the group of patients starting dialysis on a thrice-a-week schedule (G3). KRU and UO were significantly lower in G3; this group had a percentage of women and late referral to the nephrology team (follow-up <3 months before the start of the dialysis treatment) much larger than G1+G2 (61.5% vs. 35.6%, P = 0.003; 38.5% vs. 11.0%, P = 0.001, respectively).

  G1+G2 (N = 163) G3 (N = 39) t P
Gender (M/F) (%) 105/58 (F=35.6%) 15/24 (F=61.5%) 8.79* 0.003
Age (years) 66.91 ±14.63 62.15 ±16.96 1.769 0.078
Body weight (kg) 63.43 ±13.37 62.09 ±12.96 0.568 0.571
Body mass index (kg/m2) 24.7 ±4.47 24.38 ±4.15 0.400 0.689
Diabetic nephropathy 32 10
Glomerulonephritis 31 9
Hypertensive nephropathy 46 6 4.48* 0.482
Interstitial nephropathy 25 4
Polycystic kidney disease 7 2
Other/Unknown 22 8
Blood urea nitrogen (mg/dl) 98.30 ±29.96 100.38 ±43.66 -0.354 0.724
Serum creatinine (mg/dl) 7.87 ±2.65 8.70 ±4.61 -1.482 0.14
Serum albumin (g/l) 30.22 ±11.90 27.36 ±10.51 1.377 0.170
Urine Output (ml/day) 1875 ±659 1357 ±816 4.195 <0.001
Proteinuria (g/day) 2.95 ±2.90 3.35 ±3.57 -0.746 0.456
KRU (ml/min/1.73 m2) 4.63 ±1.42 3.76 ±1.94 3.195 0.002
ClCr (ml/min/1.73 m2) 8.10 ±2.42 7.60 ±4.52 0.951 0.343
GFRm (ml/min/1.73 m2) 6.36 ±1.79 5.68 ±3.05 1.836 0.068
Late referral (<3 months) (%) 18/163 (11.0%) 15/39 (38.5%) 17.3* 0.001
Charlson comorbidity index 6.99 ±2.64 6.51 ±2.63 1.011 0.313
Table II: Comparison of the main demographic, clinical and laboratory data between the groups of patients starting HD incrementally (G1+G2) and the group of patients starting dialysis on a thrice-a-week schedule (G3). Means ±SD; KRU = residual kidney urea clearance; ClCr = creatinine clearance; GFRm = mean of KRU and ClCr. All the variables of the 2 groups were compared with the Student’s t-test, except gender, classes of nephropathies and late referral, which were compared with the c2 test (*).

Figure 1 shows the numbers of patients on 1HD/wk, 2HD/wk and 3HD/wk at different time points: at the start (T0) and 3 (T3), 12 (T12), 24 (T24) and 60 (T60) months after the start of dialysis treatment: 94 patients (46.5%) and 52 patients (25.7%) were on incremental HD after 1 and 2 years, respectively.

Figure 1: It shows the numbers of patients on 1HD/wk, 2HD/wk
Figure 1: It shows the numbers of patients on 1HD/wk, 2HD/wk and 3HD/wk at different time points: at the start (T0), and 3 (T3), 12 (T12), 24 (T24) and 60 (T60) months after the start of dialysis treatment: 94 patients (46.5%) and 52 patients (25.7%) were on incremental HD after 1 and 2 years, respectively.

Table III shows the main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at the third month of dialysis treatment (T3). Notably, UO and KRU were significantly higher in G1 and G2 than in G3, whereas PCRn, EKR35 and stdKt/V were significantly lower in G1 and progressively increased in G2 and G3.

Table IV shows the main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at T_end. It occurred 27.9 ±27.6 months after the start of dialysis treatment. The main significant differences among the three groups were the number of dialysis sessions per week, UO, weekly UF, EKR35 and stdKt/V.

Table V shows the differences among the values of the main clinical data including kinetic studies at T3 and T_end (data of the entire population under study and of the 3 groups of patients). The main differences were: a net reduction in KRU and UO, an increase in the number of weekly sessions, weekly ultrafiltration, EKR35 and stdKt/V.

Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) 79.3 ±24.4 84.5 ±23.7 73.9 ±22.1 70.0 ±25.4 0.002
BUN-post (mg/dl) 25.1 ±13.4 27.0 ±14.6 23.7 ±11.4 20.9 ±10.8 0.021
Session length (min) 228 ±21.7 228 ±21.4 230 ±20.8 225 ±223.8 0.708
Sessions per week (n/wk) 1.88 ±0.79 1.41 ±0.60 2.13 ±0.34 3.00
Body weight-pre (kg) 64.8 ±13.5 63.9 ±12.6 67.5 ±15.9 64.2 ±13.0 0.392
Body weight-post (kg) 63.1 ±13.3 62.5 ±12.4 65.5 ±15.6 62.3 ±12.8 0.466
Ultrafiltration (l/session) 1.68 ±0.99 1.47 ±0.95 1.99 ±1.13 1.96 ±0.77 0.002
Weekly ultrafiltration (l/week) 3.24 ±2.37 2.24 ±1.90 4.63 ±2.65 4.58 ±1.79 0.001
Urine Output (ml/day) 1380 ±690 1547 ±660 1374 ±724 900 ±493 0.001
KRU (ml/min/1.73 m2) 3.34 ±1.79 3.54 ±1.74 3.50 ±1.89 2.53 ±1.63 0.005
Single pool Kt/V 1.40 ±0.40 1.38 ±0.41 1.41 ±0.37 1.47 ±0.36 0.427
Equilibrated Kt/V 1.24 ±0.35 1.22 ±0.37 1.24 ±0.33 1.29 ±0.32 0.452
PCRn (g/kg/day) 1.05 ±0.30 0.99 ±0.25 1.13 ±0.30 1.15 ±0.39 0.006
EKR35 (ml/min/35 l) 10.8 ±3.62 9.2 ±3.1 11.9 ±2.7 14.4 ±2.8 0.001
Standard Kt/V (v/wk) 2.45 ±0.74 2.14 ±0.65 2.67 ±0.60 3.12 ±0.62 0.001
Table III: Main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at the third month (T3). Means ±SD; *ONE-WAY ANOVA; BUN = Blood urea nitrogen; KRU = residual kidney urea clearance; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.
Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) 76.2 ±22.2 78.2 ±22.5 80.2 ±22.4 65.8 ±18.3 0.001
BUN-post (mg/dl) 21.0 ±8.9 21.4 ±8.8 23.2 ±9.6 17.2 ±16.8 0.002
Session length (min) 231 ±19.0 230 ±19.9 234 ±13.5 230.±21.9 0.353
Sessions per week (n/wk) 1.97 ±0.79 2.17 ±0.89 2.60 ±0.55 2.90 ±0.36 <0.001
Body weight-pre (kg) 63.7 ±13.6 62.6 ±12.6 66.4 ±15.8 63.9 ±13.6 0.353
Body weight-post (kg) 61.7 ±13.2 60.7 ±12.3 64.1 ±15.3 61.7 ±13.4 0.398
Ultrafiltration (l/session) 2.07 ±1.03 1.95 ±1.06 2.3 ±1.07 2.2 ±0.84 0.036
Weekly ultrafiltration (l/week) 4.67 ±2.51 4.3 ±2.6 5.2 ±2.5 5.1 ±2.0 0.039
Urine Output (ml/day) 650 ±440 688 ±476 646 ±479 538 ±242 0.036
KRU (ml/min/1.73 m2) 1.45 ±1.11 1.41 ±1.06 1.49 ±1.33 1.50 ±1.07 0.878
Single pool Kt/V 1.53 ±0.35 1.53 ±0.36 1.49 ±0.36 1.59 ±0.31 0.383
Equilibrated Kt/V 1.35 ±0.31 1.35 ±0.32 1.31 ±0.32 1.40 ±0.28 0.410
PCRn (g/kg/day) 1.06 ±0.32 1.01 ±0.27 1.14 ±0.31 1.09 ±0.43 0.109
EKR35 (ml/min/35 l) 11.8 ±3.27 11.1 ±3.5 11.9 ±2.5 13.5 ±2.8 0.001
Standard Kt/V (v/wk) 2.46 ±0.59 2.32 ±0.63 2.48 ±0.49 2.85 ±0.40  0.001
Table IV: Main clinical data including kinetic studies at T_end. Data of the entire population under study and of the 3 groups of patients are shown. Means ±SD; *ONE-WAY ANOVA; KRU = residual kidney urea clearance; BUN = Blood urea nitrogen; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.
Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) -3.05 ±27.2 -6.36 ±28.9 6.33 ±25.5 -4.2 ±21.1 0.024
BUN-post (mg/dl) -4.10 ±13.6 -5.63 ±15.4 -0.5 ±10.6 -3.71 ±10.2 0.057
Session length (min) 2.98 ±23.3 2.0 ±24.7 4.0 ±20.0 4.8 ±23.1 0.756
Sessions per week (n/wk) 0.63 ±0.83 0.94 ±0.86 0.52 ±0.55 0.02 ±0.16 0.001
Body weight-pre (kg) -1.07 ±4.96 -1.30 ±4.97 -1.15 ±3.31 -0.28 ±6.41 0.666
Body weight-post (kg) -1.46 ±4.91 -1.78 ±4.97 -1.42 ±3.23 -0.53 ±6.22 0.510
Ultrafiltration (l/session) 0.39 ±1.30 0.48 ±1.36 0.28 ±1.43 0.24 ±0.92 0.430
Weekly ultrafiltration (l/week) 1.43 ±3.05 2.05 ±3.05 0.61 ±3.36 0.56 ±2.15 0.002
Urine Output (ml/day) -0.73 ±0.75 -0.86 ±0.74 -0.73 ±0.78 -0.36 ±0.59 0.001
KRU (ml/min/1.73 m2) -1.9 ±1.9 -2.1 ±1.8 -2.0 ±2.0 -1.0 ±1.6 0.002
Single pool Kt/V 0.12 ±0.40 0.15 ±0.43 0.08 ±0.35 011 ±0.37 0.595
Equilibrated Kt/V 0.11 ±0.36 0.13 ±0.39 0.07 ±0.31 0.10 ±0.33 0.624
PCRn (g/kg/day) 0.01 ±0.35 0.02 ±0.31 0.02 ±0.41 -0.06±0.38 0.468
EKR35 (ml/min/35 l) 0.98 ±3.55 1.99 ±3.66 -0.02 ±2.63 -0.91 ±3.11 0.001
Standard Kt/V (v/wk) 0.01 ±0.67 0.18 ±0.71 0.52 ±0.55 -0.27 ±0.53 0.001
Table V: Differences among the values of the main clinical data including kinetic studies at T3 and T_U200. Data of the entire population under study and of the 3 groups of patients are shown. Means ±SD; *ONE-WAY ANOVA; BUN = Blood urea nitrogen; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.

Figure 2 shows that 50 out of 76 (66%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of stdKt/V [9]. Figure 3 shows that only 15 out of 76 (19.7%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of EKR35 [23, 24].

Figure 4 shows the curves of survival (Kaplan-Meier analysis) of RKF, expressed as time to event referred to the first observation of UO <200 ml/day, in the three groups of patients. The median estimates (months) were: G1 40.3; G2 23.2; G3 26.5. The differences were statistically significant when comparing G1 with G2, and G1 with G3, but not when comparing G2 with G3.

Figure 2: It shows that 50 out of 76
Figure 2: It shows that 50 out of 76 (66%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of stdKt/V [9].
Figure 3: It shows that only 15 out of 76 (19.7%)
Figure 3: It shows that only 15 out of 76 (19.7%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of EKR35 [23].
Figure 4: It shows the curves of survival (Kaplan-Meier analysis)
Figure 4: It shows the curves of survival (Kaplan-Meier analysis) of RKF, expressed as time to event referred to the first observation of UO <200 ml/day, in the three groups of patients. The median estimates (months) were: G1 40.3; G2 23.2; G3 26.5. The differences were statistically significant when comparing G1 with G2, and G1 with G3, but not when comparing G2 with G3.
  G1 (N=117) G2 (N=46) G3 (N=39) P
Months on 1HD/wk 11.9 ±14.8 0 0
Months on 2HD/wk 13.0 ±20.3 16.7 ±23.2 0 0.315*
Months on 3HD/wk 37.4 ±46.5 34.7 ±38.6 56.3 ±55.3 0.113**
Months of follow-up 62.6 ±48.8 51.4 ±40.8 56.3 ±55.3 0.327**
Table VI: Duration of dialysis treatments in the three groups of patients. Means ±SD; *Student’s t-test; **ONE WAY ANOVA.

The duration (means ±SD) of once-a-week, twice-a-week and thrice-a-week treatments performed in the 3 groups of patients is summarized in Table VI: patients of G1 received 1HD/wk for 11.9 ±14.8 months, and subsequently 2HD/wk for further 13.0 ±20.3 months; patients of G2 received 2HD/wk for 16.7 ±23.2 months.

Patients on incremental HD (G2+G2) were administered 25943 dialysis sessions, of which 6066 on 1HD/wk and 19877 on 2HD/wk. We estimated that a total of 47988 dialysis sessions would have been administered to them if they had been on a thrice-a-week schedule for exactly the same period of time, thus saving 22045 sessions, equal to 45.9%. Just taking into account the reimbursement cost of one session of standard bicarbonate dialysis (service code 39.95.4 of the Italian Health Service, rate = 165€), approximately 3.64 million € would have been saved.

Figure 5 shows the survival curve of the entire group of 202 patients estimated by means of the Kaplan-Meier analysis: the median estimate was 66 months with 95% confidence interval comprised between 54 and 84 months.

Figure 6 shows the survival curves of the three groups of patients estimated by means of the Kaplan-Meier analysis at 12, 36 and 60 months of dialysis treatments: the trend was better in patients of G1 than in patients of G2 and G3; however, the difference was not statistically significant.

It shows the survival curve of the entire group of 202 patients
Figure 5: It shows the survival curve of the entire group of 202 patients estimated by means of the Kaplan-Meier analysis: the median estimate was 66 months with 95% confidence interval comprised between 54 and 84 months.
It shows the survival curves of the three groups
Figure 6: It shows the survival curves of the three groups of patients estimated by means of the Kaplan-Meier analysis at 12, 36 and 60 months of dialysis treatments: the trend was better in patients of G1 than in patients of G2 and G3; however, the difference was not statistically significant.



Our study suggests that incremental HD is a valuable option in incident patients, and is viable in most of them (80.7%) for about 1-2 years, with obvious socio-economic benefits. A key question arises: are these benefits achieved at the expense of hard outcomes, such as patient survival? The answer is given by Figure 5: the median survival of the entire group of 202 patients was 5.5 years corresponding to an annual mortality rate of 12.6%. This rate is probably lower, but almost certainly not higher than that estimated in the period 2011-2013 for the Italian dialysis population, which was equal to 16.2 per 100 patient-years [28]. Figure 6 provides interesting information on the three groups of patients: it clearly shows the superiority of starting with 1HD/wk (G1) compared to starting with 2HD/wk or 3HD/wk, even if the intersection between the curves of G2 and G3 makes the difference among the three groups not statistically significant. The first obvious explanation is that the patients enrolled into the three groups may differ as far as phenotype and/or co-existence of underlying comorbid conditions are concerned. It is evident that this is the Achille’s heel of any observational study design, in which an obvious selection bias (assignment of patients to different treatments) occurs. However, we think that the striking difference between G1+G2 and G3 in the late referral to our nephrology team, as shown in Table II (11.0% vs. 38.5%, P = 0.001), may be another important explanation. Therefore, we think that the synergistic interplay of the above factors, i.e., a different phenotype of the patients (for instance, as shown in Table II, there was a much larger percentage of women in G3 than in G1+G2: 61.5% vs. 35.6%, P = 0.003), co-existing underlying co-morbid conditions and a late referral, may constitute an ominous prognostic sign in G3.

In conclusion, our study seems to suggest that adequate educational, nutritional and pharmacological interventions in the pre-dialysis stage may allow a relatively good RKF and, therefore, the start of incremental dialysis in most of the incident patients. As far as the prescription of a low-protein diet is concerned, policy of our team is not to prescribe a very rigorous low-protein diet even when on once-a-week dialysis schedule, at variance with the advice given by some studies [2932]. Only 4 patients enrolled into the study were prescribed keto-analogues in their pre-dialysis diet, which were continued when on dialysis, but only for some months and not for all the days of the week. All the other patients were prescribed a mild protein restriction when on dialysis, as shown by the PCRn values reported in Table III: at T3 PCRn in G1 on average was about 1 g/kg/day, while that in G2 was 1.13, almost comparable to 1.15 g/kg/day observed in G3. Furthermore, Tables IV and V show that PCRn values remained relatively constant over time. In conclusion, this study suggests that, in the presence of sufficiently elevated RKF (for instance, KRU in the range of 3-5 ml/min/1.73 m2) a strict low-protein diet is useful but not essential, provided that the clinical status of the patient and his/her values of KRU, UO and PCRn are frequently monitored.  This allows to considerably enlarge the number of patients eligible to start dialysis with one session a week, which in our study approached 60% (117/202 = 0.579) of all patients. This group of patients had a baseline GFR of 6.2 ±2.1 ml/min/1.73 m2 and a baseline KRU of 4.5 ±1.6 ml/min/1.73 m2. Furthermore, taking into account the patients who started with a twice-a-week dialysis schedule, the percentage of patients starting dialysis not on a thrice-a-week schedule exceeded 80% (163/202 = 0.807).

The analysis of Tables III, IV and V shows other interesting data, such as the relative constancy both of the duration of the session and of the dialysis dose, expressed by spKt/V and eKt/V. Therefore, the reduction of KRU was substantially compensated in G1 and G2 by increasing the frequency of the treatment. Here, it must be underlined that the prescription of the dialysis dose has been prevalently empirical worldwide, in the absence of shared criteria of dialysis adequacy of the incremental treatment, which have only recently been proposed [9, 22, 24]. Here, we have to acknowledge that we did not prescribe well-defined targets of the weekly dialysis dose to be achieved by the patients, at least in the early years of the present study: thus, our prescription too was prevalently empirical, targeting urea clearance metrics of spKt/V ≥1.20, and increasing the frequency of treatment in the following situations: marked reduction in KRU (below 2-3 ml/min) and/or in UO (<500 ml/day); marked increase in inter-dialysis body weight, not controllable by increasing the dose of diuretics; need of ultrafiltration rate >13 ml/kg/h; symptoms or signs, such as nausea or malnutrition, that could not be controlled with medical therapy. More recently, we have suggested the criteria for the prescription of incremental dialysis on a quantitative basis associated with UKM [22, 24, 33, 34].

We have to acknowledge that our study has limitations, such as being a single-center retrospective observational study, but we have to underline its strengths, such as its long-term follow-up, and the availability of a large number of KRU and UO values measured in all patients with UO >200 ml/day. Despite increasing evidence derived from observational studies, such as ours, to support the use of incremental HD, randomized controlled trials (RCTs) are lacking and urgently needed. A multicenter feasibility RCT to assess the impact of incremental vs. conventional initiation of HD on RKF was recently conducted in the UK: serious adverse events were less frequent in the incremental arm; hospitalisation rate was higher in the control arm; in addition, median costs of the 12-month trial were higher in the standard care arm than in the incremental arm that benefited from reduced transport, session and adverse event costs [35].

At the present time no RCT testing incremental HD has yet been published. Of note, several ongoing RCTs are using thresholds of residual KRU to establish clinical effectiveness of less frequent HD in the form of once-a-week or twice-a-week HD vs. thrice-a-week HD [33, 34, 36, 37].



The optimal regimen for incident patients is not known. Incremental HD seems to be a valuable option, whereas it is plausible that the routine practice of fixed-dose 3HD/wk in incident patients with substantial RKF may be harmful, even contributing to an accelerated loss of RKF. Our long-term observational study suggests that incremental HD is a valuable option in incident patients and is possible in most cases (80.7%) for about 1-2 years, with obvious socio-economic benefits, and with survival rates comparable to that of the Italian dialysis population. If the potential benefits will be confirmed by RCTs, then incremental HD will become a new standard of care.



  1. Kalantar-Zadeh K, Casino FG. Let us give twice-weekly hemodialysis a chance: revisiting the taboo. Nephrol Dial Transplant 2014; 29:1618-20.
  2. Kalantar-Zadeh K, Unruh M, Zager PG, et al. Twice-weekly and incremental hemodialysis treatment for initiation of kidney replacement therapy. Am J Kidney Dis 2014; 64:181-86.
  3. Basile C, Casino FG, Kalantar-Zadeh K. Is incremental hemodialysis ready to return on the scene? From empiricism to kinetic modelling. J Nephrol 2017; 30:521-29.
  4. Murea M, Moossavi S, Garneata L, et al. Narrative review of incremental hemodialysis. Kidney Int Rep 2020; 5:135-48.
  5. Fernandez-Lucas M, Teruel-Briones JL, Gomis-Couto A, et al. Maintaining residual renal function in patients on haemodialysis:5-year experience using a progressively increasing dialysis regimen. Nefrologia 2012; 32:767-76.
  6. Mathew A, Obi Y, Rhee CM, et al. Treatment frequency and mortality among incident hemodialysis patients in the United States comparing incremental with standard and more frequent dialysis. Kidney Int. 2016; 90:1071-79.
  7. Obi Y, Streja E, Rhee CM, et al. Incremental hemodialysis, residual kidney function, and mortality risk in incident dialysis patients: a cohort study. Am J Kidney Dis 2016; 68:256-65.
  8. Mehrotra R, Nolph KD, Gotch F. Early initiation of chronic dialysis: role of incremental dialysis. Perit Dial Int 1997; 17:426-30.
  9. National Kidney Foundation. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy:2015 update. Am J Kidney Dis 2015; 66:884-930.
  10. Fry AC, Singh DK, Chandna SM, et al. Relative importance of residual renal function and convection in determining beta-2-microglobulin levels in high-flux haemodialysis and on-line haemodiafiltration. Blood Purif 2007; 25:295-302. https://org/10.1159/000104870
  11. Masereeuw R, Mutsaers HA, Toyohara T, et al. The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol 2014; 34:191-208.
  12. Leong SC, Sao JN, Taussig A, et al. Residual function effectively controls plasma concentrations of secreted solutes in patients on twice weekly hemodialysis. J Am Soc Nephrol 2018; 29:1992-99.
  13. Shafi T, Jaar BG, Plantinga LC, et al. Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE) Study. Am J Kidney Dis 2010; 56:348-358.
  14. van der Wal WM, Noordzij M, Dekker FW, et al. Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol Dial Transplant 2011; 26:2978-83.
  15. Vilar E, Wellsted D, Chandna SM, et al. Residual renal function improves outcome in incremental hemodialysis despite reduced dialysis dose. Nephrol Dial Transplant 2009; 24:2502-10. https://org/10.1093/ndt/gfp071
  16. Marquez IO, Tambra S, Luo FJ, et al. Contribution of residual renal function to removal of protein-bound solutes in hemodialysis. Clin J Am Soc Nephrol 2011; 6:290-96. https://org/10.2215/CJN.06100710
  17. Menon MK, Naimark DM, Bargman JM, et al. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transplant 2001; 16:2207-13.
  18. Wang AY, Wang M, Woo J, et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int 2002; 62:639-47.
  19. Caria S, Cupisti A, Sau G, et al. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol 2014; 15:172.
  20. Casino FG, Basile C, Gaudiano V, et al. A modified algorithm of the single pool urea kinetic model. Nephrol Dial Transplant 1990(5):214-19.
  21. Casino FG, Lopez T. The equivalent renal urea clearance: a new parameter to assess dialysis dose. Nephrol Dial Transplant 1996; 11:1574-81.
  22. Casino FG, Basile C. The variable target model: a paradigm shift in the incremental haemodialysis prescription. Nephrol Dial Transplant 2017; 32:182-90.
  23. Casino FG, Basile C. How to set the stage for a full-fledged clinical trial testing ‘incremental haemodialysis’. Nephrol Dial Transplant 2018; 33:1103-09.
  24. Basile C, Casino FG on behalf of the EUDIAL Working Group of ERA- EDTA. Incremental haemodialysis and residual kidney function: more and more observations but no trials. Nephrol Dial Transplant 2019; 34:1806-11.
  25. The jamovi project (2021). jamovi. (Version 1.8). (date accessed: January 4, 2022).
  26. R Core Team (2021). A language and environment for statistical computing (Version 4.0). (R packages retrieved from MRAN snapshot 2021-04-01). (date accessed: January 4, 2022).
  27. Terry M Therneau (2020). A package for survival analysis. (date accessed: January 18, 2022).
  28. Nordio M, Limido A, Conte F, et al. Italian Registry Dialysis and Transplant 2011-2013. G Ital Nefrol 2016; 33(3):gin/33.3.6.
  29. Locatelli F, Andrulli S, Pontoriero G, et al. Supplemented low-protein diet and once-weekly hemodialysis. Am J Kidney Dis 1994; 24:192-204.
  30. Caria S, Cupisti A, Sau G, et al. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol 2014; 15:172.
  31. Bolasco P, Caria S, Egidi MF, et al. Incremental approach to hemodialysis: twice a week, or once weekly hemodialysis combined with low-protein low-phosphorus diet? G Ital Nefrol 2015; 32(6):gin/32.6.2.
  32. Nakao T, Kanazawa Y, Takahashi T. Once-weekly hemodialysis combined with low-protein and low-salt dietary treatment as a favorable therapeutic modality for selected patients with end-stage renal failure: a prospective observational study in Japanese patients. BMC Nephrol 2018 Jun 28; 19(1):151.
  33. Deira J, Suárez MA, López F, et al. IHDIP: a controlled randomized trial to assess the security and effectiveness of the incremental hemodialysis in incident patients. BMC Nephrol 2019; 20:8.
  34. Casino FG, Basile C, Kirmizis D, et al on behalf of Eudial Working Group of ERA-EDTA. The reasons for a clinical trial on incremental haemodialysis. Nephrol Dial Transplant 2020; 35:2015-19.
  35. Vilar E, Kaja Kamal RM, et al. A multicenter feasibility randomized controlled trial to assess the impact of incremental versus conventional initiation of hemodialysis on residual kidney function. Kidney Int 2021; 19:S0085-2538(21)00749-3.
  36. Fernández Lucas M, Ruíz-Roso G, Merino JL, et al. Initiating renal replacement therapy through incremental haemodialysis: protocol for a randomized multicentre clinical trial. Trials 2020; 21:206.
  37. Murea M, Patel A, Highland BR, et al. Twice-weekly hemodialysis with adjuvant pharmacotherapy and transition to thrice-weekly hemodialysis: a pilot study. Am J Kidney Dis 2021 Dec 18:S0272-6386(21)01040-4.

COVID-19 recurrence due to reinfection with SARS-CoV-2 in a hemodialysis patient: there and back again


The COVID-19 pandemic has caused millions of infections and deaths so far. After recovery, the possibility of reinfection has been reported.

Patients on hemodialysis are at high risk of contracting SARS-CoV-2 and developing serious complications. Furthermore, they are a relatively hypo-anergic population, in which the development and duration of the immune and antibody response is still partially unknown. This may play a role in the possible susceptibility to reinfection. To date, only 3 cases of SARS-CoV-2 reinfection from strains prior to the Omicron variant in patients on chronic hemodialysis have been reported in literature. In all of them, the first infection was detected by screening in the absence of symptoms, potentially indicating a poor immune response, and there are no data about the antibody titre developed.

We report a case of recurrence of COVID-19 in 2020 − first infection likely from Wuhan strain; reinfection likely from English variant (Alpha) after 7 months − in a hemodialysis patient with clinical symptoms and pulmonary ultrasound abnormalities. Swabs were negative in the interval between episodes (therefore excluding any persistence of positivity) and the lack of antibody protection after the first infection was documented by the serological test.

The role of the potential lack − or rapid loss − of immune protection following exposure to SARS-CoV-2 in hemodialysis patients needs to be better defined, also in consideration of the anti-COVID vaccination campaign and the arrival of the Omicron variant, which appears to elude the immunity induced by vaccines and by previous variants. For this purpose, prospective multicenter studies are in progress in several European countries.

This case also highlights the need for a careful screening with nasopharyngeal swabs in dialysis rooms, even after patients overcome infection and/or are vaccinated.


Keywords: SARS-CoV-2, COVID, hemodialysis, COVID-19 recurrence

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


L’infezione e la reinfezione da SARS-CoV-2: epidemiologia e meccanismi di risposta immune

La pandemia causata da SARS-CoV-2 ha finora causato oltre 270 milioni di infezioni e 5 milioni di morti in tutto il mondo [1]. Si tratta di una malattia virale estremamente contagiosa, sia nella forma “wild type” che nelle successive varianti emerse.

Dopo guarigione dalla COVID-19 la reinfezione è un evento possibile e documentato in letteratura, seppur raro prima dell’arrivo della variante Omicron: il rischio è stato difatti stimato allo 0,02% e il tasso di incidenza di reinfezione a 0,36 per 10.000 settimane-persona [2]. Il meccanismo della reinfezione da SARS-CoV-2 appare sostenuto dalla dimostrazione che non tutti gli individui infettati sviluppano una immunità protettiva, oppure possono perderla in un breve lasso di tempo, soprattutto in caso di forme di COVID-19 lievi-moderate nell’infezione primaria o stati di immunodepressione.

Le valutazioni relative allo sviluppo o meno di immunità sono state per lo più incentrate sulla quantificazione della presenza di anticorpi specifici nel siero, al loro titolo e alla loro durata nel tempo [3,4] seppure siano ben note problematiche di standardizzazione delle metodiche e di individuazione di cut off sierologici condivisi.

Con tutti i limiti suddetti, nella popolazione generale è stato stimato che dopo infezione da SARS-CoV-2 mediamente si verifica una sieroconversione IgM e IgG dopo circa una settimana dall’insorgenza dei sintomi. Il titolo anticorpale aumenta fino alla quarta settimana e si riduce successivamente; entro la settima settimana le IgM non vengono più rilevate nella maggior parte casi, mentre le IgG persistono più a lungo, anche se per un periodo di tempo ancora sconosciuto [5].

In merito al ruolo dell’immunità cellulo-mediata, anche nella infezione da SARS-CoV-2 le cellule T CD4+ appaiono cruciali nel network che conduce alla generazione di anticorpi neutralizzanti, e le cellule T CD8+ di memoria antigene-specifiche sono fondamentali per prevenire le reinfezioni. A dimostrazione di ciò, cellule T CD4+ e CD8+ specifiche sono state identificate nel sangue periferico rispettivamente del 100% e del 70% di pazienti da poco guariti da COVID-19 [6]. Tuttavia − dal momento che le analisi delle risposte immunitarie cellulari sono proceduralmente più complesse rispetto alle analisi anticorpali − esse sono state meno utilizzate su larga scala a scopo di dimostrare la presenza o meno dello sviluppo di immunità protettiva dopo infezione e/o dopo vaccinazione versus SARS-CoV-2, anche perché a complicare il quadro vi è la possibilità della presenza di cellule T di memoria cross-reattive derivanti da precedenti incontri con altri coronavirus, il cui ruolo funzionale non è affatto chiaro [7].

Indipendentemente dai diversi meccanismi alla base, ciò che è stato postulato anche dal punto di vista epidemiologico è che la protezione immunitaria vs SARS-CoV-2 sia transitoria e, particolarmente in alcune situazioni, labile. Tale assunto sta alla base dell’indicazione a procedere a vaccinazione anche negli individui che abbiano superato l’infezione naturale, nonché costituisce il razionale per la somministrazione − dopo ciclo vaccinale primario e/o infezione naturale − di dosi vaccinali addizionali e booster.

La pandemia COVID-19 nella popolazione dialitica

Per quanto riguarda nello specifico la popolazione dialitica, la pandemia di COVID-19 ha avuto un impatto particolarmente importante: nei pazienti in dialisi è stato infatti dimostrato un maggior rischio di contagio rispetto alla popolazione generale (favorito dagli spostamenti ripetuti, dalla permanenza protratta in ambienti comuni e dai frequenti accessi ospedalieri) ed un tasso di mortalità assai più elevato (oltre 1/3 di decessi nei pazienti infettati) [8,9,10].

Questo eccesso di mortalità riscontrato nei dializzati è verosimilmente correlato anche all’elevato tasso in questa specifica popolazione di comorbidità quali diabete, ipertensione, pregresso uso di farmaci immunodepressori etc. Tali fattori di rischio rendono questi pazienti più fragili rispetto alle probabilità a priori di poter avere un decorso negativo, sia in generale che specifico della patologia COVID-19.

Un’altra motivazione che sta alla base di questa maggiore suscettibilità ad ammalarsi e a sviluppare forme gravi è legata all’effetto deleterio che l’uremia ha sul sistema immunitario: i pazienti uremici sono difatti noti per essere ipo-anergici, sia sul versante dell’immunità innata (deplezione e disfunzione delle cellule dendritiche, alterazione della degranulazione e delle capacità fagocitarie dei PMN) che su quello dell’immunità adattativa (precoce “ageing” immunologico, alterazione del microambiente citochinico, scarso rinnovo del comparto T e B cell con aumentata apoptosi delle cellule memoria) [11,12,13]. A conferma di questa senescenza immunitaria precoce, recenti studi hanno dimostrato un accelerato accorciamento dei telomeri leucocitari nei pazienti emodializzati [14].

Inoltre, al di là dell’uremia in senso stretto, un importante ruolo nella demodulazione immunitaria dei pazienti dializzati può essere attribuito anche allo stato di flogosi e attivazione infiammatoria cronica. Esso appare legato alla MIA syndrome [15], al contatto con le membrane artificiali, alle soluzioni dializzanti, a tutto ciò che – pur nell’aumentata biocompatibilità raggiunta grazie ai progressi della tecnica [16,17] – rende il paziente dializzato un paziente cronicamente infiammato, e pertanto maggiormente soggetto alla “cytokine storm” così cruciale nella COVID-19 [18].

Si deve tenere in conto anche il fatto che i pazienti dializzati abbiano una risposta spesso insoddisfacente nei confronti degli stimoli vaccinali, come per esempio è stato dimostrato per la vaccinazione anti HBV [19,20].

Per tutte le motivazioni suddette, nel corso della pianificazione della campagna vaccinale anti-COVID gli individui sottoposti a trattamento dialitico sono stati considerati “super fragili”, ottenendo quindi la priorità sia rispetto al ciclo vaccinale primario che per le dosi booster e/o addizionali [21].

I dati riguardanti la percentuale di sviluppo e la durata della risposta immune sia ai vaccini che all’infezione primaria da SARS-CoV-2 sono solo parzialmente conosciute nei dializzati, e non è altrettanto chiaro se la loro nota ipo-anergia o meglio dissinergia immunitaria possa giocare un ruolo non solo nelle probabilità di contrarre l’infezione, ma anche nella suscettibilità alla reinfezione, nonché quale parte abbia in esso la dimostrazione dell’aver sviluppato o meno un titolo anticorpale specifico.

A nostra conoscenza ad oggi sono stati segnalati in letteratura solo 3 casi di reinfezione sospetta da SARS-CoV-2 da ceppi antecedenti la variante Omicron in pazienti con ESRD sottoposti a emodialisi cronica [22,23]; in tutti e 3 i casi la prima infezione è stata documentata per screening, in assenza di sintomi (fattore rilevante, poiché pare che l’infezione asintomatica causi una risposta immune inferiore) [24].

Descriviamo qui il caso di una recidiva di COVID-19 risalente al 2020 – prima infezione verosimilmente da ceppo di Wuhan; reinfezione verosimilmente da variante inglese (Alpha) – in un paziente emodializzato il quale ha avuto sintomi clinici e alterazioni laboratoristiche ed ecografiche polmonari in entrambi gli episodi. Essi si sono verificati a distanza di 7 mesi, con conferma di positività per SARS-CoV-2 al tampone nasofaringeo con RT-PCR in entrambi gli episodi e negatività dei tamponi seriati nel periodo intercorrente tra le due infezioni, escludendo quindi una eventuale persistenza di malattia tra i due episodi. Inoltre, è stata documentata l’assenza di protezione anticorpale dopo la prima infezione al test sierologico, comparsa invece dopo il secondo episodio, seppure a basso titolo.


Il caso

Un paziente di sesso maschile di 89 anni in emodialisi trisettimanale da 1 anno, con anamnesi di ipertensione e insufficienza renale cronica “end stage” da nefropatia proteinurica di origine sconosciuta, ha segnalato in data 3 aprile 2020 la comparsa nelle 24 ore precedenti di nausea, iporessia, mialgia e tosse senza distress respiratorio. È stato sottoposto il giorno stesso a tampone rinofaringeo per SARS-CoV-2, ed è risultato positivo all’analisi in RT-PCR.

Oltre alla patologia renale aveva una storia medica di ipertensione, diabete di lieve entità in trattamento con linagliptin e presenza in anamnesi di una linfocitosi B monoclonale a tipo leucemia linfatica cronica (considerata clinicamente irrilevante dagli ematologi, e pertanto non in follow up specialistico) con lieve trombocitopenia.

Al momento della positività era in buone condizioni cliniche, pressione arteriosa 140/60 mmHg, frequenza cardiaca 65 bpm, saturazione di ossigeno 99% in aria ambiente, temperatura corporea normale. L’obiettività polmonare non era significativa.

Il paziente è stato immediatamente posto in isolamento domiciliare e sottoposto a trattamento dialitico in sala contumaciale dedicata con trasporto individuale, come da protocollo del nostro centro dialisi per i pazienti positivi. Nell’ambito della sorveglianza clinica riservata ai pazienti emodializzati affetti da COVID-19 è stato sottoposto a:

  • panel di ematochimici, che ha mostrato globuli bianchi normali (7.000/mm3 con neutrofili 50%, linfociti 37%), anemia compatibile con ESRD con emoglobina 11 g/dL e trombocitopenia cronica nota 105.000/mm3. I marker infiammatori erano moderatamente elevati (Proteina C-reattiva 9,8 mg/dL, D-dimero 16.450 ng/mL, LDH 422 UI/L, IL-6 21,8 pg/mL e Ferritina 520 ng/mL);
  • controllo ecografico polmonare e calcolo del LUS score. Si tratta di una tecnica bedside non invasiva per la diagnostica di diversi quadri polmonari molto utilizzata nell’ambito della medicina d’urgenza [25,26]. Viene applicata una valutazione a 12 zone in cui ciascun emitorace è virtualmente suddiviso in tre aree longitudinali (anteriore, laterale e posteriore) e ognuna di queste è ulteriormente suddivisa in due ulteriori zone, superiore e inferiore. Ogni zona viene esaminata mediante sonda convex a media frequenza con un piano di scansione sia coincidente con gli spazi intercostali che trasversale. Vengono valutati la linea pleurica (aspetto e movimento), il parenchima (artefatti e immagini tissutali) e il contenuto pleurico (spazio virtuale, gas o fluido). In particolare, per quanto riguarda la sindrome interstiziale tipica della malattia COVID-19, il coinvolgimento viene espresso da un punteggio che esprime diversi livelli di severità da 0 (normale) a 3 (severo) che sono applicati a ognuna delle 12 zone e che possono essere sommati per definire un LUS score generale (minimo 0, massimo 36) [27]. Il paziente aveva alcune linee B isolate in due sezioni, con un punteggio LUS score di 2.
Figura 1: Immagine tratta da Cibinel GA, Paglia S, Magnacavallo A, et al. [27]
Figura 1:Immagine tratta da Cibinel GA, Paglia S, Magnacavallo A, et al. [27]
Come da protocollo di trattamento adottato nella cosiddetta “prima ondata” di COVID-19 il paziente è stato quindi sottoposto a terapia con idrossiclorochina 200 mg/die ed eparina a basso peso molecolare a dose profilattica aggiustata per ESRD per 10 giorni. Si è osservato un buon decorso clinico con la gestione ambulatoriale, senza necessità di ricovero ospedaliero. Il paziente si è infatti ripreso rapidamente dai sintomi, ed è risultato negativo a ripetuti tamponi il 21/4, 28/4, 11/9, 20/10 e 3/11/2020.

In data 17/11/2020 a fine dialisi ha riportato un episodio ipotensivo con transitoria perdita di coscienza seguita da brividi, febbricola, subcianosi ungueale senza desaturazione e tosse senza dispnea. È stato pertanto eseguito un altro tampone nasofaringeo RT-PCR per SARS-CoV-2, risultato nuovamente positivo dopo 7 mesi dalle precedenti manifestazioni di COVID-19, in un periodo di elevata circolazione della cosidetta “variante inglese” (Alpha).

Al momento della seconda positività il paziente era in buone condizioni cliniche, con una saturazione di ossigeno del 97% in aria ambiente. Gli esami di laboratorio hanno rivelato una normale conta leucocitaria (6.590/mm3 con neutrofili 53%, linfociti 32,5%), lieve anemia emoglobina 9 g/dL e trombocitopenia 84.000/mm3. I marker infiammatori sono risultati meno elevati rispetto al primo episodio (proteina C-reattiva 0,7 mg/dL, D-dimero 7.907 ng/mL, LDH 272 UI/L, IL-6 11,8 pg/mL e Ferritina 1211 ng/mL), e l’esame ecografico polmonare ha mostrato un punteggio LUS score di 4, lievemente superiore rispetto al primo episodio.

Il paziente è stato quindi trattato con sintomatici come paracetamolo e copertura antibiotica con amoxicillina/clavulanato, come da indicazioni relative alla gestione clinica della “seconda ondata”. Anche nel caso della reinfezione non ha necessitato di ricovero ospedaliero.

In occasione del riscontro della seconda positività, nel sospetto di una mancata risposta alla infezione primaria (o ad una rapida perdita della protezione immunitaria) è stata effettuata la misurazione degli anticorpi contro la spike protein di SARS-CoV-2 (S1/S2) mediante immunodosaggio in chemiluminescenza indiretta: essa ha dimostrato una completa assenza di anticorpi (IgG e IgM entrambi negativi).

In data 2/12/2020 – dopo 15 giorni dalla reinfezione – si è riscontrata la comparsa di una iniziale risposta anticorpale vs S1/S2, seppure a basso titolo: IgM negative; IgG 26 UA/mL (test positivo >15).

Il paziente si è rapidamente ripreso dai sintomi, ed è risultato negativo al tampone nasofaringeo di controllo in data 9/12/2020.

Si è poi monitorato il titolo anticorpale a distanza, riscontrando un ulteriore aumento delle IgG anti S1/S2 a 41,6 UA/ml il 17/02/21 (a 3 mesi dalla reinfezione).

In data 7/6/21 e 28/6/21 è stato sottoposto a vaccinazione con Comirnaty Pfizer, senza complicanze.

Paziente uomo, 89 anni, età dialitica 12 mesi

Sintomi clinici Score ecografico polmonare (LUS) PaO2/FiO2 PCR (mg/dL) IL-6 (ng/mL) Ddimero (ng/mL)

Durata malattia (tampone pos → neg)

1^ episodio (apr 2020)

Tosse, mialgia, nausea

2 300 9,8 21,8 16.454 28 gg
2^ episodio (nov 2020)

Febbricola, tosse, astenia

4 620 0,7 11,8 7.907 23 gg
Tabella I: Quadro clinico, laboratoristico e strumentale nei due episodi
  IgM (UA/mL; cut off>15) IgG (UA/mL; cut off>15)
Dopo 7 mesi dal 1^ episodio neg neg
Dopo 15 gg dal 2^ episodio neg pos (26)
Dopo 3 mesi dal 2^ episodio neg pos (41,6)
Tabella II: Andamento sierologia nei due episodi



La risposta immunitaria a SARS-CoV-2 nella popolazione dialitica

È stato recentemente ipotizzato che la ridotta protezione immunitaria nei confronti specificamente di SARS-CoV-2 nella popolazione dialitica sia dovuta proprio ad una risposta T difettosa e alla mancata generazione di titoli anticorpali neutralizzanti, così come evidenziato in uno studio francese dopo due dosi di vaccino a mRNA [28].

La relativa anergia del paziente dializzato e quindi la sua relativa difficoltà a montare una risposta immunitaria adeguata potrebbe condizionare una maggiore suscettibilità non solo ad infettarsi, ma anche a reinfettarsi, rispetto alla popolazione generale.

Infatti, ciò che pare evidenziarsi in letteratura è che una robusta risposta immunitaria iniziale – sia umorale che cellulo-mediata – sembra proteggere più a lungo dal rischio di reinfezione [29]; nello stesso tempo l’invecchiamento (sia anagrafico che – come nel caso dei pazienti dializzati – biologico) determina un impairment immunitario in particolare sul versante adattativo, con maggior suscettibilità e sviluppo di malattia COVID-19 più grave [30].

Al momento i dati relativi specificamente all’efficacia clinica dello sviluppo e della durata di una risposta immunitaria – cellulare e/o anticorpale, indotta da infezione contratta o da vaccinazione – versus SARS-CoV-2 nei dializzati, e quale ruolo essa possa avere nello sviluppo di forma più o meno gravi di COVID-19, sono ancora in via di acquisizione. In particolare, non vi sono ancora esiti di ampi trial con end-point clinici in merito [35].

Tuttavia, in letteratura sono presenti (e in incremento) diversi lavori che – avendo valutato la risposta immune sia alla vaccinazione che all’infezione nei dializzati – possono fornire un panorama e consentire di formulare alcune ipotesi.

In merito alla risposta dopo infezione, uno studio inglese ha valutato i titoli anticorpali specifici per SARS-CoV-2 6 mesi dopo l’infezione in pazienti dializzati, riscontrando che l’85% dei pazienti con sieroconversione dopo l’infezione aveva ancora anticorpi specifici per SARS-CoV-2, ma il cui titolo significativamente diminuiva nel tempo [38].

In merito alla risposta dopo vaccinazione, in alcuni lavori viene segnalata una risposta nei dializzati ai vaccini a mRNA (mRNA-1273 and BNT162b2) ragguardevole, pari al 97% [34]. Parrebbe invece inferiore nella popolazione dializzata la risposta ai vaccini adenovirus-based, come AZD1222 [37]. Tuttavia, questa buona risposta immune – umorale e cellulare – conseguente al vaccino nei dializzati non appare durevole: essa pare infatti diminuire 4 mesi dopo completamento del ciclo vaccinale primario e perdersi del tutto nel 17,1% (razionale sul quale la popolazione dializzata è stata ritenuta prioritaria per la somministrazione delle dosi booster) [36].

Tutti questi lavori si basano su dati antecedenti alla comparsa della variante Omicron, la quale parrebbe eludere ulteriormente la risposta immune sia da infezione naturale dei pregressi ceppi che da vaccinazione anche con dosi booster; in tal senso, sarà interessante capire se e come la popolazione dializzata si discosterà dal tasso di reinfezione da variante Omicron rispetto alla popolazione generale.

In tale ottica appaiono assai importanti i risultati in itinere che arriveranno da due studi osservazionali prospettici europei, l’italiano COVID-VAX (Studio di coorte su efficacia e sicurezza della vaccinazione anti COVID-19 nelle persone in dialisi) promosso da SIN e ISS e il francese ROMANOV (Response of Hemodialyzed Patients to COVID-19 Vaccination) in merito all’incidenza e gravità della malattia COVID-19 in pazienti dializzati anche in base al loro stato di vaccinazione e al ruolo delle “terze” e “quarte” dosi vaccinali nell’aumento di effettori immunitari in questa peculiare popolazione [28,31].

Peculiarità del nostro caso rispetto agli altri casi di reinfezione in emodializzati in letteratura

A nostra conoscenza ad oggi sono stati segnalati in letteratura solo 3 casi di sospetta reinfezione da SARS-CoV-2 in pazienti con ESRD sottoposti a emodialisi cronica da ceppi antecedenti la variante Omicron [22,23]; in tutti e 3 i casi la prima infezione è stata documentata per screening, in assenza di sintomi (fattore che potrebbe giustificare lo sviluppo di una scarsa risposta immune dopo l’infezione primaria).

In uno dei tre casi il tampone molecolare in occasione del primo episodio è addirittura risultato negativo, e la prima infezione è stata supposta solo sulla base della sierologia, lasciando aperto il quesito se si trattasse realmente di una reinfezione o invece di una problematica di cross reazione del test per rilevare le IgG, come giustamente sottolineato dagli autori [22]. Negli altri due casi invece la documentata negatività dei tamponi tra un episodio e l’altro sembrerebbe confermare che si sia trattato effettivamente di una reinfezione, anche se in entrambi i casi vi è stato solo 1 tampone negativo tra i due episodi, e tutti ben conosciamo la possibilità di avere un tampone negativo e poi nuovamente uno positivo a breve distanza, come riscontrato più volte nella “prima ondata” quando il protocollo di guarigione prevedeva l’effettuazione doppio tampone negativo. Inoltre, in uno di questi due casi mancano completamente dati relativi alla sierologia [23].

Rispetto al nostro caso, in nessuno dei 3 casi riportati in letteratura sono stati svolti esami strumentali in entrambi gli episodi e pertanto non è noto se vi fosse un coinvolgimento polmonare o meno nel primo evento (anche se l’asintomaticità dei pazienti lascia supporre di no) e non sono noti dati ematochimici che possano fornire informazioni riguardo al livello di attivazione citochinica avvenuto.

Il tempo intercorso tra primo e secondo episodio in tutti e tre i casi precedentemente riportati risulta al massimo di 2 mesi, mentre nel nostro caso esso risulta di 7 mesi. Tale latenza temporale, unita ai ripetuti tamponi negativi tra i due episodi (ben 5), conferma in maniera inequivocabile che, nel nostro paziente, si sia trattato di una reale reinfezione a distanza.

Caratteristiche paziente

Sintomi clinici

(1^ episodio/
2^ episodio)

Tampone molecolare (1^episodio/
2^ episodio)
Sierologia IgG (1^ episodio/
2^ episodio)
Tempo intercorso tra 1^ e 2^ episodio

Tamponi negativi tra i 2 episodi (n°)

Uomo, 51 aa


Febbre, dispnea,desaturazione

Neg/Pos Pos/Pos 2 mesi No
Uomo, 70 aa


Tosse, dispnea, mialgie

Pos/Pos Non disponibile/


1 mese Si (1)
Donna, 55 aa


Febbricola, mialgie

Pos/Pos Non disponibile/Non disponibile 2 mesi Si (1)
Tabella III: Caratteristiche degli altri casi di reinfezione da SARS-CoV-2 in pazienti in dialisi cronica segnalati in letteratura

Allo stato attuale pertanto il caso da noi riportato appare l’unico in letteratura relativo ad un paziente in emodialisi con reinfezione documentata in RT-PCR mediante tampone nasofaringeo risalente al 2020, ossia antecedente ai vaccini e alla variante Omicron. La prima infezione verosimilmente è stata determinata dal ceppo originale di Wuhan, mentre la reinfezione si è verificata a causa della variante inglese (Alpha). I ripetuti controlli intermedi negativi, l’evidenza di interessamento polmonare all’ecografia e le alterazioni in senso flogistico agli ematochimici in entrambi gli episodi, nonché l’assenza di risposta anticorpale dopo il primo episodio e la comparsa della stessa dopo il secondo episodio, costituiscono elementi di interesse di questo caso.

Il ruolo dell’ecografia polmonare (LUS) nei pazienti dializzati affetti da COVID-19

Considerando le suddette problematiche connesse alla morbilità e mortalità da COVID-19 nei pazienti in dialisi, nonché la possibilità che i sintomi possano essere in fase iniziale lievi o confondersi con altre problematiche (es. dispnea da sovraccarico), appare opportuno che nei pazienti infetti vi siano mezzi diagnostici opportuni per quantificare l’entità del coinvolgimento respiratorio e differenziare precocemente coloro gestibili ambulatorialmente da quelli meritevoli di ricovero.

In particolare, sarebbero consigliabili strategie di stratificazione del rischio e di definizione diagnostica pratiche, sensibili, affidabili, ripetibili e possibilmente utilizzabili al letto del paziente (onde evitare spostamenti in radiologia con rischio di diffusione del virus), e possibilmente prive di radiazioni ionizzanti.

In quest’ottica, presso il nostro centro dialisi abbiamo attuato nelle prime due ondate pandemiche – prima dell’avvento dei vaccini anti-COVID – una sorveglianza specifica dedicata ai pazienti ambulatoriali positivi per SARS-CoV-2, integrando al monitoraggio clinico e al panel di esami ematochimici l’applicazione dell’ecografia polmonare (LUS) secondo l’apposito score.

Monitoraggio clinico Esami ematochimici

Esami strumentali

Temperatura corporea, PA, FC, saturazione dell’ossigeno, rilevamento sintomatologia specifica

Emocromo con formula, proteina C reattiva, IL-6, LDH, ferritina, coagulazione completa, EGA arteriosa se sintomi respiratori

Ecografia polmonare con calcolo LUS score

Tabella IV: Protocollo sorveglianza 1° livello sala dialisi COVID pazienti ambulatoriali – prime due ondate pandemiche

Un LUS score all’ingresso superiore a 8-10 costituiva elemento di allarme, in particolare in associazione a alterazioni ematochimiche come linfopenia, PCR >2x e IL-6 >4x, anche in assenza di alterazioni della saturazione. I pazienti con tali caratteristiche venivano considerati per il ricovero ospedaliero.

La LUS prima della pandemia COVID-19 veniva effettuata di routine presso il nostro centro per la definizione del peso ideale dialitico in abbinamento alla valutazione del diametro e della collassabilità della vena cava inferiore, ma ha trovato una sua applicazione peculiare nei pazienti dializzati affetti da COVID-19, trattandosi come già detto di un esame molto affidabile ed utilizzato in ambito urgentistico [25,26,27].

Per quanto riguarda nello specifico i pazienti in dialisi, l’esame viene effettuato a inizio della seduta dialitica, mediante ecografo dedicato ai pazienti positivi. Le immagini ecografiche della polmonite da COVID-19 mostrano un tipico aspetto bilaterale caratterizzato da linee B multiple o confluenti con aree risparmiate, linea pleurica ispessita e irregolare e rari consolidamenti subpleurici; tali peculiarità, integrate con la valutazione della vena cava inferiore in termini di diametro e collassabilità inspiratoria, consentono di effettuare una diagnostica differenziale con le linee B da sovraccarico di volume.

L’approccio ultrasonografico polmonare al paziente dializzato positivo per SARS-CoV-2 appare quindi assai utile per la stratificazione e la gestione dei pazienti, in parallelo con quanto evidenziato nelle casistiche di medicina d’urgenza, ed è stato adottato anche in altri centri dialisi, come segnalato da alcune esperienze della letteratura [32].

Il ruolo dello screening con tampone nasofaringeo nelle sale dialisi

Le sale dialisi possono essere potenzialmente sede di focolai/cluster e per tale motivo i pazienti devono essere adeguatamente protetti con l’utilizzo dei dispositivi di protezione individuale (DPI). Rispetto allo screening periodico con tamponi nasofaringei, in letteratura le posizioni variano tra l’indicazione ad un periodico controllo a tappeto in tutti i pazienti all’effettuazione dell’esame solo nei sintomatici, così come variano i cut-off ritenuti indicati rispetto alla temperatura corporea al triage, la distanza ottimale tra i pazienti, e quando concludere l’isolamento dei positivi (e se applicare differenze nelle tempistiche e nella gestione tra vaccinati e non) [33].

Presso il nostro centro dialisi, in base anche all’esperienza di COVID-hospital durata 9 mesi e avendo sottoposto da inizio pandemia a trattamento dialitico più di 80 pazienti positivi, attuiamo:

  • trattamento in sala dialisi contumaciale per i positivi, sia vaccinati che non. In questi pazienti, in presenza di sintomi, effettuiamo sorveglianza mediante panel di ematochimici e ecografia polmonare (LUS). Rientro in sala dialisi solo dopo documentazione di tampone molecolare negativo secondo le tempistiche determinate dalle indicazioni ministeriali;
  • effettuazione immediata di tampone molecolare e trattamento in sala dialisi grigia dei sintomatici e degli asintomatici entrati in contatto con positivi, per una durata stabilita secondo le indicazioni ministeriali relative alla quarantena (differenziata pertanto tra vaccinati con booster, vaccinati solo parzialmente e non vaccinati). Tale approccio si applica anche ai pazienti guariti da precedente COVID-19;
  • screening periodico di tutti i pazienti mediante tamponi molecolari o antigenici di terza/quarta generazione, con cadenza differenziata e modulabile a seconda dello status vaccinale e della fase epidemiologica;
  • utilizzo costante per tutti i pazienti dei DPI (forniti dal centro dialisi stesso), misurazione della temperatura corporea e rilevamento di eventuali sintomi sentinella in tutte le sedute di dialisi;
  • controllo sierologico nei pazienti in lista attiva trapianto dopo guarigione dall’infezione. Non sono programmati controlli sierologici di routine negli altri casi.



A nostra conoscenza questo è il 4° caso riportato in letteratura di recidiva di COVID-19 in un paziente con ESRD sottoposto a emodialisi cronica da ceppi antecedenti la variante Omicron.

La peculiarità del nostro caso rispetto a quelli segnalati in precedenza sta nella presenza di sintomi e alterazioni ecografiche polmonari ed ematochimiche in entrambi gli episodi, nella documentata assenza di risposta sierologica dopo il primo episodio, e nella ripetuta negatività dei tamponi intermedi nel tempo che esclude una persistenza di malattia.

In uno scenario di pandemia, rispetto alla quale i meccanismi patogenetici e immunologici che stanno alla base delle dinamiche della suscettibilità all’infezione da SARS-CoV-2 e della severità della malattia COVID-19 non sono stati ancora del tutto chiariti, il ruolo della rapida perdita o mancanza di sviluppo della protezione anticorpale e più in generale immunitaria dopo infezione e/o dopo vaccinazione nei pazienti in dialisi, e il suo impatto clinico, deve essere ulteriormente indagato.

Ciò appare particolarmente importante in una popolazione fragile e ipo-anergica come quella dializzata, anche per definire le strategie gestionali attuali e future.

Questo caso evidenzia a nostro parere anche la necessità di mantenere uno screening attento mediante tamponi nasofaringei per la ricerca di SARS-CoV-2 nelle sale dialisi, anche nei pazienti che abbiano superato l’infezione e/o siano stati vaccinati, nonché la prosecuzione attenta delle precauzioni di barriera e del distanziamento.

Sono in corso studi clinici multicentrici di numerosità ampia in diverse nazioni europee, come il COVID-VAX in Italia e il ROMANOV in Francia, i quali auspicabilmente dovrebbero poter aumentare la comprensione di tali questioni ancora aperte, soprattutto in merito alle dinamiche infettive post vaccinazione e post infezione.



  1. World Health Organisation. WHO Coronavirus (COVID-19) Dashboard. (ultimo accesso 05/01/2022).
  2. Laith J. Abu-Raddad, et al. Assessment of the risk of SARS-CoV-2 reinfection in an intense re-exposure setting. Clin Infect Dis 2021 Dec 14; 73(7):e1830–40.
  3. Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. 2021; 591(7851):639-44.
  4. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, Elliott J, Hofmann C, Hausner MA, et al. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid- 19. N Engl J Med 2020; 383:1085-87.
  5. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA 2020; 323(22):2249-51.
  6. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell Responses to SARS‐CoV‐2 Coronavirus in Humans with COVID‐19 Disease and Unexposed Individuals. Cell 2020; 181(7):1489-501.
  7. Lipsitch M, Grad YH, Sette A, Crotty S. Cross‐reactive memory T cells and herd immunity to SARS‐CoV‐ Nat Rev Immunol 2020; 20(11):709-13.
  8. Hsu C, et al. COVID-19 in dialysis patients: outlasting and outsmarting a pandemic, Kidney Int 2020 Dec; 98(6):1402-04.
  9. Xiong F, et al. Clinical Characteristics of and Medical Interventions for COVID-19 in Hemodialysis Patients in Wuhan, China. J Am Soc Nephrol 2020 Jul; 31(7):1387-97.
  10. Quintaliani G, et al; Italian Society of Nephrology COVID-19 Research Group. Exposure to novel coronavirus in patients on renal replacement therapy during the exponential phase of COVID-19 pandemic: survey of the Italian Society of Nephrology. J Nephrol 2020 Aug; 33(4):725-36.
  11. Vaziri ND et al. Effect of uremia on structure and function of immune system. J Ren Nutr 2012 Jan; 22(1):149-56.
  12. Betjes M. Uremia-Associated Ageing of the Thymus and Adaptive Immune Responses, Toxins (Basel) 2020 Apr 3; 12(4):224.
  13. Kato S, Chmielewski M, Honda H, Pecoits-Filho R, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 2008 Sep; 3(5):1526-33.
  14. Wang Y, Chen S, Feng S, et al. Telomere shortening in patients on long-term hemodialysis. Chronic Dis Transl Med 2021; 7(4):266-75.
  15. Stenvinkel P, Heimburger O, Paultre F, et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int 1999; 55:1899-911.
  16. Ward RA. Do clinical outcomes in chronic hemodialysis depend on the choice of a dialyzer? Semin Dial 2011 Jan-Feb; 24(1):65-71.
  17. Abdelrasoul A, Westphalen H, Saadati S, Shoker A. Hemodialysis biocompatibility mathematical models to predict the inflammatory biomarkers released in dialysis patients based on hemodialysis membrane characteristics and clinical practices. Sci Rep 2021; 11(1):23080.
  18. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med 2020; 383(23):2255-73.
  19. Fabrizi F, Martin P, Dixit V, Bunnapradist S, Dulai G. Meta-analysis: the effect of age on immunological response to hepatitis B vaccine in end-stage renal disease. Aliment Pharmacol Ther 2004 Nov 15 ;20(10):1053-62.
  20. Haddiya I. Current knowledge of vaccinations in chronic kidney disease patients. Int J Nephrol Renovasc Dis 2020; 13:179-185.
  21. International Society of Nephrology. Priority COVID-19 Vaccination for Dialysis Patients. (ultimo accesso 05/01/2022).
  22. Munoz Mendoza J, Alcaide ML. COVID-19 in a patient with end-stage renal disease on chronic in-center hemodialysis after evidence of SARS-CoV-2 IgG antibodies. Reinfection or inaccuracy of antibody testing. IDCases 2020; 22:e00943.
  23. Krishna VN, Ahmad M, Overton ET, Jain G. Recurrent COVID-19 in Hemodialysis: A Case Report of 2 Possible Reinfections. Kidney Med 2021 May-Jun; 3(3):447-50.
  24. Lei Q, Li Y, Hou HY, et al. Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections. Allergy 2021; 76(2):551-61.
  25. Peng Q, Wang X, Zhang L. and Chinese Critical Care Ultrasound Study Group. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensive Care Med 2020; 46:849-50.
  26. Soldati G, Smargiassi A, Inchingolo R, Buonsenso D, et al. Proposal for international standardization of the use of lung ultrasound for COVID-19 patients; a simple, quantitative, reproducible method. J Ultrasound Med 2020 Mar 30; 39(7):1413-19.
  27. Cibinel GA, Paglia S, Magnacavallo A, et al. Prima linea Covid-19. Ecografia in urgenza. (ultimo accesso 05/01/2022).
  28. Espi M, Charmetant X, Barba T, Mathieu C, Pelletier C, et al. A prospective observational study for justification, safety, and efficacy of a third dose of mRNA vaccine in patients receiving maintenance hemodialysis. Kidney Int 2021 Nov 29; 101(2):390-402.
  29. Havervall S, Ng H, Jernbom Falk A, Greilert-Norin N, et al. Robust humoral and cellular immune responses and low risk for reinfection at least 8 months following asymptomatic to mild COVID-19. J Intern Med 2022 Jan; 291(1):72-80.
  30. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell 2020; 183(4):996-1012.
  31. Menniti Ippolito F, Messa P. Studio di coorte su efficacia e sicurezza della vaccinazione anti COVID-19 nelle persone in dialisi. (ultimo accesso 05/01/2022).
  32. Allinovi M, Laudicina S, Dallari L, Gianassi I, Dervishi E, Biagini M, Cirami L. Lung ultrasound may help in the differential diagnosis of suspected oligosymptomatic COVID-19 patients on hemodialysis: A case report. Hemodial Int 2021 Oct; 25(4):E48-52.
  33. Alfano G, Ferrari A, Magistroni R, Fontana F, Cappelli G, Basile C. The frail world of haemodialysis patients in the COVID-19 pandemic era: a systematic scoping review. J Nephrol 2021; 34(5):1387-403.
  34. Broseta JJ, Rodríguez-Espinosa D, Rodríguez N, et al. Humoral and Cellular Responses to mRNA-1273 and BNT162b2 SARS-CoV-2 Vaccines Administered to Hemodialysis Patients. Am J Kidney Dis 2021 Oct; 78(4):571-81.
  35. Wilde B, Korth J, Jahn M, et al. COVID-19 vaccination in patients receiving dialysis. Nat Rev Nephrol 2021; 17:788-89.
  36. Dulovic A, et al. Diminishing immune responses against variants of concern in dialysis patients four months after SARS-CoV-2 mRNA vaccination. Preprint at medRxiv 2021.
  37. Carr EJ, et al. Neutralising antibodies after COVID-19 vaccination in UK haemodialysis patients. Lancet 2021; 398:1038-41.
  38. Clarke CL, et al. Longevity of SARS-CoV-2 immune responses in hemodialysis patients and protection against reinfection. Kidney Int 2021; 99:1470-77.


Vascular ultrasonography in the preparation and surveillance of arteriovenous fistula: a monocentric experience


Creating an arteriovenous fistula (AVF) is complicated by the gradual increase in the average age of patients initiating chronic haemodialysis treatment and by the greater prevalence of pathologies that impact the cardiovascular system.

In the past, the choice of which vessels to use for the creation of the AVF was essentially based on the physical examination of the upper limbs. Current international guidelines suggest that a colour doppler ultrasound (DUS) should be performed to complete the physical examination. Similarly, vascular ultrasound is fundamental in the post-operative phase for appropriately monitoring the access.

We have conducted a retrospective analysis on the use of DUS in clinical practice in our centre, in order to determine the repercussions on vascular access survival. To this end, we identified three phases, according to the methods that were used for pre-operative vascular evaluation and monitoring of the AVF, that saw the progressive integration of clinical and ultrasound parameters.

The analysis of the data highlighted a statistically significant higher rate of survival for all vascular accesses, evaluated as a whole, and for distal AVFs, in the third phase, despite a greater percentage of patients over 75 (48% vs 28%).

In conclusion, we believe that an approach integrating clinical and ultrasound evaluation is indispensable to identify the most suitable AVF site and guarantee its efficiency over time.


Keywords: haemodialysis, arteriovenous fistula, colour doppler ultrasound, monitoring, vascular access

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


Un trattamento emodialitico adeguato necessita di un accesso vascolare ben funzionante nel tempo.

I pazienti affetti da insufficienza renale cronica (CKD) al IV° stadio (eGFR <30 ml/min), devono pertanto essere accuratamente studiati al fine di poter avviare il trattamento sostitutivo con un accesso vascolare idoneo [1].

I dati della letteratura e le linee guida internazionali in merito indicano la fistola artero-venosa (FAV), allestita con vasi nativi, quale accesso di prima scelta per un minore rischio d’infezione e trombosi, una migliore sopravvivenza, minori costi correlati alla necessità di ospedalizzazione se paragonati alla FAV protesica o al catetere venoso centrale tunnellizato (CVCt) [2].

Nei pazienti affetti da CKD il corretto utilizzo del patrimonio vascolare degli arti superiori costituisce un momento fondamentale ai fini del futuro confezionamento di una FAV. L’attuale incremento dell’età media dei pazienti a inizio trattamento emodialitico cronico e la maggiore prevalenza negli stessi di patologie ad elevato impatto sul sistema cardio-vascolare (diabete mellito, angiosclerosi, arteriopatia obliterante polidistrettuale), determinano maggiori difficoltà nell’allestire una FAV che garantisca buona efficienza dialitica e sufficiente durata nel tempo [3].

Tra le FAV native, il gold standard è rappresentato dalla FAV radio-cefalica distale con anastomosi a livello del polso: essa è associata ad un minor rischio sindrome di steal [4] e, al contrario di una FAV prossimale (omero-cefalica; omero-basilica), raramente sviluppa una elevata portata, causa non trascurabile di scompenso cardiaco nei pazienti uremici.

Basile et al. in uno studio prospettico hanno analizzato il rapporto tra Qa FAV ed output cardiaco e concludevano che una portata uguale o maggiore a 2000 ml/min rappresenta il giusto cut-off nel predire il rischio di scompenso cardiaco cronico ad alta gittata [5].

La FAV distale non è sempre proponibile e può andare incontro a scarsa maturazione e a conseguente fallimento, tuttavia la sua realizzazione, ove possibile, permette un più corretto utilizzo del patrimonio vascolare del singolo paziente e la possibilità per il medesimo di poter usufruire dell’eventuale confezionamento nel tempo di ulteriori accessi che richiedano l’utilizzo di vasi posti in sede più prossimale.

Altra tipologia di accesso vascolare che può essere considerato prima del confezionamento di una FAV prossimale è quella mid-arm, con l’utilizzo del tratto prossimale dell’arteria radiale. Essa è caratterizzata da una portata inferiore rispetto alla prima, ed in genere è ben tollerata anche nei pazienti anziani, diabetici o con vasculopatia periferica [6].

La scelta dei vasi da utilizzare per il confezionamento dell’accesso vascolare per dialisi è avvenuta in passato essenzialmente attraverso l’esame obiettivo degli arti superiori: un attento esame fisico ed anamnestico permette di raccogliere alcune importanti informazioni sul circolo venoso superficiale e sul circolo arterioso:

  • palpabilità delle vene superficiali, valutazione del loro calibro e decorso
  • palpabilità dei polsi arteriosi
  • presenza di cicatrici chirurgiche o aree di distrofia cutanea
  • presenza di pace-maker (PM)
  • pregressi traumi/fratture o interventi chirurgici a carico degli arti superiori o precedenti accessi vascolari
  • storia di pregressi posizionamenti di CVC
  • segni di pregressa reiterata venipuntura, segni di tromboflebite in atto o pregressa
  • presenza di comorbidità rilevanti (scompenso cardiaco, grave valvulopatia, cardiopatia ischemica, patologie della coagulazione).

Le linee guida internazionali attualmente suggeriscono l’esecuzione di un ecocolordoppler (ECD), a completamento dell’esame fisico, in tutti i pazienti candidati al confezionamento di una FAV. Esso consente, in fase preoperatoria, la scelta dei vasi più idonei all’intervento e, in fase post-operatoria, rappresenta un momento fondamentale per un’adeguata sorveglianza dell’accesso e la diagnosi precoce di eventuali cause di malfunzionamento suscettibili di correzione [7].

L’ECD fornisce, infatti, numerose e dettagliate informazioni sul circolo venoso superficiale e profondo e sul circolo arterioso dell’intero arto superiore, consente altresì valutazioni emodinamiche e morfologiche permettendo di identificare eventuali varianti anatomiche.

Lo studio vascolare pre-intervento effettuato di routine ha permesso di incrementare negli anni la percentuale di FAV confezionate con vasi nativi a scapito della FAV protesiche, nonché di migliorare la sopravvivenza nel tempo, attraverso una più adeguata sorveglianza e la identificazione precoce delle complicanze [89].

Il mapping artero-venoso pre intervento fa riferimento ai parametri di seguito riportati:

  1. Parametri arteriosi (Fig.1):
  • diametro dell’arteria radiale: un diametro minimo di 2 mm è stato correlato ad una elevata percentuale di pervietà primaria ad un anno (83%) [10]
  • spessore e qualità intima-media: l’incremento dello stesso correla con un peggior outcome della FAV [11]
  • flusso/compliance vascolare nel test dell’iperemia reattiva: un valore dell’indice di resistenza (IR) >0,7 in fase di iperemia reattiva è correlato ad un fallimento precoce dell’accesso vascolare [12]
  • presenza di calcificazioni vascolari
  • presenza di lesioni steno-ostruttive
Figura 1: Parametri arteriosi
Figura 1: Parametri arteriosi
  1. Parametri venosi (Fig.2):
  • pervietà del vaso e struttura di parete: lume anecogeno, comprimibilità del vaso, parete sottile
  • diametro e distensibilità della vena cefalica: 2 mm senza elastocompressione, 2,5 mm con elastocompressione [13]
  • profondità: <6 mm rispetto al piano cutaneo, al fine di consentire un’agevole venipuntura
  • decorso: deve essere sufficientemente rettilineo
  • presenza di circoli collaterali a meno di 5 cm dall’anastomosi [14].
Figura 2: Parametri venosi
Figura 2: Parametri venosi

Una FAV si definisce matura quando il diametro venoso permette la venipuntura con aghi di grosso calibro e la portata raggiunge i 600 ml/min, il diametro del vaso 6 mm, con un decorso del vaso a non più di 6 mm di profondità rispetto al piano cutaneo.

Appare auspicabile che i pazienti in emodialisi siano sottoposti ad una regolare sorveglianza dell’accesso vascolare, finalizzata alla diagnosi precoce delle cause di malfunzionamento dell’accesso. In particolare, l’identificazione di stenosi emodinamicamente significative (riduzione maggiore del 50% del lume vasale) e la valutazione del trend della portata dell’accesso, incrementano in modo significativo il tasso di pervietà riducendo di conseguenza l’incidenza di trombosi della FAV [15].

In merito alla sorveglianza degli accessi vascolari, i metodi di screening per la ricerca di stenosi significative sono stati suddivisi in quelli di I e II generazione [16]:

  1. Metodi di I generazione:
  • il monitoraggio fisico
  • vigilanza della pressione FAV (valutazione di pressione venosa dinamica, intra accesso e statica)
  • test del ricircolo
  • riduzione dell’efficienza dialitica (riduzione kt/v ed URR).
  1. Metodi di II generazione, permettono di calcolare la portata dell’accesso:
  • screening diluzionale
  • ECD.

La misurazione della portata a livello dell’arteria brachiale al di sopra del gomito tramite ECD rappresenta il miglior modo per sorvegliare una FAV; una portata <500 ml/min o una sua riduzione progressiva nel tempo sono altamente predittive di stenosi [1].

La trombosi, di fatto, rappresenta quasi sempre una causa di fallimento tardivo, con innumerevoli conseguenze cliniche negative, che determinano un incremento della frequenza di ospedalizzazione e della spesa sanitaria, nonché della morbidità e mortalità dei pazienti in emodialisi cronica [17].


Materiali e metodi

Nel nostro Centro abbiamo condotto un’analisi retrospettiva finalizzata ad analizzare se ed in quali termini l’utilizzo dell’ECD nella pratica clinica in ambito nefrologico abbia avuto delle ripercussioni sulla sopravvivenza degli accessi vascolari.

Sono stati a tal proposito individuati tre periodi storici (Tab. I), in relazione alla modalità di esecuzione nel Centro di:

  • valutazione vascolare pre-intervento
  • sorveglianza della FAV.
Pre-intervento Sorveglianza
  • esame fisico
  • eventuale flebografia
  • monitoraggio clinico
  • test del ricircolo, scadimento efficienza dialitica
  • ECD (se presente indicazione clinica, ma non in ambito nefrologico)
  • esame fisico
  • avvio mapping vascolare in ambito nefrologico
  • monitoraggio clinico
  • test del ricircolo, scadimento efficienza dialitica
  • inizio uso ECD per ricerca stenosi e misurazione portata:
    • ogni 90 giorni per le FAV protesiche
    • su indicazione clinica per le FAV native
    • ad un mese da procedure interventistiche e successivamente ogni 6 mesi
  • esame fisico
  • mapping vascolare di routine in ambito nefrologico
  •  monitoraggio clinico
  • test del ricircolo, scadimento efficienza dialitica
  • ECD per ricerca stenosi e misurazione portata:
    • ogni 90 giorni per le FAV protesiche
    • su indicazione clinica per le FAV native
    • ad un mese da procedure interventistiche e successivamente ogni 6 mesi
Tabella I: Tre fasi storiche in relazione alla modalità di esecuzione di valutazione vascolare pre-intervento e di sorveglianza della FAV

Sono stati altresì definiti i parametri cui fare riferimento tanto per la fase di studio pre-operatoria, quanto per quella di sorveglianza (Tab. II).

Riferimenti nella fase di pre-intervento: Riferimenti nella fase di sorveglianza:
Esame fisico:

Presenza e consistenza dei polsi arteriosi (brachiale, radiale, ulnare)

Valutazione del reticolo venoso superficiale con elastocompressione: palpabilità, e decorso dei vasi

Monitoraggio clinico:

Presenza e trasmissione del thrill, prolungato sanguinamento a fine dialisi, difficoltà al posizionamento degli aghi


Valutazione pervietà e calibro dei vasi venosi scarsamente palpabili

Parametri dialitici:

Test ricircolo urea >10%, scadimento trend della efficienza dialitica (riduzione dello 0.2 Kt/v)

Mapping Vascolare:

–        Arteria: calibro della a. radiale uguale o maggiore di 2 mm, profilo velocimetrico trifasico, test iperemia reattiva IR uguale e inferiore a 0.7

–        Vena: pervietà del vaso ed integrità di parete, calibro maggiore o uguale a 2.5 mm con elastocompressione (avambraccio), calibro uguale o maggiore di 4 mm per protesi

Parametri ultrasonografici:

Portata inferiore a 500 ml/min, trend con riduzione maggiore del 25%

Riscontro di aree di stenosi superiori al 50% (PSV > 400 cm/s o PSV ratio >2)

Tabella II: Parametri di riferimento

Tecnica chirurgica

Le FAV con vasi nativi sono state tutte confezionate in anestesia locale (ropivacaina 7.5%) con anastomosi latero-terminale per le FAV distali e prossimali, e latero-laterale o latero-terminale per le FAV mid-arm, con lunghezza del tratto anastomotico 5-7 mm.

Le FAV protesiche tutte in politetrafluoroetilene (PTFE), coniche 4-7 mm (gore-tex STRETCH), sono state confezionate in anestesia plessica (levobupivacaina 2%, ropivacaina 5%) con conformazione a loop fra arteria omerale e vena basilica, o conformazione retta fra arteria omerale e vena omerale o ascellare.

Dopo il primo anno di collaborazione con il chirurgo, tutti gli accessi sono stati eseguiti da equipe nefrologica.

Tecnica ultrasonografica

Al fine di decidere l’arto da utilizzare ed il tipo di accesso da confezionare, il nefrologo ha eseguito ECD usando sonda lineare L4-15 mHz eseguendo scansioni longitudinali e trasversali dei vasi esaminati con utilizzo del doppler pulsato per le valutazioni velocimetriche, facendo riferimento ai parametri specificati nella Tab. II.

Il numero dei pazienti prevalenti, compresi i pazienti incidenti, nei tre periodi considerati è stato di 130 ±6 pazienti, con una percentuale di CVCt che è gradualmente aumentata: 13% nel primo periodo, 18% nel a secondo periodo 22% nel a terzo periodo.

Al fine di prevenire il fallimento precoce dell’accesso, tutti i pazienti sottoposti ad intervento di confezionamento di FAV hanno avviato terapia antiaggregante (acido acetilsalicilico 100 mg) salvo quelli che eseguivano terapia con anticoagulante orali per altre motivazioni cliniche [18].

Metodo statistico

Per l’analisi statistica sono state utilizzate le curve di sopravvivenza secondo Kaplan-Meier al fine di valutare le differenze nei tre periodi osservati. Il livello di significatività definito come p <0.05.



La sopravvivenza cumulativa degli accessi vascolari nei tre periodi osservati è apparsa migliore nel terzo periodo di osservazione in modo statisticamente significativo (P <0.05) rispetto ai precedenti (Fig. 3).

Figura 3: FAV totali
Figura 3: FAV totali

È stata successivamente condotta una analisi statistica specifica mirata alla valutazione della sopravvivenza di ciascuna tipologia di accesso realizzato nei tre periodi. L’analisi dei dati ha evidenziato per la FAV distale una migliore sopravvivenza, statisticamente significativa (p< 0.05), nella 3° coorte rispetto alle prime due (Fig. 4).

Figura 4: FAV distale
Figura 4: FAV distale

Per la FAV mid-arm, confezionata in due dei tre periodi osservati, si è evidenziata una migliore sopravvivenza nel terzo rispetto al secondo periodo, ma senza significatività statistica (Fig. 5).

Figura 5: FAV mid-arm
Figura 5: FAV mid-arm

Per la FAV prossimale si è osservato un trend di miglior sopravvivenza nella 3° coorte rispetto alle prime due, ma anche in questo caso senza significatività statistica (Fig.6).

Figura 6: FAV prossimale
Figura 6: FAV prossimale

Per la FAV protesica sono state osservate minime differenze nei tre periodi osservati prive di rilevanza statisticamente significativa (Fig.7).

Figura 7: FAV protesica
Figura 7: FAV protesica

È stata inoltre effettuata una analisi per valutare le caratteristiche anagrafiche della popolazione inclusa nei tre periodi osservati. A dispetto della migliore sopravvivenza degli accessi nella terza coorte dei pazienti, essa ha evidenziato un progressivo incremento percentuale delle FAV confezionate nei soggetti over 75 dal primo periodo (28,3%) al terzo periodo (47,9%) (Fig. 8).

Figura 8: Numero di pazienti e numero di accessi in pazienti over 75
Figura 8: Numero di pazienti e numero di accessi in pazienti over 75

A completare l’analisi dei dati, è stata effettuata una valutazione sull’incidenza dei fallimenti precoci, considerata a 30 giorni dal confezionamento dell’accesso, che ha evidenziato un tasso di incidenza con trend in riduzione, dal 12,8% del primo periodo al 5,5% e 6,7% rispettivamente del secondo e terzo periodo.



Pur con i limiti dello studio retrospettivo, l’analisi dei risultati evidenzia un miglioramento degli outcomes clinici in termini di pervietà globale dopo l’introduzione in ambito nefrologico della tecnica ultrasonografica in fase di progettazione e sorveglianza dell’accesso vascolare, e la sua integrazione con il monitoraggio clinico, dato peraltro ampiamente confermato in letteratura [19-20].

Nei tre periodi considerati la percentuale di pazienti diabetici (25-30%) ed obesi (8-10%) era sovrapponibile, pertanto i risultati non appaiono influenzati in modo significativo da tali variabili.

È al contrario evidente che il supporto ultrasonografico risulta fondamentale al fine incrementare il numero di FAV confezionate nel paziente anziano, essendo il dato percentuale delle FAV realizzate nel paziente over 75 incrementato dal 28% del primo periodo, al 48% del terzo periodo. Aspetto quest’ultimo non trascurabile se si considera che l’utilizzo del CVCt quale accesso definitivo per emodialisi è correlato ad un maggiore morbilità e mortalità del paziente uremico [17].

Di fatto, la sola età anagrafica non può costituire un limite al confezionamento di una FAV nel paziente anziano da avviare alla terapia dialitica [21].

L’analisi eseguita in relazione alla singola tipologia di FAV ha posto in evidenza un risultato chiaramente significativo in termini di sopravvivenza a favore delle fistole confezionate con vasi nativi. Nella fattispecie, il dato è apparso statisticamente significativo per le fistole radio-cefaliche, ma ha mostrato un trend in miglioramento anche per le fistole mid-arm e prossimali.

È altrettanto vero che nei tre periodi considerati, si è registrata una riduzione percentuale delle FAV radio-cefaliche rispetto al totale delle FAV realizzate, dal 57% della prima coorte, al 44% della seconda fino al 37% della terza. Tale aspetto è tuttavia essenzialmente da riferire alla realizzazione nel secondo e nel terzo periodo delle FAV mid-arm, tipologia di accesso in precedenza non confezionato, che ha determinato una riduzione percentuale anche della FAV prossimali. Il dato è sostanzialmente da riferire al metodico studio preoperatorio ed alla scelta del sito reputato più idoneo per il confezionamento dell’accesso che, in una popolazione con elevata percentuale di anziani, ha favorito l’utilizzo di vasi in sede più prossimale rispetto al polso ma ha anche permesso di utilizzare in modo adeguato ed efficace il tratto intermedio del braccio, prima di optare per il confezionamento di una FAV prossimale [22].

Non vi è stata alcuna variazione significativa, nei tre periodi considerati, della sopravvivenza delle FAV di tipo protesico, la cui percentuale nei tre intervalli ha registrato leggero progressivo incremento come numero assoluto. Tuttavia per tale tipologia di accesso è possibile evidenziare un miglioramento della sopravvivenza nella seconda e terza coorte rispetto alla prima a 12 e 24 mesi, ma peggiore a 36 mesi.

Il dato non appare di semplice interpretazione, pur con i limiti dovuti alla modesta numerosità del campione esaminato, un adeguato mapping vascolare preoperatorio è sembrato importante al fine di ridurre il tasso di insuccessi precoci, come per altro dimostrato in letteratura [16]. La sopravvivenza peggiorativa a distanza sembra invece ridimensionare il valore del controllo strumentale della FAV protesica, nei confronti della quale, nel nostro pool di pazienti, è stato effettuato un metodico controllo ECD con cadenza trimestrale, avvalorando in modo indiretto il concetto del ruolo di primo piano del monitoraggio clinico nell’ambito della sorveglianza dell’accesso vascolare per emodialisi [23].

Il numero di procedure interventistiche è progressivamente aumentato: dalle 31 eseguite nel primo periodo alle 36 nel secondo periodo fino a raggiungere le 52 nel terzo periodo. L’incremento di tali procedure, che tuttavia è apparsa contenuta in termini assoluti, conduce a nostro parere a due riflessioni: da una parte l’innegabile ruolo dell’ECD nell’identificazione precoce di lesioni stenotiche correggibili per via endovascolare, dall’altra, la necessità di ottimizzare il programma di sorveglianza strumentale, senza tuttavia eccedere nell’indicazione allo studio angiografico.

Appare evidente che un’azione integrata, clinica ed ultrasonografica, sia indispensabile al fine di perseguire due fondamentali obiettivi: identificare il sito più idoneo per il confezionamento di un accesso vascolare e garantire una corretta sorveglianza finalizzata al mantenimento di una buona funzionalità della fistola nel tempo [924].

Alla luce di tali considerazioni e dell’esperienza da noi condotta, crediamo che un approccio multidisciplinare alla complessa problematica dell’accesso vascolare per emodialisi sia di fondamentale importanza: in tal senso in ambito nefrologico appare indispensabile la realizzazione di un settore specifico finalizzato alla valutazione ultrasonografica preoperatoria del paziente da indirizzare ad un programma di emodialisi, nonché alla sorveglianza dei pazienti medesimi nel tempo [25].

Il nefrologo dovrebbe costituire il riferimento clinico del team multidisciplinare, che vede coinvolti anche chirurghi vascolari, angioradiologi ed infermieri di dialisi ed in tal senso interagire con le figure menzionate e con esse decidere in merito alla creazione dell’accesso vascolare, alla gestione del medesimo ed alla risoluzione di eventuali problemi connessi al suo utilizzo.

Tale team multidisciplinare dovrebbe avere il compito fondamentate di definire il life-plan individuale del paziente con uremia terminale, nello specifico definire la sede e il timing di confezionamento dell’accesso vascolare nonché garantire l’adeguata sorveglianza nel tempo. Ogni scelta andrebbe effettuata in maniera prospettica tenendo presente che il paziente uremico nell’arco della sua storia dialitica potrebbe avere la necessità di confezionare più accessi [26].

Risulta a nostro parere importante acquisire e mantenere in ambito nefrologico le risorse umane e le competenze adeguate per poter garantire con continuità la realizzazione della FAV in tempi corretti e nel sito più idoneo, realizzando di fatto un primo livello clinico assistenziale sul tema specifico. Appare altresì fondamentale che tale attività sia coordinata con un secondo livello clinico assistenziale che vede attive le altre figure professionali coinvolte.

Chirurghi vascolari ed angioradiologi appaiono indispensabili per la risoluzione delle complicanze connesse all’utilizzo degli accessi vascolari nonché per la realizzazione di accessi complessi, ma estremamente importante è mantenere una costante attività di sorveglianza e collaborazione con infermieri della sala di dialisi che spesso costituisce la prima sede in cui è possibile verificare l’adeguato funzionamento dell’accesso vascolare o la eventuale presenza degli iniziali segni di malfunzionamento.



In conclusione, crediamo di poter affermare che programmi formativi volti a consolidare le competenze di carattere ultrasonografico vascolare in ambito nefrologico possano essere rilevanti al fine di migliorare gli outcomes clinici della fistola artero-venosa per emodialisi.

Riteniamo anche che l’ausilio dell’ECD non possa in nessuna fase di cura sostituire l’importanza dell’esame fisico e della sorveglianza clinica che rimangono fondamentali per garantire una migliore sopravvivenza e qualità di vita dei pazienti uremici.

È auspicabile altresì che ogni unità operativa di Nefrologia e Dialisi effettui un monitoraggio continuativo dei propri dati e che valuti nel tempo la sopravvivenza delle FAV e l’incidenza di complicanze ad esse correlate, al fine di poter al meglio modulare la strategia operativa, sempre nel rispetto delle linee guida di riferimento in merito.



  1. Besarab A, Work J, Brouwer D, Konner K, Bunchman TE, et al. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis 2006; 48(S1):S1-S322.
  2. Gibson KD, Gillen DL, Caps MT, et al. Vascular access survival and incidence of revisions: a comparison of prosthetic grafts, simple autogenous fistulas, and venous transposition fistulas from the United States Renal Data System Dialysis Morbidity and Mortality Study. J Vasc Surg 2001; 34:694-700.
  3. Hwang D, Park S, Kim HK, Huh SJ. Comparative outcomes of vascular access in patients older than 70 years with end-stage renal disease. Vasc Surg 2019; 69(4):1196-206.
  4. Leake AE, Winger DG, Leers SA, Gupta N, Dillavou ED. Management and outcomes of dialysis access-associated steal syndrome. J Vasc Surg 2015; 61(3):754-60.
  5. Basile C, Lomonte C, Vernaglione L, Casucci F, Antonelli M, Losurdo N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant 2008; 23(1):282-87.
  6. Bonforte G, Rossi E, Auricchio S, Pogliani D, Mangano S, Mandolfo S, Galli F, Genovesi S. The middle-arm fistula as a valuable surgical approach in patients with end-stage renal disease. J Vasc Surg 2010; 52(6):1551-56.
  7. Tordoir J, Canaud B, Haage P, et al. EBPG on vascular Access. Nephrol Dial Transplant 2007; 22(S2):ii88-117.
  8. Lok CE. Fistula First Initiative: Advantages and Pitfalls. Clin J Am Soc Nephrol 2007; 2: 1043-53.
  9. Zamboli P, Calabria M, Camocardi A, Fiorini F, D’Amelio A, Lo Dico C, Granata A. Color-Doppler imaging and arteriovenous fistula: preoperative evaluation and surveillance. G Ital Nefrol 2012; 29(S57):S36-46.
  10. Silva MB Jr, Hobson RW, Pappas PJ, et al. A strategy for increasing use of autogenous hemodialysis access procedures: impact of pre-operative noninvasive evaluation. J Vasc Surg 1998; 27:302-07.
  11. Ku YM, Kim YO, Kim J, et al. Ultrasonographic measurement of intima-media thickness of radial artery in pre-dialysis uremic patients: comparison with histological examination. Nephrol Dial Transplant 2006; 21:715-20.
  12. Malovrh M. Native arteriovenous fistula: preoperative evaluation. Am J Kidney Dis 2002; 39:1218-25.
  13. Lockhart ME, Robbin ML, Fineberg NS, et al. Cephalic vein measurement before forearm fistula creation: does use of a tourniquet to meet the venous diameter threshold increase the number of usable fistula? J Ultrasound Med 2006; 25:1541-45.
  14. Beathard GA, Arnold P, Jackson J, et al. Aggressive treatment of early fistula failure. Kidney Int 2003; 64:1487-94.
  15. Lomonte C, Meola M, Petrucci I, Casucci F and Basile C. The Key Role of Color Doppler Ultrasound in the Work-up of Hemodialysis Vascular Access. Seminars in Dialysis 2015; 28(2):211-15.
  16. Ibeasa J, Roca-Teyb R, Vallespínc J, Moreno T, Moñux G, et al. Spanish Clinical Guidelines on Vascular Access for Haemodialysis. Nefrologia 2017; 37(S1):1-191.
  17. Rehman R, Schmidt RJ, and Moss AH. Ethical and Legal Obligation to Avoid Long-Term Tunneled Catheter Access. Clin J Am Soc Nephrol 2009; 4(2):456-60.
  18. Fan PY, Lee CC, Liu SH, Li I-J, Weng CH, et al. Preventing arteriovenous shunt failure in hemodialysis patients: a population-based cohort study. J Thromb Haemost 2018; 17(1):77-87.
  19. Mudoni A, Caccetta F, Caroppo M, Musio F, Accogli A, et al. Echo color Doppler ultrasound: a valuable diagnostic tool in the assessment of arteriovenous fistula in hemodialysis patients. J Vasc Access 2016; 17(5):446-52.
  20. Aragoncillo Sauco I, Ligero Ramos JM, Vega Martínez A, Morales Muñoz ÁL, et al. Vascular access clinic results before and after implementing a multidisciplinary approach adding routine Doppler ultrasound. Nefrologia 2018; 38(6):616-21.
  21. Olsha O, Hijazi J, Goldin I, and Shemesh D. Vascular access in hemodialysis patients older than 80 years. J Vasc Surg 2015; 61(1):177-83.
  22. Borzumati M, Funaro L, Mancini E, Resentini V, Baroni A. Survival and complications of arteriovenous fistula dialysis access in an elderly population. J Vasc Access 2013; 14(4):330-34.
  23. Gallieni M, Hollenbeck M, Inston N, Kumwenda M, Powell S, et al. Clinical practice guideline on peri- and postoperative care of arteriovenous fistulas and grafts for haemodialysis in adults. Nephrol Dial Transplant 2019; 34:ii1–ii42.
  24. Aragoncillo I, Abad S, Caldés S, Amézquita Y, Vega A, Cirugeda A, at al. Adding access blood flow surveillance reduces thrombosis and improves arteriovenous fistula patency: a randomized controlled trial. J Vasc Access 2017; 18(4):352-58.
  25. Niyyar VD. Ultrasound in dialysis access: Opportunities and challenges. J Vasc Access 2020; 21(3):272-80.
  26. Lok C, Shenoy S, Yevzlin A, Huber TS, Lee T. KDOQI Clinical Practice Guideline For Vascular Access: 2018. AJKD Submission Draft, April 2019.

Is peritoneal dialysis the first-choice renal replacement therapy for patients waiting for a kidney transplant?


Kidney transplantation is the gold-standard treatment of end-stage renal disease. Receiving a pre-emptive transplant ensures the best survival for both the recipient and the allograft. However, due to an overwhelming discrepancy between available donors and patients on the transplant waiting list, the vast majority of transplant candidates require prolonged periods of dialytic therapy before transplant.

Peritoneal dialysis and hemodialysis have been traditionally considered as competitive renal replacement therapies. This dualistic vision has been recently questioned by emerging evidence suggesting that an individualized and flexible approach may be more appropriate. Tailored and cleverly planned shifts between different modalities, according to the patient’s needs, represents the best option.

Remarkably, recent data seem to support the use of peritoneal dialysis over hemodialysis in patients waiting for a kidney transplant. In this specific setting, the perceived advantages of PD are better overall recipient survival and quality of life, longer preservation of residual renal function, lower incidence of delayed graft function and reduced cost.

Keywords: peritoneal dialysis, kidney transplant, hemodialysis, renal replacement therapy, waiting-list, residual renal function, quality of life, delayed graft function

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


Il trapianto di rene (KT) è ampiamente riconosciuto come la terapia renale sostitutiva (RRT) d’elezione per la malattia renale terminale (ESRD) [13]. Idealmente, sottoporre il paziente a KT prima dell’inizio della terapia dialitica è la strategia che permette di ottenere i risultati più soddisfacenti [46]. Tuttavia, a causa della limitata disponibilità di donatori, la maggior parte dei soggetti candidati a KT necessita di un lungo periodo di trattamento dialitico prima di ricevere un organo [7]. Per molti anni l’emodialisi (HD) ha rappresentato l’unica opzione per i pazienti in lista di trapianto [8,9]. Negli anni ‘80 l’avvento della dialisi peritoneale (PD) nella pratica clinica ha sollevato la questione di quale fosse la terapia dialitica da preferire nei pazienti candidabili a KT [10,11].

Le preoccupazioni maggiori concernenti l’uso della PD sono rappresentate dalla possibile creazione di leakage/aderenze peritoneali, dal rischio di infezioni peri-trapianto e dalla convinzione che la metodica sia correlata ad una maggiore incidenza di episodi di rigetto acuto [1216].

Sebbene diversi studi abbiano dimostrato che la PD non influenza negativamente il numero di complicanze chirurgiche e mediche precoci, molti nefrologi sono ancora riluttanti a proporre la PD come terapia sostituiva iniziale nei pazienti candidabili a KT. Questa tendenza è alquanto discutibile poiché l’HD e la PD non devono essere considerate tecniche dialitiche competitive, quanto piuttosto strategie complementari finalizzate a ottenere i migliori risultati prima e dopo il trapianto di rene [17].

Infatti, la tecnica dialitica dovrebbe essere personalizzata sulla base delle particolari caratteristiche e esigenze del singolo paziente tenendo in considerazione la loro variabilità nel tempo. Dunque, trasferimenti accuratamente pianificati fra le diverse tecniche di terapia renale sostitutiva dovrebbero essere accuratamente considerati nelle specifiche circostanze [18].

A questo riguardo, sempre maggiori evidenze sembrano suggerire che nei pazienti candidabili a trapianto di rene la PD permette di ottenere migliori risultati rispetto all’HD. In particolare, i vantaggi della PD sono rappresentati da un più lungo mantenimento della funzione renale residua, da una superiore qualità di vita, una minore incidenza di ritardata ripresa funzionale dell’organo trapiantato (DGF), una migliore sopravvivenza e una riduzione dei costi associati alla metodica. Il presente lavoro si prefigge, dunque, lo scopo di discutere i vantaggi teorici della “PD-first policy” nell’ambito del paziente candidabile a KT.


Sopravvivenza del paziente durante la terapia dialitica

I pazienti affetti da ESRD presentano un’elevata prevalenza di malattie cardiovascolari, un più alto rischio di eventi cardiovascolari maggiori e un’aumentata mortalità rispetto alla popolazione generale [7]. Questi fattori, purtroppo, possono ridurre in modo significativo la possibilità di rimanere in lista attiva di trapianto e inficiano tanto la sopravvivenza dell’organo quanto quella del ricevente dopo KT. Dunque, la terapia renale sostitutiva in grado di garantire la minore mortalità e la più bassa incidenza di comorbidità è certamente da preferire.

In uno studio condotto su 398.940 pazienti che hanno iniziato la terapia sostitutiva fra il 1995 e il 2000, Vonesh et al. [19] mostrarono che la sopravvivenza dei pazienti in PD e HD variava secondo specifiche caratteristiche legate al paziente, quali la causa dell’insufficienza renale, l’età e le comorbidità. In particolare, gli autori osservarono che, eccetto per i pazienti anziani con diabete in cui la PD presentava uno svantaggio di sopravvivenza, in tutti gli altri sottogruppi la mortalità fra i pazienti era simile o perfino migliore in PD. Uno studio danese basato su 4568 pazienti in HD e 2443 in PD evidenziava che i pazienti in PD possedevano un vantaggio in termini di sopravvivenza nei primi due anni di RRT [20]. In modo simile, un’analisi eseguita su una coorte di pazienti dializzati canadesi dimostrava che negli individui giovani e non affetti da diabete la sopravvivenza in PD era superiore rispetto all’HD e, sebbene di minore entità, questo vantaggio si confermava anche negli altri sottogruppi [21].

Liem et al., analizzando il registro olandese di malattia renale terminale (16.643 pazienti), osservavano che la sopravvivenza differiva fra le due metodiche dialitiche a seconda della presenza o meno di diabete e dall’età del paziente all’inizio della dialisi [22]. In particolare, gli autori concludevano che il vantaggio della PD sull’HD diminuiva con l’aumento dell’età del paziente e in presenza di diabete.

Degno di rilevanza è il risultato proveniente da uno studio di confronto (PD vs HD) includente 6637 coppie di pazienti accoppiate secondo il metodo del propensity score in cui i pazienti trattati con PD mostravano un rischio di mortalità complessivo inferiore dell’8% rispetto ai pazienti che iniziavano l’HD [23].

Dunque, considerando globalmente le evidenze a disposizione in letteratura, i pazienti giovani e non diabetici trattati con PD presentano un vantaggio in termini di sopravvivenza rispetto ai soggetti sottoposti a HD, in particolare nei primi anni di trattamento.


Sopravvivenza del paziente e dell’organo dopo trapianto di rene

Rispetto alla terapia dialitica, il trapianto di rene garantisce sia una migliore qualità che una più lunga aspettativa di vita [24,25]. Inoltre, il rientro in dialisi dopo il fallimento di un primo trapianto è caratterizzato da una maggiore mortalità in confronto al periodo di trattamento dialitico pre-trapianto [2628]. Dunque, la preservazione della funzione del trapianto è un requisito fondamentale al fine di ottimizzare la sopravvivenza del paziente.

Diversi studi hanno indagato l’impatto del tipo di metodica dialitica intrapresa dal paziente prima di essere sottoposto a trapianto sulla sopravvivenza dell’organo e del ricevente ottenendo, però, risultati divergenti.

Nei primi anni 90 uno studio includente 500 pazienti sottoposti a un primo trapianto di rene non mostrava né una differente percentuale di sopravvivenza a 5 anni dei soggetti (HD 88% vs PD 87%), né dell’organo (HD 67% vs PD 66%) confrontando i pazienti trattati precedentemente con HD o PD [29]. Simili valori sia di sopravvivenza dei pazienti che del trapianto venivano osservati in altri studi dall’Università dell’Ohio, dal CHRU di Lille e dall’Università di Glasgow su popolazioni più ridotte [3032], così come in una vasta analisi retrospettiva del database Medicare condotta su 22.776 soggetti [33].

Al contrario, Goldfarb-Rumyantzev et al. [34], utilizzando i dati provenienti dall’ U.S. Renal Data System (USRDS), osservavano che la PD era associata a una riduzione del rischio di fallimento del trapianto e di mortalità, pari al 3% in confronto al 6% dell’HD.

La maggior parte degli studi successivi non rilevavano, invece, la superiorità di una metodica rispetto all’altra, specialmente nel breve e medio termine [3539]. Tuttavia, estendo il follow-up a 10 anni, Lopez-Oliva et al. [40] riuscivano a dimostrare che la PD era associata a una minore mortalità rispetto all’HD [HR=2,62 (1,01–6,8); p=0,04], nonostante una sopravvivenza del trapianto pressoché sovrapponibile [HR=0,68 (0,41–1,10); p=0,12].

Allo stesso modo Schwenger et al. [41], utilizzando il vasto database dell’International Collaborative Transplant Study Group comprensivo di 60.008 riceventi, osservavano nei pazienti precedentemente trattati mediante PD una migliore sopravvivenza associata ad un’equivalente probabilità di fallimento dell’organo. L’analisi multivariata secondo il modello di Cox rivelava, infatti, che i pazienti in PD (n=11.664) mostravano una mortalità per tutte le cause del 10% inferiore (p=0,014) rispetto ai pazienti in HD (n=45.651) e una simile sopravvivenza del trapianto (p=0,39). Questa differenza in termini di mortalità appariva essere la conseguenza di una significativa riduzione di morte con organo funzionante secondaria a evento cardiovascolare nei pazienti che avevano ricevuto l’organo da un donatore a criteri espansi.

Valutando i risultati provenienti da tutti i riceventi di trapianto renale presenti nel Scientific Registry of Transplant Recipients, anche Molnar et al. [42] dimostravano che i pazienti in trattamento dialitico peritoneale prima del trapianto possedevano un minore tasso di mortalità (21,9/1000 paziente-anni, 95% intervallo di confidenza: 18,1–26,5) rispetto ai pazienti emodializzati (32,8/1000 paziente-anni, 95% intervallo di confidenza: 30,8–35,0). La PD pre-trapianto era associata ad una riduzione del 43% della mortalità corretta per diversi fattori confondenti e a un 66% di decremento della mortalità per evento cardiovascolare. Interessante è il fatto che la PD era, inoltre, associata a una riduzione del rischio di fallimento dell’organo trapiantato del 17% rispetto all’HD.

Nonostante la positività di queste evidenze, alcuni autori hanno riferito il vantaggio della PD in termini di risultati post-trapiantato a un possibile bias di selezione, in quanto i pazienti candidabili alla PD risulterebbero più sani rispetto a coloro che intraprendono la HD [4345]. Per smentire questa ipotesi, sono stati adoperati diversi modelli statistici con risultati alterni [33,34,36,46]. A riguardo, significativo è lo studio di Kramer et al. [47] che, utilizzando il metodo delle variabili strumentali al fine di minimizzare i potenziali bias derivanti da fattori confondenti non misurati, valutava i dati di 29.088 pazienti provenienti da registri regionali e nazionali europei. L’analisi standard corretta per l’età, il sesso, la malattia renale di base, la tipologia di donatore, la durata della dialisi e l’età del trapianto mostrava che la PD, come terapia sostitutiva prima del trapianto, era associata a una migliore sopravvivenza sia del ricevente [hazard ratio (HR) 95% CI = 0,83 (0,76–0,91)] che dell’organo trapiantato [(HR 95% CI 0,90 (0,84–0,96)] rispetto all’HD. Tuttavia, il metodo delle variabili strumentali dimostrava che la PD non correlava né con la sopravvivenza post-trapianto del paziente [HR (95% CI = 1,00 (0,97–1,04)], né con la sopravvivenza dell’organo [HR (95% CI) = 1,01 (0,98–1,04)].

Dunque, le evidenze disponibili suggeriscono che la PD come terapia sostitutiva pre-trapianto, a differenza dell’HD, possiede un effetto favorevole sulla sopravvivenza post trapianto del paziente, sebbene siano ancora mancanti solidi dati a lungo termine.


Ripresa funzionale ritardata

La DGF viene comunemente definita come la necessità di terapia dialitica durante la prima settimana successiva al trapianto o l’assenza di diminuzione della creatinina sierica di un valore pari o superiore del 50% (T Scr) alla terza giornata post-trapianto [48].

La DGF è stata considerata comunemente un surrogato di risultati a lungo termine, quali la sopravvivenza del paziente e dell’organo trapiantato [49], in quanto è un accertato fattore di rischio per il rigetto acuto, le complicanze peri-operatorie e la perdita precoce del trapianto [5053].

Giral-Classe et al. [54] dimostravano che la durata della DGF rappresenta un fattore predittivo indipendente di sopravvivenza a lungo termine dell’organo trapiantato. In particolare, gli autori identificavano un elevato rischio di fallimento del trapiantato nei pazienti con una DGF uguale o superiore a 6 giorni. Inoltre, Troppmann et al. [55] osservavano che la sopravvivenza dell’organo era ampiamente inferiore per i pazienti che manifestavano una DGF associata a rigetto. È stato, inoltre, dimostrato che il rigetto è più frequente nei casi in cui la biopsia venga eseguita per un mancato miglioramento della funzione renale (valore sierico di creatininemia stabile o decremento minore <10% per tre giorni consecutivi) [56].

L’influenza della modalità dialitica prima del trapianto sull’incidenza e la durata della DGF è stata oggetto di diversi studi. In particolare, Perez-Fontan et al. [50] valutarono l’incidenza e i fattori di rischio per il verificarsi della DGF confrontando i pazienti che erano stati trattati prima del trapianto mediante PD (n=92) rispetto con HD (n=587). Gli autori osservarono che la percentuale di DGF nel gruppo PD era pari a 22,5% mentre raggiungeva il 39,5% nel gruppo HD e che la modalità dialitica rappresentava il fattore predisponente più significativo per l’incidenza di DGF. Inoltre, stabilivano che una durata di DGF maggiore di 3 settimane si associava a una minore sopravvivenza dell’organo e ad un’aumentata mortalità.

In uno studio caso-controllo, 117 riceventi trattati in precedenza con PD venivano accoppiati per età, sesso, tempo in dialisi, compatibilità degli HLA e tempi di ischemia calda e fredda con altrettanti riceventi sottoposti a HD prima del trapianto renale [57]. La DGF si verificava nel 23,1% dei pazienti in trattamento con PD rispetto al 50,4% dei pazienti in HD (p=0,0001), mentre il sT1/2 Scr era pari a 5,0 ± 6,6 giorni nel gruppo PD in confronto a 9,8 ± 11,5 giorni del gruppo HD (p<0,0001).

Al contrario Caliskan et al., impiegando un simile metodo statistico non osservarono differenze in termini di incidenza di DGF fra i due gruppi [36].

Si specula che la più bassa incidenza di DGF descritta generalmente nei riceventi esposti in precedenza alla PD sia dovuto ad un bilancio idrico peri-operatorio più favorevole rispetto ai pazienti trattati con HD. A questo proposito, Issad et al [58] hanno dimostrato che i candidati al trapianto in PD possedevano una pressione arteriosa polmonare media pari a 21,1 mmHg e maggiore di 25 mmHg in più del 50% dei pazienti. Queste rilevazioni sembrano supportare la tesi che i pazienti in trattamento peritoneale siano spesso iper-idratati.

Tuttavia, analizzando i dati provenienti da soggetti sottoposti a primo trapianto di rene da donatore deceduto, un gruppo di ricercatori della università di Gent ha dimostrato che la PD come modalità dialitica pre-trapianto, così come l’ottimizzazione del bilancio dei liquidi pre-operatorio, rappresentavano due fattori predittivi indipendenti di immediata ripresa funzionale [48]. Questa osservazione suggerisce che gli effetti positivi della PD in termini di minore incidenza di DGF non dipendano unicamente dallo stato di idratazione del paziente.

Un’ulteriore evidenza che la PD riduca il rischio di DGF rispetto alla HD proviene dallo studio di Bleyer et al. [59] che, sfruttando l’archivio dati dello United Network of Organ Sharing, analizzavano i risultati precoci dopo trapianto di rene nei pazienti in PD e HD. In particolare, gli autori osservarono che la probabilità di manifestare oliguria nelle prime 24 ore post-trapianto era 1,49 (1,28–1,74) volte maggiore nei pazienti in HD. Questa differenza risultava perfino più pronunciata nei pazienti di etnia afroamericana.

Simili risultati sono stati descritti da lavori più recenti a conferma dell’ipotesi che la tecnica dialitica pre-trapianto può influenzare gli esiti post-intervento [32,33,42,60]. Diverse teorie sono state avanzate per spiegare la più bassa incidenza di DGF osservata nei pazienti in precedente trattamento con PD tra cui, oltre a un miglior equilibrio volemico, un ridotto stato di stress-ossidativo e una superiore funzione renale residua al momento del trapianto di rene.


Funzione renale residua

Nei pazienti affetti da malattia renale cronica si assiste ad una progressiva riduzione del valore di filtrazione glomerulare (GFR) associato nello stadio terminale a una riduzione graduale del volume urinario giornaliero. Questo fenomeno può, infine, determinare una riduzione della capacità vescicale, un’iperattività detrusoriale e un alterato svuotamento vescicale [6167].

È stato ampiamente documentato che i riceventi di trapianto renale con vescica atrofica o disfunzionale possiedono un elevato rischio di prolungato cateterismo vescicale, di complicanze urologiche precoci e di reflusso vescicoureterale [61,62,66]. È stata, inoltre, osservata una stretta correlazione tra la perdita della funzione renale residua (RRF) e specifici esiti post-trapianto, quali le complicanze urologiche post-intervento e la sopravvivenza dell’organo a breve termine [67].

Dunque, la preservazione della RRF nei pazienti in trattamento dialitico è fondamentale per minimizzare le complicanze urologiche precoci, il periodo di cateterismo vescicale post-procedurale e le infezioni urinarie. Ad oggi la durata della RRT rappresenta il fattore predittivo maggiormente associato all’atrofia vescicale e all’esaurimento della RRF [61,62,66,67]. Tuttavia, numerose evidenze suggeriscono che anche la tecnica dialitica pre-trapianto giochi un ruolo significativo nel rallentare la perdita della RRF.

La prima segnalazione della migliore preservazione della RRF nei pazienti in PD risale al 1983 [68]. Successivamente, diversi lavori hanno dimostrato la superiorità della PD rispetto alla HD nel mantenere la RRF con una riduzione relativa della perdita di GFR compresa fra il 20 e l’80% a seconda degli studi considerati [6973].

Nello studio prospettico NECOSAD-2 (prospective study Netherlands Cooperative Study on the Adequacy of Dialysis phase 2) venivano valutati per 12 mesi i valori di GFR di 522 pazienti in terapia dialitica. I risultati mostravano che la PD garantiva una migliore preservazione della RRF rispetto alla HD, anche dopo correzione per il GFR basale, l’età, la malattia renale di base, le comorbidità, l’indice di massa corporea, la pressione sanguigna sistemica, l’uso di farmaci antipertensivi e la causa di fallimento della metodica [74].

Inoltre, qualche studio ha valutato l’impatto dei nuovi regimi emodialitici. Come osservato precedentemente, la velocità di diminuzione della RRF risultava minore nei pazienti in PD, nonostante l’impiego di tecniche emodiafiltrative finalizzate alla minimizzazione dell’instabilità emodinamica [72,75,76].

La PD può favorire la preservazione della RRF attraverso multipli meccanismi. La metodica garantisce, infatti, minori squilibri volemici così come ridotte fluttuazioni della pressione osmotica rispetto alla HD diminuendo gli eventi di instabilità emodinamica transitoria [70]. Questo effetto è probabilmente associato sia ad una pressione glomerulare più stabile, sia a un valore di filtrazione più costante. L’assenza di rapidi cambiamenti del volume circolante e dell’osmolarità plasmatica può anche prevenire eventuali episodi di ischemia parenchimale [73]. Lo stato di modesto sovraccarico idrico frequentemente osservato nei pazienti in PD potrebbe giocare un ruolo nel mantenimento della RRF [77].

È interessante notare che esistono molteplici evidenze a supporto dell’influenza positiva della RRF sia nei pazienti in trattamento peritoneale [74,7885] che emodialitico [74,86]. Il contributo relativo della RRF e della clearance peritoneale nei confronti della sopravvivenza del paziente in PD è stato oggetto di numerose indagini. In particolare, lo studio NECOSAD-2 [74] e lo studio ADEMEX [84] hanno mostrato una riduzione della mortalità del 12 e dell’11%, rispettivamente, per ogni 10 litri/settimana/1,73 m2 di incremento di clearance della creatinina, mentre non si osservava una relazione fra la sopravvivenza del paziente e la dose di PD o il valore totale di rimozione delle piccole molecole. Inoltre, l’analisi multivariata, condotta su pazienti dell’Andalusia (n=402) incidenti in PD negli anni compresi fra il 1999 e il 2005, dimostrava che una RRF al di sotto del valore mediano (4,33 ml/min) era un fattore di rischio indipendente di mortalità [85].

Ulteriori benefici derivanti dalla preservazione della RRF sono rappresentati dalla diminuzione della pressione sistemica [87], dalla protezione dall’ipertrofia ventricolare sinistra [8890], dall’incremento della rimozione del sodio [91,92], da un più adeguato equilibrio volemico [92,93], da una maggiore clearance di b2-microglobulina [9497], da più elevati valori di emoglobina sierica [88,89], da un più adeguato stato nutrizionale [83,88,96,98], e dalla riduzione della quantità di molecole infiammatorie circolanti [99]. Inoltre, la RRF facilita il raggiungimento degli obbiettivi depurativi [74,75,81,82,86,88,100] e aiuta a controllare i livelli di fosfato/acido urico [88,91,101], bicarbonato [96] e colesterolo [102].

Dunque, il mantenimento a lungo termine della RRF rappresenta probabilmente il vantaggio più significativo della PD rispetto alla HD nei primi anni di RRT per i pazienti candidabili a trapianto.


Qualità di vita

Il trapianto renale garantisce una migliore qualità di vita (QoL) rispetto alla terapia dialitica [25,103,104]. Il tempo trascorso dai pazienti in lista trapianto varia a seconda della nazione considerata. Tuttavia, durante questo periodo una quota significativa dei candidati viene rimosso dalla lista o va incontro a decesso ancora prima di ricevere un organo.

Per esempio, analizzando i più recenti dati italiani del Centro Nazionale Trapianti, nel corso del 2020 2843 dei 7941 (circa 36%) pazienti in lista di attesa al 31 dicembre 2019 sono usciti di lista: 1623 per trapianto, 239 per decesso e 980 per inidoneità temporanea o definitiva. Inoltre, il tempo mediano di attesa prima di ricevere un organo era pari a circa 3 anni e 3 mesi [105].

Lo stadio terminale della malattia renale associato alla necessità di terapia dialitica cronica può inficiare diversi aspetti della vita del paziente influenzando negativamente il benessere fisico, psichico, sociale ed economico. Dunque, nei candidati al KT il mantenimento di una elevata qualità di vita anche durante l’attesa in lista rappresenta un obbiettivo di vitale importanza.

A differenza dell’HD, la metodica dialitica peritoneale può essere eseguita a domicilio dal paziente indipendentemente o con il supporto di un familiare/badante. Inoltre, il breve tempo richiesto per effettuare uno scambio, permette di stilare uno schema dialitico flessibile concedendo al paziente di viaggiare e di partecipare ad attività ricreative.

Come per i risultati clinici, il confronto della QoL sperimentata dai pazienti in HD rispetto ai soggetti in PD è un compito di non semplice realizzazione. A questo scopo, lo strumento maggiormente impiegato per la valutazione della QoL dei pazienti in trattamento dialitico è rappresentato dal questionario “Kidney Disease Quality of Life” (KDQOL) [106]. Successivamente, sono state proposte multiple versioni di questo score, quali la KDQOL-Short Form Version 1.3 [107], la KDQOL-Short Form 36 e la Short Form-12 [108]. Un altro questionario frequentemente utilizzato è il CHOICE Health Experience Questionnaire (CHEQ), formulato nello studio “Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE)”. Il CHEQ permette di integrare lo SF-36, essendo stato progettato per rilevare differenze più sottili fra la HD e la PD [109].

Tramite lo score KDQOL-SF 1.3, Wakeel et al. [110] confrontavano la QoL di 200 pazienti in HD o PD in Arabia Saudita. Dopo aver escluso i pazienti con difetti cognitivi, deficit neurologici e patologie psichiatriche, gli autori dimostravano che la PD era associata ad un punteggio più elevato in quasi tutti i domini esplorati. In un altro lavoro riguardante più di 300 pazienti, attraverso l’utilizzo del KDQOL-SF36, si evidenziava che i pazienti in PD possedevano un punteggio più alto nei domini inerenti allo stato lavorativo (25,00 vs 14,64; p=0,012), il supporto dallo staff dialitico (96,12 vs 83,11; p=0,008) e la soddisfazione complessiva del trattamento (81,61 vs 71,47; p <0,005) [111]. Un maggiore sostegno dal personale sanitario così come una maggiore soddisfazione globale rispetto alla terapia dialitica venivano osservati anche nello studio di De Abreu et al. [112]. Evidenze, invece, che la PD si associ a un minore stress emotivo in confronto alla HD sono state fornite dal più recente lavoro di Griva et al. [113] e dalla metanalisi di Cameron [114].

In uno studio trasversale condotto su 736 pazienti con ESRD (PD n=256 e HD n=480), gli autori formulavano uno specifico questionario basato sugli elementi specifici che i pazienti stessi percepivano come più rilevanti per la loro QoL. Analizzando i risultati ottenuti, i pazienti in PD mostravano una soddisfazione per la terapia dialitica in corso superiore agli individui in HD anche quando il punteggio veniva corretto per multipli fattori quali l’età, l’etnia, lo stato lavorativo e familiare, la distanza dal centro dialitico e il tempo trascorso dall’inizio della dialisi [115].

La capacità di preservare l’attività lavorativa dopo l’inizio della terapia dialitica è un altro significativo aspetto della QoL del paziente in RRT [116]. A questo riguardo, numerosi studi hanno dimostrato che la PD offre maggiori possibilità di occupazione rispetto alla HD [43,116118]. In particolare, secondo i dati dello studio CHOICE la percentuale di pazienti occupati in PD era 27% mentre solo 8,6% in HD [43].

Dunque, alla luce delle evidenze disponibili in letteratura, i pazienti in PD mostrano una più elevata soddisfazione, un migliore benessere psicologico, un minore stress emotivo e una maggiore probabilità di mantenere la propria occupazione rispetto ai pazienti in HD.



La RRT cronica rappresenta certamente uno dei costi più rilevanti dei sistemi sanitari pubblici e privati di tutto il mondo. Attuali stime prevedono che la prevalenza della ESRD aumenterà ulteriormente nel prossimo futuro sia a causa dell’aumento dell’incidenza di patologie quali l’ipertensione, il diabete e l’obesità, sia per il progressivo invecchiamento della popolazione [119121].

A questo riguardo, il trapianto renale garantisce una migliore sopravvivenza e qualità di vita rispetto alla terapia dialitica a costi decisamente minori [25,122,123]. Tuttavia, la maggior parte dei candidati a KT trascorrono inevitabilmente una considerevole quantità di tempo in dialisi prima di ricevere un organo [124]. Dunque, i costi della terapia sostitutiva provenienti dai pazienti in lista di attesa non dovrebbero essere ignorati [121].

Numerosi studi sono stati concepiti per confrontare le spese sostenute dalle modalità dialitiche. In una revisione della letteratura pubblicata nel 2008, Just et al. [125] concludevano che l’HD era più costosa della PD nei paesi economicamente più sviluppati, mentre risultati contrastanti venivano osservati nell’analisi dei costi dei trattamenti dialitici in Asia e Africa [126,127]. Questi dati rispecchiano probabilmente l’impatto delle differenze geografiche, sociali e culturali che determinano le effettive spese legate alla RRT. A questo riguardo, recentemente Karopadi et al. [128] hanno valutato i costi della PD e della HD in 46 nazioni con differente sviluppo economico. I risultati venivano espressi come spesa media annuale per paziente in HD diviso la spesa media annuale per paziente in PD (rapporto HD/PD). Il valore di questo rapporto era compreso fra 1,25 e 2,35 in 22 paesi (17 a intenso sviluppo economico e 5 a basso sviluppo), tra 0,9 e 1,25 in 15 stati (2 a intenso sviluppo economico e 13 a basso sviluppo), e compreso fra 0,22 e 0,9 in 9 nazioni (1 a intenso sviluppo economico e 8 a basso sviluppo). Globalmente, questi dati confermano l’evidenza che negli stati economicamente sviluppati la PD è meno costosa dell’HD, mentre nei paesi a minore sviluppo economico la PD può essere considerata un’opzione finanziariamente vantaggiosa solo nel caso in cui si crei un’economia di scala con una produzione locale del materiale di dialisi o si instaurino bassi costi di importo [128].

Analizzando le informazioni presenti nell’USRDS 2020 Annual Data Report [7], è possibile notare che la spesa del Medicare (corretta per l’inflazione totale) per paziente con ESRD è aumentata dal 2009 al 2018 di più del 2%, passando da 40,9 a 49,2 bilioni di dollari americani (USD). L’HD con i suoi 93.191 USD per persona/anno rimane la modalità di RRT più costosa seguita dai 78.741 USD della PD e dai 37.304 USD del trapianto renale. È stato, tuttavia, obbiettato che essendo relativamente breve la sopravvivenza della metodica peritoneale, dovrebbero essere presi in considerazione anche i costi legati al passaggio alla HD. In ogni caso i dati a disposizione sembrano suggerire un risparmio annuale di circa 15.000 USD/paziente e una spesa minore anche nei soggetti che vengono trasferiti dalla PD alla HD rispetto a coloro che sono trattati mediante HD [129,130].

Alla luce di questi risultati, è possibile osservare che la PD rappresenta una tecnica dialitica economicamente vantaggiosa in molti paesi. Questa conclusione è corroborata dal fatto che la maggior parte dei confronti fra le due metodiche non considerano numerosi costi indiretti della HD, come la perdita di produttività del paziente e dei suoi familiari e il costo legato ai trasporti. Infatti, come sottolineato in precedenza, la PD grazie alla flessibilità dello schema dialitico e la possibilità di eseguire gli scambi al domicilio permette più frequentemente la preservazione dell’attività lavorativa. Il mantenimento dell’occupazione è, infatti, un fattore di risparmio che raramente viene considerato.

Perciò, il vero rapporto HD/PD potrebbe essere perfino più elevato di quello riportato in quanto, scotomizzando i costi indiretti, tenderebbe a sottostimare il reale vantaggio economico della PD rispetto all’HD. Dunque, il costo legato alla metodica rappresenta sicuramente un ulteriore motivo per privilegiare la PD nei pazienti in attesa di trapianto renale.



Storicamente, l’HD è stata considerata la metodica dialitica d’elezione per la maggior parte dei pazienti affetti da ESRD in attesa di trapianto renale. Nel corso degli anni, diversi studi hanno dimostrato, tuttavia, che l’ipotetico vantaggio dell’HD rispetto alla PD non era supportato da solide evidenze. Al contrario, un’analisi critica della letteratura mostra come la PD rappresenti la metodica sostitutiva di prima scelta per i pazienti in attesa di trapianto per i seguenti motivi (fig.1):

  • una migliore qualità di vita e sopravvivenza (perlomeno nel paziente giovane non diabetico);
  • una più lunga preservazione della diuresi residua, che permette di minimizzare l’incidenza delle complicanze urologiche e il tempo di cateterismo vescicale post-intervento;
  • una più bassa incidenza di ritardata ripresa funzionale dell’organo trapiantato;
  • un minore costo della tecnica.

Tuttavia, deve essere sempre perseguito un approccio integrato delle due modalità dialitiche, soppesando vantaggi e svantaggi di ogni trattamento alla luce delle peculiari caratteristiche di ogni singolo caso.

Figura 1: Sinossi dei vantaggi conferiti dalla dialisi peritoneale ai pazienti affetti da malattia renale cronica allo stadio terminale candidabili a trapianto di rene
Figura 1: Sinossi dei vantaggi conferiti dalla dialisi peritoneale ai pazienti affetti da malattia renale cronica allo stadio terminale candidabili a trapianto di rene



  1. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999; 341:1725–30.
  2. Mcdonald SP, Russ GR. Survival of recipients of cadaveric kidney transplants compared with those receiving dialysis treatment in Australia and New Zealand, 1991 – 2001. Nephrol Dial Transpl 2002; 17:2212–9.
  3. Rao PS, Merion RM, Ashby VB, Port FK, Wolfe RA. Renal transplantation in elderly patients older than 70 Years of Age: results from the scientific registry of transplant recipients. Transplantation 2007; 83:1069–74.
  4. Kasiske BL, Snyder JONJ, Matas AJ, Ellison MD, Gill JS, Kausz AT. Preemptive kidney transplantation: the advantage and the advantaged. J Am Soc Nephrol 2002; 13:1358–64.
  5. Meier-Kriesche H-U, Kaplan B. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis. Transplantation 2002; 74:1377–81.
  6. Mange KC, Joffe MM, Feldman HI. Effect of the use or nonuse of long-term dialysis on the subsequent survival of renal transplants from living donors. N Engl J Med 2001; 344:726–31.
  7. United States Renal Data System. 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2020.
  8. Scribner BH, Caner JE, Buri R, Quinton W. The technique of continous hemodialysis. Trans Am Soc Artif Intern Organs 1960; 6:88–103.
  9. Quinton W, Dillard D, Scribner BH. Cannulation of blood vessels for prolonged hemodialysis. Trans Am Soc Artif Intern Organs 1960; 6:104–13.
  10. Tenckhoff H, Schechter H. A bacteriologically safe peritoneal access device. Trans Am Soc Artif Intern Organs 1968; 14:181–7.
  11. Popovich RP, Moncrief JW, Nolph KD. Continuous ambulatory peritoneal dialysis. Artif Organs 1978; 2:84–6.
  12. Guillou PJ, Will EJ. CAPD-a risk factor in renal transplantation? Br J Surg 1984; 71:878–80.
  13. Passalacqua JA, Wiland AM, Fink JC, Bartlett ST, Evans DA, Keay S. Increased incidence of postoperative infections associated with peritoneal dialysis in renal transplant recipients. Transplantation 1999; 68:535–40.
  14. Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 1992; 12:14–27.
  15. Scalamogna A, Nardelli L, Zanoni F, Messa P. Double purse-string around the inner cuff of the peritoneal catheter: a novel technique for an immediate initiation of continuous peritoneal dialysis. Int J Artif Organs 2020; 43:365–71.
  16. Nardelli L, Scalamogna A, Messa P. The impact of the superficial cuff position on the exit site and tunnel infections in CAPD patients. J Nephrol 2021; 34:493–501.
  17. Blake PG. Integrated end-stage renal disease care: the role of peritoneal dialysis. Nephrol Dial Transpl 2001; 16:61–6.
  18. Van Biesen W, Vanholder R, Veys N, Dhondt A, Lameire N. An evaluation of an integrative care approach for end-stage renal disease patients. J Am Soc Nephrol 2000; 11:116–25.
  19. Vonesh E, Snyder JJ, Foley RN, Collins AJ. The differential impact of risk factors on mortality in hemodialysis and peritoneal dialysis. Kidney Int 2004; 66:2389–401.
  20. Heaf JG, Løkkegaard H, Madsen M. Initial survival advantage of peritoneal dialysis relative to haemodialysis. Nephrol Dial Transpl 2002; 17:112–7.
  21. Fenton SSA, Schaubel DE, Desmeules M, Morrison HI, Mao Y, Copleston P, et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis 1997; 30:334–42.
  22. Liem YS, Wong JB, Hunink MGM, Charro F De, Winkelmayer WC. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int 2007; 71:153–8.
  23. Weinhandl ED, Foley RN, Gilbertson DT, Arneson TJ, Snyder JJ, Collins AJ. Propensity-matched mortality comparison of incident hemodialysis and peritoneal dialysis patients. J Am Soc Nephrol 2010; 21:499–506.
  24. Oniscu GC, Brown H, Forsythe JLR. Impact of cadaveric renal transplantation on survival in patients listed for transplantation. J Am Soc Nephrol 2005; 16:1859–65.
  25. Laupacis A, Keown P, Pus N, Krueger H, Ferguson B, Wong C, et al. A study of the quality of life and cost-utility of renal transplantation. Kidney Int 1996; 50:235–42.
  26. Kaplan B, Meier-Kriesche H-U. Death after graft loss: an Important late study endpoint in kidney transplantation. Am J Transpl 2002; 2:970–4.
  27. Gill JS, Abichandani R, Kausz AT, Pereira BJG. Mortality after kidney transplant failure: the impact of non-immunologic factors 2002; 62:1875–83.
  28. Rao PS, Schaubel DE, Jia X, Li S. Survival on dialysis post–kidney transplant failure: results. AJKD 2007; 49:294–300.
  29. Donoghue DO, Manos J, Pearson R, Scott P, Bakran A, Johnson R, et al. Continuous ambulatory peritoneal dialysis and renal transplantation: a ten-year experience in a single center. Perit Dial Int 1992; 12:242–9.
  30. Cosio FG, Alamir A, Yim S, Pesavento TE, Falkenhain ME, Henry ML, et al. Patient survival after renal transplantation: I.The impact of dialysis pre-transplant. Kidney Int 1998; 53:767–72.
  31. Binaut R, Hazzan M, Pruvot FR, Dracon M, Lelievre G, Noel C. Comparative study of chronic ambulatory peritoneal dialysis versus hemodialysis patients after kidney transplantation: clinical and financial assessment. Transpl Proc 1997; 29:2428.
  32. Joseph JT, Jindal RM. Influence of dialysis on post-transplant events. Clin Transpl 2002; 16:18–23.
  33. Snyder JJ, Kasiske BL, Gilbertson DT, Collins AJ. A comparison of transplant outcomes in peritoneal and hemodialysis patients. Kidney Int 2002; 62:1423–30.
  34. Goldfarb-rumyantzev AS, Hurdle JF, Scandling JD, Baird BC, Cheung AK, Al GET. The Role of pretransplantation renal replacement therapy modality in kidney allograft and recipient survival. Am J Kidney Dis 2005; 46:537–49.
  35. Yang Q, Zhao S, Chen W, Mao H, Huang F, Zheng Z, et al. Influence of dialysis modality on renal transplant complications and outcomes. Clin Nephrol 2009; 72:62–8.
  36. Caliskan Y, Yazici H, Gorgulu N, Yelken B, Emre T, Turkmen A, et al. Effect of pre-transplant dialysis modality on kidney transplantation outcome. Perit Dial Int 2009; 29 Suppl 2:117–22.
  37. Freitas C, Fructuoso M, Martins LS, Almeida M, Pedroso S, Dias L, et al. Posttransplant outcomes of peritoneal dialysis versus hemodialysis patients. Transpl Int 2011; 43:113–6.
  38. Resende L, Guerra J, Santana A, Abreu F, Costa AG. Influence of dialysis duration and modality on kidney transplant outcomes. Transpl Proc 2009; 41:837–9.
  39. Sharma A, Teigeler TL, Behnke M, Cotterell A, Fisher R, King A, et al. The mode of pretransplant dialysis does not affect postrenal transplant outcomes in african americans. J Transplant 2012; 2012:303596.
  40. López-Oliva MO, Rivas B, Pérez-Fernández E, Ossorio M, Ros S, Chica C, et al. Pretransplant peritoneal dialysis relative to hemodialysis improves long-term survival of kidney transplant patients: a single-center observational study. Int Urol Nephrol 2014; 46:825–32.
  41. Schwenger V, Döhler B, Morath C, Zeier M, Opelz G. The role of pretransplant dialysis modality on renal allograft outcome 2011; 26:3761–6.
  42. Molnar MZ, Mehrotra R, Duong U, Bunnapradist S, Lukowsky LR, Krishnan M. Dialysis modality and outcomes in kidney transplant recipients. Clin J Am Soc Nephrol 2012; 7:332–41.
  43. Miskulin DC, Meyer KB, Athienites N V, Martin AA, Terrin N, Marsh J V, et al. Comorbidity and other factors associated with modality selection in incident dialysis patients: the CHOICE study. Am J Kidney Dis 2002; 39:324–36.
  44. Stack AG. Determinants of modality selection among incident US dialysis patients: results from a national Study. Clin J Am Soc Nephrol 2002; 2:1279–87.
  45. Xue JL, Chen S-C, Ebben JP, Constantini EG, Everson SE, Frazier ET, et al. Peritoneal and hemodialysis: I. Differences in patient characteristics at initiation. Kidney Int 2002; 61:734–40.
  46. Helal I, Abderrahim E, Hamida F Ben, Zouaghi K, Ounissi M, Barbouche S, et al. Impact of dialysis modality on posttransplantation results in kidney transplantation. Transpl Proc 2007; 2549:2547–9.
  47. Kramer A, Jager KJ, Fogarty DG, Ravani P, Finne P, Pérez-panadés J, et al. Association between pre-transplant dialysis modality and patient and graft survival after kidney transplantation. Nephrol Dial Transpl 2012; 27:4473–80.
  48. Van Biesen W, Vanholder R, Loo A Van, Vennet M Van Der, Lameire N. Peritoneal dialysis favorably influences early graft function after renal transplantation compared to hemodialysis. Transplantation 2000; 27:508–14.
  49. Yarlagadda SG, Coca SG, Jr RNF, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transpl 2009; 24:1039–47.
  50. Pérez-Fontán M, Rodríquez-Carmona A, Bouza P, Falcón TG, Moncalián J, Oliver J, et al. Outcome of grafts with long-lasting delayed function after renal transplantation. Transplantation 1996; 62:42–7.
  51. Nicholson ML, Wheatley TJ, Horsburgh T, Edwards CM, Veitch PS, Bell PRE, et al. The relative influence of delayed graft function and acute rejection on renal transplant survival. Transpl Int 1996; 9:415–9.
  52. Cosio FG, Pelletier RP, Falkenhain ME, Henry ML, Elkhammas EA, Davies EA, et al. Impact of acute rejection and early allograft function on renal allograft survival. Transplantation 1997; 63:1611–5.
  53. Leggat Jr J, Ojo AO, Leichtman AB, Port FK, Wolfe RA, Turenne MN, et al. Long-term renal allograft survival: prognostic implication of the timing of acute rejection episodes. Transplantation 1997; 63:1268–72.
  54. Giral-Classe M, Hourmant M, Cantarovich D, Dantal J, Blancho G, Daguin P, et al. Delayed graft function of more than six days strongly decreases long-term survival of transplanted kidneys. Kidney Int 1998; 54:972–8.
  55. Troppmann C, Gillingham KJ, Benedetti E, Almond PS, Gruessner RW, Najarian JS, et al. Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. The multivariate analysis. Transplantation 1995; 59:962–8.
  56. Favi E, James A, Puliatti C, Whatling P, Ferraresso M, Rui C. Utility and safety of early allograft biopsy in adult deceased donor kidney transplant recipients. Clin Exp Nephrol 2020; 24:356–68.
  57. Vanholder R, Heering P, Loo A Van, Biesen W Van, Lambert M, Hesse U, et al. Reduced Incidence of acute renal graft failure in patients treated with peritoneal dialysis compared with hemodialysis. Am J Kidney Dis 1999; 33:934–40.
  58. Issad B, Mouquet C, Bitker MO, Allouache M, Baumelou A, Rottembourg J, et al. Is overhydration in CAPD patients a contraindication to renal transplantation? Adv Perit Dial 1994; 10:68–72.
  59. Bleyer AJ, Burkart JM, Russell GB, Adams PL. Dialysis modality and delayed graft function after cadaveric renal transplantation. J Am Soc Nephrol 1999; 10:154–9.
  60. Sezer S, Karakan S, Acar FNÖ, Haberal M. Dialysis as a bridge therapy to renal transplantation: comparison of graft outcomes according to mode of dialysis treatment. Transpl Proc 2011; 43:485–7.
  61. Martin X, Aboutaieb R, Soliman S, Essawy A el, Dawahra M, Lefrancois N. The use of long-term defunctionalized bladder in renal transplantation: is It safe ? Eur urol 1999; 36:450–3.
  62. Inoue T, Satoh S, Saito M, Numakura K, Tsuruta H, Obara T, et al. Correlations between pretransplant dialysis duration, bladder capacity, and prevalence of vesicoureteral reflux to the graft. Transplantation 2011; 92:311–5.
  63. Chen J, Lee M, Kuo H. Reduction of cystometric bladder capacity and bladder compliance with time in patients with end-stage renal disease. J Formos Med Assoc 2012; (4):209–13.
  64. Silva DM, Prudente AC, Mazzali M, Borges CF, Ancona CD. Transplantation in nonurologic disease: is it necessary ? Urology 2014; 83:406–10.
  65. Song M, Park J, Hoon Y. Bladder capacity in kidney transplant patients with end‑stage renal disease. Urology 2015; 47:101–6.
  66. Hotta K, Miura M, Wada Y, Fukuzawa N, Iwami D, Sasaki H, et al. Atrophic bladder in long-term dialysis patients increases the risk for urological complications after kidney transplantation. Int J Urol 2017; 24:314–9.
  67. Tillou X, Lee-Bion A, Ligny BH de, Orczyk C, Gal S Le, Desmonts A, et al. Does daily urine output really matter in renal transplantation? Ann Transpl 2013; 18:716–20.
  68. Rottembourg J, Issad B, Gallego JL, Degoulet P, Aime F, Gueffaf B, et al. Evolution of residual renal function in patients undergoing maintenance haemodialysis or continuous ambulatory peritoneal dialysis. Proc Eur Dial Transpl Assoc 1983; 19:397–403.
  69. Moist LM, Port FK, Orzol SM, Young EW, Ostbye T, Wolfe RA, et al. Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol 2000; 11:556–64.
  70. Lysaght MJ, Vonesh EF, Gotch F, Ibels L, Keen M, Lindholm B, et al. The influence of dialysis treatment modality on the decline of remaining renal function. ASAIO Trans 1991; 37:598–604.
  71. Misra M, Vonesh E, Stone JC Van, Moore HL, Prowant B, Nolph KD. Effect of cause and time of dropout on the residual GFR: a comparative analysis of the decline of GFR on dialysis. Kidney Int 2001; 59:754–63.
  72. Lang SM, Bergner A, Töpfer M, Schiffl H. Preservation of residual renal function in dialysis patients: effects of dialysis-technique-related factors. Perit Dial Int 2001; 21:52–7.
  73. Jansen MAM, Hart AAM, Korevaar JC, Dekker FW, Boeschoten EW, Raymond T Krediet. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int 2002; 62:1046–53.
  74. Termorshuizen F, Korevaar JC, Dekker FW, Manen JG Van, Boeschoten EW, Krediet RT, et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis 2003; 41(6):1293–302.
  75. Fischbach M, Terzic J, Menouer S, Soulami K, Dangelser C, Helmstetter A, et al. Effects of automated peritoneal dialysis on residual daily urinary volume in children. Adv Perit Dial 2001; 17:269–73.
  76. McKane W, Chandna SM, Tattersall JE, Greenwood RN, Farrington K. Identical decline of residual renal function in high-flux biocompatible hemodialysis and CAPD. Kidney Int 2002; 61:256–65.
  77. Lameire NH. The impact of residual renal function on the adequacy of peritoneal dialysis. Nephron 1997; 77:13–28.
  78. Maiorca R, Brunori G, Zubani R, Cancarini GC, Manili L, Camerini C, et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. A longitudinal study. Nephrol Dial Transpl 1995; 10:2295–305.
  79. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1996; 7:198–207.
  80. Diaz-buxo JA, Lowrie EG, Lew NL, Zhang SMH, Zhu X, Lazarus JM. Associates of mortality among peritoneal dialysis patients with special reference to peritoneal transport rates and solute clearance. Am J Kidney Dis 1999; 33:523–34.
  81. Rocco M, Soucie JM, Pastan S, McClellan WM. Peritoneal dialysis adequacy and risk of death. Kidney Int 2000; 58:446–57.
  82. Szeto C, Uk M, Lai K, Wong TYH, Uk M, Law M, et al. Independent effects of residual renal function and dialysis adequacy on nutritional status and patient outcome in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1999; 34:1056–64.
  83. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA Study. J Am Soc Nephrol 2001; 12:2158–62.
  84. Paniagua N, Amato D, Vonesh E. Effects of Increased Peritoneal Clearances on Mortality Rates in Peritoneal Dialysis: ADEMEX, a Prospective, Randomized, Controlled Trial. J Am Soc Nephrol 2002; 1307–20.
  85. Marrón B, Remón C, Pérez-Fontán M, Quirós P, Ortíz A. Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int Suppl 2008; 108:S42-51.
  86. Shemin D, Bostom AG, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis 2001; 38:85–90.
  87. Menon MK, Naimark DM, Bargman JM, Vas SI, Oreopoulos DG. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transpl 2001; 16:2207–13.
  88. Wang AY, Woo J, Wang M, Sea MM, Sanderson JE, Lui S, et al. Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function. Nephrol Dial Transpl 2005; 20:396–403.
  89. Wang AY-M, Wang M, Woo J, Law M-C, Chow K-M, Li PK-T, et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int 2002; 62:639–47.
  90. Wang AY, Wang MEI, Woo J, Lam CW, Lui S, Li PK, et al. Inflammation, residual kidney function, and cardiac hypertrophy are Interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J Am Soc Nephrol 2004; 15:2186–94.
  91. Morduchowlcz G, Winkler J, Zabludowski JIL, Boner G. Effects of residual renal function in haemodialysis Patients. Int Urol Nephrol 1994; 26:125–31.
  92. Ateş K, Nergizoğlu G, Keven K, Sen A, Kutlay S, Ertürk S, et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 2001; 60:767–76.
  93. Konings CJAM, Kooman JP, Schonck M, Struijk DG, Gladziwa U, Hoorntje SJ, et al. Fluid status in CAPD patients is related to peritoneal transport and residual renal function: evidence from a longitudinal study. Nephrol Dial Transpl 2003; 797–803.
  94. Mistry CD, O’Donoghue DJ, Nelson S, Gokal R, Ballardie FW. Kinetic and clinical studies of beta 2-microglobulin in continuous ambulatory peritoneal dialysis: influence of renal and enhanced peritoneal clearances using glucose polymer. Nephrol Dial Transpl 1990; 5:513–9.
  95. Montenegro J, Martínez I, Saracho R, González R. Beta 2 microglobulin in CAPD. Adv Perit Dial 1992; 8:369–72.
  96. Suda T, Hiroshige K, Ohta T, Watanabe Y, Iwamoto M, Ohtani A, et al. The contribution of residual renal function to overall nutritional status in chronic haemodialysis patients. Nephrol Dial Transpl 2000; 396–401.
  97. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y, Dis K. Time profiles of peritoneal and renal Clearances of different uremic solutes in incident peritoneal dialysis patients. Am J Kidney Dis 2005; 46:512–9.
  98. Wang AY, Sea MM, Ip R, Law M, Chow K, Lui S, et al. Independent effects of residual renal function and dialysis adequacy on actual dietary protein, calorie, and other nutrient intake in patients on continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 2001; 12:2450–7.
  99. Pecoits-filho R, Heimbu O, Ba P, Suliman M, Fehrman-ekholm I, Lindholm B, et al. Associations between circulating inflammatory markers and residual renal function in CRF Patients. Am J Kidney Dis 2003; 41:1212–8.
  100. Gao H, Lew SQ, Ronco C, Mishkin GJ, Bosch JP. The impact of residual renal function and total body water volume on achieving adequate dialysis in CAPD. J Nephrol 1999; 12:184–9.
  101. Pagé DE, Knoll GA, Cheung V. The relationship between residual renal function, protein catabolic rate, and phosphate and magnesium levels in peritoneal dialysis patients. Perit Dial Int 2002; 18:189–91.
  102. Kagan A, Elimalech E, Lemer Z, Fink A, Bar-Khayim Y. Residual renal function affects lipid profile in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 1997; 17:243–9.
  103. Czyżewski L, Sańko-Resmer J, Wyzgał J, Kurowski A. Assessment of health-related quality of life of patients after kidney transplantation in comparison with hemodialysis and peritoneal dialysis. Ann Transpl 2014; 19:576–85.
  104. Kostro JZ, Hellmann A, Kobiela J. Quality of life after kidney transplantation: a prospective Study. Transpl Proc 2016; 48:50–4.
  105. Report attività annuale rete nazionale trapianti. 2020.
  106. Hays ID, Kallich JD. Development of the Kidney Disease Quality of Life (KDQOL) Instrument. Qual Life Res 1994; 3:329–38.
  107. Korevaar JC, Merkus MP, Jansen MAM, Dekker FW, Boeschoten EW, Krediet RT. Validation of the KDQOL-SF: a dialysis-targeted health measure. Qual Life Res 2002; 11:437–47.
  108. Lacson E, Xu J, Lin S, Dean SG, Lazarus JM, Hakim RM. A Comparison of SF-36 and SF-12 composite scores and subsequent hospitalization and mortality risks in long- term dialysis patients. Clin J Am Soc Nephrol 2010; 5:252–60.
  109. Wu AW, Fink NE, Cagney KA, Bass EB, Rubin HR, Meyer KB, et al. Developing a health-related quality-of-life measure for end-stage renal disease: the CHOICE health experience questionnaire. Am J Kidney Dis 2001; 1:11–21.
  110. Wakeel J Al, Harbi A Al, Bayoumi M, Al-Suwaida K, Ghonaim M Al, Mishkiry A. Quality of life in hemodialysis and peritoneal dialysis patients in Saudi Arabia. Ann Saudi Med 2012; 32:570–4.
  111. Gonçalves FA, Dalosso IF, Borba JMC, Bucaneve J, Valerio NMP, Okamoto CT, et al. Quality of life in chronic renal patients on hemodialysis or peritoneal dialysis: a comparative study in a referral service of Curitiba-PR. J Bras Nefrol 2015; 37:467–74.
  112. De Abreu MM, Walker DR, Sesso RC, Ferraz MB. Health-related quality of life of patients recieving hemodialysis and peritoneal dialysis in São Paulo, Brazil: A longitudinal study. JVAL 2011; 14:S119–21.
  113. Griva K, Kang AW, Yu ZL, Mooppil NK, Foo M, Chan CM, et al. Quality of life and emotional distress between patients on peritoneal dialysis versus community-based hemodialysis. Qual Life Res 2013; 23:57–66.
  114. Cameron JI, Whiteside C, Katz J, Devins GM. Differences in quality of life across renal replacement therapies: a meta-analytic comparison. Am J Kidney Dis 2000; 35:629–37.
  115. Rubin HR, Fink NE, Plantinga LC, Sadler JH, Kliger AS, Powe NR. Patient ratings of dialysis care with peritoneal dialysis vs hemodialysis. JAMA 2004; 291:697–703.
  116. Kutner NG, Zhang R, Huang Y, Johansen KL. Depressed mood, usual activity level, and continued employment after starting dialysis. Clin J Am Soc Nephrol 2010; 5:2040–5.
  117. Muehrer RJ, Schatell D, Witten B, Gangnon R, Becker BN, Hofmann RM. Factors Affecting Employment at Initiation of Dialysis. Clin J Am Soc Nephrol 2011; 6:489–96.
  118. Hirth RA, Chernew ME, Turenne MN, Pauly M V, Orzol SM, Held PJ. Chronic illness, treatment choice and workforce participation. Int J Heal Care Financ Econ 2003; 3:167–81.
  119. Jha V, Garcia-garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013; 382:260–72.
  120. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 2095–128.
  121. White SL, Chadban SJ, Jan S, Chapman R, Cass A. How can we achieve global equity in provision of renal replacement therapy? Bull World Heal Org 2008; 86:229–37.
  122. Axelrod DA, Schnitzler MA, Xiao H, Irish W, Chang ETS, Alhamad T, et al. An economic assessment of contemporary kidney transplant practice. Am J Transpl 2018; 18:1168–76.
  123. Cavallo MC, Sepe V, Conte F, Abelli M, Ticozzelli E, Bottazzi A, et al. Cost-effectiveness of kidney transplantation from DCD in Italy. Transpl Proc 2014; 46:3289–96.
  124. Hart A, Lentine KL, Smith JM, Miller JM, Skeans MA, Prentice M, et al. OPTN/SRTR 2019 Annual Data Report : Kidney. Am J Transpl 2021; 21 Suppl:21–137.
  125. Just PM, Riella MC, Tschosik EA, Noe LL, Bhattacharyya SK, Charro F de. Economic evaluations of dialysis treatment modalities. Health Policy (New York) 2008; 86:163–80.
  126. Li PK, Chow KM. The cost barrier to peritoneal dialysis in the developing world-an Asian perspective. Perit Dial Int 2001; 21:S307–S313.
  127. Abu-aisha H, Elamin S, Program D. Peritoneal dialysis in africa. Perit Dial Int 2010; 30:23–8.
  128. Karopadi AN, Mason G, Ronco C. Cost of peritoneal dialysis and haemodialysis across the world. Nephrol Dial Transpl 2013; 28:2553–69.
  129. Chui BK, Manns B, Pannu N, Dong J, Wiebe N, Jindal K, et al. Health care costs of peritoneal dialysis technique failure and dialysis modality switching. Am J Kidney Dis 2013; 61:104–11.
  130. Neil N, Guest S, Wong L, Inglese G, Bhattacharyya SK, Gehr T, et al. The financial implications for Medicare of greater use of peritoneal dialysis. Clin Ther 2009; 31:880–8.


Home hemodialysis: multicenter observational study


Home dialysis is a primary objective of Italian Ministry of Health. As stated in the National Chronicity Plan and the Address Document for Chronic Renal Disease, it is mostly home hemodialysis and peritoneal dialysis to be carried out in the patient’s home. Home hemodialysis has already been used in the past and today has found new technologies and new applications. The patient’s autonomy and the need for a caregiver during the sessions are still the main limiting factors.

In this multicenter observational study, 7 patients were enrolled for 24 months. They underwent six weekly hemodialysis sessions of 180′ each; periodic medical examinations and blood tests were performed (3, 6, 12, 18 and 24 months). After 3-6 months of home hemodialysis there was already an improvement in the control of calcium-phosphorus metabolism (improvement in phosphorus values, (p <0.01), a reduction in parathyroid hormone (p <0.01)); in the number of phosphorus binders used (p <0.02); in blood pressure control (with a reduction in the number of hypotensive drugs p <0.02). Home hemodialysis, although applicable to a small percentage of patients (10-15%), has improved blood pressure control, calcium-phosphorus metabolism and anemia, reducing the need for rhEPO.

Keywords: chronic kidney disease, home dialysis, home hemodialysis

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


Il mondo della cronicità rappresenta un’area in progressiva crescita che richiede continuità assistenziale per periodi di lunga durata, comporta un notevole impegno di risorse e richiede una forte integrazione dei servizi sanitari con quelli sociali: si crea pertanto la necessità di implementare servizi e percorsi residenziali/territoriali finora non sufficientemente sviluppati.

La gestione della cronicità rappresenta perciò una sfida importante per la sostenibilità del Servizio Sanitario Nazionale (SSN). A tal proposito il Ministero della Salute ha individuato gruppi di patologie da regolamentare sia per peso epidemiologico, assistenziale ed economico che per la difficoltà di accesso alle cure ed ha emanato, in condivisione con le Regioni, nel settembre 2016, il “Piano Nazionale della Cronicità” (PNC) [1] e quindi nel marzo 2017 il “Documento di Indirizzo per la Malattia Renale Cronica (MRC)” [2]. Questi documenti si pongono come obiettivo principale l’ottimizzazione della gestione del paziente cronico e in particolare (nel secondo caso) quello con MRC, attraverso le evidenze scientifiche emergenti, l’appropriatezza delle prestazioni e la condivisione dei Percorsi Diagnostici e Terapeutici Assistenziali (PDTA) [1]. A questo proposito, fra le principali criticità sono evidenziate una carente offerta per la dialisi peritoneale (DP) e l’emodialisi domiciliare (EDD) [1,2].

Obiettivo primario della gestione della cronicità è quello di mantenere la persona malata all’interno del suo contesto di vita quotidiana e impedire, o ridurre al minimo, il rischio di istituzionalizzare il paziente in sedi comunitarie (ospedale, strutture residenziali territoriali). C’è poi quello di ridurre i costi dei trasporti dei pazienti dal domicilio alla struttura sanitaria e viceversa: alla luce della recente epidemia di Sars-Cov2 tali indicazioni appaiono ulteriormente rafforzate [3].

La personalizzazione della terapia dialitica deve tenere conto delle caratteristiche del paziente adottando quindi la dialisi domiciliare (EDD o PD) non solo per il paziente autosufficiente al domicilio, ma anche per il paziente anziano autosufficiente presso centri diurni o RSA. Nel caso del paziente non autosufficiente dovrebbe essere sempre prevista all’interno del domicilio del paziente la presenza di un caregiver ben addestrato e/o di validi supporti di teledialisi [4].

Questo studio osservazionale multicentrico ha avuto l’obiettivo di osservare le variazioni nel tempo delle condizioni cliniche e delle variabili biochimiche dei pazienti inseriti in un programma di EDD. I due centri partecipanti hanno condiviso un protocollo comune di identificazione, arruolamento e follow-up dei pazienti.


Materiali e metodi

Dopo averne appurato l’idoneità (Tabella I) è stata proposta ai pazienti la EDD. Tra i criteri di selezione, erano di particolare rilevanza il grado di autonomia e lo svolgimento di eventuale attività lavorativa. Il caregiver era rappresentato dal coniuge in tutti i casi (Tabella I).

Motivazione del paziente ad eseguire EDD
Karnofksy Score ≥60
Presenza di un caregiver durante la seduta
Pregressa esperienza di emodialisi in centro
Accesso vascolare ben funzionante (Qb ≥300 mL/min) e (se FAV) ben pungibile
Stabilità cardiovascolare in corso di seduta emodialitica
Valutazione del grado di apprendimento di paziente e caregiver durante il training
Aderenza corretta alla terapia dialitica e farmacologica
Verifica della idoneità logistica domiciliare all’esecuzione di EDD
Tabella I: Criteri di selezione del paziente da inserire in un piano di emodialisi domiciliare

Dopo l’informazione al paziente ed al caregiver, ed il conseguente assenso al trattamento, veniva firmato il modulo del consenso [5] e si iniziava quindi il training in centro per il paziente ed un caregiver (per un totale di almeno 5 sedute), in affiancamento ad un infermiere dedicato ed allo “specialist” del dializzatore. Successivamente, paziente e caregiver proseguivano i trattamenti presso il proprio domicilio, sempre in affiancamento con un infermiere dedicato: in tale occasione venivano meglio valutati gli aspetti logistici. Una volta verificato il grado di apprendimento, paziente e caregiver proseguivano il trattamento in autonomia. Era garantito un servizio diurno di consulenza (ore 8-20) da parte del centro e, in caso di problematiche tecniche insorte dopo tale ora, il paziente era invitato ad interrompere il trattamento e ad afferire al centro nella giornata successiva.

Il monitor da emodialisi utilizzato era Nx Stage One-Pro (USA Lawrence Massachusetts®) che comprende un dispositivo portatile compatto (dimensioni di 38x38x46 cm, peso circa 34 kg), elettromeccanico, contenente pompe, sistemi di controllo, sensori di sicurezza e di acquisizione dati, comandi semplificati e ben visibili posti sul frontale. Le connessioni idrauliche e la presa elettrica sono semplici e standard per minimizzare l’impatto sull’abitazione. NxStage è dotata di filtro e linee montate in una cartuccia “drop in” ed incorpora un sistema volumetrico di gestione del dialisato premiscelato in sacche sterili da cinque litri; utilizza infatti bassi volumi di dialisato, solitamente 15-30 litri, a seconda dei parametri antropometrici del paziente, somministrati con valori di flusso dialisato di circa 1/3 rispetto a quelli del flusso sangue.

Sono stati arruolati nello studio 7 pazienti (5 M, 2 F) con età media di 51 (±7) anni, anzianità dialitica di 81 ±12 mesi: come accesso vascolare 5 pazienti utilizzavano la FAV (in 3 casi si effettuava autopuntura, in 2 casi la FAV era punta dal caregiver sempre con ago tagliente), mentre 2 pazienti utilizzavano un catetere venoso centrale a permanenza gestito dal caregiver. Il periodo di follow-up è stato di 24 mesi (dal 1° dicembre 2017 al 30 novembre 2019). Venivano prescritte 6 sedute di bicarbonato dialisi settimanali di 150’-180’ ciascuna (15-18 ore settimana) sulla base del peso del paziente. Le visite di follow-up, la valutazione del Kt/v [6] e gli esami ematochimici erano eseguiti mensilmente, mentre le valutazioni relative allo studio erano effettuate ai tempi 0, 3, 6, 12 e 24 mesi.

Analisi statistica

Le variabili continue sono presentate come media e deviazione standard, le variabili categoriche come percentuale. Il trend delle variabili nel tempo è stato analizzato con l’ANOVA per dati ripetuti. L’analisi statistica è stata eseguita utilizzando il software NCSS 2007 (Gerry Hintze, Kaysville, UT, USA). Il valore di P <0.05 è stato considerato statisticamente significativo.



Le caratteristiche dei pazienti arruolati sono descritte nella Tabella II. Il Kt/v eseguito mensilmente era sempre maggiore/uguale a 0,5 per tutti i pazienti.

N° Paziente Età (anni) M/F Vintage dialitico


Accesso vascolare Karnofsky score kT/V Mensile N° Ricoveri /anno
Paz 1 62 M 234 FAV 60 0.68 0
Paz 2 48 M 62 FAV 80 0.74 0
Paz 3 50 M 37 FAV 70 0.84 0
Paz 4 51 F 45 FAV 70 0.86 0.5
Paz. 5 53 M 118 CVC Long-term 70 0.59 0
Paz. 6 52 F 32 CVC Long Term 60 0.75 0
Paz. 7 47 M 39 FAV 70 0.85 0.5
Media/Ds 51±7 5/2 81±12   68±5 0.75±14 0.14±2
Tabella II: Caratteristiche dei pazienti
Visita basale 3 mesi 6 mesi 12 mesi 18 mesi 24 mesi P-value
Emoglobina, g/dL 11.3 ±1.7 11.7 ±1.5 11.5 ±1.5 11.3 ±0.9 11.1 ±0.4 11.9 ±0.6 0.73
Albumina, g/dL 4.0 ±0.5 4.0 ±0.3 4.1 ±0.1 4.0 ±0.2 3.8 ±0.1 3.9 ±0.1 0.60
Calcio, mg/dL 8.6 ±0.5 8.7 ±0.7 9.2 ±0.7 9.2 ±0.6 9.1 ±0.7 9.1 ±0.2 0.10
Ferritina, ng/dL 361 ±271 219 ±139 178 ±106 207 ±90 236 ±104 222 ±66 0.03
Fosfati, mg/dL 7.0 ±0.6 6.1 ±0.8 5.8 ±0.3 5.9 ±0.4 5.6 ±0.5 5.6 ±1.0 <0.01
Paratormone, pg/mL 504 ±147 368 ±142 333 ±90 244 ±56 204 ±52 151 ±16 <0.01
Potassio, mEq/L 5.3 ±0.8 5.0 ±0.8 5.4 ±0.7 5.4 ±0.9 5.0 ±0.6 5.4 ±0.6 0.14
PCR, mg/dL 1.1 ±1.4 0.5 ±0.4 0.3 ±0.1 0.7 ±0.5 0.5 ±0.1 0.5 ±0.1 0.17
Farmaci antipertensivi, n 2.1 ±1.2 1.6 ±1.3 1.0 ±1.0 1.6 ±1.0 1.6 ±1.0 1.0 ±0.6 0.02
Chelanti del fosforo, n 2.6 ±1.0 2.3 ±0.8 2.0 ±1.2 1.6 ±0.8 1.1 ±0.9 1.3 ±1.1 0.02
Eritropoietina, UI/sett 7714 ±7158 6000 ±4472 6571 ±4429 7429 ±6803 5714 ±2928 4571 ±3409 0.16
Tabella III. Principali dati alla visita basale e ai controlli

I dati rilevati ai tempi 3, 6, 12, 18 e 24 mesi (Tabella III) evidenziavano un miglioramento nel controllo del metabolismo calcio-fosforo con riduzione della fosforemia da un lato (7.0 ±0.6 mg/dl [basale] vs 5.6 ±1.0 mg/dl [fine studio] p <0.01), del numero di chelanti del fosforo utilizzati (2.6 ±1.0 vs 1.3 ±1.1 p <0.02) e dei livelli del paratormone (504 ±147 [basale] vs 151 ±16 pg/mL [fine studio] p <0.01) dall’altro, nonché un miglioramento del controllo pressorio con riduzione del numero di farmaci antiipertensivi (2.1 ±1.2 [basale] vs 1.0 ±0.6 [fine studio] p <0.02). I livelli di ferritina risultavano sensibilmente ridotti (361 ±271 [basale] vs 222 ±66 ng/dl [fine studio] p= 0.03) così come i valori della PCR (1.1 ±1.4 [basale] vs 0.5 ±0.1 mg/dl [fine studio] p= 0.17). L’anemia era controllata tramite un ridotto consumo di eritropoietina ricombinante umana [rhEPO] (7714 ±7158 U/sett alla visita basale vs 4571 ±3409 UI/sett al termine dello studio) sebbene non significativo (p = 0.16). Non sono state osservate differenze significative nei livelli di calcemia, potassio, albumina ed emoglobina al temine dell’osservazione (Figg. 1,2,3). I pazienti arruolati risultavano essere tutti anurici e con una funzione renale residua trascurabile (velocità di filtrazione glomerulare inferiore ai 3 ml/min).

Durante lo studio si segnalano due ricoveri per problematiche inerenti l’accesso vascolare (trombosi della FAV), risolte chirurgicamente. Non si sono registrati drop-out dopo l’invio a domicilio.

Andamento di eritropoietina, emoglobina, ferritina e proteina C-reattiva durante il follow-up di 24 mesi.
Figura 1: Andamento di eritropoietina, emoglobina, ferritina e proteina C-reattiva durante il follow-up di 24 mesi. I dati sono riportati come media ed errore standard
Andamento di albumina, calcio (Ca), fosfati (P) e paratormone (PTH) durante il follow-up di 24 mesi.
Figura 2: Andamento di albumina, calcio (Ca), fosfati (P) e paratormone (PTH) durante il follow-up di 24 mesi. I dati sono riportati come media ed errore standard
Andamento di potassio (K), numero di farmaci antipertensivi e chelanti del fosforo durante il follow-up di 24 mesi.
Figura 3: Andamento di potassio (K), numero di farmaci antipertensivi e chelanti del fosforo durante il follow-up di 24 mesi. I dati sono riportati come media ed errore standard



Nei nostri ambulatori di pre-dialisi le tecniche extra ed intracorporee, sia ospedaliere che domiciliari, vengono sempre proposte tra le diverse opzioni terapeutiche accanto al trapianto e alla terapia conservativa.

Questo studio, dedicato alla sola valutazione clinico laboratoristica e senza dubbio limitato in termini numerici, ha mostrato risultati interessanti soprattutto in termini di controllo del metabolismo calcio-fosforo, della pressione arteriosa e della anemia; tali dati non sono sorprendenti se confrontati con quelli dei principali studi sull’argomento [6,7]. Il monitor Nx-Stage utilizzato nello studio si è dimostrato affidabile, di facile utilizzo e non sono state registrate particolari difficoltà nell’apprendimento della metodica. I principali svantaggi sono rappresentati dalla necessità di utilizzare circa 5 sacche di dialisato da 5 litri per ogni seduta dialitica, dalla inadeguatezza della metodica per il trattamento di pazienti con elevata massa corporea e dall’elevata quantità di rifiuti speciali [8].

La prima EDD è stata eseguita in Giappone nel 1961 utilizzando un filtro immerso nella vasca di una lavatrice per uso domestico [9]. Studi successivi furono effettuati sul finire degli anni 60’ presso la University of California Los Angeles (UCLA) su un gruppo di 7 pazienti sottoposti a 5-6 sessioni settimanali di 5 ore ciascuna: le principali problematiche emerse furono ipotensioni intradialitiche e ipertensione arteriosa. La tecnica fu poi abbandonata per motivi strettamente legati alla rimborsabilità [10]. Stessa sorte accomunò altre esperienze [5], tanto che nei decenni successivi si assistette alla progressiva scomparsa di questa metodica, sia nel continente americano che in Europa, di concerto alla incrementale diffusione dei centri dialisi [10].

La ragione del declino della EDD deve essere ricercata principalmente nella scarsità del numero di pazienti idonei (con limitazioni legate ad età, patologie concomitanti, aumento del numero dei pazienti diabetici e affetti da patologie cardiovascolari), ma anche nella progressiva perdita di esperienza e interesse da parte dei centri dialisi, la maggior parte dei quali non prevede un programma di EDD, e nella diffusa paura della gestione autonoma degli aspetti tecnici (infissione aghi, gestione monitor, etc) nella convinzione che sia necessaria la presenza di un infermiere specializzato durante la seduta dialitica [10].

Stante quanto appena esposto, è noto che gli schemi dialitici ad alta frequenza, realizzabili pressoché solo con EDD, determinano miglioramento degli outcomes, miglior controllo della PA e della fosforemia, miglior qualità di vita, miglior opportunità di riabilitazione, miglior rapporto costo/efficacia [10]. Si tratta degli aspetti “vincenti” di un programma di EDD. Lo studio FHN (Frequent Hemodialysis Network) ha confrontato la dialisi più frequente (2-3 ore per sessione, 5-6 volte a settimana) con la modalità dialitica standard (4 ore tre volte a settimana) in uno studio della durata di 12 mesi. La dialisi più frequente sembra apportare notevoli benefici sia nell’incremento della massa del ventricolo sinistro, dei livelli di fosforo e dei valori pressori pre-dialitici e un miglioramento nella qualità della vita; è però associata ad un numero più elevato di ricoveri per problematiche inerenti l’accesso vascolare [11].

Diversi lavori hanno invece analizzato i principali fattori responsabili di drop-out dalla dialisi domiciliare. In tal senso, il diabete con molteplici complicanze, una non completa conoscenza della metodica da parte del paziente, l’assenza di un centro di riferimento a breve distanza e una abitazione inadeguata sembrano essere preponderanti rispetto al tipo di accesso vascolare, alla scolarità e alla età del paziente [12,13,14]. Analizzando per Diagnosis Related Groups (DRG) i costi diretti (personale, manutenzione, apparecchiature, service, farmaci ed esami) e quelli indiretti (servizi di trasporto, servizi alberghieri, etc) e sociali (costo derivante dalla perdita di ore lavorative paziente/caregiver), la PD e la EDD sono nettamente meno costose della HD ospedaliera, con DRG addirittura inferiore per la EDD sulla PD in alcune regioni [9,15,16].



In questa piccola e breve esperienza, la EDD, seppur applicabile ad una percentuale ridotta di pazienti in dialisi extracorporea (<5%), si è dimostrata una proposta valida, in grado di incidere positivamente sul controllo della pressione arteriosa, sul metabolismo calcio-fosforo e sul consumo di chelanti del fosforo. Ha inoltre permesso un miglior controllo della anemia con una ridotta necessità di rhEPO.

I risultati appaiono in linea con principali studi sull’argomento; tuttavia, la esigua numerosità del campione ed il breve periodo di valutazione non permettono di esprimere ulteriori considerazioni.

La EDD sembra rappresentare un valido strumento nel recupero sociale e psicologico del paziente uremico e potrebbe trovare spazio nei pazienti autosufficienti e motivati in drop-out dalla PD. Al fine di incentivarne l’uso è indispensabile investire nella ricerca di nuove tecnologie, implementare i progetti di teledialisi, progettare validi modelli organizzativi “ad hoc”, stanziare fondi regionali incentivanti e snellire il percorso burocratico di acquisizione.



  1. Ministero della Salute, Piano Nazionale della Cronicità. 2016.
  2. Ministero della Salute, Documento di Indirizzo per la Malattia Renale Cronica.
  3. Shen Q, Wang Mo, Che R, et al. Consensus recommendations for the care of children receiving chronic dialysis in association with the COVID-19 epidemic. Pediatr Nephrol 2020; 35(7): 1351-7.
  4. Kane-Gill S, Rincon F. Expansion of Telemedicine Services: Telepharmacy, Telestroke, Teledialysis, Tele-Emergency Medicine. Crit Care Clin 2019 Jul; 35(3):519-33.
  5. Fiorini F, Granata A. Consenso informato: aspetti deotologici e giuridici. G Ita Nefrol 2011; 28(1):89-94.
  6. Gotch FA. The current place of urea kinetic modelling with respect to different dialysis modalities. Nephrol Dial Transplant 1998; 13(S6):10-14.
  7. Weinhandl ED, Liu jI, Gilbertson TD, et al. Survival in Daily Home Hemodialysis and Matched Thrice-Weekly In-Center Hemodialysis Patients. J Am Soc Nephrol 2012; 23:895-904.
  8. Piccoli GB, Ferraresi M, Caputo F, et al. Dialisi Domiciliare sì, ma quale? Emodialisi Domiciliare e dialisi peritoneale a confronto: una controversia non controversa. G Ital Nefrol 2012; 29(2):148-59. 148-159 PICCOLI proecontro.pdf
  9. Curtis FK, Cole JJ, Tyler LL, et al. Hemodialysis in the home. Trans Am Soc Artif Intern Organs 1965; 11:7-10.
  10. Kjellstrand CM, Ing T. Daily Hemodialysis History and revival of a superior Dialysis Method. ASAIO J 1998; 44(3):117-22.
  11. Susantitaphong P, Koulouridis I, Balk EM, at al. Effect of Frequent or Extended Hemodialysis on Cardiovascular Parameters: A Meta-analysis. Am J Kidney Dis 2012; 59(5):689-99.
  12. United Kingdom Renal Registry (UKRR).
  13. Mc Laughlin, et al. Why patients with ESRD do not select self-care dialysis as a treatment option? Am J Kid Dis 2003; 41(2):380-5.
  14. FHN Trial Group, Chertow GM, Levin NW, Beck GJ, Depner TA, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010; 363(24):2287-300. (Erratum in: N Engl J Med 2011; 364(1):93.
  15. Schachter ME, Tennankore KK, Chan CT. Determinants of training and technique failure in home hemodialysis. Hemodial Int 2013;1 7(3):421-6.
  16. Hager D, Ferguson TW, Komenda P. Cost Controversies of a “Home Dialysis First” Policy. Can J Kidney Health Dis 2019; 6:2054358119871541.

Cephalic arch stenosis. Case report and literary review


Dysfunctional AVF represents one of the leading causes of morbidity in the hemodialysis population, with venous stenosis-related dysfunction being the most common underlying problem.

Cephalic arch is a well-known site for the development of stenosis, especially in patients with brachiocephalic fistulas. The pathophysiology of cephalic arch stenosis (CAS) is still being investigated and various contributing factors have been suggested.

The treatment options for CAS are many and include angioplasty, endovascular stent insertion, access flow reduction and surgical interventions, but none of the current modalities are ideal. Therefore, the treatment of CAS is difficult, as the stenosis in this area tends to recur leading to the need for repeat angioplasty, stents or surgical revision.

A 57-year-old woman undergoing hemodialysis (HD) through a right brachiocephalic arteriovenous fistula was found to have high venous pressure during HD and prolonged bleeding after HD. Clinical examination revealed a hyperpulsatile fistula suggestive of outflow obstruction. Doppler ultrasound examination showed cephalic vein thrombosis, severe outflow stenosis and juxta-anastomotic area. A 10 x 40 mm stent (Cordis Smart stent) was positioned appropriately in the cephalic arch and deployed, the stenotic lesion in juxta-anastomotic area was dilated with angioplasty balloon with improvement in flow.

After 14 months, the fistula is still working perfectly with adequate flow.

Keywords: cephalic arch, stenosis, brachiocephalic fistula, hemodialysis

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


Le complicanze dell’accesso vascolare (AV) condizionano la qualità di vita e la sopravvivenza del paziente in emodialisi e rappresentano una delle principali cause di morbilità e mortalità nella popolazione emodializzata [1]. La maggiore causa di disfunzione e successiva trombosi di una fistola artero-venosa (FAV) è la stenosi venosa.

È ben noto che la localizzazione della stenosi e i segni clinici dipendono in gran parte dal tipo di AV [2]. Vari sono i segmenti della FAV soggetti a stenosi sul versante venoso; in relazione alla sede, possiamo distinguere tra: 1) stenosi a livello di inflow, in genere post-anastomotica, tipica della FAV dell’avambraccio; 2) stenosi a livello di outflow, localizzate a livello prossimale e presenti prevalentemente nelle FAV del braccio; 3) stenosi nelle zone di venipuntura e 4) stenosi riguardanti le vene centrali [3].

Un’altra sede tipica di stenosi è l’arco cefalico (AC); particolarmente interessate sono le FAV brachiocefaliche (dal 39% fino al 77%) rispetto alle FAV radiocefaliche (dal 2% al 15%) [4]. Ciò, verosimilmente, in relazione alla portata più elevata dell’AV, alla turbolenza del flusso e a fattori anatomici a causa del restringimento e della curvatura fisiologica dell’AC attraverso la fascia clavipettorale.

Jaberi et al. hanno dimostrato una correlazione statisticamente significativa tra stenosi dell’AC e la portata della FAV misurata con Transonic Systems [5]. Obiettivamente, i segni di presentazione della stenosi dell’AC sono vari e aspecifici. Si tratta di segni di ostacolo al deflusso: presenza di dilatazione aneurismatiche lungo il decorso del vaso, tortuosità ed iperpulsatilità della FAV, aumento della pressione venosa durante emodialisi, sanguinamento prolungato post-dialitico e scarsa portata, con le relative conseguenze sulla efficienza del trattamento dialitico.

Le opzioni terapeutiche per la stenosi dell’AC sono limitate. Sono state proposte terapie endovascolari e chirurgiche ma, ancora oggi, soprattutto per le forme ricorrenti, non esiste una strategia ideale che consenta di rendere l’AV più longevo possibile, con il minor numero di interventi. Infatti, non è possibile applicare un algoritmo di trattamento poiché la stenosi dell’AC è una di quelle situazioni cliniche ambigue, sia per i contesti clinici complessi, ma anche per la posizione anatomica della stenosi, non sempre agevole per il chirurgo [4,6,7]. Negli ultimi anni c’è stato un notevole e graduale passaggio ad un approccio endovascolare mininvasivo. Infatti, si crede che questa strategia possa essere associata ad una minore morbilità e mortalità, oltre che ad un più rapido recupero, particolarmente importante nei pazienti emodializzati con comorbidità multiple [4].

La stenosi dell’AC rappresenta, ancora oggi, un impegno ed una importante sfida per noi nefrologi, sia per la complessità diagnostica che per la resistenza al trattamento.


Caso clinico

Descriviamo la storia di una donna di 57 anni, in emodialisi periodica dall’età di 50 anni, affetta da cardiopatia ischemica trattata chirurgicamente, pregresso attacco ischemico transitorio, epilessia e broncopatia cronica ostruttiva. La storia anamnestica riguardante l’AV risulta abbastanza complicata, con la necessità di una integrazione tra varie professionalità: si è resa infatti necessaria una stretta collaborazione tra il nefrologo referente esperto di ultrasonografia vascolare, il radiologo interventista ed il chirurgo vascolare.

La paziente è stata avviata all’emodialisi durante la degenza in Cardiochirurgia per la rivascolarizzazione coronarica, utilizzando come accesso vascolare un catetere venoso centrale in vena giugulare destra. Dapprima è stata allestita una FAV distale all’avambraccio sinistro, complicata da stenosi recidivanti in regione post-anastomotica trattate con Angioplastica Percutanea Transluminale (PTA). Successivamente è stata impiantata una protesi vascolare in politetrafluoretilene (PTFE), complicata da una grave infezione con successiva trombosi con perdita dell’accesso. Anche una FAV distale all’avambraccio destro è andata incontro a trombosi precoce.

Pertanto, dopo il fallimento di accessi vascolari più distali, è stata allestita una FAV omero-cefalica destra trattata prima della venipuntura con PTA. Il monitoraggio ecocolordoppler, con il calcolo della portata, è stato eseguito regolarmente dal nefrologo di reparto: la portata della FAV era pari a 1800 ml/min.

Dopo circa due anni di utilizzo si assisteva alla presenza di elevate pressioni venose durante il trattamento dialitico, sanguinamento prolungato a fine dialisi e scarsa efficienza dialitica. L’ecocolordoppler (ECD) metteva in evidenza 1) all’esame B-mode, una netta riduzione di calibro della vena cefalica a livello post-anastomotico e di outflow, e la presenza di una formazione trombotica nel lume al terzo medio; 2) all’ecocolordoppler, evidenza di turbolenza di flusso con aliasing (Figura 1); 3) all’analisi spettrale, elevate velocità sisto-diastoliche, sia livello post-anastomotico che dell’asse venoso prossimale, in corrispondenza del tratto precedente la confluenza della vena cefalica nella vena succlavia. Inoltre, era presente un netto calo della portata della FAV (400 ml/min) rispetto al controllo precedente di circa sei mesi prima.

Scansione longitudinale vena cefalica.
Figura 1: Scansione longitudinale vena cefalica. a) B-mode: presenza nel lume della vena cefalica di materiale ipoecogeno occupante buona parte del lume vasale; b) Ecocolordoppler: presenza di turbolenza di flusso con aliasing

Questi elementi hanno indirizzato la diagnosi verso una stenosi emodinamicamente significativa in sede post-anastomotica e dell’arco cefalico (Figura 2) con associata trombosi. È stato pertanto coinvolto il chirurgo vascolare, con il quale c’è una stretta collaborazione nella gestione degli AV complicati. Previa anestesia locale, dopo incisione cutanea al braccio destro, è stata isolata la vena cefalica che è apparsa di consistenza teso-elastica. Dopo venotomia transversale, è stata eseguita una disostruzione dell’asse venoso cefalico prossimale fino alla confluenza della succlavia destra, con catetere di Fogarty 4 Fr su guida 0.035, con estrazione di abbondante materiale trombotico (Figura 3). Al termine, buon flusso venoso refluo, clampaggio e sutura della venotomia con prolene 5/0 e, successivo declampaggio. È stata punta la FAV, posizionato un introduttore 7 FR ed è stata effettuata la fase angiografica che ha messo in evidenza stenosi severe, multiple, in successione al 1/3 medio della vena cefalica, a livello della confluenza dell’arco venoso della cefalica in succlavia destra e del tronco venoso brachiocefalico, in corrispondenza della confluenza in vena cava superiore. Su guida 0.035 è stata eseguita PTA con pallone 14 x 40 mm del tronco brachiocefalico, PTA stenting con impianto di uno stent in nitinol autoespandibile (Cordis Smart stent) 10 x 40 in AC (Figura 4) e PTA con pallone ad alta pressione 10 x 40 della cefalica al 1/3 medio del braccio.

 Aliasing: l’etereogeneità di colore indica alte velocità di flusso con estrema turbolenza
Figura 2: a) Aliasing: l’etereogeneità di colore indica alte velocità di flusso con estrema turbolenza dimostrata dall’alternarsi disordinato di rosso e blu nello stesso tratto del lume vasale; b) all’analisi spettrale elevate velocità di flusso sisto-diastoliche. L’aumento segmentale di velocità di picco sistolico > 400 cm/s associato a una riduzione della portata (<600 ml/minuto o una diminuzione >25% rispetto alle misurazioni precedenti) sono criteri validi per la stenosi significativa
È stata effettuata la disostruzione dell’asse venoso cefalico prossimale
Figura 3: È stata effettuata la disostruzione dell’asse venoso cefalico prossimale fino alla confluenza con la vena succlavia destra con estrazione di abbondante materiale trombotico; utilizzato catetere di Fogarty 4 Fr su guida 0.035
Figura 4: Ben visibile lo stent in Arco Cefalico
Figura 4: Ben visibile lo stent in Arco Cefalico

Al termine, il controllo ecocolordoppler intraoperatorio, effettuato dal nefrologo, e il controllo angiografico post-procedura hanno evidenziato un buon risultato, con pervietà della FAV, in assenza di stenosi residue. È stato rimosso il sistema introduttore, con successiva revisione dell’emostasi e sutura per piani della ferita chirurgica.

A distanza di più di un anno (14 mesi), il controllo ECD mostra una FAV ben funzionante, in assenza di velocità di flusso patologiche, senza stenosi, con buona pervietà dello stent (Figura 5) ed una portata pari a 1500 ml/min (Figura 6).

Figura 5: a) All’ecocolordoppler la vena cefalica appare di buon calibro, in assenza di formazioni trombotiche; b) All’immagine B-mode lo stent appare pervio. Si apprezzano ben evidenti le maglie dello stent
Figura 5: a) All’ecocolordoppler la vena cefalica appare di buon calibro, in assenza di formazioni trombotiche; b) All’immagine B-mode lo stent appare pervio. Si apprezzano ben evidenti le maglie dello stent
Figura 6: L’Ecocolordoppler di controllo dopo 14 mesi mostra una FAV ben funzionante, con buona portata (1800 ml/min), in assenza di velocità di flusso patologiche
Figura 6: L’Ecocolordoppler di controllo dopo 14 mesi mostra una FAV ben funzionante, con buona portata (1800 ml/min), in assenza di velocità di flusso patologiche


Revisione della letteratura

La vena cefalica

La fistola brachiocefalica è costituita dalla anastomosi fra l’arteria brachiale e la vena cefalica. Come consigliato dalle linee guida KDOQI, questo AV è da preferire nei casi in cui vi è una inadeguatezza dei vasi dell’avambraccio o dopo un fallimento di una FAV distale poiché presenta un miglior tasso di pervietà e tempi di maturazione più rapidi [8,9].

Anatomicamente la vena cefalica fa parte del sistema venoso superficiale dell’arto superiore; a livello del braccio risale lungo la superficie laterale del muscolo bicipite verso il muscolo grande pettorale, entra, poi, nel solco deltopettorale e, giunta sotto la clavicola, si approfonda e gira bruscamente descrivendo un angolo acuto, perfora, successivamente, la fascia clavico-pettorale e termina il suo tragitto confluendo nella vena ascellare.

In letteratura, diversi Autori hanno descritto delle varianti anatomiche [10] segnalando varianti sia nella morfologia (doppio arco o variante bifida e triplo arco) [11] che nella terminazione. Entrambe le varianti (morfologiche e di terminazione) sono soggette a stenosi con malfunzionamento dell’AV. La variazione segnalata più frequentemente è un singolo ramo che si unisce alla vena succlavia. È stato riportato che l’80% dell’AC è visibile nel triangolo deltopettorale più superficialmente ed il 20% è localizzato in profondità.

Anche la fascia deltopettorale può avere un aspetto variabile, a volte sottile, altre volte interrotta da segmenti di grasso simile al tessuto sottocutaneo e può impedire una adeguata dilatazione dell’AC tramite una compressione esterna [12].

La variante bifida è caratterizzata dalla biforcazione dell’arco e l’arco bifido bilateralmente defluisce nella vena ascellare; oppure, uno dei due rami può assumere un decorso sovraclavicolare e drenare nella vena giugulare esterna [11]. Lau e colleghi hanno descritto un caso clinico di un arco cefalico sopraclaveare, riscontrato durante il posizionamento di un pacemaker, che drenava nella vena succlavia [13].

Yeri e colleghi, riportando l’anatomia della vena cefalica in 50 dissezioni di spalla nei cadaveri, hanno segnalato che il grado di curvatura della vena cefalica prossimale era variabile ed inoltre, hanno descritto una vena cefalica con decorso infraclavicolare che si univa alla vena giugulare esterna [14]. Altri Autori hanno riportato un caso di un AC sopraclavicolare con un singolo ramo che drenava nella vena giugulare esterna, stenotica, in un paziente emodializzato portatore di un AV. Questa variante anatomica, peraltro, sembrava essere soggetta ad un tasso più elevato di restenosi con limitate opzioni terapeutiche; infatti, nel case report descritto dagli Autori, sono stati eseguiti tre tentativi di angioplastica nell’arco di sei mesi [15].

Bennett e collaboratori hanno descritto ulteriori varianti, più rare, con più ramificazioni (due e tre) e con vasi collaterali più complessi. La biforcazione e la triforcazione della vena cefalica sembrano essere meno soggette allo sviluppo di iperplasia intimale e, di conseguenza, a stenosi. Inoltre, per la presenza di percorsi di flusso alternativo, i rami aggiuntivi diminuiscono la velocità di flusso [11]. Infatti, Boghosian e collaboratori hanno affermato che tutti i pazienti con ramificazioni di flusso, sia biforcazione che triforcazione, hanno una FAV funzionante a 12 mesi; al contrario il 40% (6/15 pazienti) senza ramificazioni presentano una stenosi a 12 mesi [16].

L’arco cefalico

Anche la definizione di AC è varia. In letteratura radiologica, l’arco cefalico viene definito come la porzione centrale perpendicolare della vena cefalica quando attraversa il solco deltopettorale e termina nella vena ascellare [17]. Altri Autori [8] lo descrivono come l’arco finale della vena cefalica, cioè come l’ultimo tratto di vena cefalica prima della sua confluenza nella vena ascellare. Tutti gli Autori concordano nel considerare l’AC un’area tipicamente più vulnerabile allo sviluppo di stenosi emodinamicamente significative ricorrenti, nonché una frequente causa di fallimento della fistola brachiocefalica [18,19].

Una stenosi venosa, solitamente, si verifica come complicanza dell’impianto di cateteri venosi centrali per emodialisi o per terapie infusionali, lasciati a lungo in situ, o pacemaker o defibrillatori cardiaci automatici impiantabili, ma sono anche descritte stenosi venose centrali in assenza di una pregressa cateterizzazione [20,21].

La stenosi del’AC presenta alcune peculiarità che la rendono una entità particolarmente interessante sotto il profilo eziopatogenetico e terapeutico.

Per ragioni ancora in fase di studio, l’esatta eziologia della tendenza a sviluppare la stenosi dell’AC non è nota. Diversi fattori patogenetici sono chiamati in causa, come la naturale anatomia della vena cefalica, il flusso turbolento, la lesione intimale e l’ipertrofia valvolare, che contribuiscono a rendere l’AC particolarmente suscettibile alla stenosi [5,2226]. Tra le possibili cause vi è:

  • la presenza di un maggior numero di valvole nell’AC, soprattutto dopo l’orifizio di sbocco dalla vena cefalica nella vena ascellare. Questo, probabilmente, determina un flusso turbolento che altera lo sheer stress e causa il danno endoteliale, l’iperplasia dell’intima con conseguente stenosi;
  • la morfologia dell’AC e la curva anatomica della vena cefalica nel solco deltopettorale che determina una turbolenza di flusso che modifica, anche in questo caso, lo shear stress con conseguente aumento della proliferazione endoteliale, vasocostrizione ed aggregazione piastrinica;
  • la mancata capacità della vena di dilatarsi adeguatamente, in presenza di flussi elevati, a causa della compressione di strutture rigide (fascia clavipettorale, i muscoli pettorali e deltoidi). Quando la vena cefalica non è in grado di dilatarsi per gestire la portata, il flusso elevato diventa turbolento causando il danno endoteliale e l’iperplasia intimale;
  • la presenza, a volte, di un esiguo calibro del vaso.

È stato, anche, sottolineato che i pazienti con insufficienza renale presentano un ispessimento di parete ed una iperplasia dell’intima della vena cefalica già prima dell’allestimento dell’AV rispetto ai soggetti con funzione renale normale [27]. Un’altra peculiarità riguarda i pazienti diabetici portatori di FAV brachiocefalica: Hammes et al. hanno dimostrato che c’è una tendenza minore a sviluppare stenosi dell’arco cefalico rispetto ai soggetti non diabetici, verosimilmente perché presentano un arco cefalico morfologicamente diverso, con un maggiore raggio di curvatura, oltre che per le caratteristiche dei vasi nei soggetti diabetici [28,29].

Bennett e collaboratori, in uno studio prospettico nel 2015, hanno sottolineato che uno dei fattori che limita il riconoscimento della causa della stenosi dell’AC è la mancanza di una nomenclatura standardizzata per la localizzazione della stenosi e che ciò potrebbe condizionare la risposta al trattamento. Gli Autori hanno diviso l’AC in quattro segmenti, considerando la porzione terminale dell’AC (quarto segmento) come la sede più frequente di stenosi [11].

L’angioplastica percutanea transluminale

La PTA è la strategia di trattamento standard di tutte le stenosi; ma, nella maggior parte dei casi delle stenosi dell’AC, il risultato non è soddisfacente e i dati sono, spesso contrastanti. Infatti, il tasso di pervietà primaria con tale procedura, dopo un anno, è relativamente basso (<11%). Inoltre, anche il posizionamento di uno stent in metallo nudo non ha dato buoni risultati [7,30,31]. Al contrario alcuni Autori [32], sebbene considerino la PTA la strategia di trattamento di prima linea per la stenosi dell’AC, confrontando la PTA con il posizionamento di uno stent, hanno segnalato risultati più durevoli e soddisfacenti (percentuale del 100% a sei mesi e del 29% ad un anno in termini di pervietà primaria) ed un ridotto tasso di reintervento.

Il trattamento della stenosi dell’AC è stato riassunto nella Tabella 1.

Autore, anno Tipo di studio Numero pazienti Trattamento Complicanze procedura Follow up (mesi) Reinterventi/paziente/ anno Tempo di pervietà assistita della FAV
Rajan, 2003 (17) RO 26 PTA Rottura (6%) 12 1.6 75%
Shemesh, 2008 (31) PR 12 PTA + bare stent nessuna 12 1.9 90%
13 PTA + Graft stent nessuna 0.9 100%
Kian, 2008 (10) PO 13 PTA nessuna 12 3.5 8%
1.0 92%
13 TV
Miller, 2010 (42) RO 14 banding con riduzione del flusso nessuna 14.5 0.9 97%
Sigala, 2014 (33)  RO 25 TV Sanguinamento/trombosi (8%) 12 0.1  90%
Davies, 2017 (4) RO 219 PTA Rottura, steal, occlusione, stenosi venosa centrale, stenosi residua >24 3.5 59%
stent Rottura, stenosi residua, stenosi venosa centrale >24 3.1 63%
TV / bypass Stenosi venosa centrale >24 1.9/1.4 90/92%
Feng, 2020 (35) RO 21 Stent graft nessuna 12 100%
Mudoni CC 1 PTA-stent nessuna 14
Tabella 1: Trattamento della stenosi dell’arco cefalico: revisione della letteratura. RO: Retrospettivo osservazionale; PR: Prospettico randomizzato; TV: trasposizione; CC caso clinico

La stenosi dell’AC, oltre ad essere resistente alla PTA, può presentare, durante la procedura, una elevata percentuale di rottura indotta dalla dilatazione (fino al 15%), tanto da portare alla perdita dell’AV o al necessario posizionamento di uno stent [33,34].

Feng et al. [35], in uno studio retrospettivo, hanno riservato il posizionamento dello stent graft esclusivamente alla recidiva di lesione o alla rottura dell’AC dopo PTA, con una attenzione particolare alla misura dello stent graft poiché un sovradimensionamento favorirebbe l’iperplasia intimale. Viceversa, uno stent sottodimensionato determinerebbe un’ulteriore complicanza quale la migrazione dello stent, con possibilità di occlusione della vena succlavia e della vena ascellare [36]. Il problema della migrazione dello stent nell’arco cefalico è probabilmente sottostimato poiché, in genere, nelle fasi iniziali è asintomatico [37].

Va comunque segnalato che, gli stent possono precludere la chirurgia come opzione per trattare la stenosi. Infatti, dopo posizionamento di uno stent, l’AC presenta una ridotta compliance che, a volte, potrebbe determinare l’occlusione della vena ascellare e succlavia per alterazioni emodinamiche, e, di conseguenza, non solo potrebbe compromettere un successivo AV nel braccio omolaterale, ma causare un’occlusione venosa centrale.

Anche la mobilità relativa del segmento dell’arco cefalico e le forze di compressione esterne dalle fasce clavicolopettorali e deltopettorali possono contribuire alla migrazione dello stent. Patel e collaboratori hanno illustrato il caso di un uomo di 53 anni, portatore di uno stent migrato in vena succlavia, tanto da sviluppare una sindrome del braccio grosso dopo la creazione di una fistola brachio-basilica. Il paziente è stato trattato con successo, utilizzando un nuovo dispositivo (TruePath) che ha facilitato la ricanalizzazione della vena ascellare occlusa, perforando il tessuto che aveva imprigionato la vena ascellare. Gli Autori consigliano l’utilizzo di questo device, in particolare la dove le tecniche convenzionali comporterebbero un alto rischio di lesioni o potrebbero essere inutili [38].

L’opzione chirurgica è un’alternativa, più invasiva, da considerare in mani esperte poiché si tratta di un intervento chirurgico in cui il flusso della FAV va direzionato sull’asse ascellare, bypassando l’AC; a volte anche con l’interposizione di un tratto protesico [4,39].

Shenoy propone un algoritmo di trattamento, che inizia con l’angioplastica seguita dalla riparazione chirurgica, riservando il posizionamento di uno stent e la deviazione chirurgica del deflusso come opzioni future, al fine di prolungare ulteriormente la pervietà dell’AV. Inoltre, sottolinea che non ci sono dati di follow-up a supporto di risultati migliori con questo approccio [40].

Henry e colleghi hanno condotto una revisione retrospettiva della durata di circa sette anni, analizzando stenosi dell’arco refrattario; ventitré pazienti sono stati sottoposti a trasposizione della vena cefalica con FAV mature. A due anni, la pervietà primaria era del 70.9%. Quindi gli Autori hanno concluso che la trasposizione della vena cefalica è un trattamento sicuro ed efficace oltre che durevole, richiedendo re-interventi minimi [41].

Una opzione meno invasiva è quella di ridurre la portata della FAV tramite banding del segmento iuxtaanastomotico, con il risultato di una diminuzione delle restenosi. Miller e collaboratori hanno ottenuto buoni risultati (pervietà della lesione pari al 91%, 76% e 57% a 3, 6 e 12 mesi rispettivamente, e pervietà dell’accesso vascolare del 97% ad un anno), utilizzando una riduzione del flusso (media 42%) con un trattamento miniinvasivo quale un bendaggio che utilizza palloncini per angioplastica intraluminale per regolare con precisione le dimensioni della fascia (mediamente 4 mm con un intervallo da 3 a 5 mm) [42].

Kim e collaboratori hanno pubblicato recentemente i dati di uno studio retrospettivo, della durata di 9 anni, che mirava ad identificare i predittori clinici di recidiva della sindrome dell’arco cefalico. Hanno valutato, inoltre, l’effetto della riduzione del flusso dell’AV in termini di pervietà primaria post-intervento e numero di interventi della FAV nei pazienti con sindrome recidivante. Gli Autori hanno concluso che un elevato rapporto tra il diametro massimo della vena cefalica distale ed il diametro dell’arco cefalico (CV/CA) ed il coinvolgimento del segmento prossimale dell’AC sono predittori clinici indipendenti di stenosi recidivante. Inoltre, il bendaggio endovascolare potrebbe ritardare la recidiva nei pazienti con una elevata portata della FAV e con un elevato rapporto CV/CA [43].



La complessità del quadro clinico e delle varie opzioni di trattamento rendono le stenosi dell’arco cefalico, ancora oggi, difficili da gestire.

A nostro avviso, non è possibile fare particolari raccomandazioni a causa di vari fattori: l’eterogeneità negli studi, la carenza di studi prospettici, la mancanza negli studi di una segnalazione appropriata circa il numero di interventi necessari, ed un numero insufficiente di pazienti trattati.

La corretta conoscenza anatomica è essenziale sia per la diagnosi che per il trattamento di questa condizione. L’utilizzo dell’ecocolordoppler è di notevole aiuto nella diagnostica delle stenosi. Infine, un approccio multidisciplinare, con la collaborazione di varie professionalità, è necessario per il trattamento e la sorveglianza di questa entità.



  1. Nikam MD, Ritchie J, Jayanti A, Bernstein OA, Ebah L, Brenchley P. Acute arteriovenous access failure: long-term outcomes of endovascular salvage and assessment of co-variates affecting patency. Nephron 2015; 129:241-246.
  2. Turmel-Rodrigues L, Pengloan J, Baudin S. Treatment of stenosis and thrombosis in haemodialysis fistulas and grafts by interventional radiology. Nephrol Dial Transplant 2000; 15(12):2029-2036.
  3. Quencer KB, Arici M. Arteriovenous fistulas and their characteristic sites of stenosis. AJR 2015; 205:726-734.
  4. Davies MG, Hicks TD, Haidar GM, et al. Outcomes of intervention for cephalic arch stenosis in brachiocephalic arteriovenous fistulas. J Vasc Surg 2017; 66(5):1504-1510.
  5. Jaberi A, Schwartz D, Martecorena R, et al. Risk factors for the development of cephalic arch stenosis. J Vasc Access 2007; 8:287-95.
  6. Shenoy S. Cephalic Arch Stenosis – Surgery is the First step. J Vasc Access 2009; 10(4):254-255.
  7. Kim SM, Yoon KW, Woo SY, Kim YW, et al. Treatment Strategies for cephalic arch stenosis in patients with brachiocephalic arteriovenous fistula. Ann Vasc Surg 2019; 54:248-253.
  8. Lok CE, Huber TS, Lee T, Shenoy S, Yevzlin AS, Abreo K, et al. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am J Kidney Dis 2020 Apr; 75(4 Suppl 2):S1-S164.
  9. Rodriguez J, Armandans L, Ferrer E, Olmos A, Cordina S, Bartolome J, et al. The function of permanent vascular access. Nephrol Dial Transplant 2000; 15:402-408.
  10. Kian K, Asif A. Cephalic arch stenosis. Semin Dial 2008; 21:78-82.
  11. Bennett S, Hammes MS, Blicharski T, Watson S, Funaki B. Characterization of the cephalic arch and location of stenosis. J Vasc Access 2015; 16:13-18.
  12. Russo A, Cubas S, Mansilla A, Mansilla S, Olivera E. Variants of the cephalic arch: report of 2 cases. Int J Anatomical Variations 2017; 10(3):64-65.
  13. Lau EW, Liew R, Harris S. An unusual case of the cephalic vein with a supraclavicular course. Pacing Clin Electrophysiol 2007; 30:719-720.
  14. Yeri LA, Houghton EJ, Palmieri B, Flores M, Gergely M, Gómez JE. Cephalic vein. Detail of its anatomy in the deltopectoral triangle. Int J Morphol 2009; 27(4):1037-1042.
  15. Jun ESW, Lun ALY, Nikam M. A rare anatomic variant of a single-conduit supraclavicular cephalic arch draining into the external jugular vein presenting with recurrent arteriovenous fistula stenosis in a hemodialysis patient. J Vasc Surg Cases Innov Tech 2017; 3(1):20-22.
  16. Boghosian M, Cassel K, Hammes M, Funakic B, et al. Hemodynamics in the Cephalic Arch of a Brachiocephalic Fistula. Med Eng Phys 2014; 36(7): 822-830.
  17. Rajan DK, Clark TW, Patel NK, Stavropoulos SW, Simons ME. Prevalence and treatment of cephalic arch stenosis in dysfunctional autogenous hemodialysis fistulas. J Vasc Interv Radiol 2003; 14(5):567-573.
  18. Sivananthan G, Menashe L, Halin NJ. Cephalic arch stenosis in dialysis patients: review of clinical relevance, anatomy, current theories on etiology and management. J Vasc Access 2014; 15:157-162.
  19. Sarala S, Sangeetha B, Mahapatra VS, Nagaraju RD, et al. Cephalic Arch Stenosis: Location of Stenosis in Indian Hemodialysis Patients. Indian J Nephrol 2018; 28(4):273-277.
  20. Oguzkurt L, Tercan F, Yildirim S, Torun D. Central venous stenosis in hemodialysis patients without a previous history of catheter placement. Eur J Radiol 2005; 55:237-242.
  21. Morosetti M, Meloni C, Gandini R, Galderisi C, Pampana E, et al. Late symptomatic venous stenosis in three hemodialysis patients without previous central venous catheters. Artif Organs 2000; 24(12):929-931.
  22. Iimura A, Nakamura Y, Itoh M. Anatomical study of distribution of valves of the cutaneous veins of adult’s limbs. Ann Anat 2003; 185(1):91-95.
  23. Hammes M, Cassel K, Boghosian M, Watson S, Funaki B, Coe F. A cohort study showing correspondence of low wall shear stress and cephalic arch stenosis in brachiocephalic arteriovenous fistula access. J Vasc Acc 2020; 22(3):380-387.
  24. Forneris G, Savio D, Trogolo M, Cecere P. L’arco cefalico: non tutte le stenosi delle fistole sono uguali. Tecniche Nefrol Dial 2011; 23(2):1-5.
  25. Daoui R, Asif A. Cephalic arch stenosis: mechanisms and management strategies. Semin Nephrol 2012; 32(6):538-544.
  26. Remuzzi A, Ene-Iordache B. Novel paradigms for dialysis vascular access: upstream hemodynamics and vascular remodeling in dialysis access stenosis. Clin J Am Soc Nephrol 2013; 8(12):2186-2193.
  27. Wali MA, Eid RA, Dewan M, Al-Homrany MA. Intimal changes in the cephalic vein of renal failure patients before arterio-venous fistula (AVF) construction. J Smooth Muscle Res 2003; 39(4):95-105.
  28. Hammes M, Funaki B, Coe FL. Cephalic arch stenosis in patients with fistula access for hemodialysis: relationship to diabetes and thrombosis. Hemodial Int 2008; 12(1):85-89.
  29. Hammes MS, Boghosian ME, Cassel KW, Funaki B, Coe FL. Characteristic differences in cephalic arch geometry for diabetic and non-diabetic ESRD patients. Nephrol Dial Transplant 2009; 24(7):2190-2194.
  30. Miller GA, Preddie DC, Savransky Y, et al. Use of the Viabahn stent graft for the treatment of recurrent cephalic arch stenosis in hemodialysis accesses. J Vasc Surg 2018; 67:522-528.
  31. Shemesh D, Goldin I, Zaghal I, Berlowitz D, Raveh D, Olsha O. Angioplasty with stent graft versus bare stent for recurrent cephalic arch stenosis in autogenous arteriovenous access for hemodialysis: a prospective randomized clinical trial. J Vasc Surg 2008; 48(6):1524-1531.
  32. D’Cruz RT, Leong SW, Syn N, et al. Endovascular treatment of cephalic arch stenosis in brachiocephalic arteriovenous fistulas: a systematic review and meta-analysis. J Vasc Access 2019; 20:345-355.
  33. Rajan DK, Falk A. A randomized prospective study comparing outcomes of angioplasty versus Viabhan stent-graft placement for cephalic arch stenosis in dysfunctional hemodialysis accesses. J Vasc Interv Radiol 2015; 26:1355-1361.
  34. Sigala F, Sassen R, Kontis E, Kiefhaber LD, Forster R, Mickley V. Surgical treatment of cephalic arch stenosis by central transposition of the cephalic vein. J Vasc Access 2014; 15:272-277.
  35. Feng PC, Lee CH, Hsieh HC, Ko OJ, Yu SY, Li YS. Promising results of stent graft placement for cephalic arch stenosis after repeated failure of angioplasty in patients on hemodialysis J Int Med Res 2020; 48(6).
  36. Huang EP, Li MF, Hsiao CC, Chen HY, Wu PA, Liang HL. Undersized stent graft for treatment of cephalic arch stenosis in arteriovenous hemodialysis access. Sci Rep 2020;10(1):12501.
  37. Sequeira A. Stent migration and bail-out strategies. J Vasc Access 2016; 17(5):380-385.
  38. Patel A, Chan SXJM, Zhuang KD. Recanalisation of an axillary vein occlusion jailed by a migrated cephalic arch stent-graft using the TruePath chronic total occlusion drilling device. CVIR Endovasc 2020; 3(1):7. 
  39. Ankit B, Shenoy S. Assessment and intervention for AV fistula maturation. In: Wilson SE (ed). Vascular Access: Principles and Practice. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2009; pp 234-242.
  40. Shenoy S. Cephalic Arch Stenosis – Surgery is the First Step. Abstracts of the 6th Annual Controversies in Dialysis Access. November 12-13, 2009. San Francisco, California, USA. J Vasc Access 2009 Oct-Dec; 10(4):237-291.
  41. Henry JC, Sachdev U, Hager E, Dillavou E, Yuo T, Makaroun M, Leers SA. Cephalic vein transposition is a durable approach to managing cephalic arch stenosis. J Vasc Access 2017 Nov 25:0. 
  42. Miller GA, Friedman A, Khariton A, Preddie DC, Savransky Y. Access flow reduction and recurrent symptomatic cephalic arch stenosis in brachiocephalic hemodialysis arteriovenous fistulas. J Vasc Access 2010; 11(4):281-287.
  43. Kim Y, Kim HD, Chung BH, Park CW, Yang CW, Kim YS. Clinical predictors of recurrent cephalic arch stenosis and impact of the access flow reduction on the patency rate. J Vasc Access 2021 Apr 10:1129729

Effectiveness of physical exercise on cardiovascular endurance and functional capacity in hemodialysis patients: a systematic review and meta-analysis


Background. Physical exercise is a health intervention in the treatment of numerous chronic diseases. In patients on hemodialysis, physical exercise has been introduced during hemodialysis for different outcomes. Several meta-analyses show uncertainty about the effects.
Objective. Our systematic review and meta-analysis aim at summarizing and evaluating the evidence of the effects of physical exercise on cardiovascular endurance and functional capacity of hemodialysis patients.
Results. Five studies were included in the review (462 patients). Physical exercise brought an improvement in cardiovascular endurance and functional capacity (MD, 95%CI:62.24 [18.71, 105.77], p=0.005), compared to the control group. Most trials were at high risk of bias due to lack of blinding between the patients and the personnel, and between the patients and the outcome assessor.
Conclusions. Physical exercise may have beneficial effect on cardiovascular endurance and functional capacity in hemodialysis patients. The quality of evidence is low and the strength of recommendations is weak for cardiovascular endurance. Future studies should consider a power analysis for an adequate sample size and minimize the risk of sample bias. Further research should provide the additional results required for an acceptable estimate of the effects of physical exercises in hemodialysis patients.

Keywords: physical exercise, hemodialysis, cardiovascular endurance, functional capacity, systematic review, meta-analysis

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


L’esercizio fisico è stato definito nel 2016 dalla GIMBE Foundation come un intervento sanitario efficace nel trattamento di numerose patologie croniche, in quanto determina benefici simili a quelli ottenuti con terapia farmacologica, oltre che nella prevenzione secondaria di patologie coronariche, nella riabilitazione post-ictus, nello scompenso cardiaco e nella prevenzione del diabete [1]. La malattia renale cronica terminale (ESKD) è un problema di salute globale [2] con una stima di 1,2 milioni di decessi nel 2015 e in aumento del 32% [3]. I pazienti in trattamento dialitico sostitutivo mostrano un’associazione tra un basso livello di attività fisica e un elevato rischio di mortalità [4]. Infatti, i livelli di attività fisica di questi pazienti sono influenzati non solo dai vincoli di tempo stabiliti dal trattamento dialitico ma anche dall’invecchiamento, dal declino della funzione fisica, dall’esacerbazione dei sintomi e da altri fattori psico-sociali come la depressione. I pazienti riferiscono anche problematiche all’allenamento fisico quali le numerose comorbilità, la sensazione di essere troppo stanchi, il fiato corto, l’essere troppo deboli, la paura dei sintomi avversi durante l’esercizio fisico, la mancanza di tempo, ed infine le scarse informazioni sulla tipologia di esercizio da svolgere e con i relativi aspetti benefici per la salute [5]. I pazienti con malattia renale allo stadio terminale vivono un progressivo declino della funzione fisica, della forza muscolare e della capacità aerobica con una progressiva atrofia muscolare.

L’introduzione di esercizi fisici personalizzati aiutano i pazienti a sconfiggere la stanchezza muscolare che è considerata la causa principale della riduzione di esercizio fisico che si ripercuote negativamente sul mantenimento di una buona forma fisica [6]. L’effetto benefico dell’esercizio fisico regolare nei pazienti dializzati provoca un adattamento della performance cardiaca e muscolare migliorando la capacità funzionale. Studi clinici sul sistema circolatorio in pazienti in emodialisi hanno documentato che l’esercizio fisico ha effetti favorevoli sulla funzione cardiaca, promuove l’equilibrio del sistema nervoso autonomo cardiaco e contribuisce alla gestione dell’ipertensione arteriosa. Inoltre, previene l’atrofia muscolare e diminuisce la sensazione di esaurimento energetico producendo un effetto positivo sulla fatica correlata al trattamento dialitico [7,8]. Una recente revisione della letteratura ha valutato programmi di esercizi fisici “intra o interdialitici” o programmi di esercizi fisici strutturati a domicilio, in cui gli autori hanno mostrato l’evidenza degli effetti benefici dell’esercizio fisico sulla forma fisica, la mobilità, la qualità della vita correlata alla salute [9]. Anche le linee guida Kidney Disease: Improving Global Outcomes, raccomandano ai pazienti con CKD di eseguire un’attività fisica di intensità moderata, per almeno 30 minuti al giorno, con cinque sessioni a settimana [10]. Purtroppo, l’aderenza a queste indicazioni è piuttosto bassa, ed è rappresentata soltanto dal 6-48% dei pazienti in dialisi [11]. Infine, il potenziamento dell’attività fisica, come per altre patologie croniche, può essere efficace per controllare i disturbi depressivi e del sonno. In particolare, una revisione di 37 studi di pazienti dializzati con sintomi depressivi arruolati in un programma di esercizio moderato ha mostrato un maggior tasso di remissione dei sintomi depressivi ed un minor rischio di ricaduta rispetto ai pazienti trattati con terapia farmacologica [12]. L’esercizio fisico è un intervento che considera la persona in senso globale, avendo caratteristiche di stimolazione fisica e mentale [13].

L’utilizzo dell’attività fisica ha presentato un incremento negli ultimi anni tra i pazienti in emodialisi, e la letteratura mostra diversi RCT che studiano gli effetti dell’attività fisica nei pazienti in emodialisi sugli outcomes resistenza cardiovascolare e capacità funzionale. Questi studi però mostrano divergenze e eterogeneità di vario tipo: 1) diversità nella numerosità campionaria; 2) differenze metodologiche nella conduzione degli RCT; 3) scarsa coerenza tra i risultati negli RCT; 4) una discreta divergenza nella consistenza e precisione nei risultati; 5) ridotta potenza degli studi.

Questa situazione richiede un quadro scientificamente chiaro, statisticamente e clinicamente significativo, sugli effetti dell’attività fisica sulla resistenza cardiovascolare e capacità funzionale nei pazienti in emodialisi. Per rispondere a tale necessità si è proceduto alla strutturazione di una revisione sistematica e meta-analisi, per ottenere un report sintetico e potente in grado di produrre informazioni utili per l’evidence-based medicine.


Materiali, pazienti e metodi


Lo scopo è quello di identificare e riassumere i risultati degli studi randomizzati controllati sull’efficacia degli esercizi fisici sulla resistenza cardiovascolare e capacità funzionale nei pazienti in emodialisi.


L’obiettivo è quello di studiare se gli esercizi fisici possono produrre effetti positivi significativi sulla resistenza cardiovascolare e capacità funzionale nei pazienti in emodialisi.


Questo studio è una revisione sistematica e meta-analisi per indagare gli scopi e gli obiettivi dello studio. La produzione della revisione sistematica e meta-analisi è stata effettuata seguendo la linea guida Preferred Reporting Items for a Systematic review and Meta-Analysis guidelines (PRISMA) [14]. Il PRISMA è formato da una check-list che consiste di 27 items e diagrammi di flusso, il quale permette ai ricercatori di migliorare il reporting di revisioni sistematiche e meta-analisi. È considerato il gold standard in questo campo. Ogni item rappresenta uno step nella metodologia di progettazione e conduzione di uno studio RCT, nonché un sistema rigoroso per la valutazione critica delle revisioni sistematiche [14].

Metodologia di ricerca degli studi

Sei database online sono stati utilizzati per la ricerca degli studi RCT: 1) the Cochrane Central Register of Controlled Trials; 2) PubMed; 3) Medline; 4) Cumulative Index to Nursing and Allied Healt (CINAHL); 5) PsycInfo; 6) Embase. Questi sei database sono considerati dalla comunità scientifica i principali e i più importanti fonti di informazioni per la ricerca degli RCT nel settore biomedico, assistenziale e psicologico.

Per quanto riguarda la strategia di ricerca in Pubmed è stata usata la metodologia “The search MeSH terms”, ovvero l’utilizzo dei termini presenti nel thesaurus del vocabolario controllato dalla National Library of Medicine (NLM). Questi termini sono utilizzati in Pubmed per indicizzare gli articoli nel database è permettono ai ricercatori di procedere con una strategia di ricerca logica, sequenziale e precisa. Per il database Embase è stata utilizzata la metodologia “Emtree terms”, i cui termini vengono assegnati agli articoli del database attraverso un algoritmo per descrivere in maniera uniforme il contenuto dei lavori indicizzati. L’utilizzo di tali termini standard, come in Pubmed, permette una strategia di ricerca degli articoli efficace e precisa. La strategia di ricerca degli studi per l’outcome resistenza cardiovascolare e capacità funzionale è mostrata in Tabella 1. Il periodo temporale per la revisione sistematica degli studi va dal 2009 fino ad Aprile 2021.

Items Cochrane Library


(MeSH descriptor explode Hemodialysis all trees) OR ((Hemodialysis) or (Hemodialysis Patients)


(MeSH descriptor explode Cardiovascular Endurance all trees) OR (Functional Capacity*, Hemodialysis) or (Endurance *, Hemodialysis) or (Hemodialysis*, Cardiovascular Endurance) or (Hemodialysis * Functional Capacity*)) Or (Functional Capacity*, Hemodialysis Patients ) or (Endurance *, Hemodialysis Patients ) or (Hemodialysis Patients *,  Cardiovascular Endurance) or (Hemodialysis Patients * Functional Capacity*))


(MeSH descriptor explode physical exercise all trees) OR ((physical exercise*, Hemodialysis) or (Hemodialysis*, physical exercise) or (physical exercise*, Hemodialysis Patients) or (Hemodialysis Patients*, physical exercise)


(#1 OR #2 OR #3)

Tabella 1: Strategia di ricerca degli studi per l’outcome resistenza cardiovascolare e capacità funzionale

I criteri di inclusione degli studi sono stati: 1) solo disegni di studio RCT, a due gruppi paralleli; 2) popolazione formata da pazienti con insufficienza renale cronica in trattamento emodialitico; 3) il gruppo di intervento formato da pazienti che effettuano specifici esercizi fisici; 4) il gruppo di controllo formato da pazienti in standard care; 5) outcome: resistenza cardiovascolare e capacità funzionale. I criteri di esclusione degli studi sono stati: 1) lingua diversa dall’inglese; 2) presenza solo di abstract senza full-text. Per la rappresentazione grafica delle fasi di identificazione, screening, eleggibilità e inclusione degli studi RCT è stato utilizzato il PRISMA flow-diagram [14].

Metodologia di analisi

Gli studi sono stati selezionati nei database mediante la scansione dei titoli e degli abstract in maniera indipendente da due revisori. Gli studi eleggibili venivano selezionati attraverso il confronto dei singoli lavori con i criteri di inclusione ed esclusione, e successivamente si procedeva ad una valutazione dei full-text, sempre in maniera indipendente. Se i revisori erano in disaccordo nella valutazione, si procedeva ad una discussione metodologica con un terzo revisore. Il numero degli studi esclusi veniva presentato insieme alla relativa motivazione. Per ogni RCT inserito nella valutazione, sono stati estratti i seguenti dati: primo autore, anno, dimensione del campione, dropout (pazienti che hanno abbonato lo studio), età, tipo di esercizio fisico, tipologia del gruppo di controllo, eventi avversi, outcome e tutte le informazioni per la valutazione della qualità metodologica effettuata con il Risk Of Bias (ROB) [15].

Il ROB è lo strumento standard per la valutazione del rischio di bias nel disegno, nella conduzione e nel reporting degli RCT. Questa metodologia permette ai ricercatori di individuare varie tipologie di errori, i bias, i quali inficiano la significatività statistica, clinica e sulla generalizzazione dei risultati. Il bias è definito come errore sistematico o deviazione dalla verità nei risultati o inferenze [15]. Il ROB è strutturato in sette dimensioni, ognuna delle quali ha lo scopo di controllare se i ricercatori hanno commesso errori metodologici nell’RCT: 1) generazione della sequenza randomizzata (random sequence generation), che indica un possibile errore dovuto ad una inadeguata generazione della sequenza di randomizzazione dei pazienti ; 2) oscuramento dell’allocazione (allocation concealment), che indica un possibile errore dovuto ad un inadeguato occultamento della lista di allocazione dei pazienti; 3) cecità dei partecipanti e del personale (blinding of partecipants and personnel), che indica un possibile errore dovuto alla conoscenza da parte dei pazienti e del personale del gruppo di intervento ; 4) cecità dei valutatori degli outcomes (blinding of outcome assessment), che indica un possibile errore dovuto alla conoscenza da parte del professionista che esegue le misurazioni del gruppo di intervento ; 5) incompletezza dei dati sugli outcomes (incomplete outcome data), che indica un possibile errore dovuto alla incompletezza di informazioni; 6) selezione delle informazioni da riportare (selective reporting) ; 7) altre sorgenti di bias (other bias).

Per ogni dimensione, il ROB permette di attribuire tre livelli al rischio di bias, in maniera crescente: 1) low risk, dove la presenza di un errore è improbabile che alteri seriamente i risultati dell’RCT; 2) high risk, dove la presenza di un errore inficia gravemente la nostra fiducia nei risultati mostrati dall’RCT; 3) unclear risk, dove la presenza di un errore fa sorgere qualche dubbio sulla significatività dei risultati dell’RCT. Per agevolare l’interpretazione dei giudizi espressi con il ROB, le valutazioni sono presentate in due precisi grafici: il ROB graph e il ROB summary. il ROB graph descrive il rischio di bias in una scala da 0% a 100% all’interno di ogni RCT. Ogni singolo item rappresenta una delle sette dimensioni metodologiche di un RCT, mentre il tipo di rischio è codificato con il colore verde per il low risk, il giallo per l’unclear risk, e il rosso per l’high risk. Il ROB summary descrive il rischio tra tutti gli RCT. Per ogni studio sono associate le sette dimensioni metodologiche di un RCT, mentre il tipo di giudizio è codificato come nel ROB graph, colore verde per il low risk, giallo per l’unclear risk, e rosso per l’high risk.

Per la valutazione degli errori di pubblicazione (publication bias) è stata utilizzata la metodologia di Begg ed Egger, con la produzione funnel plot. Il funnel plot è un grafico, con due assi cartesiani, che permette una immediata ispezione visiva su questa tipologia di errore. Il grafico ha nell’asse delle x la differenza media (MD), mentre nell’asse delle y l’errore standard (SE), e all’interno una linea tratteggiata che rappresenta il valore dell’effetto stimato con la distribuzione nello spazio grafico degli studi. Attraverso l’ispezione visiva si determina se la distribuzione degli studi è simmetrica oppure no. Se presente una simmetria nella distribuzione degli RCT, abbiamo una bassa probabilità di publication bias [16]. Il pubblication bias riguarda la possibilità di identificare studi inediti o pubblicati nella letteratura grigia, fenomeno che impatta significativamente sull’ampiezza del campione e sulla precisione della stima dell’effetto.

L’imprecisione dei risultati è stata valutata in base all’intervallo di confidenza (95% IC) attorno ai differenti effetti mostrati nei due gruppi con considerazione dell’effetto assoluto. L’IC è collegato all’errore standard (ES), che permette di misurare la precisione con cui la media del campione stima la media della popolazione. Dunque, il valore dell’intervallo di confidenza indica è quel range, quell’ampiezza in cui è contenuto il vero valore con una probabilità del 95%. Per la nostra meta-analisi, l’IC è quell’intervallo in cui cade la vera media prodotta dagli effetti dell’esercizio fisico nella popolazione dei pazienti in emodialisi. L’IC è notevolmente influenzato dalla dimensione del campione: a campioni di ampie dimensioni corrisponde un più ristretto range dell’IC e conseguentemente, sarà più precisa la stima della media, mentre con campioni di ridotte dimensioni corrisponde un IC più ampio, ovvero una maggiore imprecisione nella stima della media [17].

L’inconsistenza dei risultati è stata valutata attraverso la statistica dell’I2-index (range 1-100%) che permette di misurare la magnitudine dell’eterogeneità tra gli studi. L’eterogeneità è prodotta da diversi fattori, come la dimensione e le caratteristiche del campione: età differenti, patologie concomitanti, dosaggi differenti, tipo di intervento, diversi, lunghezze temporali dell’intervento. La presenza di eterogeneità produce un’incertezza sul reale valore e sull’effetto degli esercizi fisici nei pazienti in emodialisi. L’eterogeneità può presentare questo range di valori per I2: a) bassa se meno del 40%; b) moderata tra il 30% e il 60%; c) sostanziale tra il 50% e il 90%; d) considerevole tra il 75% e il 100% [18].

In riferimento alla misura dell’effetto prodotto dall’esercizio fisico sulla resistenza cardiovascolare e capacità funzionale, i dati negli studi erano mostrati come medie e deviazioni standard: questo tipo di esposizione dei risultati ha permesso di utilizzare le differenze medie con un IC del 95% per il calcolo della dimensione dell’effetto.

Per la rappresentazione dei valori effect size dell’esercizio fisico è stato utilizzato il forest plot, una rappresentazione grafica in cui è mostrato l’effect size per ogni RCT, l’effet size medio e i relativi IC al 95%. L’IC è quel range entro cui è probabile che si collochi il vero effect size.

Per l’assunzione statistica della varianza nelle dimensioni degli effetti tra gli RTC, ovvero della presenza dell’eterogeneità tra gli RCT, e per il calcolo della dimensione dell’effetto medio derivato dalla combinazione delle varie dimensioni dell’effetto presenti tra gli studi, è stato utilizzato il modello ad effetti casuali (random-effects model). Questo modello consente di includere nei calcoli dell’effect size l’eventuale eterogeneità, e conseguentemente la stima complessiva presenterà IC più ampi.

I calcoli statistici sono stati eseguiti sui valori delle medie e delle deviazioni standard prodotti dagli esercizi fisici sulla resistenza cardiovascolare e capacità funzionale ai post-test.

Per la definizione della qualità delle evidenze e per la forza delle raccomandazioni a favore o contro l’uso dell’intervento è stata utilizzata la metodologia Grading of Recommendations, Assessment, Development, Evaluation (GRADE) [19]. Il GRADE è considerata la metodologia standard per la produzione di raccomandazioni ad alto impatto sull’evidence based medicine.

La qualità delle evidenze è proporzionale alla fiducia, alla confidenza rispetto alla correttezza della stima dell’effetto (effect size), dunque fino a che punto la stima può essere usata contro o a favore la raccomandazione dell’uso dell’intervento. I giudizi sulla qualità delle evidenze espresse come gradi di fiducia sono: 1) alta; 2) moderata; 3) bassa; 4) molto bassa. Per quanto riguarda la forza della raccomandazione a favore o contro l’uso dell’intervento, essa è espressa in quattro possibili modalità standard in termini di “forti” o “deboli”, “positivi” o “negativi”: 1) raccomandazione positiva forte espressa con la terminologia “Si deve utilizzare”; 2) raccomandazione positiva debole espressa con la terminologia “Si potrebbe utilizzare”; 3) raccomandazione negativa debole espressa con la terminologia “Non si dovrebbe utilizzare”; 4) raccomandazione “negativa forte espressa con la terminologia “Non si deve utilizzare”.

La statistica, tabelle e grafici sono stati prodotti utilizzando il software Cochrane Review Manager 5.4.1 [20].



Caratteristiche degli studi inclusi

La ricerca ha inizialmente identificato 547 articoli dai cinque database elettronici. Il primo step è rappresentato dall’esclusione degli articoli doppi: rimanevano 357 articoli dopo la eliminazione dei duplicati. Questi articoli sono stati sottoposti alla fase di screening, la quale ha prodotto 142 studi. Da questi articoli sono poi stati esclusi 115 studi. Nella fase di eleggibilità sono presenti dunque 27 articoli full-‐text, dai quali sono stati esclusi 22 studi. Pertanto, 5 sono gli studi inclusi nella meta–analisi. Il relativo PRISMA flow diagram per l’outcome resistenza cardiovascolare e capacità funzionale è mostrato nella Figura 1.

Figura 1: PRISMA flow diagram per l’outcome resistenza cardiovascolare e capacità funzionale
Figura 1: PRISMA flow diagram per l’outcome resistenza cardiovascolare e capacità funzionale

In Tabella 2 invece sono mostrate le caratteristiche degli studi per l’outcome resistenza cardiovascolare e capacità funzionale.

Studio Campione Metodo Intervento Controllo Durata Intervento Eventi Avversi

e Drop outs

Outcome Risultati

Anastasia et al. (2016)

Pazienti in emodialisi RCT

n= 27

Esercizi fisici in acqua Standard care 60 minuti, 3 volte alla settimana, per 16 settimane Non sono riportati eventi avversi


2 drop out

6- min walk test


Il gruppo intervento ha mostrato un miglioramento significativo del 28,69% al 6- min walk test (p<0.05) rispetto al gruppo di controllo.

Baggetta et al. (2018)

Pazienti in emodialisi RCT

n= 115

Esercizi fisici attraverso una camminata con passo stabilito tramite metronomo (66 passi/minuto) e a bassa intensità effettuati a domicilio Standard care 2 minuti, con un minuto di riposo, da ripetere per 5 volte al giorno,

per 24 settimane


Non sono riportati eventi avversi


Non sono riportati drop out

6- min walk test





ll gruppo intervento ha mostrato un miglioramento significativo al 6-min walk test (327 ±86 m rispetto alla base line 294 ±74 m; P <0,001), mentre non ci sono stati cambiamenti significativi nel gruppo di controllo (P = 0,98).

Le differenze tra i bracci al 6-min walk era a favore del gruppo intervento (+34,0 m, IC 95%: da 14,4 a 53,5 m; P = 0,001).

Koh et al. (2010) Pazienti in emodialisi RCT

n= 31

Esercizi fisici con cyclette effettuati durante

il trattamento dialitico

Standard care 15 – 45 minuti, 3 volte alla settimana, per 36 settimane Non vengono riportati eventi avversi


17 dropout

6-min walk test ll gruppo intervento ha mostrato un miglioramento significativo rispetto al gruppo di controllo (+14%, 526m; cure abituali, +5%, 452m; p=0.2)
Manfredini et al. (2017) Pazienti in emodialisi RCT

n= 227

Esercizi fisici basati su un programma di camminata personalizzato effettuati a domicilio Standard care 20 minuti, per 6 mesi, 36 settimane Non vengono riportati eventi avversi


69 dropout

6 min-walk test ll gruppo intervento ha mostrato un miglioramento significativo (baseline: 328 ±96 m; a 6 mesi: 367 ±113 m, P <0,001)) rispetto al gruppo di controllo (baseline: 321 ±107 m; 6 mesi: 324 ±116 m, P <0,001).
Yeh et al. (2020) Pazienti in emodialisi RCT

n= 62

Esercizi fisici aerobici con cyclette effettuati dalla seconda ora del trattamento emodialitico Standard care 30 minuti, 3 volte alla settimana,

per 12 settimane.

Vengono segnalati 2 eventi avversi con infortuni accidentali al piede


14 dropout

6-min walk test ll gruppo intervento ha mostrato un miglioramento significativo rispetto al gruppo di controllo (401.97 ±95.9 vs (345.94 ±84, (P <0,001)
Tabella 2: Caratteristiche degli studi per l’outcome resistenza cardiovascolare e capacità funzionale


Sono stati inclusi 5 RCT per la meta-analisi. Il campione era costituito da 462 pazienti in emodialisi, di cui 217 erano nei gruppi sperimentali trattati con gli esercizi fisici (46,96 %) e 245 nei gruppi di controllo (53,04%). Il genere del campione è prevalentemente maschile con 283 pazienti (61,25%). L’età media era di 58,86 anni (DS ±9,84) con un range di 25 anni (48-73). Il body mass index medio, riportato solo in 4 studi, aveva un range di 4,1 (24-28,1), con una media di 26,01 (DS ±1,43). La popolazione era rappresentata da pazienti di quattro nazioni: 27 pazienti dalla Grecia [21], 342 pazienti dall’Italia [22,23], 62 pazienti dalla Cina [24], 31 pazienti dall’Australia [25]).


Dei 217 pazienti nel gruppo di intervento trattato con gli esercizi fisici, i setting di trattamento sono stati i seguenti: a) 45 partecipanti hanno eseguito gli esercizi fisici durante la sessione emodialitica in ospedale; b) 157 partecipanti hanno eseguito gli esercizi fisici a casa; c) 15 pazienti hanno eseguito gli esercizi fisici in ospedale ma non durante la sessione emodialitica. Il tipo di esercizio fisico più utilizzato è stato l’uso della cyclette in due studi su cinque (40%), mentre solo uno prevedeva esercizi fisici in acqua. La sessione degli esercizi fisici aveva una durata media di 35 minuti, con un range temporale che variava da 15 minuti a 60 minuti a sessione, con una frequenza di 3 volte alla settimana, con un range della durata del trattamento da 8 settimane a 24 settimane.

Risk of bias

Le dimensioni del ROB, Incomplete outcome, selective reporting (reporting bias) e Other potential sources of bias mostrano un 100% di low risk. La dimensione Blinding of outcome assessment (detection bias) mostra un 20% di unclear risk e un 80% di high risk. La dimensione Blinding of participants and personnel (performance bias) mostra una percentuale del 100% di high risk. La dimensione Allocation concealment (selection bias) mostra un 60% di unclear risk e 40% di low risk. La dimensione Random sequence generation (selection bias) mostra un 60% di unclear risk e 40% di low risk. Nella Figura 2 è mostrato il ROB graph per l’outcome resistenza cardiovascolare e capacità funzionale.

Figure 2: ROB graph per l’outcome resistenza cardiovascolare e capacità funzionale
Figure 2: ROB graph per l’outcome resistenza cardiovascolare e capacità funzionale

La Figura 3 mostra invece il ROB summary per l’outcome resistenza cardiovascolare e capacità funzionale, il quale evidenzia il tipo di rischio per ogni item del ROB per ogni singolo studio.

Figura 3: ROB summary per l’outcome resistenza cardiovascolare e capacità funzionale
Figura 3: ROB summary per l’outcome resistenza cardiovascolare e capacità funzionale


Sono 5 gli studi sottoposti a meta-analisi in riferimento agli effetti dell’attività fisica sulla resistenza cardiovascolare e capacità funzionale misurata con il 6-mins walk test. I pazienti trattati con gli esercizi fisici erano 217, mentre i pazienti nel gruppo controllo erano 245. Il gruppo trattato con gli esercizi fisici ha mostrato un miglioramento significativo della resistenza cardiovascolare e capacità funzionale rispetto al gruppo di controllo (Differenza Media MD, 95% CI: 62.24 [18.71, 105.77], p=0.005). Era presente una alta eterogeneità tra gli studi (I2 = 77%, p=0.001). La Figura 4 mostra il grafico forest plot per la comparazione tra il gruppo trattato con gli esercizi fisici e quello di controllo rispetto l’outcome resistenza cardiovascolare e capacità funzionale.

Figura 4: Comparazione tra il gruppo trattato con gli esercizi fisici e quello di controllo rispetto l’outcome resistenza cardiovascolare e capacità funzionale
Figura 4: Comparazione tra il gruppo trattato con gli esercizi fisici e quello di controllo rispetto l’outcome resistenza cardiovascolare e capacità funzionale

Pubblicazione selettiva

Il grafico funnel plot per la pubblicazione selettiva (publication bias) dei 5 studi mostra una discreta distribuzione degli studi nello spazio grafico, con gli studi a maggiore dimensione del campione posizionati nella parte alta del funnel plot, una distribuzione degli studi con minore dimensione del campione nella parte bassa del funnel plot, e una assenza di studi nella parte mediana. Solo uno studio era distribuito lontano dall’asse della dimensione dell’effetto medio (effect size) [21], mentre gli altri studi erano distribuiti attorno all’asse. Si evidenzia conseguentemente una leggera asimmetria. Nella Figura 5 è mostrato il funnel plot per il publication bias rispetto l’outcome resistenza cardiovascolare e capacità funzionale.

Figura 5: Funnel plot publication bias rispetto l’outcome resistenza cardiovascolare e capacità funzionale
Figura 5: Funnel plot publication bias rispetto l’outcome resistenza cardiovascolare e capacità funzionale



La qualità delle evidenze in base ai risultati di questa meta-analisi sono da classificare come basse. Dunque, l’affidabilità della stima dell’effetto dell’intervento con gli esercizi fisici è scarsa, con un effetto reale che potrebbe essere sostanzialmente diverso dalla stima.

In riferimento al ROB, gli studi presentano quattro punti critici nella metodologia dell’RCT. Il primo punto è che la maggioranza degli studi non specifica come hanno generato la sequenza di randomizzazione. L’assenza di tale informazione non permette di capire se è una randomizzazione semplice, una randomizzazione a blocchi, una randomizzazione stratificata, una minimizzazione. Non conoscere la metodologia che deve essere usata per generare la sequenza di randomizzazione non permette di capire se il problema rappresentato dalla prevedibilità dell’assegnazione dei pazienti ai due gruppi sia stato eliminato, dunque se sia presente un bias di selezione. La presenza di tale bias potrebbe sovrastimare l’efficacia dell’esercizio fisico nei pazienti in emodialisi. Il secondo punto è che la quasi totalità degli studi non mostra informazioni anche per l’occultamento della lista di randomizzazione. L’assenza di questa informazione non permette di capire se la lista di randomizzazione è rimasta inaccessibile, ovvero non siamo a conoscenza se chi ha arruolato i pazienti conoscesse o non conoscesse a quale gruppo veniva assegnato il paziente successivo. La mancanza di informazioni non permette di capire se in questa fase ci sia stato un sovvertimento della lista di allocazione, il che influenzerebbe i risultati dell’RCT.

Il terzo punto riguarda la cecità del personale e dei partecipanti: tutti gli studi dichiarano che questo step metodologico non è stato rispettato. Questa assenza di cecità è tipica di molti trattamenti non farmacologici: per la natura dell’intervento rappresentato dall’esercizio fisico, non appare possibile. Questo gap metodologico ha introdotto un bias di performance, il quale potrebbe impattare sul vero effetto dell’intervento. Il quarto punto riguarda la cecità dei professionisti che effettuavano le misurazioni sull’outcome. La maggioranza degli studi non ha rispettato questo tipo di cecità. Diversamente dal precedente, questo punto metodologico era più semplice da attuare. Infatti, i ricercatori potevano garantire un doppio blindaggio, informando i professionisti che eseguivano le misurazioni di non chiedere al paziente a quale gruppo appartenesse, e al paziente di non comunicarlo a chi eseguiva la misurazione dell’outcome. Il mancato rispetto di questa metodologia di blindaggio ha introdotto un detection bias, il quale potrebbe influire notevolmente sui risultati degli studi. Il giudizio finale del ROB per quanto riguarda tutti gli studi può essere classificato come rischio non chiaro (unclear risk), perché la maggior parte delle informazioni degli RCT valutati con il ROB presentano un basso (low-risk) o non chiaro (unclear risk) rischio di errore sistematico.

La magnitudo dell’effetto indicato dal posizionamento dell’intervallo di confidenza all’interno del grafico forest plot era a favore del gruppo di intervento, il quale presentava una significatività statistica.

I dati hanno mostrato un certo grado di incoerenza dei risultati tra gli studi, incoerenza esposta da un alto valore di eterogeneità. Questa eterogeneità tra gli studi ha prodotto un’incertezza sul reale valore e impatto dell’effetto degli esercizi fisici nei pazienti in emodialisi. Questa problematica è dovuta soprattutto alla dimensione ridotta del campione e ai pochi studi RCT presenti in letteratura sull’outcome resistenza cardiovascolare e capacità funzionale.

È presente anche una problematica legata alla inconsistenza e imprecisione dei risultati, prodotta dalla presenza di pochi pazienti, pochi eventi è un’ampia differenza nella stima degli effetti prodotti dall’intervento. Ampi range mostrati dagli IC mostrano una bassa precisione nei risultati, e conseguentemente i risultati presentano un certo grado di incertezza. Considerando il modello statistico Optimal Information Size (OIS), il quale permette di calcolare in questo caso la dimensione minima per poter produrre conclusioni affidabili su un intervento, sarebbe stato necessario una dimensione del campione di almeno 400 pazienti (200 per gruppo) per ottenere un campione con una adeguata potenza statistica (α=0.05, β= 0.95 e DS=0.2).

Per quanto riguarda la dimensione della pubblicazione selettiva, gli studi hanno mostrato un basso livello di pubblication bias. Questo è dovuto alla presenza di una lieve asimmetria prodotta da una distribuzione differenziata tra tre studi che si posizionano nella parte superiore a causa di un loro maggiore dimensione del campione (sample size), e due studi che si posizionano nella parte inferiore a causa di sample size nettamente più piccoli, e un’assenza di studi con sample size medi.

Comparando i risultati di questa meta-analisi con le altre meta-analisi internazionali che hanno studiato gli effetti degli esercizi fisici nei pazienti in emodialisi sull’outcome resistenza cardiovascolare e capacità funzionale misurato con il 6 min walk test, i risultati sono stati coerenti. Nella meta-analisi di Sheng e colleghi [22] il gruppo trattato con gli esercizi fisici ha mostrato miglioramenti statisticamente significativi (SMD = 0.58, 95% CI 0.23-0.93, p <0.001) rispetto al gruppo di controllo. Nella meta-analisi di Clarkson e colleghi [23] il gruppo di intervento ha mostrato miglioramenti statisticamente significativi rispetto al gruppo di controllo (ES = 33,64 m, 95% CI 23,74 -43,54, P <0,001). Nella meta-analisi di Gomes e colleghi [24] il gruppo trattato con gli esercizi fisici ha mostrato miglioramenti statisticamente significativi (30.2 m; 95% CI 24.6-35.9, p <0.05) rispetto al gruppo di controllo. Nella meta-analisi di Huang e colleghi [25], il gruppo sottoposto ad esercizio fisico ha mostrato un miglioramento significativo rispetto al gruppo di controllo (SMD 1,01, 95% CI 0,26-1,76, p = 0,008). Gli autori hanno eseguito anche una analisi per sottogruppi, e anche in questo caso i risultati sono a favore del gruppo che eseguiva esercizi aerobici rispetto al gruppo di controllo (SMD= 0.79, 95% CI 0.01-1.56, p = 0.05).

Il paragone con i dati della letteratura, dunque, conferma i dati mostrati nella nostra meta-analisi: l’introduzione dell’attività fisica nei pazienti in emodialisi rappresenta un intervento con importanti potenzialità clinico-assistenziali, che permette inoltre uno sviluppo del self-care e un potenziamento dell’assistenza personalizzata e incentrata sulla globalità psicofisica della persona [26].



In questa meta-analisi, gli effetti degli esercizi fisici nei pazienti in emodialisi hanno prodotto un miglioramento significativo nell’outcome resistenza cardiovascolare e capacità funzionale. Non sono stati trovati significativi problemi di pubblicazione selettiva. Non sono presenti eventi avversi.

La nostra meta-analisi mostra evidenze deboli, con elevata incertezza nella stima dell’effetto: una c’è una probabilità significativamente alta che l’efficacia degli esercizi fisici sia sostanzialmente diversa da quella stimata. La forza della raccomandazione prodotta con questa meta-analisi è una raccomandazione positiva debole per l’outcome resistenza cardiovascolare e capacità funzionale.

Per ridurre il grado di incertezza sulla dimensione dell’effetto prodotto dall’attività fisica nei pazienti in emodialisi sono necessari ulteriori studi RCT, con dimensioni dei campioni notevolmente superiori e una standardizzazione sia nei dosaggi dell’intervento sia sulla lunghezza del trattamento.



  1. Cartabellotta A, Ciuro A, Salvioli S et al. Efficacia dell’esercizio fisico nei pazienti con patologie croniche.Evidence 2016; 8(9):e1000152.
  2. Heiwe S, Tollbäck A, Clyne N. Twelve weeks of exercise training increases muscle function and walking capacity in elderly predialysis patients and healthy subjects. Nephron 2001; 88:48-56.
  3. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 2016; 388:1459-544.
  4. Matsuzawa R, Matsunaga A, Wang G, et al. Habitual physical activity measured by accelerometer and survival in maintenance hemodialysis patients. Clin J Am Soc Nephrol 2012; 7:2010-6.
  5. Kendrick J, Ritchie M, Andrews E. Exercise in individuals with CKD: a focus group study exploring patient attitudes, motivations, and barriers to exercise. Kidney Med 2019; 1:131-8.
  6. Manfredini F, Lamberti N, Malagoni AM, et al. The role of deconditioning in the end-stage renal disease myopathy: Physical exercise improves altered resting muscle oxygen consumption. Am J Nephrol 2015; 41:329-36.
  7. Deligiannis A, D’Alessandro C, Cupisti A. Exercise training in dialysis patients: impact on cardiovascular and skeletal muscle health. Clinical Kidney Journal 2021; 14(S2):ii25–ii33.
  8. Han M, Williams S, Mendoza M, et al. Quantifying physical activity levels and sleep in hemodialysis patients using a commercially available activity tracker. Blood Purif 2016; 41:194-204.
  9. Fang HY, Burrows BT, King AC, Wilund KR. A Comparison of Intradialytic versus Out-of-Clinic Exercise Training Programs for Hemodialysis Patients. Blood Purif 2020; 49:151-7.
  10. Kidney Int Suppl. Management of progression and complications of CKD. Kidney Int Suppl (2011) 2013; 3:73-90.
  11. Dunn AL, Trivedi MH, O’Neal HA. Physical activity dose‐response effects on outcomes of depression and anxiety. Med Sci Sports Exerc 2001; 33(S6):S587-97.
  12. Zhang F, Bai Y, Zhao X, Huang L, Zhang Y, Zhang H. The impact of exercise intervention for patients undergoing hemodialysis on fatigue and quality of life: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99(29):e21394.
  13. Burrai F, Othman S, Brioni E, Silingardi M, Micheluzzi V,Luppi M, Apuzzo L, La Manna G. Effects of virtual reality in patients undergoing dialysis: study protocol. Holistic Nursing Practice 2019; 33(6):327-37.
  14. Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 2009; 6(7):e1000097.
  15. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, et al. GRADE guidelines: 4. Rating the quality of evidence-study limitations (risk of bias). J Clin Epidemiol 2011a; 64(4):407-15.
  16. Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, et al. GRADE guidelines: 5. Rating the quality of evidence-publication bias. J Clin Epidemiol 2011B; 64(12):1277-82.
  17. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, et al. GRADE guidelines 6. Rating the quality of evidence-imprecision. J Clin Epidemiol 2011c; 64(12):1283-93.
  18. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, et al. GRADE guidelines 7. Rating the quality of evidence-inconsistency. J Clin Epidemiol 2011d; 64(12):1294-302.
  19. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, Schünemann HJ, GRADE Working Group. GRADE: An Emerging Consensus on Rating Quality of Evidence and Strength of Recommendations. BMJ 2008; 336(7650):924-6.
  20. Core software cochrane reviews. 2020.
  21. Samara A, Kouidi E, Fountoulakis K, Alexiou S, Deligiannis A. The Effects of Aquatic Exercise on Functional Capacity and Health-related Quality of Life in Hemodialysis Patients. J Clin Exp Nephrol 2016; 1:15.
  22. Sheng K, Zhang P, Chen L, Cheng J, Wu C, Chen J. Intradialytic exercise in hemodialysis patients: a systematic review and meta-analysis. Am J Nephrol 2014; 40(5):478-90.
  23. Clarkson MJ, Bennett PN, Fraser SF, Warmington SA. Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: a systematic review and meta-analysis. Am J Physiol Renal Physiol 2019; 316(5):F856-72.
  24. Gomes Neto M, de Lacerda FFR, Lopes AA, Martinez BP, Saquetto MB. Intradialytic exercise training modalities on physical functioning and health-related quality of life in patients undergoing maintenance hemodialysis: systematic review and meta-analysis. Clin Rehabil 2018; 32(9):1189-202.
  25. Huang M, Lv A, Wang J, Xu N, Ma G, Zhai Z, Zhang B, Gao J, Ni C. Exercise Training and Outcomes in Hemodialysis Patients: Systematic Review and Meta-Analysis. Am J Nephrol 2019; 50(4):240-54.
  26. Burrai F, Wouabi A, Luppi M, Micheluzzi V. A conceptual framework encompassing the psycho-neuro-immuno-endocrinological effects of listening to music in heart failure patients. Holistic Nursing Practice 2018; 32(2):81-89.