Sleep quality of patients in End Stage Renal Disease before and after starting chronic hemodialysis treatment: a longitudinal study

Abstract

Introduction: Sleep disorders are very common in patients with chronic kidney disease, with a prevalence of poor sleep quality of around 40%.
Objectives: The purpose of the study is to compare the sleep quality of ESRD patients before hemodialysis (Pre-HD), three months (Post-HD 1) and six months after the start of treatment (Post-HD 2) through the use of the Pittsburgh Sleep Quality Index (PSQI).
Methods: Patients in ESRD were recruited from the U.O.C. of Nephrology and Dialysis of the Maggiore Hospital in Modica and biographical and anamnestic data were collected. The PSQI was administered in-person at the Pre-HD stage and by telephone re-test at the three- and six-month follow-up.
Results: A total of 71 patients (males=62%, age 68 ± 16) were included. At Pre-HD assessment 93% reported poor sleep quality, the percentage increased to 98% during Post-HD 1 and it partially improved during Post-HD 2 with a prevalence of 95%. Analysis of variance (ANOVA) by repeated measures showed a difference in sleep quality between the three time points.
Conclusions: Sleep quality undergoes important changes during the transition from conservative to hemodialysis patient, highlighting a critical period related to the first three months of treatment. More attention to this phase may improve the patient’s quality of life and reduce the associated risk of mortality.

Keywords: sleep, quality, hemodialysis, life, dialysis

Sorry, this entry is only available in Italian.

Introduzione

Il sonno è un processo fisiologico universale e complesso, essenziale per uno stato di salute soddisfacente ed una buona qualità di vita [1]. Tuttavia, la riduzione delle ore di sonno e di conseguenza una scarsa qualità del sonno stanno diventando sempre più comuni nella popolazione generale [2]. I disturbi del sonno sono problemi frequenti tra i pazienti con malattia renale cronica (CKD) e sono associati al rischio di sviluppare patologie cardiovascolari, diabete, disfunzioni cognitive, eventi ictali e disturbi neuropsichiatrici oltre ad un più alto rischio di mortalità [27]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

SARS-CoV-2 mRNA-based vaccine in hemodialysis patients: a single center-experience

Abstract

Hemodialysis patients have an increased risk of severe complications when infected with SARS-CoV-2. The introduction of the SARS-CoV-2 vaccine represented an important progress in limiting severe forms of the disease.

The focus of our study is the detection of the antibody titer in chronic hemodialysis patients vaccinated with the mRNA vaccine BNT162b2 (Comirnaty, Pfizer-BioNTech).

The antibody titers were measured in 57 hemodialysis patients, vaccinated with 3 doses according to ministerial criteria, by ElectroChemiLuminescence ImmunoAssay (ECLIA). The response was defined as an antibody titer above the dosable level > 0,8 UI/ml. A good antibody response was defined as titer > 250 UI/ml. Infections with SARS-CoV-2 and adverse effects to the vaccine were recorded.

Our study showed in 93% of the hemodialysis patients a dosable antibody response after the second dose of the vaccine. After the third dose of the vaccine, 100% of the hemodialysis patients reached a dosable antibody titer. The vaccine proved to be safe, no serious adverse events were observed. After the third dose, SARS-CoV-2 infections were still observed, but with reduced severity. A vaccination course against SARS-CoV-2 infection with three doses of BNT162b2 in the dialysis patient is associated with a good immune response and protects against severe infections.

Keywords: Hemodialysis patients, SARS-CoV-2, mRNA vaccine BNT162b2, ElectroChemiLuminescence ImmunoAssay (ECLIA)

Sorry, this entry is only available in Italian.

Introduzione

Il primo cluster di polmonite atipica causata da SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), un virus della famiglia dei Coronaviridae, fu riscontrato per la prima volta a Wuhan nel dicembre del 2019. Le manifestazioni cliniche di questa infezione possono variare e presentarsi come forme gravi: polmonite severa fino all’ARDS, insufficienza renale acuta ed eventi tromboembolici [1], oppure avere manifestazioni lievi e ascrivibili a sintomi simil-influenzali. Ad oggi l’infezione da SARS-CoV-2 ha causato in tutto il mondo circa 7 milioni di decessi, mettendo a dura prova i sistemi sanitari [2].

Il paziente emodializzato presenta maggior rischio di sviluppare manifestazioni severe in seguito all’infezione da SARS-CoV-2. Il sistema immunitario del paziente affetto da malattia renale cronica è compromesso tra l’altro per uno stato infiammatorio cronico determinato dalle tossine uremiche [3]. È dimostrato come i pazienti sottoposti a terapia sostitutiva della funzione renale presentino una ridotta risposta anticorpale ai vaccini, come accade per il vaccino per l’epatite B [4].

Lo sviluppo dei vaccini ha determinato un enorme progresso nel corso della pandemia da SARS-CoV-2 [5]. In Italia la prima dose di vaccino anti SARS-CoV-2 è stata somministrata alla fine del dicembre 2020 [6]. Esistono vari tipi di vaccini tra cui: (1) i vaccini a mRNA, (2) i vaccini a vettore virale e (3) i vaccini che utilizzano proteine ricombinanti [7]. Il principio su cui si basano i vaccini a mRNA è la codifica per la proteina Spike del virus, che viene quindi in contatto con le cellule immunitarie del paziente e permette la generazione di una risposta immunitaria. Il vaccino mRNA si è dimostrato sicuro ed efficacie sia nella popolazione generale che nei pazienti emodializzati [8 11]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Impact of remote monitoring in home dialysis: 5-year observation results

Abstract

Dialysis (hemodialysis and peritoneal dialysis) is one of the main therapeutic alternatives for patients with end-stage renal disease. It can be provided in different settings, including the home setting. Published literature shows that home dialysis improves both survival and quality of life, while producing economic advantages. However, there are also significant barriers. Home dialysis patients often report “abandonment issues” by healthcare personnel.

This work aimed at assessing the efficiency of the Doctor Plus® Nephro telemedicine system (adopted in the Nephrology Center of the P.O. G.B. Grassi di Roma-ASL Roma 3) in monitoring patient health status and improving the quality of care. From 2017 to 2022, N=26 patients were included in the analysis (mean duration of observation: 2.3 years). The analysis showed that the program was able to promptly identify possible anomalies of the vital parameters and activate a series of interventions aimed at normalizing the altered profile. During the study period, the system issued N=41,563 alerts (N=1.87 alerts per patient/day), of which N=16,325 (39.3%) were clinical and N=25,238 (60.7%) were missed measurements. These warnings ensured stabilization of the parameters, with clear benefits on patients’ quality of life. A trend of improvement was reported by patients, regarding their perception of the health state (EQ-5D questionnaire; +11.1 points on the VAS scale), the number of hospital admissions (-0.43 accesses/patient in 4 months), and of working days lost (-3.6 days lost in 4 months). Therefore, Doctor Plus® Nephro represents a useful and efficient tool for home dialysis patients’ management.

Keywords: chronic renal insufficiency, dialysis, hemodialysis, Doctor Plus® Nephro, remote monitoring

Sorry, this entry is only available in Italian.

Introduzione

L’insufficienza renale cronica (IRC) è una malattia severa che se non trattata adeguatamente può avere un impatto negativo sulla qualità e l’aspettativa di vita. Storicamente, i pazienti affetti da IRC dispongono di due alternative terapeutiche: il trapianto d’organo, attuabile in una casistica selezionata, e la dialisi (emodialisi e dialisi peritoneale) [13]. A livello globale, le stime del 2010 segnalavano una prevalenza di 2.050 milioni di soggetti dializzati, un numero destinato a raddoppiare, almeno, intorno al 2030 [4]. In Italia, si stima che il numero di pazienti attualmente in dialisi sia pari a circa 45-49.000 [2].

La dialisi può essere erogata in diversi setting, tra cui quello domiciliare. Nonostante questa pratica sia stata introdotta ormai da circa 60 anni, la dialisi domiciliare non è il setting utilizzato più comunemente in Italia, rappresentando circa il 15% [3]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Efficacy of sustained low-efficiency dialysis in the management of topiramate intoxication: case report

Abstract

Guidelines on the use of dialysis treatment in patients with chronic kidney disease (CKD) and TPM (Topiramate) intoxication are controversial. A 51-year-old man with epilepsy and CKD was carried to our emergency department for dysuria and sickness. He chronically assumed TPM 100 mg 3/day. Creatinine level was 2.1 mg/dL, blood urea nitrogen 70 mg/dL, and inflammation indexes were increased.

We started empirical antibiotic therapy and rehydration. The day two he had diarrhea and an acute insurgence of dizziness, confusion, and bicarbonate levels reduction. Brain CT resulted negative for acute events. During the night his mental status worsened, and urinary output results were about 200 mL in 12h. EEG showed desynchronized brain bioelectric activity. Thereafter, there was an episode of seizure and then anuria, hemodynamic instability, and loss of consciousness. Creatinine value was 5.39 mg/dL with a serious metabolic acidosis non-anion gap. We decided to start 6-hours Sustained Low Efficiency Hemo-Dia-Filtration (SLE-HDF). We assisted in the recovery of consciousness and later in the improvement of kidney function after 4 hours of treatment. TPM levels before SLE-HDF resulted in 123.1 µg/mL. At the end of treatment resulted in 30 µg/mL. To our knowledge, this is the first report of TPM involuntary intoxication in a patient affected by CKD who survived such a high TPM concentration treated with renal replacement therapy. SLE-HDF resulted in moderate elimination of TPM and acidemia resolution, continuous monitoring patient’s vital parameters in relation to his hemodynamic instability, since blood flow and dialysate flow are lower than conventional hemodialysis.

Keywords: Intoxication, Sustained Low-efficiency dialysis, hemodialysis, metabolic acidosis, continuous venovenous haemofiltration

Introduction

Topiramate (TPM) is an anticonvulsant agent indicated according to American Academy of Neurology (AAN) guidelines as an adjunct therapy for the treatment of focal and mixed seizures, Lennox-Gastaut syndrome, and as monotherapy for refractory generalized tonic-clonic seizures in adults and children. At steady-state concentration, renal clearance of this drug is 1.02 L/h and its elimination half-life (T1/2) varies from 20 to 30 h. In all species, TPM is predominantly excreted unchanged in the urine [1].

Guidelines on the use of dialysis treatment in patients with chronic kidney disease and topiramate intoxication are controversial. We describe a case of topiramate overdose treated with sustained low-efficiency dialysis (SLED). 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Thrombophilic study in dialysis patients

Abstract

Chronic kidney disease is a complex phenotype that results from the association of underlying kidney disease and environmental and genetic factors. In addition to the traditional risk factors, genetic factors are involved in the etiology of renal disease, including single nucleotide polymorphisms which could account for the increased mortality from cardiovascular disease of our hemodialysis patients. The genes that influence the development and rate of progression of kidney disease deserve to be better defined. We have evaluated the alterations of thrombophilia genes in hemodialysis patients and in blood donors and we have compared the results obtained. The objective of the present study is to identify biomarkers of morbidity and mortality, which allow us to identify patients with chronic kidney disease at high risk, thanks to which it is possible to implement accurate therapeutic strategies and preventive strategies that have the objective of intensifying controls in these patients.

Keywords: single nucleotide polymorphisms, thrombophilia panel, biomarkers of mortality, omic sciences, chronic kidney disease, hemodialysis

Sorry, this entry is only available in Italian.

Introduzione

La malattia renale cronica è definita come una progressiva ed irreversibile perdita della funzione renale, evidenziata con un GFR stimato al di sotto di 60 ml/min/1,73 m2, con la persistente presenza di manifestazioni che sono suggestive di danno renale (proteinuria, sedimento urinario attivo, danni istologici, anormalità strutturali o storia di trapianto renale) o con entrambi, presenti da più di tre mesi [1].

La malattia renale cronica è da sempre considerata un problema di salute pubblica mondiale che richiede un’importante assistenza e significativi oneri economici. È noto che ad una riduzione del GFR fa seguito un incremento degli eventi cardiovascolari, delle ospedalizzazioni e complessivamente della mortalità [2]. La prevalenza della malattia renale cronica varia a seconda delle aree geografiche e per lo più varia tra il 10% e il 20 %, percentuale che aumenta gradualmente soprattutto nei paesi sviluppati [3, 4]. Questo trend potrebbe essere attribuito all’aumentato invecchiamento della popolazione a livello globale [5], oltre che all’incremento di patologie come il diabete mellito, l’ipertensione e l’obesità [6]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

High-flow fistula: a problem not easy to handle

Abstract

High-output cardiac failure is a well-known phenomenon of high-flow fistula in hemodialysis patients. The definition of “high flow” is varied and almost always connected to proximal arteriovenous fistulas (AVF).
High flow access is a condition in which hemodynamics is affected by a greater rate of blood flow required for hemodialysis and this can compromise circulatory dynamics, particularly in the elderly in the context of pre-existing heart disease.
High access flow is associated with complications like high output heart failure, pulmonary hypertension, massively dilated fistula, central vein stenosis, dialysis associated steal syndrome or distal hypoperfusion ischemic syndrome.
Although there is no single agreement about the values of AVF flow volume, nor about the definition of high‐flow AVF, there is no doubt that AVF flow should be considered too high if signs of cardiac failure develop.
The exact threshold for defining high flow access has not been validated or universally accepted by the guidelines, although a vascular access flow rate of 1 to 1.5 l/min has been suggested.
Moreover, even lower values may be indicative of relatively excessive blood flow, depending on the patient’s condition.
The pathophysiology contributing to this disease process is the shunting of blood from the high-resistance arterial system into the lower resistance venous system, increasing the venous return up to cardiac failure.
Accurate and well-timed diagnosis of high flow arteriovenous hemodynamics by monitoring of blood flow of fistula and cardiac function is required in order to stop this process prior to cardiac failure.
We present two cases of patients with high flow arteriovenous fistula with a review of the literature.

Keywords: Blood flow, cardiac failure, vascular access, hemodialysis

Sorry, this entry is only available in Italian.

Introduzione

Una insufficienza cardiaca ad alta gittata può essere la conseguenza di svariate condizioni patologiche quali anemia, sepsi, ipertiroidismo, beri beri. Un’altra causa nota, in alcuni pazienti emodializzati, può essere la presenza di una fistola arterovenosa (FAV) in relazione al notevole aumento del flusso dell’accesso vascolare con conseguente eccessivo carico di lavoro cardiaco, insufficienza cardiaca congestizia ed ipertensione polmonare [13].

Come è ben noto, la sindrome uremica è associata ad un aumento della morbilità e mortalità cardiovascolare; il rischio di morte in un paziente emodializzato con insufficienza cardiaca è del 33%, 46% e 57% rispettivamente a 12, 24 e 36 mesi dopo l’inizio della terapia dialitica secondo i dati del Renal Data System statunitense [4]. Un’insufficienza cardiaca congestizia può manifestarsi nel 25-50% dei pazienti emodializzati, in particolare nei pazienti con “fistola artero-venosa ad alto flusso”. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Impact of dialysis on the acid-base balance

Abstract

In patients on hemodialysis, the reduced alkali urinary loss makes metabolic acidosis less severe. Unexpected is the large occurrence of respiratory alkalosis and acidosis.
During the therapy, the convective/diffusive inward fluxes of CO2 and bicarbonate and the loss of organic anions affect acid-base homeostasis.
In bicarbonate-dialysis, the neutralization of acids by bicarbonate and gain of gaseous CO from the dialysate cause an increase of CO2 content in the body water, which requires an increase in lung ventilation (>10%) to prevent hypercapnia. In on-line hemodiafiltration, the infusate drags additional CO2 into bloodstream, while in acetate – free biofiltration the dialysate is CO2 – free and this prevents any addition of CO2.
Bicarbonate and acetate diffuse into extracellular fluid according to their bath-to-blood concentration gradients. The initially large bicarbonate flux decreases rapidly because of the rapid increase in blood concentration. The smallest acetate flux is instead constant with time providing a constant source of alkali.
Rapid alkalinization elicits H+ mobilization that consumes most of the bicarbonate added. Some H+ are originated by back-titration of body buffers, but others are originated by new organic acid production, a maladaptive event that wastes metabolic energy. In addition, organic anions diffuse into dialysate causing a substantial increase in net acid production.
A novel dialysis protocol prescribes a low initial bath bicarbonate concentration and a stepwise increase during the therapy. Such a staircase protocol ensures a smoother increase of blood bicarbonate concentration avoiding the initial rapid growth and reducing the rate of organic acid production, thus making the treatment more effective.

Keywords: Acid-base, Bicarbonate, Carbon Dioxide, Dialysate, Hemodialysis

Sorry, this entry is only available in Italian.

Introduzione

L’acidosi metabolica compare negli stadi precoci dell’insufficienza renale cronica e progredisce con la severità della malattia, ne accelera la progressione, e contribuisce all’incremento della mortalità [1]. La ritenzione degli idrogenioni (H+) inizia già nello stadio 2, con pH e concentrazione sierica di bicarbonato ([HCO3]) ancora nella norma [2]. A partire dallo stadio 3, la compromissione del riassorbimento tubulare del bicarbonato causa acidosi ipercloremica. In presenza di più severa compromissione funzionale, il difetto di escrezione degli H+ degli acidi fissi e la progressiva riduzione della filtrazione glomerulare determinano acidosi a elevato anion gap [3, 4]. Poco è noto sulla presenza di altri disturbi acido-base, possibile conseguenza delle molteplici comorbidità, perché quasi tutte le conoscenze sono limitate alla [HCO3] e sono pochi i dati relativi a pH e pressione parziale di CO2 (pCO2).

Con l’inizio del trattamento emodialitico si assiste ad un sovvertimento dell’omeostasi acido-base, non più incentrata sul pH dei fluidi, ma regolata dai principi fisici della diffusione e della convezione [5]. La contrazione della diuresi mitiga la perdita urinaria degli anioni degli acidi organici e ciò riduce il carico di H+ nel paziente uremico, ma proprio la perdita diffusiva di tali anioni nel dialisato diventa la principale componente della produzione acida endogena nel paziente in trattamento emodialitico [6]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Triple stenosis of brachio-basilic arteriovenous fistula: percutaneous transluminal angioplasty utility, case report and literature review

Abstract

The major haemodialysis arteriovenous fistula (AVF) complication is stenotic disease. It is represented by a reduction of the arterial or venous caliper forming the AVF. Most frequently it is located in the juxta- anastomotic region of the venous segment.
There are a lot of mechanisms responsible for the stenosis formation; some are correlated by the shear stress in the wall of venous tract with a lot of biochemical mechanisms, others are associated with the repetition of venipuncture during haemodialisys treatment
It is recommended that each dialysis center activate an AVF monitoring program capable of identifying and treating stenosis.
We describe a clinical case of a young woman with a multiple stenosis disease of a brachio-basilical transposed AVF.

Keywords: AVF, haemodialysis, stenosis, PTA, ecoguided PTA

Sorry, this entry is only available in Italian.

Introduzione

Tra le complicanze della fistola arterovenosa (FAV) per emodialisi (Tabella I), vanno annoverate le stenosi; trattasi di una complicanza strutturale a cui è esposta la FAV. Le stenosi delle FAV native possono interessare sia il versante venoso che quello arterioso. L’incidenza di stenosi coinvolgenti il sistema venoso della FAV risulta essere di gran lunga maggiore rispetto a quello arterioso [15]. Le stenosi sono senza dubbio la causa più frequente di failure della fistola arterovenosa; la caduta di portata di cui sono responsabili riduce l’efficienza dialitica con calo del Kt/V, inoltre sono causa di un incremento della pressione negativa nel circuito, ostacolano il ritorno venoso, favoriscono il ricircolo [6, 7].

COMPLICANZE STRUTTURALI COMPLICANZE EMODINAMICHE
Ridotto/assente inflow (stenosi vaso afferente) Ridotta portata della FAV per perdita dell’inflow
Ridotto/assente outflow (stenosi del vaso efferente) Sindrome da furto (Steal syndrome)
Stenosi della porzione centrale del vaso efferente Presenza di collaterali venose che riducono la portata
Ematoma Scompenso cardiaco congestizio
Aneurisma Edema del braccio
Pseudoaneurisma
Calcificazioni
Tabella I: complicanze della FAV (Meola M: Ecografia clinica in nefrologia. Fistola arterovenosa, p 1308. Meola M. Eureka editore 2015).

Alcuni autori hanno classificato le stenosi del versante venoso della FAV in iuxta-anastomotiche o distali, a seconda che la sede della stenosi sia rispettivamente entro o oltre i 2 cm dall’anastomosi; anche se per Tessitore [8] vanno considerate tali anche le stenosi entro i 5 cm dall’anastomosi; questo sottotipo è responsabile dell’80 % delle stenosi.

Altra possibile classificazione riguardante la sede delle stenosi prevede la distinzione di stenosi centrali, iuxta-anastomotiche e stenosi riguardanti il tratto di vena compreso tra queste due regioni. Infine, da un punto di vista emodinamico, possiamo classificarle in stenosi dell’inflow e stenosi dell’outflow. Le prime determinano, da un punto di vista emodinamico, una riduzione della portata della fistola e riguardano le stenosi arteriose e le stenosi venose iuxta-anastomotiche; le seconde, invece, sono le stenosi venose distali che determinano un ostacolo al deflusso venoso anche in presenza di una valida portata [9].

La sede più frequente di stenosi è la porzione iuxta-anastomotica [1013], ma sono frequenti anche le stenosi della porzione centrale della vena efferente sede di venopuntura. Possiamo definire critica una stenosi quando la riduzione del diametro del lume vasale è superiore al 50 % rispetto a quello misurato nella porzione prestenotica. Ma tale definizione non può prescindere dalle alterazioni emodinamiche causate dalla stenosi: una riduzione della portata, l’aumento degli indici di resistenza, l’incremento della velocità di picco sistolico in corrispondenza della stenosi e, non ultima, l’inadeguata efficienza dialitica che accompagnano la stenosi [14].

La FAV è un “bene prezioso” per il paziente emodializzato; il patrimonio vascolare non è illimitato e il ricorso al catetere venoso centrale dovrebbe essere una seconda scelta. La stenosi deve essere considerata come l’iniziale processo di chiusura della FAV: se precocemente riconosciuta e trattata può evitare la chiusura definitiva dell’accesso vascolare.

 

Case report

Descriviamo il caso di una paziente di 54 anni, ipertesa, uremica in trattamento emodialitico da 3 anni, affetta da sindrome Nail-Patella. All’avvio al trattamento veniva confezionata una FAV radio-cefalica distale all’avambraccio sinistro previo mapping preoperatorio dell’arto che evidenziava una vena cefalica di 2 mm che incrementava il suo diametro a più del 50% dopo posizionamento del laccio emostatico; arteria radiale di 2,2 mm con portata di 15 ml/m e un test dell’iperemia reattiva che mostrava una caduta delle resistenze e incremento della portata.

Dopo 6 mesi la FAV andava incontro a failure, per cui veniva posizionato un catetere venoso centrale definitivo in vena giugulare destra. Allestita una nuova FAV distale radio-cefalica a carico dell’avambraccio di destra, quest’ultima andava incontro ad early failure nonostante il mapping preoperatorio mostrasse vasi aggredibili con buona compliance vascolare. Veniva quindi allestita una FAV prossimale brachio-basilica a carico del braccio sinistro con trasposizione della basilica. La portata della fistola, calcolata sull’arteria brachiale, dopo 7 giorni dall’allestimento era pari a 765 ml/m e incrementava a 1130 ml/m dopo 30 giorni.

Durante i trattamenti emodialitici si riscontravano pressioni venose elevate nell’accesso vascolare e pressioni arteriose eccessivamente negative. Veniva intrapreso quindi un follow-up ecografico e veniva posticipata la rimozione del CVC definitivo. Un controllo a distanza di 8 mesi mostrava una caduta della portata a 880 ml/m. L’accesso vascolare, monitorato nei mesi successivi, mostrava una progressiva riduzione di portata: 760 ml/m dopo 10 mesi dall’allestimento; 600 ml/m dopo 13 mesi. Giunge alla nostra osservazione a marzo 2022. L’esame doppler metteva in evidenza una portata pari a 465 ml/min. IR pari a 0,5 e l’evidenza di 3 stenosi lungo il decorso della vena basilica trasposta. Di queste, una si presentava in regione iuxta-anastomotica, con velocità di picco sistolico (PSV) calcolata in corrispondenza della stenosi pari a 350 cm/sec e le due restanti in regione distale con PSV rispettivamente di 617 cm/sec e 387 cm/sec. Si concludeva dunque per FAV malfunzionante con patologia stenotica multipla, con impatto emodinamico significativo. Per difficoltà operativa nel reperire un accesso unico che consentisse di trattare tutte e tre le stenosi contemporaneamente, veniva pianificato un trattamento di PTA in due tempi:

  1. PTA delle due stenosi distali con approccio anterogrado.
  2. PTA della stenosi iuxta-anastomotica con approccio retrogrado.

Veniva eseguita una prima procedura di PTA ecoguidata con balloon non compliante ad alta pressione delle dimensioni di 6 x 30 mm gonfiato fino a 24 atmosfere con completa distensione delle due lesioni stenotiche. Immediatamente dopo la procedura la portata dell’accesso vascolare risultava essere di 1100 ml/min con IR pari a 0,42 (Figure 1-5).

Figura 1: B-Mode. Scansione longitudinale su vena basilica efferente la FAV. Si nota esteso tratto stenotico.
Figura 1: B-Mode. Scansione longitudinale su vena basilica efferente la FAV. Si nota esteso tratto stenotico.
Figura 2: Color-doppler. Portata calcolata su arteria brachiale: 465ml/min; IR 0.5.
Figura 2: Color-doppler. Portata calcolata su arteria brachiale: 465ml/min; IR 0.5.
B-Mode. Gonfiaggio del pallone per angioplastica nel lume
Figura 3: B-Mode. Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico. Si notano due incisure disegnate sul profilo del pallone, sede di maggiore resistenza della stenosi, che verranno completamente sfiancate al raggiungimento di 24 atmosfere.
B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Figura 4: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura.
Figura 5: Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura. Si nota un incremento della portata a 1094 ml/min con riduzione indici di resistenza a 0,41.

A distanza di 15 giorni veniva eseguita seconda proceduta di PTA ecoguidata su stenosi iuxta-anastomotica. Veniva utilizzato balloon non compliante ad alta pressione delle dimensioni di 6 x 30 mm gonfiato fino a 24 atmosfere con completa risoluzione della stenosi (Figure 6-10).

Scansione longitudinale su vena basilica efferente la FAV in corrispondenza della regione iuxta-anastomotica stenotica.
Figura 6: B-Mode. Scansione longitudinale su vena basilica efferente la FAV in corrispondenza della regione iuxta-anastomotica stenotica.
Figura 7: Color-doppler. Portata calcolata su arteria brachiale: 920 ml/min con IR 0.49.
Figura 7: Color-doppler. Portata calcolata su arteria brachiale: 920 ml/min con IR 0.49.
Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico.
Figura 8: B-Mode. Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico. Pallone completamente disteso, gonfiato a 24 atmosfere.
Figura 9: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Figura 9: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Portata calcolata su arteria brachiale successivamente alla procedura
Figura 10: Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura. Si nota un incremento della portata a 1756 ml/min con riduzione indici di resistenza a 0,37.

La portata dell’accesso al termine della procedura risultava pari a 1600 ml/min con IR pari a 0,37. Contestualmente nella stessa seduta operatoria veniva rimosso CVC giugulare definitivo destro. In Figura 11 è riportato l’andamento della portata della FAV dal suo allestimento fino all’espletamento dell’ultima procedura descritta.

Figura 11: Il grafico, portata/tempo, mostra l’andamento del flusso prima e dopo le due procedure di angioplastica.
Figura 11: Il grafico, portata/tempo, mostra l’andamento del flusso prima e dopo le due procedure di angioplastica.

 

Discussione

Il primum movens del processo di stenosi è rappresentato dall’iperplasia neointimale, a sua volta legata ad un incremento dello shear-stress di parete per l’imponente incremento di flusso cui è sottoposto il vaso dopo la creazione dell’anastomosi. Concorrono, al processo di stenosi, anche lo stato pro infiammatorio proprio della malattia renale cronica, le venipunture ripetute, lo stress chirurgico, fattori genetici. Tutti questi elementi sono responsabili del rimodellamento della parete vascolare e di una anomala proliferazione [15] e migrazione delle cellule muscolari lisce mediata da una serie di fattori: citochine, chemochine, ossido di azoto, endotelina, osteopontina, apolipoproteina [10, 16-21].

È inoltre dimostrata una migrazione di fibroblasti dall’avventizia all’intima e la loro trasformazione in miofibroblati che contribuisce in maniera significativa alla riduzione del lume vascolare [2228]. Alcuni studi hanno incentrato l’attenzione sulla natura delle cellule che costituiscono la neointima: la loro identificazione pone infatti le basi per azioni terapeutiche volte a inibire il processo di proliferazione neointimale. In particolare la recente evidenza di fibroblasti migrati dall’avventizia all’intima e trasformati in miofibroblasti ha sottolineato il ruolo fondamentale di queste cellule nella produzione di matrice extracellulare della neointima. Tutto questo rimarca l’importanza dell’avventizia come attore in prima linea nel processo di iperplasia neointimale e la pone al centro dell’attenzione di interventi terapeutici che mirino al controllo di tutti questi elementi cellulari (fibroblasti, miofibroblasti, cellule muscolari lisce). Da ciò la proposta di alcuni autori di utilizzare farmaci antiproliferativi ad azione perivascolare [29-31]. Non ultima la necessità di una corretta manipolazione chirurgica intraoperatoria finalizzata a preservare l’avventizia e i vasa vasorum [29]; è dimostrato infatti che il ridotto traumatismo della parete vasale riduce in maniera significativa l’iperplasia neointimale [32].

Il malfunzionamento dell’accesso vascolare è una temuta complicanza del paziente in trattamento emodialitico: la sorveglianza clinica e il monitoraggio strumentale della FAV tendono a scongiurare questo pericolo. Negli anni si sono sviluppati programmi di sorveglianza clinico/strumentale spesso dissociati in quanto il nefrologo non sempre è il fulcro di questa sorveglianza, demandando al chirurgo vascolare o al radiologo la parte tecnico/strumentale. Nel nostro centro da tempo è stata posta l’attenzione a questo tipo di problematica e un team dedicato, oltre ad effettuare una sorveglianza clinica (esame ispettivo della FAV, Kt/V, ricircolo dell’accesso, monitoraggio delle pressioni venose ed arteriose intradialitiche), provvede al monitoraggio ecografico delle FAV a rischio di chiusura. L’ecocolordoppler infatti va ritenuto l’unica indagine capace di fornire informazioni strutturali e funzionali sull’accesso vascolare [33-36]; la metodica, infatti, oltre ad identificare deficit funzionali, mediante la valutazione della portata [3547], è in grado di individuare stenosi e trombosi da correggere mediante interventi di angioplastica, anch’essi ecoguidati, con i quali lo stesso nefrologo può cimentarsi.

Va comunque precisato che i programmi di sorveglianza degli accessi vascolari a tutt’oggi sono oggetto di discussione, in quanto lì dove studi osservazionali indicano che la correzione preventiva delle stenosi riduca la percentuale di fallimento dell’accesso vascolare [47] e le stesse linee guida NKF-K-DOQI [48] consigliano di sottoporre gli emodializzati portatori di FAV ad un programma di sorveglianza dell’accesso vascolare, ci sono pareri discordanti che attribuiscono una scarsa efficacia a detti programmi [4951].

I dati presenti in letteratura mostrano come vi sia una tendenza alla recidiva della stenosi dopo trattamento mediante PTA.

Le varie casistiche identificano una pervietà della FAV tra il 50-60% ad un anno dal trattamento. L’ipotesi eziopatogenetica è identificata nella iperplasia reattiva dei miociti della parete del vaso sottoposto a stretching durante la procedura con conseguente reazione sclerotico-cicatriziale e riformazione della stenosi [52]. A tal ragione vengono usati con maggiore frequenza balloon medicati (DCB), ricoperti da farmaci antiproliferativi come il Placitaxel, che rilasciati nella parete vascolare durante la dilatazione della stenosi vanno ad inibire la proliferazione reattiva. Grazie all’utilizzo di tali dispositivi si è ottenuta una pervietà primaria maggiore rispetto ai ballon convenzionali: fino all’80% a 6 mesi [53].

 

Conclusioni

La FAV va considerata l’accesso vascolare di prima scelta, la sua sopravvivenza deve essere garantita con l’utilizzo di tutti i mezzi a nostra disposizione: osservazione clinica e strumentale, monitoraggio intradialitico, accuratezza nella venopuntura. Le stenosi rappresentano la causa più frequente di malfunzionamento della FAV, se precocemente riconosciute e trattate l’accesso vascolare “sopravvive”. È nostra esperienza che la restenosi di una FAV, sottoposta ad angioplastica, è una evenienza possibile, ma proprio la sorveglianza di queste FAV a rischio ci consente di reintervenire concedendo all’accesso vascolare un ulteriore periodo di utilizzo.

 

Bibliografia

  1. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Update 2006. Am J Kidney Dis 2006; 48 (suppl 1): 5248-73. https://doi.org/10.1053/j.ajkd.2006.03.010.
  2. Beathard GA, Arnold P, Jackson J, Litchfield T; Physician Operators Forum of RMS Lifeline. Aggressive treatment of early fistula failure. Kidney Int. 2003 Oct;64(4):1487-94. https://doi.org/1046/j.1523-1755.2003.00210.x.
  3. Marcello Napoli, Raffaele Prudenzano, Francesco Russo, Assunta Lucia Antonaci, Maria Aprile, Erasmo Buongiorno. Juxta-anastomotic stenosis of native arteriovenous fistulas: surgical treatment versus percutaneous transluminal angioplasty. J Vasc Access. 2010 Oct-Dec;11(4):346-51. https://doi.org/5301/jva.2010.5968.
  4. Roy-Chaudhury P. PTA versus surgery for juxta-anastomotic stenosis. Acta of 5th Annual Controversies in Dialisys Access. Washington, DC USA October 2008.  J  Vasc Access 2008; 9: 185.
  5. Clark Timothy W I, Hirsch David A, Jindal Kailash J, Veugelers Paul J, LeBlanc John. Outcome and prognostic factors of restenosis after percutaneous treatment of native hemodialysis fistulas. J Vasc Interv Radiol. 2002 Jan;13(1):51-9. https://doi.org/1016/s1051-0443(07)60009-8.
  6. Aruny JE, Lewis CA, Cardella JF, Cole PE et al. Quality improvement guidelines for percutaneous management of the thrombosed or dysfunctional dialysis access. Standards of Practice Committee of the Society of Cardiovascular & Interventional Radiology. J Vasc Interv Radiol. 1999 Apr;10(4):491-8. https://doi.org/1016/s1051-0443(99)70071-0.
  7. National Kidney Foundation: K/DOQI Clinical practice guidelines for vascular access 2006 Am J Kidney Dis . 2006 Jul;48 Suppl 1:S176-247. https://doi.org/10.1053/j.ajkd.2006.04.029.
  8. Tessitore Nicola, Mansueto Giancarlo, et al. Endovascular versus surgical preemptive repair of forearm arteriovenous fistula juxta-anastomotic stenosis: analysis of data collected prospectively from 1999 to 2004. Clin J Am Soc Nephrol. 2006 May;1(3):448-54. https://doi.org/2215/CJN.01351005.
  9. Dacian-Călin Tirinescu et Al. Ultrasonographic diagnosis of stenosis of native arteriovenous fistulas in haemodialysis patients. Med Ultrason. 2016 Sep;18(3):332-8. https://doi.org/11152/mu.2013.2066.183.fis.
  10. Rajan DK, Bunston S, Misra S, Pinto R, Lok CE. Dysfunctional autogenous hemodialysis fistulas: outcomes after angioplasty–are there clinical predictors of patency? Radiology. 2004 Aug;232(2):508-15. https://doi.org/1148/radiol.2322030714.
  11. Clark TW, Hirsch DA, Jindal KJ, Veugelers PJ, LeBlanc J. Outcome and prognostic factors of restenosis after percutaneous treatment of native hemodialysis fistulas. J Vasc Interv Radiol. 2002 Jan;13(1):51-9. https://doi.org/10.1016/s1051-0443(07)60009-8.
  12. Giovanni Lipari1, Nicola Tessitore, Albino Poli, Valeria Bedogna, Antonella Impedovo, Antonio Lupo, Elda Baggio. Outcomes of surgical revision of stenosed and thrombosed forearm arteriovenous fistulae for haemodialysis. Nephrol Dial Transplant 2007 Sep;22(9):2605-12. https://doi.org/10.1093/ndt/gfm239.
  1. Allon M, Robbin ML. Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. Kidney Int. 2002 Oct;62(4):1109-24. https://doi.org/10.1111/j.1523-1755.2002.kid551.x.
  2. Mario Meola, Antonio Marciello, Gianfranco Di Salle , Ilaria Petrucci. Ultrasound evaluation of access complications: Thrombosis, aneurysms, pseudoaneurysms and infections. J Vasc Access. 2021 Nov;22(1_suppl):71-83. https://doi.org/10.1177/11297298211018062.
  3. Chang CJ, Ko PJ, Hsu LA, et al. Highly increased cell proliferation activity in the restenotichemodialysis vascular access after percutaneous transluminal angioplasty: implication in prevention of restenosis. Am J Kidney Dis 2004;43:74–84. https://doi.org/10.1053/j.ajkd.2003.09.015.
  4. Lawrence Vascular Access for Hemodialysis in adult. Chap 4.pp 49-78. of dialysis therapy. Nissenson AR, Fine RN Eds. 4th edition: Saunders-Elsevier Philadelphia, 2008
  5. Asif A, Roy-Chaudhury P, Beathard GA Early arteriovenous fistula failure: a logical proposal for when and how to intervene. Clin J Am Soc Nephrol. 2006 Mar;1(2):332-9. https://doi.org/10.2215/CJN.00850805.
  6. Moreno PR, Fallon JT, Murcia AM, Leon MN, Simosa H, Fuster V, Palacios. Tissue characteristics of restenosis after percutaneous transluminal coronary angioplasty in diabetic patients.J Am Coll Cardiol. 1999 Oct;34(4):1045-9. https://doi.org/10.1016/s0735-1097(99)00338-1.
  7. Megan Nguyen, Finosh G Thankam, Devendra K Agrawal. Sterile inflammation in the pathogenesis of maturation failure of arteriovenous fistula. J Mol Med (Berl). 2021 Jun;99(6):729-741. https://doi.org/10.1007/s00109-021-02056-4.
  8. Jinjing Zhao, Frances L Jourd’heuil, et al. Dual Function for Mature Vascular Smooth Muscle Cells During Arteriovenous Fistula Remodeling. J Am Heart Assoc. 2017 Mar 30;6(4):e004891. https://doi.org/10.1161/JAHA.116.004891.
  9. Chun-Yu Wong, Margreet R de Vries, Yang Wang, Joost R van der Vorst, et al. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg. 2014 Jan;59(1):192-201.e1. https://doi.org/1016/j.jvs.2013.02.242.
  10. Honda HM, T Hsiai,  Wortham C M, M Chen, H Lin, M Navab, L L Demer. A complex flow pattern of low shear stress and flow reversal promotes monocyte binding to endothelial cells. Atherosclerosis 2001 Oct;158(2):385-90. https://doi.org/10.1016/s0021-9150(01)00462-2.
  11. Dardik A, Leiling Chen, Frattini J, et al. Differential effects of orbital and laminar shear stress on endothelial cells. Comparative Study. J Vasc Surg 2005 May;41(5):869-80. https://doi.org/10.1016/j.jvs.2005.01.020.
  12. Gambillara V, Montorzi G, Christelle Haziza-Pigeon, Stergiopulos N, Silacci P. Arterial wall response to ex vivo exposure to oscillatory shear stress. J Vasc Re Nov-Dec 2005;42(6):535-44. https://doi.org/10.1159/000088343.
  13. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephro. 2006 Apr;17(4):1112-27. https://doi.org/10.1681/ASN.2005050615.
  14. Alfred K Cheung, Christi Terry, Li Li. Pathogenesis and local drug delivery for prevention of vascular access stenosisJ Ren Nutr. 2008 Jan;18(1):140-5. https://doi.org/1053/j.jrn.2007.10.028.
  15. Li G, Chen SJ, Oparil S, et al. Direct in vivo evidence demonstrating neointimal migration ofadventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 2000;101:1362–1365. https://doi.org/10.1161/01.cir.101.12.1362.
  16. Li Li 1, Christi M Terry, Donald K Blumenthal, Tadashi Kuji, Takahisa Masaki, Bonnie C H Kwan, Ilya Zhuplatov, John K Leypoldt, Alfred K CheungCellular and morphological changes during neointimal hyperplasia development in a porcine arteriovenous graft modelNephrol Dial Transplant. 2007 Nov;22(11):3139-46. https://doi.org/1093/ndt/gfm415.
  17. Napoli M. Complicanze steno-trombotiche delle AVF. Eco color doppler & accessi vascolari per emodialisi Cap 4 pp 67-84. Wichtig Editore 2010.
  18. Kim SJ, Masaki T, Leypoldt JK, et al. Arterial and venous smooth-muscle cells differ in their responsesto antiproliferative drugs. J Lab Clin Med 2004;144:156–162. https://doi.org/10.1016/j.lab.2004.06.002.
  19. Kim SJ, Masaki T, Rowley R, et al. Different responses by cultured aortic and venous smooth musclecells to gamma radiation. Kidney Int 2005;68:371–377. https://doi.org/10.1111/j.1523-1755.2005.00407.x.
  20. Shenoy S. Pro/con juxta-anastomotic stenosis… Avoidable. Selected short paper from “Controversies in dialysis access”. San Francisco USA November 2006. J Vasc Access 2006; 7:167.
  21. Meola M. Ecografia clinica in nefrologia. Fistola arterovenosa, p 1299. Meola M. Eureka editore 2015.
  22. RobbinM, Chamberlain N, et al. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology. 2002 Oct;225(1):59-64. https://doi.org/10.1148/radiol.2251011367.
  23. Lomonte C, Meola M, Petrucci I, Casucci F, Basile C. The Key Role of Color Doppler Ultrasound in the Work-up of Hemodialysis Vascular Access. Semin Dial. 2015; 28: 211-5. https://doi.org/10.1111/sdi.12312.
  24. Ferring M, Henderson J, Wilmink A, Smith S. Vascular ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence. Nephrol Dial Transplant. 2008 Jun;23(6):1809-15. https://doi.org/10.1093/ndt/gfn001.
  25. Silva Jr, Hobson MB, Pappas PJ, et al. A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation. J Vasc Surg. 1998 Feb;27(2):302-7; discussion 307-8. https://doi.org/10.1016/s0741-5214(98)70360-x.
  26. McCarley P, Wingard RL, et al. Vascular access blood flow monitoring reduces access morbidity and costs. Kidney Int . 2001 Sep;60(3):1164-72. https://doi.org/10.1046/j.1523-1755.2001.0600031164.x.
  27. Sands J, Miranda C. Prolongation of hemodialysis access survival with elective revision. J Clin Nephrol. 1995 Nov;44(5):329-33.
  28. Wiese P, Nonnast-Daniel B. Colour Doppler ultrasound in dialysis access. Nephrol Dial Transplant. 2004 Aug;19(8):1956-63. https://doi.org/1093/ndt/gfh244.
  29. Richard E. et al. Predictive measures of vascular access thrombosis: A prospective study. Kidney International Volume 52, Issue 6, December 1997, Pages 1656-1662. https://doi.org/10.1038/ki.1997.499
  30. Lauvao LS, Ihnat DM, et al. Vein diameter is the major predictor of fistula maturation. J Vasc Surg. 2009 Jun;49(6):1499-504. https://doi.org/1016/j.jvs.2009.02.018.
  31. RobbinML, Oser RF, et al. Hemodialysis access graft stenosis: US detection. Radiology. 1998 Sep;208(3):655-61. https://doi.org/10.1148/radiology.208.3.9722842.
  32. BackMR, Maynard M, Winkler A, et al. Expected flow parameters within hemodialysis access and selection for remedial intervention of nonmaturing conduits. Vasc Endovascular Surg. Apr-May 2008;42(2):150-8. https://doi.org/10.1177/1538574407312648.
  33. Dumars MC, Thompson WE, et al. Management of suspected hemodialysis graft dysfunction: usefulness of diagnostic US. Radiology. 2002 Jan;222(1):103-7. https://doi.org/10.1148/radiol.2221991095.
  34. Malovrh Native arteriovenous fistula: preoperative evaluation. Am J Kidney Dis 2002 Jun;39(6):1218-25. https://doi.org/10.1053/ajkd.2002.33394.
  35. Tordoir JH, de Bruin HG, Hoeneveld H. Duplex ultrasound scanning in the assessment of arteriovenous fistulas created for hemodialysis access: comparison with digital subtraction angiography. J Vasc Surg. 1989 Aug;10(2):122-8. https://doi.org/10.1067/mva.1989.0100122.
  36. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Update 2006. Am J Kidney Dis 2006; 48 : 1-322.
  37. TonelliM, Jindal Screening for subclinical stenosis in native vessel arteriovenous fistulae. J Am Soc Nephro. 2001 Aug;12(8):1729-1733. https://doi.org/10.1681/ASN.V1281729.
  38. Tonelli M, James M,Wiebe N. Ultrasound monitoring to detect access stenosis in hemodialysis patients: a systematic review. Am J Kidney Dis. 2008 Apr;51(4):630-40. https://doi.org/1053/j.ajkd.2007.11.025.
  39. Sands JJ, Ferrell LM, Perry MA. The role of color flow Doppler ultrasound in dialysis access. Semin Nephrol. 2002 May;22(3):195-201. https://doi.org/1053/snep.2002.31705.
  40. WouterJukema J, Verschuren JJW. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nature Reviews Cardiology volume 9, pages5362 (2012).
  41. Robert A. Lookstein et Al. Drug-Coated Balloons for Dysfunctional Dialysis ArteriovenousFistulas. NEJM 20 Aug 2020.

The COVID-19 emergency management in Nephrology: a cross-sectional survey on the procedures management to deal with the pandemic

Abstract

From mid-March 2020, the pandemic caused by COVID 19 has placed health facilities in front of the need to implement a rapid and profound reorganization. However, many hospitals have not had time to organize a rapid and effective response, both for the speed of spread of the virus, and for the lack of previous experience with a pandemic of this magnitude. With the aim of assessing the knowledge and adoption of the procedures and recommendations disseminated by hospitals during the COVID-19 pandemic, in the dialysis and hemodialysis services of Italian centers, a cross-sectional survey was designed by the Society of Nurses in Nephrology (SIAN). The online survey was conducted among nurses who work in the Italian services of dialysis and hemodialysis during the first and second waves.

The online survey was completed by 150 nurses. Although hospitals have set up protocols and procedures for patient management during the COVID-19 pandemic, among participants not all were aware of it. With regard to the training of personnel in the use of personal protective equipment, 18.6% declared that they have not received it. The majority implemented specific precautions for patient management, awareness and information.

Keywords: hemodialysis, peritoneal dialysis, nursing skills procedures, COVID-19

Sorry, this entry is only available in Italian.

Introduzione

La malattia da coronavirus (COVID-19) è stata identificata a dicembre 2019 a Wuhan, in Cina, e si è diffusa rapidamente, con oltre 81 000 casi confermati in tutta la Cina. Nel febbraio 2020, l’organizzazione mondiale della sanità (OMS) ha introdotto la sua definizione [1]. L’11 marzo 2020 l’OMS, dopo aver valutato i livelli di gravità e la diffusione globale dell’infezione, ha dichiarato che l’epidemia da COVID-19 doveva essere considerata una pandemia [2]. L’Italia è stata tra i Paesi più gravemente colpiti dalla pandemia da COVID-19 [13], con una crescita schiacciante di casi attivi e mortalità, uno dei più alti al mondo [4]. Il primo paziente italiano positivo al COVID-19 è stato confermato il 21 febbraio 2020 all’Ospedale di Codogno in Lombardia. Inizialmente, il COVID-19 si era diffuso rapidamente in tutto il Paese, ma in modo eterogeneo, con maggiore diffusione nelle regioni del Nord e minore nelle regioni meridionali e nelle isole principali [5]. La relazione tra infezione da SARS-CoV-2 e la comorbilità è complessa, sfaccettata e ulteriormente complicata da un numero imprecisato di casi asintomatici [6]. Tuttavia, i casi più gravi e mortali sono spesso riportati nei pazienti anziani, specialmente in quelli con comorbilità [7]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Could incremental haemodialysis be a new standard of care? A suggestion from a long-term observational study

Abstract

Introduction: The term incremental haemodialysis (HD) means that both dialysis dose and frequency can be low at dialysis inception but should be progressively increased, to compensate for any subsequent reduction in residual kidney function. Policy of the Matera Dialysis Center is to attempt an incremental start of HD without a strict low-protein diet in all patients choosing HD and with urine output (UO) >500 ml/day. The present study aimed at analyzing the results of this policy over the last 20 years.
Subjects and methods: The dataset of all patients starting HD between January 1st, 2000 and December 31st, 2019 was retrieved from the local electronic database. Exclusion criteria were: urine output <500 ml/day or follow-up <3 months after the start of the dialysis treatment.
Results: A total of 266 patients were retrieved; 64 of them were excluded from the study. The remaining 202 patients were enrolled into the study and subdivided into 3 groups (G1, G2 and G3) according to the frequency of treatment at the start of dialysis: 117 patients (57.9%) started with once-a-week (1HD/wk) (G1); 46 (22.8%) with twice-a-week (2HD/wk) (G2); 39 (19.3%) with thrice-a-week (3HD/wk) dialysis regimen (G3). Patients of G1 remained on 1HD/wk for 11.9 ±14.8 months and then transferred to 2HD/wk for further 13.0 ±20.3 months. Patients of G2 remained on 2HD/wk for 16.7 ±23.2 months. Altogether, 25943 sessions were administered during the less frequent treatment periods instead of 47988, that would have been delivered if the patients had been on 3HD/wk, thus saving 22045 sessions (45.9%). Gross mortality of the entire group was 12.6%, comparable to the mean mortality of the Italian dialysis population (16.2%). Survival at 1 and 5 years was not significantly different among the 3 groups: 94% and 61% (G1); 83% and 39% (G2); 84% and 46% (G3). Conclusions: Our long-term observational study suggests that incremental HD is a valuable option for incident patients. For most of them (80.7%) it is viable for about 1-2 years, with obvious socio-economic benefits and survival rates comparable to that of the Italian dialysis population. However, randomized controlled trials are lacking and therefore urgently needed. If they will confirm observational data, incremental HD will be a new standard of care.

Keywords: haemodialysis, incremental haemodialysis, kidney urea clearance, urea kinetic modeling, urine output

Introduction

There is growing interest in an incremental approach to haemodialysis (HD) for incident end-stage kidney disease (ESKD) patients, starting with one (1HD/wk) or two sessions per week (2HD/wk) [14]. Such an approach not only seems to preserve residual kidney function (RKF) and improve health-related quality of life with similar or higher survival rates than those observed in patients receiving the standard thrice weekly HD (3HD/wk) regimen, but also allows saving economic resources [57]. The term “incremental HD” means that, in the presence of substantial RKF, both dialysis dose and frequency can be low at dialysis inception but should be progressively increased, to compensate for any subsequent reduction in RKF [8, 9].

RKF in dialysis patients plays important roles in fluid and salt removal, effective phosphorus excretion, middle molecule clearance, and endogenous vitamin D and erythropoietin production [1, 2]. There is increasing evidence to suggest that clearance of some uraemic solutes, particularly middle molecules such as β2-microglobulin, is highly dependent on RKF. This extends even to very low levels of RKF: patients with kidney urea clearance (KRU) <0.5 ml/min have significantly higher serum β2-microglobulin levels than those with values between 0.5 and 1 ml/min [10]. Furthermore, residual renal tubular function may represent important removal pathways for these and other compounds, such as hippurate, phenylacetylglutamine, indoxyl sulfate, and p-cresol sulfate [11, 12].

Loss of RKF is linked to decreased survival [13, 14], likely from poorer uraemic solute clearance [13], volume and blood pressure control [15, 16], higher erythropoietin requirements [17], more inflammation [13] and higher left ventricular mass [18]. The benefits of preserving KRU appear to be greater that one would expect from simply enhanced small solute clearance: a multivariate survival analysis of patients on incremental HD suggested that 1 ml/min of KRU resulted in greater survival benefit compared to 1 ml/min of dialysis urea clearance, possibly due to greater removal of middle molecules by native kidneys and improved volume control [15]. Finally, the available literature suggests greater preservation of RKF with infrequent dialysis [5, 7, 19].

The Matera Dialysis Center has adopted over the last 20 years the policy of attempting to start HD always incrementally in all ESKD patients in relatively stable conditions and with preserved diuresis. Over the years, a lot of data has accumulated on patients who received incremental HD in our Center. The present study aims to compare the long-term results of such a policy.

 

Subjects and methods

Policy of the Matera Dialysis Center

As mentioned above, the policy of our Center over the last 20 years has been to try to initiate HD incrementally in almost all patients with advanced chronic kidney disease (CKD-5D), in relatively stable conditions and with preserved diuresis. All patients treated in our Center give their written informed consent to the choice of HD as first mode of renal replacement therapy (RRT); furthermore, they give written informed consent to starting with the incremental regimen. They also receive the information that a less frequent treatment can be harmful, especially in the presence of insufficient RKF. Two important corollaries complete this information:

  1. the need of collecting periodically the 24-hour urine output (UO) to quantify RKF;
  2. the need of promptly increasing dialysis frequency if RKF falls below established levels, even in the absence of clear symptoms and signs of clinical worsening.

In brief, the dialysis treatment is started with 1 or 2 sessions per week and can be empirically increased to 2 or 3, based on the trend of clinical and biochemical data, with particular regard to the state of nutrition, the values of KRU, dialysis dose (Kt/V) and normalized protein catabolic rate (PCRn), which are assessed monthly.

Inclusion/exclusion criteria

For decades, all the main clinical, biochemical and epidemiological data of patients treated at the Hospital of Matera’s Division of Nephrology, have been managed and archived with the GEPADIAL® software (La Traccia, Matera, Italy). This allowed us to retrieve the dataset of all patients who had started HD in the Matera Dialysis Center from January 1st, 2000 to December 31st, 2019 (with a prolongation of the follow-up until June 30th, 2021). In particular, for each patient, the duration of the follow-up was calculated from the difference (in months) between the date of the first and last dialysis session in our Center.

Patients who had a follow-up <3 months after the start of the dialysis treatment were excluded from the study to avoid enrolling patients affected by acute kidney injury, or severely sick, or transiently treated in our Center. Patients with a follow-up >3 months but with UO <500 ml/day at the start of treatment were also excluded from the study.

Patients were divided into three groups (G), which were determined exclusively by the weekly regimen at the start of dialysis treatment: G1: once-a-week (1HD/wk); G2: twice-a-week (2HD/wk); G3: thrice-a-week (3HD/wk), and regardless of subsequent rhythm variations, if any, thus creating a kind of intervention arm of an “intention to treat” study, taking into account the policy of our Center, i.e., that of trying to initiate HD incrementally in almost all patients.

Measurement of the main parameters of UKM

The measurement of the main parameters of urea kinetic modeling (UKM) (Kt/V, PCRn and KRU if UO >200 ml/day) was performed on a monthly basis in all patients, using the specific software GEPADIAL®, based on the so-called modified algorithm of UKM [20]. The software automatically calculates also the “equivalent renal urea clearance” (EKR) corrected for a urea distribution volume of 40 l (EKRc) [21]. The latter has been converted into the new version of EKR, which is corrected for a urea distribution volume of 35 l with the following formula: EKR35 = EKRc x 35/40 [22]. The calculation of the post-rebound equilibrated Kt/V (eKt/V) and of the most recent version of the standardized Kt/V (stdKt/V) has been utilized in the present study using the formulas recommended by the KDOQI Clinical Practice Guideline for Hemodialysis Adequacy 2015 [9]. Furthermore, the latter proposed the following criteria of adequacy of stdKt/V: a target value of 2.3 and a minimum value of 2.1 volumes/week (v/wk) for non-thrice-a-week dialysis rhythms [9]. Similarly, Casino and Basile have proposed the following criteria of adequacy of EKR35: a target and a minimum value, as described by the following equations:

  1. target EKR35 = 12 – KRUN (EKRT12) [22, 23]
  2. minimum EKR35 = 10 – 1.5 x KRUN (EKRT10) [23, 24]

where KRUN = KRU (ml/min)/V (l) x 35 (l) [23].

Two sets of kinetic data were obtained for each patient, at two different time points of the treatment. The first one (T3), corresponding to approximately 3 months of dialysis, coincides with the third measurement of the main parameters of UKM, and should reflect the initial, but already fairly stabilized, stage of treatment; the second one (T_end) changes from one patient to another: it corresponds to the time point at which a last value of UO >200 ml/day was available during the study, or just before the exit of the patient from the study because of death, kidney transplant, transfer to another center or end of the study (June 30th, 2021), the patient being alive.

Statistics

Means and standard deviations (SD) were obtained using Excel®; χ2 test, graphics, Student’s t-test, ONE-WAY ANOVA and survival analyses (Kaplan-Meier) were performed with the statistical package R of CRAN project [2527].

 

Results

Data related to 266 patients were retrieved from the local electronic database, representing the set of all patients who started maintenance HD at the Matera Dialysis Center in the study period considered: of them, 45 (17%) were excluded because their follow-up after the start of the dialysis treatment was <3 months; 12 (4%) were excluded because they had started the dialysis treatment in the setting of continuous renal replacement therapy; lastly, 7 (3%) were excluded because their baseline UO was either <500 ml/day or had not been reported. All in all, 202 patients were enrolled into the study. The main demographic, clinical and laboratory data of the 202 patients enrolled into the study are reported in Table I.

They were subdivided into 3 groups (G), according to their weekly regimen at the start of dialysis treatment: 117 were on a once-a-week (G1), 46 on a twice-a-week (G2), and 39 on a thrice-a-week schedule (G3).

Age (years) 66 ±15 Serum albumin (g/l) 29.7±11.7
Gender (male/female) 120/82 Diabetic nephropathy 42 (20.8 %)
Body weight (kg) 63.2 ±13.3 Glomerulonephritis 40 (19.8%)
Body mass index (kg/m2) 24.6 ±4.4 Hypertensive nephropathy 52 (25.7%)
Body surface area (m2) 1.65 ±0.197 Interstitial nephropathy 29 (14.4%)
Blood urea nitrogen (mg/dl) 99 ±33 Polycystic kidney disease 9 (4.5%)
Serum creatinine (mg/dl) 8.0 ±3.1 Other/Unknown 30 (14.9%)
KRU (ml/min/1.73 m2) 4.5 ±1.6 Charlson comorbidity index 6.9 ±2.6
ClCr (ml/min/1.73 m2) 8.0 ±2.9 Late referral (<3 months) 33 (16.3%)
GFRm (ml/min/1.73 m2) 6.2 ±2.1 Group 1 (G1): start on 1HD/wk 117 (57.9%)
Urine Output (ml/day) 1800 ±700 Group 2 (G2): start on 2HD/wk 46 (22.8%)
Proteinuria (g/day) 3.0 ±3.0 Group 3 (G3): start on 3HD/wk 39 (19.3%)
Table I: It reports the main demographic, clinical and laboratory data of the 202 patients enrolled into the study. Means ±SD; KRU = residual kidney urea clearance; ClCr = creatinine clearance; GFRm = mean of KRU and ClCr.

Table II shows the comparison of the main demographic, clinical and laboratory data between the groups of patients starting HD incrementally (G1+G2) and the group of patients starting dialysis on a thrice-a-week schedule (G3). KRU and UO were significantly lower in G3; this group had a percentage of women and late referral to the nephrology team (follow-up <3 months before the start of the dialysis treatment) much larger than G1+G2 (61.5% vs. 35.6%, P = 0.003; 38.5% vs. 11.0%, P = 0.001, respectively).

  G1+G2 (N = 163) G3 (N = 39) t P
Gender (M/F) (%) 105/58 (F=35.6%) 15/24 (F=61.5%) 8.79* 0.003
Age (years) 66.91 ±14.63 62.15 ±16.96 1.769 0.078
Body weight (kg) 63.43 ±13.37 62.09 ±12.96 0.568 0.571
Body mass index (kg/m2) 24.7 ±4.47 24.38 ±4.15 0.400 0.689
Diabetic nephropathy 32 10
Glomerulonephritis 31 9
Hypertensive nephropathy 46 6 4.48* 0.482
Interstitial nephropathy 25 4
Polycystic kidney disease 7 2
Other/Unknown 22 8
Blood urea nitrogen (mg/dl) 98.30 ±29.96 100.38 ±43.66 -0.354 0.724
Serum creatinine (mg/dl) 7.87 ±2.65 8.70 ±4.61 -1.482 0.14
Serum albumin (g/l) 30.22 ±11.90 27.36 ±10.51 1.377 0.170
Urine Output (ml/day) 1875 ±659 1357 ±816 4.195 <0.001
Proteinuria (g/day) 2.95 ±2.90 3.35 ±3.57 -0.746 0.456
KRU (ml/min/1.73 m2) 4.63 ±1.42 3.76 ±1.94 3.195 0.002
ClCr (ml/min/1.73 m2) 8.10 ±2.42 7.60 ±4.52 0.951 0.343
GFRm (ml/min/1.73 m2) 6.36 ±1.79 5.68 ±3.05 1.836 0.068
Late referral (<3 months) (%) 18/163 (11.0%) 15/39 (38.5%) 17.3* 0.001
Charlson comorbidity index 6.99 ±2.64 6.51 ±2.63 1.011 0.313
Table II: Comparison of the main demographic, clinical and laboratory data between the groups of patients starting HD incrementally (G1+G2) and the group of patients starting dialysis on a thrice-a-week schedule (G3). Means ±SD; KRU = residual kidney urea clearance; ClCr = creatinine clearance; GFRm = mean of KRU and ClCr. All the variables of the 2 groups were compared with the Student’s t-test, except gender, classes of nephropathies and late referral, which were compared with the c2 test (*).

Figure 1 shows the numbers of patients on 1HD/wk, 2HD/wk and 3HD/wk at different time points: at the start (T0) and 3 (T3), 12 (T12), 24 (T24) and 60 (T60) months after the start of dialysis treatment: 94 patients (46.5%) and 52 patients (25.7%) were on incremental HD after 1 and 2 years, respectively.

Figure 1: It shows the numbers of patients on 1HD/wk, 2HD/wk
Figure 1: It shows the numbers of patients on 1HD/wk, 2HD/wk and 3HD/wk at different time points: at the start (T0), and 3 (T3), 12 (T12), 24 (T24) and 60 (T60) months after the start of dialysis treatment: 94 patients (46.5%) and 52 patients (25.7%) were on incremental HD after 1 and 2 years, respectively.

Table III shows the main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at the third month of dialysis treatment (T3). Notably, UO and KRU were significantly higher in G1 and G2 than in G3, whereas PCRn, EKR35 and stdKt/V were significantly lower in G1 and progressively increased in G2 and G3.

Table IV shows the main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at T_end. It occurred 27.9 ±27.6 months after the start of dialysis treatment. The main significant differences among the three groups were the number of dialysis sessions per week, UO, weekly UF, EKR35 and stdKt/V.

Table V shows the differences among the values of the main clinical data including kinetic studies at T3 and T_end (data of the entire population under study and of the 3 groups of patients). The main differences were: a net reduction in KRU and UO, an increase in the number of weekly sessions, weekly ultrafiltration, EKR35 and stdKt/V.

Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) 79.3 ±24.4 84.5 ±23.7 73.9 ±22.1 70.0 ±25.4 0.002
BUN-post (mg/dl) 25.1 ±13.4 27.0 ±14.6 23.7 ±11.4 20.9 ±10.8 0.021
Session length (min) 228 ±21.7 228 ±21.4 230 ±20.8 225 ±223.8 0.708
Sessions per week (n/wk) 1.88 ±0.79 1.41 ±0.60 2.13 ±0.34 3.00
Body weight-pre (kg) 64.8 ±13.5 63.9 ±12.6 67.5 ±15.9 64.2 ±13.0 0.392
Body weight-post (kg) 63.1 ±13.3 62.5 ±12.4 65.5 ±15.6 62.3 ±12.8 0.466
Ultrafiltration (l/session) 1.68 ±0.99 1.47 ±0.95 1.99 ±1.13 1.96 ±0.77 0.002
Weekly ultrafiltration (l/week) 3.24 ±2.37 2.24 ±1.90 4.63 ±2.65 4.58 ±1.79 0.001
Urine Output (ml/day) 1380 ±690 1547 ±660 1374 ±724 900 ±493 0.001
KRU (ml/min/1.73 m2) 3.34 ±1.79 3.54 ±1.74 3.50 ±1.89 2.53 ±1.63 0.005
Single pool Kt/V 1.40 ±0.40 1.38 ±0.41 1.41 ±0.37 1.47 ±0.36 0.427
Equilibrated Kt/V 1.24 ±0.35 1.22 ±0.37 1.24 ±0.33 1.29 ±0.32 0.452
PCRn (g/kg/day) 1.05 ±0.30 0.99 ±0.25 1.13 ±0.30 1.15 ±0.39 0.006
EKR35 (ml/min/35 l) 10.8 ±3.62 9.2 ±3.1 11.9 ±2.7 14.4 ±2.8 0.001
Standard Kt/V (v/wk) 2.45 ±0.74 2.14 ±0.65 2.67 ±0.60 3.12 ±0.62 0.001
Table III: Main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at the third month (T3). Means ±SD; *ONE-WAY ANOVA; BUN = Blood urea nitrogen; KRU = residual kidney urea clearance; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.
Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) 76.2 ±22.2 78.2 ±22.5 80.2 ±22.4 65.8 ±18.3 0.001
BUN-post (mg/dl) 21.0 ±8.9 21.4 ±8.8 23.2 ±9.6 17.2 ±16.8 0.002
Session length (min) 231 ±19.0 230 ±19.9 234 ±13.5 230.±21.9 0.353
Sessions per week (n/wk) 1.97 ±0.79 2.17 ±0.89 2.60 ±0.55 2.90 ±0.36 <0.001
Body weight-pre (kg) 63.7 ±13.6 62.6 ±12.6 66.4 ±15.8 63.9 ±13.6 0.353
Body weight-post (kg) 61.7 ±13.2 60.7 ±12.3 64.1 ±15.3 61.7 ±13.4 0.398
Ultrafiltration (l/session) 2.07 ±1.03 1.95 ±1.06 2.3 ±1.07 2.2 ±0.84 0.036
Weekly ultrafiltration (l/week) 4.67 ±2.51 4.3 ±2.6 5.2 ±2.5 5.1 ±2.0 0.039
Urine Output (ml/day) 650 ±440 688 ±476 646 ±479 538 ±242 0.036
KRU (ml/min/1.73 m2) 1.45 ±1.11 1.41 ±1.06 1.49 ±1.33 1.50 ±1.07 0.878
Single pool Kt/V 1.53 ±0.35 1.53 ±0.36 1.49 ±0.36 1.59 ±0.31 0.383
Equilibrated Kt/V 1.35 ±0.31 1.35 ±0.32 1.31 ±0.32 1.40 ±0.28 0.410
PCRn (g/kg/day) 1.06 ±0.32 1.01 ±0.27 1.14 ±0.31 1.09 ±0.43 0.109
EKR35 (ml/min/35 l) 11.8 ±3.27 11.1 ±3.5 11.9 ±2.5 13.5 ±2.8 0.001
Standard Kt/V (v/wk) 2.46 ±0.59 2.32 ±0.63 2.48 ±0.49 2.85 ±0.40  0.001
Table IV: Main clinical data including kinetic studies at T_end. Data of the entire population under study and of the 3 groups of patients are shown. Means ±SD; *ONE-WAY ANOVA; KRU = residual kidney urea clearance; BUN = Blood urea nitrogen; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.
Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) -3.05 ±27.2 -6.36 ±28.9 6.33 ±25.5 -4.2 ±21.1 0.024
BUN-post (mg/dl) -4.10 ±13.6 -5.63 ±15.4 -0.5 ±10.6 -3.71 ±10.2 0.057
Session length (min) 2.98 ±23.3 2.0 ±24.7 4.0 ±20.0 4.8 ±23.1 0.756
Sessions per week (n/wk) 0.63 ±0.83 0.94 ±0.86 0.52 ±0.55 0.02 ±0.16 0.001
Body weight-pre (kg) -1.07 ±4.96 -1.30 ±4.97 -1.15 ±3.31 -0.28 ±6.41 0.666
Body weight-post (kg) -1.46 ±4.91 -1.78 ±4.97 -1.42 ±3.23 -0.53 ±6.22 0.510
Ultrafiltration (l/session) 0.39 ±1.30 0.48 ±1.36 0.28 ±1.43 0.24 ±0.92 0.430
Weekly ultrafiltration (l/week) 1.43 ±3.05 2.05 ±3.05 0.61 ±3.36 0.56 ±2.15 0.002
Urine Output (ml/day) -0.73 ±0.75 -0.86 ±0.74 -0.73 ±0.78 -0.36 ±0.59 0.001
KRU (ml/min/1.73 m2) -1.9 ±1.9 -2.1 ±1.8 -2.0 ±2.0 -1.0 ±1.6 0.002
Single pool Kt/V 0.12 ±0.40 0.15 ±0.43 0.08 ±0.35 011 ±0.37 0.595
Equilibrated Kt/V 0.11 ±0.36 0.13 ±0.39 0.07 ±0.31 0.10 ±0.33 0.624
PCRn (g/kg/day) 0.01 ±0.35 0.02 ±0.31 0.02 ±0.41 -0.06±0.38 0.468
EKR35 (ml/min/35 l) 0.98 ±3.55 1.99 ±3.66 -0.02 ±2.63 -0.91 ±3.11 0.001
Standard Kt/V (v/wk) 0.01 ±0.67 0.18 ±0.71 0.52 ±0.55 -0.27 ±0.53 0.001
Table V: Differences among the values of the main clinical data including kinetic studies at T3 and T_U200. Data of the entire population under study and of the 3 groups of patients are shown. Means ±SD; *ONE-WAY ANOVA; BUN = Blood urea nitrogen; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.

Figure 2 shows that 50 out of 76 (66%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of stdKt/V [9]. Figure 3 shows that only 15 out of 76 (19.7%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of EKR35 [23, 24].

Figure 4 shows the curves of survival (Kaplan-Meier analysis) of RKF, expressed as time to event referred to the first observation of UO <200 ml/day, in the three groups of patients. The median estimates (months) were: G1 40.3; G2 23.2; G3 26.5. The differences were statistically significant when comparing G1 with G2, and G1 with G3, but not when comparing G2 with G3.

Figure 2: It shows that 50 out of 76
Figure 2: It shows that 50 out of 76 (66%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of stdKt/V [9].
Figure 3: It shows that only 15 out of 76 (19.7%)
Figure 3: It shows that only 15 out of 76 (19.7%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of EKR35 [23].
Figure 4: It shows the curves of survival (Kaplan-Meier analysis)
Figure 4: It shows the curves of survival (Kaplan-Meier analysis) of RKF, expressed as time to event referred to the first observation of UO <200 ml/day, in the three groups of patients. The median estimates (months) were: G1 40.3; G2 23.2; G3 26.5. The differences were statistically significant when comparing G1 with G2, and G1 with G3, but not when comparing G2 with G3.
  G1 (N=117) G2 (N=46) G3 (N=39) P
Months on 1HD/wk 11.9 ±14.8 0 0
Months on 2HD/wk 13.0 ±20.3 16.7 ±23.2 0 0.315*
Months on 3HD/wk 37.4 ±46.5 34.7 ±38.6 56.3 ±55.3 0.113**
Months of follow-up 62.6 ±48.8 51.4 ±40.8 56.3 ±55.3 0.327**
Table VI: Duration of dialysis treatments in the three groups of patients. Means ±SD; *Student’s t-test; **ONE WAY ANOVA.

The duration (means ±SD) of once-a-week, twice-a-week and thrice-a-week treatments performed in the 3 groups of patients is summarized in Table VI: patients of G1 received 1HD/wk for 11.9 ±14.8 months, and subsequently 2HD/wk for further 13.0 ±20.3 months; patients of G2 received 2HD/wk for 16.7 ±23.2 months.

Patients on incremental HD (G2+G2) were administered 25943 dialysis sessions, of which 6066 on 1HD/wk and 19877 on 2HD/wk. We estimated that a total of 47988 dialysis sessions would have been administered to them if they had been on a thrice-a-week schedule for exactly the same period of time, thus saving 22045 sessions, equal to 45.9%. Just taking into account the reimbursement cost of one session of standard bicarbonate dialysis (service code 39.95.4 of the Italian Health Service, rate = 165€), approximately 3.64 million € would have been saved.

Figure 5 shows the survival curve of the entire group of 202 patients estimated by means of the Kaplan-Meier analysis: the median estimate was 66 months with 95% confidence interval comprised between 54 and 84 months.

Figure 6 shows the survival curves of the three groups of patients estimated by means of the Kaplan-Meier analysis at 12, 36 and 60 months of dialysis treatments: the trend was better in patients of G1 than in patients of G2 and G3; however, the difference was not statistically significant.

It shows the survival curve of the entire group of 202 patients
Figure 5: It shows the survival curve of the entire group of 202 patients estimated by means of the Kaplan-Meier analysis: the median estimate was 66 months with 95% confidence interval comprised between 54 and 84 months.
It shows the survival curves of the three groups
Figure 6: It shows the survival curves of the three groups of patients estimated by means of the Kaplan-Meier analysis at 12, 36 and 60 months of dialysis treatments: the trend was better in patients of G1 than in patients of G2 and G3; however, the difference was not statistically significant.

 

Discussion

Our study suggests that incremental HD is a valuable option in incident patients, and is viable in most of them (80.7%) for about 1-2 years, with obvious socio-economic benefits. A key question arises: are these benefits achieved at the expense of hard outcomes, such as patient survival? The answer is given by Figure 5: the median survival of the entire group of 202 patients was 5.5 years corresponding to an annual mortality rate of 12.6%. This rate is probably lower, but almost certainly not higher than that estimated in the period 2011-2013 for the Italian dialysis population, which was equal to 16.2 per 100 patient-years [28]. Figure 6 provides interesting information on the three groups of patients: it clearly shows the superiority of starting with 1HD/wk (G1) compared to starting with 2HD/wk or 3HD/wk, even if the intersection between the curves of G2 and G3 makes the difference among the three groups not statistically significant. The first obvious explanation is that the patients enrolled into the three groups may differ as far as phenotype and/or co-existence of underlying comorbid conditions are concerned. It is evident that this is the Achille’s heel of any observational study design, in which an obvious selection bias (assignment of patients to different treatments) occurs. However, we think that the striking difference between G1+G2 and G3 in the late referral to our nephrology team, as shown in Table II (11.0% vs. 38.5%, P = 0.001), may be another important explanation. Therefore, we think that the synergistic interplay of the above factors, i.e., a different phenotype of the patients (for instance, as shown in Table II, there was a much larger percentage of women in G3 than in G1+G2: 61.5% vs. 35.6%, P = 0.003), co-existing underlying co-morbid conditions and a late referral, may constitute an ominous prognostic sign in G3.

In conclusion, our study seems to suggest that adequate educational, nutritional and pharmacological interventions in the pre-dialysis stage may allow a relatively good RKF and, therefore, the start of incremental dialysis in most of the incident patients. As far as the prescription of a low-protein diet is concerned, policy of our team is not to prescribe a very rigorous low-protein diet even when on once-a-week dialysis schedule, at variance with the advice given by some studies [2932]. Only 4 patients enrolled into the study were prescribed keto-analogues in their pre-dialysis diet, which were continued when on dialysis, but only for some months and not for all the days of the week. All the other patients were prescribed a mild protein restriction when on dialysis, as shown by the PCRn values reported in Table III: at T3 PCRn in G1 on average was about 1 g/kg/day, while that in G2 was 1.13, almost comparable to 1.15 g/kg/day observed in G3. Furthermore, Tables IV and V show that PCRn values remained relatively constant over time. In conclusion, this study suggests that, in the presence of sufficiently elevated RKF (for instance, KRU in the range of 3-5 ml/min/1.73 m2) a strict low-protein diet is useful but not essential, provided that the clinical status of the patient and his/her values of KRU, UO and PCRn are frequently monitored.  This allows to considerably enlarge the number of patients eligible to start dialysis with one session a week, which in our study approached 60% (117/202 = 0.579) of all patients. This group of patients had a baseline GFR of 6.2 ±2.1 ml/min/1.73 m2 and a baseline KRU of 4.5 ±1.6 ml/min/1.73 m2. Furthermore, taking into account the patients who started with a twice-a-week dialysis schedule, the percentage of patients starting dialysis not on a thrice-a-week schedule exceeded 80% (163/202 = 0.807).

The analysis of Tables III, IV and V shows other interesting data, such as the relative constancy both of the duration of the session and of the dialysis dose, expressed by spKt/V and eKt/V. Therefore, the reduction of KRU was substantially compensated in G1 and G2 by increasing the frequency of the treatment. Here, it must be underlined that the prescription of the dialysis dose has been prevalently empirical worldwide, in the absence of shared criteria of dialysis adequacy of the incremental treatment, which have only recently been proposed [9, 22, 24]. Here, we have to acknowledge that we did not prescribe well-defined targets of the weekly dialysis dose to be achieved by the patients, at least in the early years of the present study: thus, our prescription too was prevalently empirical, targeting urea clearance metrics of spKt/V ≥1.20, and increasing the frequency of treatment in the following situations: marked reduction in KRU (below 2-3 ml/min) and/or in UO (<500 ml/day); marked increase in inter-dialysis body weight, not controllable by increasing the dose of diuretics; need of ultrafiltration rate >13 ml/kg/h; symptoms or signs, such as nausea or malnutrition, that could not be controlled with medical therapy. More recently, we have suggested the criteria for the prescription of incremental dialysis on a quantitative basis associated with UKM [22, 24, 33, 34].

We have to acknowledge that our study has limitations, such as being a single-center retrospective observational study, but we have to underline its strengths, such as its long-term follow-up, and the availability of a large number of KRU and UO values measured in all patients with UO >200 ml/day. Despite increasing evidence derived from observational studies, such as ours, to support the use of incremental HD, randomized controlled trials (RCTs) are lacking and urgently needed. A multicenter feasibility RCT to assess the impact of incremental vs. conventional initiation of HD on RKF was recently conducted in the UK: serious adverse events were less frequent in the incremental arm; hospitalisation rate was higher in the control arm; in addition, median costs of the 12-month trial were higher in the standard care arm than in the incremental arm that benefited from reduced transport, session and adverse event costs [35].

At the present time no RCT testing incremental HD has yet been published. Of note, several ongoing RCTs are using thresholds of residual KRU to establish clinical effectiveness of less frequent HD in the form of once-a-week or twice-a-week HD vs. thrice-a-week HD [33, 34, 36, 37].

 

Conclusions

The optimal regimen for incident patients is not known. Incremental HD seems to be a valuable option, whereas it is plausible that the routine practice of fixed-dose 3HD/wk in incident patients with substantial RKF may be harmful, even contributing to an accelerated loss of RKF. Our long-term observational study suggests that incremental HD is a valuable option in incident patients and is possible in most cases (80.7%) for about 1-2 years, with obvious socio-economic benefits, and with survival rates comparable to that of the Italian dialysis population. If the potential benefits will be confirmed by RCTs, then incremental HD will become a new standard of care.

 

Bibliography

  1. Kalantar-Zadeh K, Casino FG. Let us give twice-weekly hemodialysis a chance: revisiting the taboo. Nephrol Dial Transplant 2014; 29:1618-20. https://doi.org/10.1093/ndt/gfu096
  2. Kalantar-Zadeh K, Unruh M, Zager PG, et al. Twice-weekly and incremental hemodialysis treatment for initiation of kidney replacement therapy. Am J Kidney Dis 2014; 64:181-86. https://doi.org/10.1053/j.ajkd.2014.04.019
  3. Basile C, Casino FG, Kalantar-Zadeh K. Is incremental hemodialysis ready to return on the scene? From empiricism to kinetic modelling. J Nephrol 2017; 30:521-29. https://doi.org/10.1007/s40620-017-0391-0
  4. Murea M, Moossavi S, Garneata L, et al. Narrative review of incremental hemodialysis. Kidney Int Rep 2020; 5:135-48. https://doi.org/10.1016/j.ekir.2019.11.014
  5. Fernandez-Lucas M, Teruel-Briones JL, Gomis-Couto A, et al. Maintaining residual renal function in patients on haemodialysis:5-year experience using a progressively increasing dialysis regimen. Nefrologia 2012; 32:767-76. https://pubmed.ncbi.nlm.nih.gov/23169359/
  6. Mathew A, Obi Y, Rhee CM, et al. Treatment frequency and mortality among incident hemodialysis patients in the United States comparing incremental with standard and more frequent dialysis. Kidney Int. 2016; 90:1071-79. https://doi.org/10.1016/j.kint.2016.05.028
  7. Obi Y, Streja E, Rhee CM, et al. Incremental hemodialysis, residual kidney function, and mortality risk in incident dialysis patients: a cohort study. Am J Kidney Dis 2016; 68:256-65. https://doi.org/10.1053/j.ajkd.2016.01.008
  8. Mehrotra R, Nolph KD, Gotch F. Early initiation of chronic dialysis: role of incremental dialysis. Perit Dial Int 1997; 17:426-30. https://doi.org/10.1177/089686089701700502
  9. National Kidney Foundation. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy:2015 update. Am J Kidney Dis 2015; 66:884-930. https://doi.org/10.1053/j.ajkd.2015.07.015
  10. Fry AC, Singh DK, Chandna SM, et al. Relative importance of residual renal function and convection in determining beta-2-microglobulin levels in high-flux haemodialysis and on-line haemodiafiltration. Blood Purif 2007; 25:295-302. https://org/10.1159/000104870
  11. Masereeuw R, Mutsaers HA, Toyohara T, et al. The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol 2014; 34:191-208. https://doi.org/10.1016/j.semnephrol.2014.02.010
  12. Leong SC, Sao JN, Taussig A, et al. Residual function effectively controls plasma concentrations of secreted solutes in patients on twice weekly hemodialysis. J Am Soc Nephrol 2018; 29:1992-99. https://doi.org/10.1681/ASN.2018010081
  13. Shafi T, Jaar BG, Plantinga LC, et al. Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE) Study. Am J Kidney Dis 2010; 56:348-358. https://doi.org/10.1053/j.ajkd.2010.03.020
  14. van der Wal WM, Noordzij M, Dekker FW, et al. Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol Dial Transplant 2011; 26:2978-83. https://doi.org/10.1093/ndt/gfq856
  15. Vilar E, Wellsted D, Chandna SM, et al. Residual renal function improves outcome in incremental hemodialysis despite reduced dialysis dose. Nephrol Dial Transplant 2009; 24:2502-10. https://org/10.1093/ndt/gfp071
  16. Marquez IO, Tambra S, Luo FJ, et al. Contribution of residual renal function to removal of protein-bound solutes in hemodialysis. Clin J Am Soc Nephrol 2011; 6:290-96. https://org/10.2215/CJN.06100710
  17. Menon MK, Naimark DM, Bargman JM, et al. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transplant 2001; 16:2207-13. https://doi.org/10.1093/ndt/16.11.2207
  18. Wang AY, Wang M, Woo J, et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int 2002; 62:639-47. https://doi.org/10.1046/j.1523-1755.2002.00471.x
  19. Caria S, Cupisti A, Sau G, et al. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol 2014; 15:172. https://doi.org/10.1186/1471-2369-15-172
  20. Casino FG, Basile C, Gaudiano V, et al. A modified algorithm of the single pool urea kinetic model. Nephrol Dial Transplant 1990(5):214-19. https://doi.org/10.1093/ndt/5.3.214
  21. Casino FG, Lopez T. The equivalent renal urea clearance: a new parameter to assess dialysis dose. Nephrol Dial Transplant 1996; 11:1574-81. https://pubmed.ncbi.nlm.nih.gov/8856214/
  22. Casino FG, Basile C. The variable target model: a paradigm shift in the incremental haemodialysis prescription. Nephrol Dial Transplant 2017; 32:182-90. https://doi.org/10.1093/ndt/gfw339
  23. Casino FG, Basile C. How to set the stage for a full-fledged clinical trial testing ‘incremental haemodialysis’. Nephrol Dial Transplant 2018; 33:1103-09. https://doi.org/10.1093/ndt/gfx225
  24. Basile C, Casino FG on behalf of the EUDIAL Working Group of ERA- EDTA. Incremental haemodialysis and residual kidney function: more and more observations but no trials. Nephrol Dial Transplant 2019; 34:1806-11. https://doi.org/10.1093/ndt/gfz035
  25. The jamovi project (2021). jamovi. (Version 1.8). https://www.jamovi.org (date accessed: January 4, 2022).
  26. R Core Team (2021). A language and environment for statistical computing (Version 4.0). (R packages retrieved from MRAN snapshot 2021-04-01). https://cran.r-project.org (date accessed: January 4, 2022).
  27. Terry M Therneau (2020). A package for survival analysis. https://cran.r-project.org/package=survival (date accessed: January 18, 2022).
  28. Nordio M, Limido A, Conte F, et al. Italian Registry Dialysis and Transplant 2011-2013. G Ital Nefrol 2016; 33(3):gin/33.3.6. https://giornaleitalianodinefrologia.it/en/2016/06/report-del-registro-italiano-di-dialisi-e-trapianto-relativo-agli-anni-2011-2013/
  29. Locatelli F, Andrulli S, Pontoriero G, et al. Supplemented low-protein diet and once-weekly hemodialysis. Am J Kidney Dis 1994; 24:192-204. https://doi.org/10.1016/s0272-6386(12)80181-8
  30. Caria S, Cupisti A, Sau G, et al. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol 2014; 15:172. https://doi.org/10.1186/1471-2369-15-172
  31. Bolasco P, Caria S, Egidi MF, et al. Incremental approach to hemodialysis: twice a week, or once weekly hemodialysis combined with low-protein low-phosphorus diet? G Ital Nefrol 2015; 32(6):gin/32.6.2. https://giornaleitalianodinefrologia.it/wp-content/uploads/sites/3/pdf/GIN_A32V6_00225_2.pdf
  32. Nakao T, Kanazawa Y, Takahashi T. Once-weekly hemodialysis combined with low-protein and low-salt dietary treatment as a favorable therapeutic modality for selected patients with end-stage renal failure: a prospective observational study in Japanese patients. BMC Nephrol 2018 Jun 28; 19(1):151. https://doi.org/10.1186/s12882-018-0941-2
  33. Deira J, Suárez MA, López F, et al. IHDIP: a controlled randomized trial to assess the security and effectiveness of the incremental hemodialysis in incident patients. BMC Nephrol 2019; 20:8. https://doi.org/10.1186/s12882-018-1189-6
  34. Casino FG, Basile C, Kirmizis D, et al on behalf of Eudial Working Group of ERA-EDTA. The reasons for a clinical trial on incremental haemodialysis. Nephrol Dial Transplant 2020; 35:2015-19. https://doi.org/10.1093/ndt/gfaa220
  35. Vilar E, Kaja Kamal RM, et al. A multicenter feasibility randomized controlled trial to assess the impact of incremental versus conventional initiation of hemodialysis on residual kidney function. Kidney Int 2021; 19:S0085-2538(21)00749-3. https://doi.org/10.1016/j.kint.2021.07.025
  36. Fernández Lucas M, Ruíz-Roso G, Merino JL, et al. Initiating renal replacement therapy through incremental haemodialysis: protocol for a randomized multicentre clinical trial. Trials 2020; 21:206. https://doi.org/10.1186/s13063-020-4058-0
  37. Murea M, Patel A, Highland BR, et al. Twice-weekly hemodialysis with adjuvant pharmacotherapy and transition to thrice-weekly hemodialysis: a pilot study. Am J Kidney Dis 2021 Dec 18:S0272-6386(21)01040-4. https://doi.org/10.1053/j.ajkd.2021.12.001