Role of Ambulatory Blood Pressure Monitoring (ABPM) in chronic kidney patients: a review


About 90%of patients with chronic kidney disease (CKD) have arterial hypertension; the main international guidelines recommend maintaining blood pressure (BP) values below 130/80 mmHg to reduce the cardio-renal risk in this population. Twenty-four-hour Ambulatory Blood Pressure Monitoring (ABPM) is the golden standard for the identification of the BP profiles and patterns, as well as for the assessment of the circadian rhythm and BP variability. The correct interpretation of ABPM allows to optimize anti-hypertensive treatment and to reduce cardio-renal risk in CKD patient.

In fact, in patients with CKD, the ABPM has a greater role in terms of renal and cardio-vascular prognosis when compared to clinical BP measurements. Patients with ABPM in target present a low cardio-renal risk, regardless of clinical BP values; on the contrary, if the clinical PA is normal and the ABPM not in target, this risk increases significantly. Moreover, in the CKD population, non-dipping is associated with a higher risk of cardiovascular events and end stage renal disease (ESRD), making identifying nocturnal hypertension greatly important.

Therefore, ABPM is an instrument of primary importance in the diagnostic and therapeutic work-out of renal patients.


KEYWORDS: ABPM, CKD, blood pressure

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


La malattia renale cronica (Chronic Kidney Disease, CKD) coinvolge in Italia circa 2 milioni di persone, con una prevalenza del 7% all’interno della popolazione generale, come osservato nello studio CARHES condotto in Italia nel 2010 [13]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Temporal variation of Chronic Kidney Disease’s epidemiology


Chronic Kidney Disease (CKD) is a major risk factor for mortality and morbidity, as well as a growing public health problem. Several studies describe the epidemiology of CKD (i.e. prevalence, incidence) by examining short time intervals. Conversely, the trend of epidemiology over time has not been well investigated, although it may provide useful information on how to improve prevention measures and the allocation of economic resources. Our aim here is to describe the main aspects of the epidemiology of CKD by focusing on its temporal variation. The global incidence of CKD has increased by 89% in the last 27 years, primarily due to the improved socio-demographic index and life-expectancy. Prevalence has similarly increased by 87% over the same period. Mortality rate has however decreased over the last decades, both in the general and CKD populations, due to a reduction in cardiovascular and infectious disease mortality. It is important to emphasize that the upward trend of incidence and prevalence of CKD can be explained by the ageing of the population, as well as by the increase in the prevalence of comorbidities such as hypertension, diabetes and obesity. It seems hard to compare trends between Italy and other countries because of the different methods used to assess epidemiologic measures. The creation of specific CKD Registries in Italy appears therefore necessary to monitor the trend of CKD and its comorbidities over time.

Keywords: chronic kidney disease, CKD, epidemiology, registers, socio-demographic index

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


La malattia renale cronica (CKD) è una condizione patologica associata ad un alto rischio di mortalità e di morbidità. È stato infatti dimostrato, in studi di popolazione generale e di pazienti seguiti dalle unità nefrologiche, che la presenza di un valore di filtrato glomerulare stimato (eGFR) <60 ml/min/1,73m2 o di proteinuria si associa ad un alto rischio di sviluppare, nel tempo, eventi cardiovascolari (CV) maggiori (malattia coronarica, scompenso cardiaco, vasculopatia periferica), progressione del danno renale (riduzione del eGFR ed ingresso in dialisi) e mortalità da tutte le cause [15].  

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Challenges and results of the PIRP project (Prevenzione della Insufficienza Renale Progressiva) of the Emilia-Romagna Region


The PIRP project was conceived in 2004; with the aim to face the increased prevalence of chronic kidney disease (CKD) associated with the aging and increased survival of the population. The first phase of the project consisted of training primary care physicians to identify people at risk of CKD and to implement intervention strategies that proved to be effective in preventing CKD it or delaying its progression once it is established. In the second phase of the project, dedicated ambulatories were opened in the nephrology units of Emilia-Romagna hospitals to provide an in-depth assessment and personalized care to CKD patients, following them up until renal failure or death or referring them back to general practitioners, according to the study protocol. A web-based registry was implemented to collect demographic and clinical data on PIRP patients. As of 30 June 2018, the registry included 26.211 CKD patients, with a median follow-up of 24.5 months. Over the 14 years of the PIRP the mean age of incident patients increased from 71.0 years to 74.2 years and the mean eGFR increased from 30.56 to 36.52 mL/min/1.73 m2, proving that the project was successful in recruiting older patients with a better renal function. At 5 years, the percentage of patients still active in the project was >45%.The implementation of the project has seen a reduction in the number of patients arriving every year to the dialysis treatment in E-R (about 100 units less from 2006 to 2016). The PIRP cohort is the largest in Italy and in Europe, which makes it ideal for research based on international comparisons and as a model for national registries.

Keywords: Renal insufficiency, CKD, GP, GFR, Proteinuria, Public Health Intervention

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


La Malattia Renale Cronica (MRC) è, nell’ambito delle patologie croniche, una condizione molto diffusa, con una prevalenza crescente nella popolazione generale e con una stima a livello mondiale di circa il 10-15% (1). In Italia la prevalenza della MRC è stimata sull’ordine del 7,5% negli uomini e del 6,5% nelle donne sulla base dello studio CARHES (2). Questi dati di prevalenza italiana, sotto certi aspetti consolanti, sono però destinati ad aumentare per diversi ordini di fattori: i) invecchiamento della popolazione; ii) aumentata prevalenza nella popolazione generale di condizioni cliniche ad elevato rischio di danno renale (diabete mellito, sindrome metabolica, ipertensione arteriosa) (3), iii) aumentata sopravvivenza dei pazienti co-morbidi e complessi.


La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Neprilysin inhibition and chronic kidney disease


Patients with chronic kidney disease (CKD) have a higher incidence of cardiovascular (acute and chronic) events, which in turn have an increased risk of progression to end-stage renal disease (ESRD)

Inhibition of neprilysin, in addition to offering a new therapeutic target in patients with heart failure, could represent a potential improvement strategy in cardiovascular and renal outcome of patients with CKD.

Inhibition of neprilysin by inhibiting the breakdown of natriuretic peptides, increases their bioavailability resulting in an increase in diuresis and sodium excretion and, in addition to exerting an inhibition of the renin – angiotensin – aldosterone (RAAS) system.

Inhibition of RAAS, in turn, generates a series of counter-regulations that can balance the adverse effects present in CKD and heart failure (HF).

The idea of ​​blocking neprilysin is not very recent, but the first drugs used as inhibitors had an inadmissible incidence of angioedema.

Among the latest generation molecules that can perform a specific inhibitory action on the neprilysin receptor and, at the same time, on the angiotensin II receptor thanks to the association with valsartan there is the LCZ696 (sacubitril / valsartan). This drug has shown promising benefits both in the treatment arterial hypertension and heart failure. It is hoped that equally positive effects may occur in CKD patients, particularly those with macroproteinuria.

Key words: neprilysin, natriuretic peptides, sacubitril/valsartan, hypertension, heart failure, CKD

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.


I pazienti affetti da CKD presentano un rischio più elevato, rispetto alla popolazione generale, di progressione verso l’ESRD (1, 2), nonché un’incidenza particolarmente elevata di morbidità e mortalità cardiovascolare. Diversi fattori di rischio cardiovascolare, tradizionali e non, concorrono alla maggiore incidenza di eventi cardiovascolari nella popolazione affetta da CKD: aterosclerosi, infiammazione cronica, ipertensione arteriosa, iperattività del sistema nervoso simpatico ed un rimodellamento strutturale cardiaco (ad es. ipertrofia ventricolare sinistra) fattore quest’ultimo che può condurre ad una situazione di scompenso cardiaco (2).

Nella naturale evoluzione della CKD e delle sue complicanze, l’aterosclerosi, che rappresenta il primum movens nelle alterazioni a carico del sistema cardio-vascolare, perde man mano importanza nella genesi della mortalità cardio-vascolare. Allo stato attuale, le alterazioni strutturali presenti a livello cardiaco sono considerate le principali responsabili della maggiore incidenza di aritmie cardiache, quali la fibrillazione atriale e gli episodi di morte cardiaca improvvisa (3).

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Taste disorders in patients with end-stage chronic kidney disease


The authors aimed to explore taste distortion in patients with chronic kidney disease (CKD). One hundred and four patients were divided into a control group and a study group. The data was collected through a questionnaire and was statistically analyzed. The results showed that 28.7% of respondents had a loss of taste (96.60% CKD patients). There was a statistically significant correlation between the duration of treatment and taste loss, between patients’ age and taste impairment, and between patients’ age and the sense of a metallic taste in the mouth. Distortion in the sense of taste is an oral manifestation characteristic of CKD patients.

KEYWORDS: CKD, hemodialysis, metallic taste, oral manifestations, taste disorders.


As a result of their treatment patients with end-stage chronic kidney disease commonly display characteristic oral manifestations such as taste alteration, taste loss, dry mouth, etc. [1,2,3,4,5]. They are usually the consequence of metabolic and physiological disturbances inherent to the disease. Dental literature provides evidence of the relationship between the duration of the dialysis treatment and the development of oral lesions [1, 6]. In a 2012 survey Asha [7] reported that high levels of urea, dimethyl and trimethyl amines and low levels of zinc might be associated with decreased taste perception in uremic patients. The cause of a metallic taste in uremic patients was reported to be due to urea content in the saliva and its subsequent breakdown to ammonia and carbon dioxide by bacterial urease [7]. Taste disorders (dysgeusia) are also often associated with ageusia, which is the complete lack of taste, and hypogeusia, which is a decrease in taste sensitivity [8, 9, 10].

Dysgeusia (taste disorder) is a taste disturbance associated with the distorted perception of taste or a persistent sense of taste in the absence of taste stimuli. These changes could lead to food aversion, reduced food intake and nutritional deficiencies, ultimately causing weight loss and in more severe cases malnutrition, weakness, fatigue [8]. The nutritional status is subsequently affected as there are reports of a correlation between taste distortion and low levels of serum albumin, creatinine, protein and sodium intake, chest measurements and the increased need for enteral nutrition. Furthermore, latest studies show that altered taste perception is associated with 17% higher rate of mortality, although not with increased rate of hospitalization [9].

There are objective methods for testing taste impairment. Gustometry involves the use of various substance, such as citric acid, caffeine, sucrose and others, where after each taste stimulus the oral cavity is to be rinsed. Another method of research is electrogustometry, which applies current of low-intensity (μA) over the dorsum of the tongue, designed to activate trigeminus nerve endings [11, 12]. Subjective test methods include questionnaires, interviews, etc. They are suited for patients who have undergone a long-term dialysis treatment, mostly due to their dependence on the dialysis machine, the observation of a strict diet and the negative impact on the mental equilibrium of patients. Recent years have seen the development of much used validated screening questionnaires [10, 11].



To explore distortion of the taste sense in patients with end-stage chronic kidney disease (CKD) on renal replacement therapy (RRT).


Material and methods

The clinical study was approved by the Research Ethics Committee at the Medical University of Varna with Protocol No. 55/ 16 June 2016. It involved 104 patients (61 female patients – 58.65% and 43 male patients – 41.35%), aged 46.9 ± 21.2 years (with the youngest participant being 19 years old and the oldest – 80 years old). The patients were divided into 2 groups: a Control group, involving 34 participants without any common diseases and a Study group of 70 patients in end-stage chronic kidney disease. The Study group patients were provisionally divided according to the duration of their chronic dialysis treatment into 2 subgroups:   5-year Treatment group and Over 5-year Treatment group.

All participants signed an Informed Consent after being informed in detail of the purpose and terms of participation in the study. The data was collected through a questionnaire, consisting of a basic section (name of participant, gender, and age) and three questions related to the subjective sense of taste, experienced by the CKD patients:

  1. Can you feel any loss of taste?
  2. Can you feel a metallic taste in your mouth?
  3. Can you feel any taste alteration?

The answering options needed to be either Yes or No. The accurate and truthful representation of the data collected was entrusted to the good faith of patients.

The statistical evaluation of results was carried out using SPSS software package for epidemiological and clinical data analysis (V. 17.00). Non-parametric statistical methods were applied to verify statistical hypotheses (chi-square test for independence), as well as cross tabulation, calculating relative distributions, graphical representation of data, etc.



The analysis of question 1 (Can you feel any loss of taste?) showed that 28.70% of respondents had returned the unfavorable answer Yes, where 96.60% belonged to the Study group of CKD patients and only 1 patient from Control group responded positively. The remaining 71.30% of patients had marked No as an answer to that question. According to expectations, the negative answer was provided by 97.10% of representatives of the Control group and by only 58 CKD patients (20%). The chi-square test of independence  incorporating Yates’s  correction for continuity showed that there was a statistically significant correlation between the patients’ group and the taste loss perception ( χ2 (1, n = 101) = 14.78, p <0.001, phi = 0,41).

It was interesting to observe that to question 2 (Can you feel a metallic taste in your mouth?) positive answer was given solely by CKD patients (22 respondents, 21.20% of all patients surveyed) (Table 1).

More than 1/3 of CKD patients (31.40%) confirmed that they felt a metallic taste in the mouth. This percentage is relatively high in the CKD group since taste buds adapt slowly and depend on the concentration of dissolved ions in the saliva, produced as by-products as a result of the treatment of patients. As expected, no participant from the Control group responded positively to this question.

The statistical analysis of the dependence between patients’ group and the subjective perception of a metallic taste confirmed the presence of a statistically significant correlation (χ2 (1, n = 104) = 11.734, p = 0.001, phi = 0.36).

Similar results were obtained in the distribution of the answers to question 3 (Can you feel any taste alteration?). More than half of all respondents (61.50%) replied negatively, whereas 38.50% (40 patients) gave a positive answer. The relative proportion of CKD patients who indicated Yes as an answer was 52.90%, as opposed to 47.10% who replied with a No . Within the Control group the Yes/No distribution was 8.80%/ 91.20%, respectively. The positive answer was selected by 92.50% of CKD patients and by only 7.50% of participants from the Control group. It is safe to conclude that the sense of taste alteration can be manifested also in healthy patients however less frequently and among fewer of them. Taste detection thresholds vary widely across individuals. They are determined not only by the concentration of the food substance but also by food temperature. The data obtained confirmed that CKD patients experienced change in taste as a typical oral manifestation.

The chi-square test of independence  incorporating Yates’s  correction for continuity showed that there was a statistically significant correlation between the patients’ group and the subjective perception of loss of taste (χ2 (1, n = 104) = 16.93, p <0.001, phi = 0.43) (Figure 1).


As shown in Fig. 1 none of the patients in the Control group felt a metallic taste in the mouth and only 8% (1 or 2 patients) reported taste alteration or a loss of taste. When using subjective methods for measuring taste, the distinctions in the intensity of separate tastes can be elusive for a person to detect. It is well known that at least 30% change in the concentration of a substance is often needed in order to register a difference in the intensity of gustatory stimuli [13, 14]. Certain flavors are known to alter the taste sense itself, for example, acids can reduce the sweetness of sucrose, fructose, and NaCl dulls sweet taste sensitivity [15].

The nature of kidney disease and its treatment cause different substances in various quantities to dissolve in the oral fluids, which in turn trigger the trigeminal chemoreceptor cells and stimulate the microvilli on the taste buds. The mechanisms are not fully grasped. This accounts for the research into other factors that may lead to taste distortions in CKD patients:

Duration of treatment: The results showed that the duration of the disease did not affect taste alteration and the subjective perception of a metallic taste in the mouth (χ2 (1, n = 70) = 0, p = 1.00, and χ2 (1, n = 70) = 0.066, p = 0.797, respectively). However, there was a statistically significant correlation between the duration of treatment and the subjective perception of taste loss: χ2 (1, n = 70) = 5.84, p = 0.02, phi = 0.326.

When examining the dependencies between taste alteration and the sense of a metallic taste, a very strong statistically significant correlation was established: χ2 (1, n = 70) = 25.922, p <0.001, phi = 0.639. The analysis revealed that CKD patients most often associated taste change with a metallic taste. As seen in Table 2, all patients (100%) who responded positively to the question 3 (Can you feel any taste alteration?) also admitted having a metallic taste in the mouth.

Gender: The results indicated that there was no statistically significant correlation between the patient’s gender and the subjective perception of a metallic taste: χ2 (1, n = 70) = 2.6, p = 0.11. The same applied for the dependency between the patient’s gender and the subjective sense of taste alteration: χ2 (1, n = 70) = 3.38, p = 0.07.

Age: The effects of patients’ age on the subjective perceptions of taste were also examined. Patients were divided into groups according to WHO age classification [16]. The results from the chi-square test of independence revealed strong statistically significant correlations between the Age group and taste alteration (χ2 (1, n = 70) = 39.528, p <0.001, phi = 0.751), as well as between the Age group and the sense of a metallic taste (χ2 (1, n = 70) = 42.319, p <0.001, phi = 0.778). The results obtained by cross-tabulation showed that 88.30% of patients, who reported any taste distortion, were young or middle-aged. All 10 patients in older age had not registered any taste alteration. Similar results were observed on the correlation between the Age group and the sense of a metallic taste. 95.50% patients, who experienced a metallic taste in the mouth, were young or middle-aged. Likewise, none of the older patient had reported of a metallic taste. Such dependencies, which are often observed for certain phenomena of the visual system, can be explained with age-related transformations and are due to the central neuronal interactions [17, 16].



Taste receptors belong to the group of contact chemoreceptor cells. They play an important role in the selection of food and the regulation of the digestive system [18]. It is well known that nutritional status has a significant impact on the overall health and the quality of life in patients with systemic diseases [19]. This shifts the scientific interest towards the study of taste distortion in CKD patients, who exhibit variations in the type and concentration of ions dissolved in the saliva as a result of the disease and chronic dialysis treatment. There are further studies on the low level of zinc in the blood and the taste impairment in CKD patients, undergoing hemodialysis, which cannot be corrected through interventional treatment methods [20].

The correlation between the subjective sense of taste distortion in CKD patients and that of Control group patients proved the critical role of kidney disease as a contributing factor for taste alteration: (χ2 (1, n = 104) = 16.93, p <0.001 , phi = 0.43). It was established that the duration of treatment did not affect taste sense, ether metallic or altered taste (χ2 (1, n = 70) = 0.066, p = 0.797). However, over time CKD patients reported a loss of taste (χ2 ( 1, n = 70) = 5.84, p = 0.02, phi = 0.326).

Strong statistically significant relationships were observed between patients’ age and taste alteration (χ2 (1, n = 70) = 39.528, p <0,001, phi = 0.751), and between their age and the sense of a metallic taste (χ2 (1, n = 70) = 42.319, p <0.001, phi = 0.778). CKD patients at a younger or middle age proved to be more sensitive to taste alterations compared to older patients.



Taste impairment is regarded as a characteristic oral manifestation observed in CKD patients.  Since the mechanism behind taste receptors has not been fully grasped, research interest should be directed towards the effects of taste distortion on the body’s digestive cycle and subsequently on nutritional deficiencies. The issue is particularly relevant owing to its relationship to the quality of life of CKD patients.



  1. Block GA, Martin KJ, deFrancisco AL. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 2004;350:1516–1525.
  2. Chi AC, Neville BW, Krayer JW, Gonsalves WC. Oral manifestations of systemic disease. Am Fam Physician 2010;82:1381-1388.
  3. Souza CM, Braosi A, Luczyszyn al. Oral health in Brazilian patients with chronic renal disease. Rev Méd Chile 2008; 136: 741-746.
  4. Nenova- Nogalcheva А, Konstantinova D. Halitosis in Patients with End-Stage Chronic Kidney Disease Undergoing Chronic Dialysis Treatment. 2016; 5(12):875-878.
  5. Sobrado MJS, Tomás CI, Loureiro A et al. Oral health status in patients with moderate-severe and terminal renal failure. Med Oral Patol Oral Cir Bucal. 2007;12(4):E305-10.
  6. De Rossi SS, Glick M. Dental considerations for the patient with renal disease receiving hemodialysis. J Am Dent Assoc 1996;127(2):211-219.
  7. Asha V, Latha S, Pai A, Srinivas K, Ganapathy KS. Oral Manifestations in Diabetic and Nondiabetic Chronic Renal Failure Patients on Hemodialysis. J Indian Acta Oral Med Radiol. 2012;24:274-279.
  8. Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF et al. Smell and taste disorders – A study of 750 patients from the University of Pennsylvania, Smell and Taste Center. Arch Otolaryngol Head Neck Surg 1991; 117:519-528.
  9. Lynch KE, Lynch R, Curhan GC, Brunelli SM. Altered taste perception and nutritional status among hemodialysis patients. Journal of Renal Nutrition 2013;23(4):288-295.
  10. Beberashvili I, Azar A, Sinuani I, Yasur H, Feldman L. et al. Objective Score of Nutrition on Dialysis (OSND) as an alternative for the malnutrition-inflammation score in assessment of nutritional risk of haemodialysis patients. Nephrol Dial Transplant 2010; 25(8):2662-71.
  11. Oliveira CM, Kubrusly M, Mota RS, Silva CA, Choukroun G, Oliveira VN. The phase angle and mass body cell as markers of nutritional status in hemodialysis patients.J RenNutr. 2010; 20(5):314-20.
  12. Schiffman SS. Taste and smell in disease. NEnglJ Med.1983;308:1275-12791, 337-1343.
  13. Mott A, Leopold D.Disorders in taste and smell. Medical Clinics of North America1991;75(6):1321-1353.
  14. Stillman JA, Morton RP, Hay KD, Ahmad Z, Goldsmith D. Electrogustometry: strenghts, weaknesses, and clinical evidence of evidence of stimulusboundaries. Clin Otolaryngol Allied Sci. 2003;28(5):406-10.
  15. Klimacka-Nawrot E, Suchecka W. Methods of taste sensitivity examination. 2008, 61(7-9):207-10.
  16. Barrett KE, Barman SM, Boitano S, Brooks HL.Ganong’s Review of Medical Physiology. 2010, 23rd Edition, 451 – 469.
  17. Provisional Guidelines On Standard International Age Classifications, Department Of International Economic And Social Affairs, St/Esa/Stat/Ser.m/74 1, United Nations Publication, New York, 1982, Sales No. E.82.XVII.5.
  18. Schiffman SS. Taste and Smell Losses in Normal Aging and Disease, JAMA 1997; 278(16):1357-1362
  19. Penagini F, Mameli C, Fabiano V. et al. Dietary intakes and nutritional issues in neurologically impaired children. Nutrients 2015; 7(11): 9400-9415.
  20. Tsutsumi R, Ohashi K, Tsutsumi YM, Horikawa YT, Minakuchi J. et al. Albumin-normalized serum zinc: a clinically useful parameter for detecting taste impairment in patients undergoing dialysis. Nutrition Research 2014; 34 (1): 11-16.