Kidney Transplant in a Highly Sensitized Patient Treated with Imlifidase

Abstract

Through a clinical case, we will describe the difficulties associated with providing transplantation opportunities to highly immunized patients. We will therefore focus on new desensitization therapies and their pharmacological effects with the consequent improvement in clinical outcomes. The main desensitization strategies in use and the main future therapeutic prospects will also be discussed.

Keywords: Imlifidase, Kidney Transplant, Hyperimmune Patients

Sorry, this entry is only available in Italian.

Introduzione

Il numero di pazienti affetti da malattia renale allo stadio terminale è in forte aumento in tutto il mondo, sia nei paesi sviluppati che in quelli in via di sviluppo [1]. Tra questi molti risultano idonei al trapianto di rene, opzione che rispetto alla dialisi si associa a una qualità di vita e una sopravvivenza significativamente migliori. La presenza di un quadro di sensibilizzazione e il conseguente sviluppo di anticorpi rivolti contro antigeni leucocitari umani (HLA) di classe I e/o II rendono difficile trovare un aplotipo compatibile in caso di trapianto. Elevati livelli di anticorpi donatore specifici (HLA DSA) sono correlati con un maggiore rischio di rigetto iperacuto che può essere ulteriormente incrementato in seguito a numerosi eventi come: emotrasfusioni, pregressi aborti o gravidanze [24]. Per questo motivo, nonostante un marcato aumento del numero di allotrapianti da donatore vivente (DLA), molti potenziali riceventi con donatori idonei sono relegati nelle liste di attesa per la presenza di anticorpi anti antigene leucocitario umano preformati. Per rilevare rapidamente la presenza di anticorpi nel siero del ricevente rivolti contro linfociti isolati dal sangue del donatore, sono state sviluppate procedure di crossmatch (CM) che consentono un’efficace valutazione della sopravvivenza a breve termine degli alloinnesti renali.  La valutazione dello stato di pre-sensibilizzazione di un paziente in lista d’attesa per trapianto, avviene o tramite la tecnica di citotossicità complemento-mediata (CDC) o attraverso tecniche di fase solida (SPI) [5]. Indipendentemente dalla tecnica utilizzata, la percentuale di sensibilizzazione di un paziente nei confronti delle molecole HLA viene stimata attraverso il PRA (Panel Reactive Antibody), un test di fissazione del complemento attraverso cui viene testata la capacità del siero del ricevente di lisare un pannello di cellule T da un gruppo di potenziali donatori.

La tecnica CDC, elaborata da Terasaki e Mc Clelland nel 1964 [6], viene eseguita utilizzando un pannello di linfociti T a tipizzazione nota; pochi laboratori utilizzano anche i linfociti B, che permettono di identificare non solo anticorpi diretti contro molecole di classe I ma anche anticorpi specifici per molecole di classe II. Sono note diverse varianti della metodica originale che ne aumentano la sensibilità; quella più utilizzata nei laboratori italiani è la tecnica “long incubation”.

Le tecniche in fase solida (solid‐phase immunoassay ‒ SPI) prevedono che il siero in studio venga incubato in microsfere di lattice ricoperte di molecole HLA purificate o ricombinanti rappresentative di tutte le specificità HLA antigeniche note nonché, in alcuni casi, di una o più specificità alleliche di una particolare molecola HLA [7]. Dopo incubazione con un anticorpo fluorescinato anti-human-IgG (o IgM) le sfere vengono analizzate con un citofluorimetro classico (FlowPRA screening/FlowPRA Single Antigen beads) o con un citofluorimetro dedicato (Luminex® Screening e Single Antigen beads) permettendo l’identificazione di tutti gli anticorpi anti-HLA presenti nel siero in studio. Il test Luminex® si basa su microsfere e mediante PCR un oligonucleotide a sequenza specifica (SSO) consente il rilevamento simultaneo di un massimo di 100 diversi analiti da una provetta velocizzando notevolmente il processo di tipizzazione [8]. La tecnologia Luminex® è quella maggiormente utilizzata nei laboratori italiani [9] e l’analisi attraverso metodiche SPI rappresenta il “gold standard” nello studio della sensibilizzazione anti-HLA nel trapianto [10]. Il problema dell’iperimmunizzazione nei pazienti in lista di attesa è stato affrontato negli Stati Uniti già nel 2014 attraverso l’attivazione del sistema di allocazione renale (KAS) che ha determinato un notevole miglioramento dei tassi di trapianto anche nei pazienti sensibilizzati [11]. Nonostante l’attivazione di questo programma, attraverso un’analisi condotta da Schinstock e collaboratori su 1791 pazienti, è stato evidenziato come i tassi di trapianto nei soggetti che presentano iperimmunizzazione (ovvero anticorpi reattivi del pannello calcolati [cPRA] > 99,9%) non siano stati influenzati significativamente, pertanto tali pazienti presentavano maggiori probabilità di morire o essere rimossi dalle liste di attesa rispetto ai pazienti meno sensibilizzati [12].

Analizzando i dati forniti dall’Eurotransplant è possibile evidenziare, anche nel nostro continente, una tendenza simile alla casistica statunitense, infatti circa il 19% di 10.320 pazienti è considerato sensibilizzato, e di questi il 30% rientra nella categoria altamente sensibilizzata con un cPRA > 85% [13]. Le strategie di desensibilizzazione rappresentano la sfida principale per favorire sia l’incremento del numero dei potenziali riceventi che indirettamente la sopravvivenza degli organi trapiantati. Il rigetto cronico del trapianto renale (CKTR) è spesso un processo immunitario allogenico clinicamente silente, ma progressivo, che porta a lesioni cumulative del graft con deterioramento della funzione d’organo. Il rigetto cronico può essere suddiviso in linfocita T mediato (TCMR) e anticorpo mediato (ABMR) e secondo i criteri revisionati nel 2017 della classificazione di Banff, tali alterazioni possono coesistere [1416]. Gli attuali protocolli di desensibilizzazione consistono principalmente in immunoglobuline per via endovenosa (IVIG), rituximab, plasmaferesi o immunoadsorbimento e la loro efficacia è stata evidenziata in vari studi [17, 18]. Tuttavia, la rimozione incompleta degli anticorpi specifici del donatore (DSA) o un possibile rebound di DSA post-trapianto possono aumentare il rischio di rigetto anticorpo mediato [19, 20]. Pertanto, sono necessari nuovi farmaci o protocolli terapeutici che agendo su specifici target immunologici possano migliorare la desensibilizzazione anticorpale e garantire il successo del trapianto. Come evidenziato nella figura sottostante, le proteasi di derivazione batterica come l’imlifidase si inseriscono come trattamento desensibilizzante aggiuntivo con azione mirata sugli anticorpi anti HLA.

Figura1. Siti di azione dei vari agenti desensibilizzanti (tratto da Noble J [21]).
Figura1. Siti di azione dei vari agenti desensibilizzanti (tratto da Noble J [21]).

Caso clinico

Descriviamo il caso clinico di una donna caucasica di 43 anni di nazionalità rumena, seguita presso l’ospedale San Giovanni Battista di Foligno per CKD secondaria a glomerulonefrite post-infettiva e in trattamento emodialitico trisettimanale che ha ricevuto un trapianto renale previo trattamento desensibilizzante con imlifidase. All’anamnesi patologica remota: pregresso trapianto renale eseguito nel 2003, all’età di 22 anni allocato in fossa iliaca sinistra, presso il paese d’origine, complicato con un episodio di rigetto acuto trattato con boli di metilprednisolone. A partire dal 2008 si registravano diversi episodi infettivi, a giugno si documentava un’infezione delle vie urinarie (IVU) sostenuta da E. Coli complicata da setticemia e trattata con antibioticoterapia mirata, mentre a luglio 2008 si osservava la positivizzazione del CMV-DNA e dell’EBV-DNA trattati con ganciclovir. Successivamente per un quadro di epatopatia cronica HCV relata (genotipo 1 b), si avviava trattamento con interferone e ribavirina fino alla completa guarigione documentata tramite negativizzazione dell’RNA virale. A causa del progressivo peggioramento degli indici di funzione renale, si rendeva necessario rivalutare tramite biopsia sul graft le condizioni dell’organo, che mostrava la presenza di un “infiltrato infiammatorio interstiziale associato a focale glomerulopatia cronica e moderata fibrosi interstiziale”.

Nel gennaio 2009 per nuovo episodio di rigetto del graft, si provvedeva ad espianto dell’organo e ripresa del trattamento emodialitico con frequenza trisettimanale. All’inizio del marzo 2009, in seguito a episodio di edema polmonare acuto non responsivo a terapia medica si provvedeva al ricovero urgente in terapia intensiva e all’avvio di cicli di CVVHDF. La degenza era complicata da un episodio di anemizzazione trattato tramite emotrasfusioni con emazie concentrate. Nel dicembre 2011, ricovero presso l’Ospedale di Foligno per polmonite lobare destra, associata a versamento pleurico massivo omolaterale risolto tramite il posizionamento di drenaggio pleurico. In corso di degenza si riscontrava un quadro di cardiomiopatia dilatativa ipocinetica associata ad insufficienza mitralica ed ipertensione polmonare. A partire dall’inizio del 2012, per la comparsa di numerosi episodi di metrorragia sintomatica, si ricorreva a numerose emotrasfusioni. Dal medesimo anno fino al trapianto, si verificavano numerosi eventi immunizzanti come emotrasfusioni e poliabortività, inoltre per progressivo esaurimento dei siti disponibili, si osservava una crescente difficoltà nel mantenimento degli accessi vascolari. Dapprima infatti, si rendeva necessario un intervento di superficializzazione della vena basilica destra, mentre nel 2014 si provvedeva al posizionamento di protesi nel medesimo arto e nel 2016 si verificava una stenosi della succlavia destra secondaria all’utilizzo di questa vena per il posizionamento di CVC. Per la presenza di progressiva ipersensibilizzazione, secondaria agli eventi immunizzanti intercorsi negli anni, si procedeva, dal luglio del medesimo anno, a programma di desensibilizzazione tipo Jordan (rituximab + IVIG) per eventuale nuovo trapianto.

Nel 2022 la paziente veniva inserita nel programma nazionale iperimmuni (PNI) per la presenza di immunizzazione del 100% in classe I e del 95% in classe II. A novembre del medesimo anno, si ricoverava presso l’Azienda Ospedaliera di Padova per essere sottoposta a trapianto di rene da donatore deceduto, previa desensibilizzazione con imlifidase. All’ingresso in reparto, veniva eseguita valutazione del titolo degli anticorpi anti-HLA pre-trapianto con riscontro di DSA rivolti contro gli antigeni di classe I A32, A29 e di classe II DRB1* 11, DR 52, DRB1*07:01, DQB1*03:01, DQB1*02.

Si procedeva, quindi, secondo protocollo, all’infusione di imlifidase 13 mg pre-trapianto e alla successiva rivalutazione del titolo DSA; come evidenziato nelle figure sottostanti, si riduceva drammaticamente nelle ore successive all’infusione.

Figura 2. Andamento titolo anticorpale evidenziato tramite mean fluorescent intensity MFI in classe I e II.
Figura 2. Andamento titolo anticorpale evidenziato tramite mean fluorescent intensity MFI in classe I e II.

Al termine degli accertamenti pre-operatori, si eseguiva intervento di trapianto renale singolo da donatore deceduto, un uomo di 68 anni di razza caucasica. Il Kidney Donor Profile Index (KDPI) era del 71%, compatibile con un funzionamento atteso del graft di almeno nove anni, mentre il Kidney Donor Risk Index (KDRI), ovvero il rischio di fallimento del trapianto sulla base delle caratteristiche del donatore, era di 1,22. Il trapianto veniva eseguito in data 02/11/2022 e il graft veniva allocato in fossa iliaca destra. Il tempo di ischemia fredda è stato di sette ore. Come da protocollo, si avviava dapprima una terapia immunosoppressiva con metilprednisolone e successivamente una tripla associazione costituita da tacrolimus, acido micofenolico e corticosteroidi. Il successivo decorso clinico post operatorio si caratterizzava per pronta ripresa della diuresi e progressiva riduzione della creatinina sierica con normalizzazione degli indici di funzione renale. Durante la degenza si eseguiva monitoraggio quotidiano del titolo di anticorpi DSA e si eseguiva infusione di siero antilifocitario (timoglobuline di coniglio) per tre giorni consecutivi (ovvero in quarta, quinta e sesta giornata post operatoria) per un totale di 4 mg/kg, cui faceva seguito in settima giornata l’infusione di 1 g di rituximab; contestualmente si iniziava vaccinazione anti meningococcica contro i gruppi A, C, W-135 e Y. In ottava giornata, per un peggioramento della funzionalità renale e anuria associati a rialzo della temperatura corporea fino a 38,4 C°, la paziente veniva sottoposta a biopsia del graft suggestiva per rigetto anticorpo mediato come evidenziato dalla presenza di capillarite con infiltrato granulocitario associato, positività per Cd4 e C5b9 (Figure 3A e 3B).

Figure 3A e 3B. Biopsia eseguita sul graft della paziente.
Figure 3A e 3B. Biopsia eseguita sul graft della paziente.

Si procedeva dapprima alla somministrazione di eculizumab (1200 mg) e all’infusione di tre dosi di timoglobuline (75 mg), quindi all’esecuzione di sedute di plasmaferesi associando, al termine di ciascuna seduta, l’infusione di eculizumab a dosaggio di mantenimento (600 mg). In seguito alle misure intraprese, si osservava risoluzione del quadro clinico ed un rapido miglioramento degli indici di funzione renale (creatinina 1,13 mg/dl). A completamento diagnostico si eseguiva ecografia del rene trapiantato che risultava nella norma sia in termini morfologici che di vascolarizzazione. La paziente veniva dimessa in buone condizioni cliniche e inviata presso il centro territoriale di competenza (A.O. di Perugia) per la gestione della terapia post-trapianto. In data 02/12/2022 in considerazione del miglioramento clinico e del mantenimento di una adeguata funzione del graft, si procedeva alla rimozione CVC tunnellizzato per dialisi. Attualmente la paziente appare in buone condizioni cliniche generali e prosegue regolari follow-up ambulatoriali. Agli ultimi esami ematochimici eseguiti nel giugno 2023 si evidenzia la persistenza di una lieve anemia associata a deficit marziale (Hb 10 g/dl MCV 89 fl TSAT 13%) in trattamento con epoetina  zeta 8000UI 1fl a settimana, una funzione renale compatibile con un’insufficienza renale cornica lieve-moderata (Crs 1,3 mg/dl EGFR 45 ml/min con MDRD), un iperparatiroidismo secondario normocalcemico in fase di correzione (PTH 187 pg/ml, Ca++ 9,6 mg/dl, P- 2,4 mg/dl) e un lieve deficit di vitamina D (14,3 ng/ml). Indici di flogosi negativi. Al momento non si registra inoltre riattivazione virale risultando negativa la ricerca per BK, CMV EBV. Si riportano nel grafico sottostante i livelli sierici di creatininemia (espessa in μmol/l) e di tacrolemia nei cinque mesi successivi al trapianto (Figura 4).

Figura 4. Andamento della creatinina e della tacrolemia nei 5 mesi successivi al trapianto.
Figura 4. Andamento della creatinina e della tacrolemia nei 5 mesi successivi al trapianto.

L’attuale terapia immunosoppressiva della paziente risulta costituita da tacrolimus (1mg + 0,5 mg die), micofenolato (360 mg 1 cpr × 2) e metilprednisolone 16 mg 1/2 cpr die.

 

Discussione

L’imlifidase è una cisteina proteasi di 35 kDa individuata inizialmente nello streptococcus pyogenes e prodotta tramite DNA ricombinante in E. Coli, che possiede la capacità di scindere tutte le sottoclassi di IgG umane in modo altamente specifico. L’inibizione delle IgG dura circa 1-2 settimane, ovvero fino a quando non diventa rilevabile una nuova sintesi di immunoglobuline [22]. L’azione dell’imlifidase si realizza tramite idrolisi a livello dell’aminoacido Gly236 localizzato nella regione cerniera inferiore delle catene pesanti delle IgG umane [23] (Figura 5).

Figura 5. Meccanismo di azione dell’imlifidase (tratto da: www.ema.europa.eu  riferimento [24]).
Figura 5. Meccanismo di azione dell’imlifidase (tratto da: www.ema.europa.eu  riferimento [24]).
 La scissione in questo sito è critica, poiché la regione del frammento cristallizzabile (Fc) delle IgG interagisce con i recettori Fcγ localizzati sulle cellule immunitarie, pertanto l’idrossilazione delle molecole di IgG con rimozione dei frammenti Fc inibisce la citotossicità complemento dipendente (CDC) e la citotossicità cellulare anticorpo mediata (ADCC), processi indispensabili per l’avvio e il mantenimento del rigetto anticorpo mediato (AMR) [25]. L’importanza dell’eliminazione delle IgG e del potenziale effetto nei pazienti trapiantati sono noti già nel 2015, attraverso uno studio randomizzato condotto da Winstet e coll. [26] su venti volontari sani. È stato documentato come l’enzima sia in grado di scindere, con la medesima efficacia, sia proteine libere che legate ai rispettivi antigeni o complessate con i recettori dei linfociti B(BCR) [27]. La rilevanza di questa caratteristica appare evidente se si considera l’importanza del complesso BCR nell’attivazione linfocitaria in seguito all’interazione antigene-anticorpo. La porzione che interagisce con il ligando è costituita da un Ab con un dominio transmembrana la cui porzione di segnalazione è costituita da un eterodimero chiamato Ig-α/Ig-β (CD79a/CD79b). Le proteine ​​CD79 attraversano la membrana plasmatica e possiedono una coda citoplasmatica che presenta un’attivazione immunorecettoriale tirosino-mediata (ITAM). In seguito all’attivazione recettoriale, l’ITAM viene fosforilato da una chinasi (LYN) che recluta la tirosina chinasi portando alla formazione di un complesso di segnalazione associato alla membrana plasmatica, chiamato signalosoma, che assembla molecole di segnalazione, come fosfolipasi-Cγ2 (PLC-γ2), PI3K, tirosina chinasi di Bruton, VAV1 e molecole adattatrici con conseguente attivazione cellulare [28, 29]. Alcuni intermedi fondamentali che appartengono alla cascata di segnalazione generata nel processo di attivazione, sono rappresentati da BCR, PLC-γ2 e PI3K, che attraverso la generazione di secondi messaggeri chiave attivano la chinasi IκB e ERK1/2 (alias MAPK3 e MAPK1) regolando di fatto il destino delle cellule B determinandone quindi proliferazione, sopravvivenza, differenziazione ed eventuale apoptosi [30]. Sulla base di queste evidenze, è stato osservato come in seguito al trattamento con imlifidase, i linfociti B non siano più in grado di attivare correttamente la cascata di segnalazione mediata dall’interazione dell’anticorpo con BCR, con conseguente riduzione sia delle cellule B di memoria che della produzione di IgG [26]. L’imlifidase è quindi in grado di negativizzare un cross match in un paziente positivo ma a differenza dei metodi di desensibilizzazione esistenti, come la plasmaferesi o le immunoglobuline, riesce ad eseguire tale operazione in tempi molto rapidi [31]. Un aspetto apparentemente limitativo del farmaco è rappresentato dal rebound anticorpale che si verifica generalmente in un periodo compreso tra i tre giorni e le due settimane, tuttavia questo svantaggio viene ampliamente superato dal fatto che fino all’89,5% dei pazienti trattati con imlifidase ha dimostrato la conversione del crossmatch da positivo a negativo entro 24-48 ore dal trattamento [32].

Oltre all’utilizzo per la desensibilizzazione nel ricevente di trapianto renale, il farmaco è stato impiegato con successo in un caso di trapianto polmonare [33] e uno studio in vitro, effettuato su topi, ne ha dimostrato il potenziale utilizzo nei riceventi il trapianto di midollo osseo [34].

L’azione inibitoria, esercitata dall’imlifidase, ha aperto ulteriori possibilità di utilizzo per questo farmaco anche nelle patologie immunomediate resistenti alle comuni terapie immunosoppressive. L’utilizzo del farmaco appare possibile non solo per patologie renali, come la malattia della membrana basale anti-glomerulare, la vasculite IgA mediata, la nefrite lupica o la crioglobulinemia, ma anche in ambito ematologico come nell’emofilia congenita A (PwHA) [3537], sebbene siano necessari ulteriori studi prima di una conferma definitiva. In considerazione del meccanismo d’azione dell’imlifidasi e della conseguente soppressione dei livelli di IgG per un periodo compreso tra due settimane e un mese, esiste la possibilità di un incremento del rischio infettivo nei pazienti in cui viene utilizzato. Come riportato dall’European Medicine Agency (EMA) è stato osservato un rischio aumentato di infezioni specie polmonari e delle vie urinarie in questi pazienti, inoltre l’utilizzo del farmaco è stato precluso ai soggetti affetti da porpora trombotica trombocitopenica o da gravi infezioni non eradicabili [24]. Oltre all’imlifidase, la ricerca si è orientata verso altri target immunitari e sono stati proposti numerosi siti alternativi su cui agire per ottenere una rapida desensibilizzazione. Si riportano nella Figura 6 gli attuali target oggetto di studio.

Figura 6. Possibili siti di azione per farmaci desensibilizzanti (tratto da Choi AY et al [38]).
Figura 6. Possibili siti di azione per farmaci desensibilizzanti (tratto da Choi AY et al [38]).
Un sito alternativo è rappresentato dal recettore Fc neonatale (FcRn), espresso nelle cellule endoteliali, presentanti l’antigene (monociti/macrofagi), dendritiche e nei linfociti B [39, 40]. Il blocco del recettore FcRn ottenuto tramite l’anticorpo monoclonale rozanolixizumab [41, 42], inizialmente sviluppato contro malattie IgG mediate come miastenia gravis e trobocitopenia immune [43], sembra avere un ruolo sia nella riduzione delle IgG circolanti totali che nel miglioramento del cross match, sebbene non sia stata evidenziata né riduzione delle IgM totali circolanti né dei DSA [44].

Diversi autori hanno proposto l’utilizzo degli inibitori del proteasoma in funzione desensibilizzante. Everley et al. [45] hanno proposto l’uso del bortezomib per il trattamento dell’AMR e dell’ACR nei riceventi di trapianto renale, mentre Mulder e collaboratori [46] hanno evidenziato il ruolo del farmaco nell’inibizione delle cellule B e nell’induzione di apoptosi in quelle già attivate. L’utilizzo del bortezomib in ottica desensibilizzante è da attribuirsi a Woodle che attraverso un trial condotto su 44 persone ha ottenuto, tramite un’associazione tra bortezomib, plasmaferesi e rituximab, una riduzione dei DSA nell’86% dei casi, una percentuale di successo del trapianto nei pazienti altamente sensibilizzati pari al 43,2% e una percentuale dell’89,5% di graft funzionali ad un follow-up mediano di 436 giorni [47]. Risultati simili sono stati ottenuti da Jeong et al. utilizzando una combinazione costituita da alte dosi di IVIG, rituximab e bortezomib [48]. L’uso di inibitori del proteasoma di seconda generazione (carfilzomib, ixazomib) ha dato buoni risultati in termini di efficacia e migliorato la tollerabilità al trattamento [38].

L’anticorpo monoclonale umanizzato anti-CD19 inebilizumab appare molto promettente nella desensibilizzazione nei pazienti iperimmuni candidati al trapianto renale e attualmente è in corso un trial randomizzato di fase II per valutarne l’efficacia [49]. Anche il tocilizumab, un anticorpo monoclonale umanizzato rivolto verso il recettore dell’IL6, appare un buon candidato nelle strategie di desensibilizzazione poiché agisce sul pathway infiammatorio, sulla maturazione dei linfociti T helper e sulla differenziazione dei linfociti B [50]. Inoltre l’efficacia dell’associazione tra tocilizumab e IVIG appare confermata [51]. Anche gli agenti inibitori del fattore di attivazione delle cellule B (BAFF) potrebbero rivestire un ruolo nelle strategie desensibilizzanti. Il fattore di attivazione delle cellule B (BAFF) è un omotrimero e membro della famiglia del fattore di necrosi tumorale (TNF) che si trova sulla superficie cellulare come proteina transmembrana oppure è rilasciato in forma solubile dopo scissione [52] il cui ruolo è fondamentale per la maturazione e proliferazione delle cellule B [53]. Il blocco di questa molecola può essere importante nella modulazione linfocitaria e nella produzione anticorpale. L’anticorpo monoclonale belimumab (Benlysta®), è stato il primo farmaco biologico che presenta una specifica azione contro BAFF proposto, in monoterapia, per la desensibilizzazione nel trapianto renale [54, 55].

 

Conclusioni

Possiamo affermare che il trattamento con l’imlifidase appare ben tollerato e con un elevato tasso di risposta valutata in termini di negativizzazione del cross match. Nei pazienti in cui tale farmaco è stato utilizzato per ottenere una desensibilizzazione non si sono osservati risultati differenti rispetto a quanto osservato utilizzando i protocolli standard di desensibilizzazione. In questa popolazione ad alto rischio, infatti, si è osservata una relativa stabilità della funzione dell’allotrapianto e un profilo di sicurezza a lungo termine senza incrementi significativi dei tassi di infezione o di malignità. Sebbene ulteriori studi possano definire l’utilizzo ottimale di questo nuovo agente, l’imlifidase costituisce un importante opzione per consentire il trapianto tra quei pazienti per i quali la dialisi a vita e la relativa morbilità possono essere l’unica alternativa. Al momento persistono dubbi circa il profilo di sicurezza del farmaco nel lungo periodo sebbene non siano evidenti particolari fenomeni di criticità. Tale limitazione deriva dal fatto che il numero dei pazienti indagati è basso e per tale motivo sono necessari ulteriori studi in tal senso. Ulteriori target terapeutici sono in fase di studio e rappresenteranno un valido strumento da affiancare alle terapie desensibilizzanti attualmente in uso. Si evidenzia, comunque, la necessità di una attenta valutazione dei candidati al trattamento con imlifidase, in considerazione degli effetti sistemici del farmaco e delle possibili complicanze.

 

Bibliografia

  1. Robinson BM, Akizawa T, Jager KJ, Kerr PG, Saran R, Pisoni RL. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. 2016;388(10041):294-306. https://doi.org/10.1016/S0140-6736(16)30448-2.
  2. Kissmeyer-Nielsen F, Olsen S, Petersen VP, Fjeldborg O. Hyperacute Rejection of Kidney Allografts, Associated with Pre-existing Humoral Antibodies against Donor Cells. Lancet (1966) 2(7465):662–5. https://doi.org/10.1016/s0140-6736(66)92829-7.
  3. Dausset J, Nenna A, Brecy H. Leukoagglutinins. Blood (1954) 9:696–720. https://doi.org/10.1182/blood.v9.7.696.696.
  4. Van Rood JJ, Eernisse JG, Van Leeuwen A. Leucocyte Antibodies in Sera from Pregnant Women. Nature (1958) 181(4625):1735–6. https://doi.org/10.1038/1811735a0.
  5. Saito PK, Yamakawa RH, Pereira LC, da Silva WV Jr, Borelli SD. Complement-dependent cytotoxicity (CDC) to detect Anti-HLA antibodies: old but gold. J Clin Lab Anal. 2014 Jul;28(4):275-80. https://doi.org/1002/jcla.21678.
  6. Terasaki PI, McClelland JD. Microdroplet assay of human serum cytotoxin. 1964 Dec 5; 204:998-1000. https://doi.org/10.1038/204998b0.
  7. Koefoed-Nielsen P, Møller BK. Donor-specific anti-HLA antibodies by solid phase immunoassays: advantages and technical concerns. Int Rev Immunol. 2019;38(3):95-105. https://doi.org/10.1080/08830185.2018.1525367.
  8. Muro M, Llorente S, Gonzalez-Soriano MJ, et al. Pre-formed donor-specific alloantibodies (DSA) detected only by luminex technology using HLA-coated microspheres and causing acute humoral rejection and kidney graft dysfunction, Clin Transpl, 2006, vol. 26 (pg. 379-383).
  9. Picascia A, Infante T, Napoli C. Luminex and antibody detection in kidney transplantation. Clin Exp Nephrol. 2012 Jun;16(3):373-81. https://doi.org/10.1007/s10157-012-0635-1.
  10. Colombo MB, Haworth SE, Poli F, et al. Luminex technology for anti-HLA antibody screening: evaluation of performance and of impact on laboratory routine, Cytometry Part B (Clinical Cytometry), 2007, vol. 72 (pg. 465-471) https://doi.org/1002/cyto.b.20353.
  11. Stewart DE, Kucheryavaya AY, Klassen DK, Turgeon NA, Formica RN, Aeder MI. Changes in Deceased Donor Kidney Transplantation One Year After KAS Implementation. Am J Transplant. 2016; 16:1834‐1847. https://doi.org/10.1111/ajt.13770.
  12. Schinstock CA, Smith BH, Montgomery RA, Jordan SC, Bentall AJ, Mai M, Khamash HA, Stegall MD. Managing highly sensitized renal transplant candidates in the era of kidney paired donation and the new kidney allocation system: Is there still a role for desensitization? Clin Transplant. 2019 Dec;33(12): e13751. https://doi.org/10.1111/ctr.13751.
  13. Statistics Report Library. Available at http://statistics.eurotransplant.org/. Accessed February 21, 2020.
  14. Lai X, Zheng X, Mathew JM, Gallon L, Leventhal JR, Zhang ZJ. Tackling Chronic Kidney Transplant Rejection: Challenges and Promises. Front Immunol. 2021 May 20; 12:661643. https://doi.org/10.3389/fimmu.2021.661643.
  15. Haas M, Loupy A, Lefaucheur C, Roufosse C, Glotz D, Seron D, Nankivell et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am J Transplant. 2018 Feb;18(2):293-307. https://doi.org/10.1111/ajt.14625.
  16. Tsuji T, Iwasaki S, Makita K, Imamoto T, Ishidate N, Mitsuke A, et al. Preceding T-Cell-Mediated Rejection Is Associated with the Development of Chronic Active Antibody-Mediated Rejection by de Novo Donor-Specific Antibody. Nephron (2020) 144 :13–7. https://doi.org/10.1159/000512659.
  17. Vo AA, Petrozzino J, Yeung K, et al. Efficacy, outcomes, and cost-effectiveness of desensitization using IVIG and rituximab. 2013;95:852–858. https://doi.org/10.1097/TP.0b013e3182802f88.
  18. Sethi S, Choi J, Toyoda M, et al. Desensitization: overcoming the immunologic barriers to transplantation. J Immunol Res.2017;2017:6804678. https://doi.org/1155/2017/6804678.
  19. Jordan SC, Bunnapradist S, Bromberg JS, et al. Donor-derived cell-free DNA identifies antibody-mediated rejection in donor specific antibody positive kidney transplant recipients. Transplant Direct.2018;4: e379. https://doi.org/1097/TXD.0000000000000821.
  20. Kim IK, Choi J, Vo A, et al. Risk factors for the development of antibody-mediated rejection in highly sensitized pediatric kidney transplant recipients. Pediatr Transplant. 2017;21. https://doi.org/1111/petr.13042.
  21. Noble J, Jouve T, Malvezzi P, Rostaing L. Desensitization in Crossmatch-positive Kidney Transplant Candidates. 2023 Feb 1;107(2):351-360. https://doi.org/10.1097/TP.0000000000004279.
  22. Rostaing L, Noble J, Malvezzi P, Jouve T. Imlifidase therapy: exploring its clinical uses. Expert Opin Pharmacother. 2023 Feb;24(2):259-265. https://doi.org/10.1080/14656566.2022.2150965.
  23. Brezski RJ, Vafa O, Petrone D, Tam SH, Powers G, Ryan MH, Luongo JL, Oberholtzer A, Knight DM, Jordan RE. Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17864-9. https://doi.org/10.1073/pnas.0904174106.
  24. https://www.ema.europa.eu/en/documents/assessment-report/idefirix-epar-public-assessment-report_en.pdf.
  25. Jordan SC, Lorant T, Choi J, Kjellman C, Winstedt L, et al. IgG Endopeptidase in Highly Sensitized Patients Undergoing Transplantation. N Engl J Med. 2017 Aug 3;377(5):442-453. https://doi.org/10.1056/NEJMoa1612567. Erratum in: N Engl J Med. 2017 Oct 26;377(17):1700.
  26. Winstedt L, Järnum S, Nordahl EA, Olsson A, Runström A, Bockermann R, Karlsson C, Malmström J, Palmgren GS, Malmqvist U, Björck L, Kjellman C. Complete Removal of Extracellular IgG Antibodies in a Randomized Dose-Escalation Phase I Study with the Bacterial Enzyme IdeS–A Novel Therapeutic Opportunity. PLoS One. 2015 Jul 15;10(7):e0132011. https://doi.org/10.1371/journal.pone.0132011.
  27. Järnum S, Bockermann R, Runström A, Winstedt L, Kjellman C. The Bacterial Enzyme IdeS Cleaves the IgG-Type of B Cell Receptor (BCR), Abolishes BCR-Mediated Cell Signaling, and Inhibits Memory B Cell Activation. J Immunol. 2015 Dec 15;195(12):5592-601. https://doi.org/10.4049/jimmunol.1501929.
  28. Reth M, Wienands J. Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol. 1997; 15:453-79. https://doi.org/10.1146/annurev.immunol.15.1.453.
  29. Kurosaki T. Regulation of B-cell signal transduction by adaptor proteins. Nat Rev Immunol. 2002 May;2(5):354-63. https://doi.org/10.1038/nri801.
  30. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. 2002 Dec 6;298(5600):1911-2. https://doi.org/10.1126/science.1072682.
  31. Mamode N, Bestard O, Claas F, Furian L, Griffin S, Legendre C, Pengel L, Naesens M. European Guideline for the Management of Kidney Transplant Patients With HLA Antibodies: By the European Society for Organ Transplantation Working Group. Transpl Int. 2022 Aug 10; 35:10511. https://doi.org/10.3389/ti.2022.10511.
  32. Jordan SC, Legendre C, Desai NM, Lorant T, Bengtsson M, et al. Imlifidase Desensitization in Crossmatch-positive, Highly Sensitized Kidney Transplant Recipients: Results of an International Phase 2 Trial (Highdes). 2021 Aug 1;105(8):1808-1817. https://doi.org/10.1097/TP.0000000000003496.
  33. Roux A, Bunel V, Belousova N, Messika J, Tanaka S et al. First use of imlifidase desensitization in a highly sensitized lung transplant candidate: a case report. Am J Transplant. 2023 Feb;23(2):294-297. https://doi.org/10.1016/j.ajt.2022.11.025.
  34. Lin J, Boon L, Bockermann R, Robertson AK, Kjellman C, Anderson CC. Desensitization using imlifidase and EndoS enables chimerism induction in allosensitized recipient mice. Am J Transplant. 2020 Sep;20(9):2356-2365. https://doi.org/10.1111/ajt.15851.
  35. Shin JI, Geetha D, Szpirt WM, Windpessl M, Kronbichler A. Anti-glomerular basement membrane disease (Goodpasture disease): From pathogenesis to plasma exchange to IdeS. Ther Apher Dial. 2022 Feb;26(1):24-31. https://doi.org/10.1111/1744-9987.13718.
  36. Bou-Jaoudeh M, Delignat S, Daventure V, Astermark J, Lévesque H, Dimitrov JD, Deligne C, Proulle V, Lacroix-Desmazes S. The IgG-degrading enzyme, Imlifidase, restores the therapeutic activity of FVIII in inhibitor-positive hemophilia A mice. Haematologica. 2023 Jan 19. https://doi.org/10.3324/haematol.2022.281895.
  37. Kronbichler A, Bajema I, Geetha D, Säemann M. Novel aspects in the pathophysiology and diagnosis of glomerular diseases. Ann Rheum Dis. 2022 Dec 19: annrheumdis-2022-222495. https://doi.org/10.1136/ard-2022-222495.
  38. Choi AY, Manook M, Olaso D, Ezekian B, Park J, Freischlag K, Jackson A, Knechtle S, Kwun J. Emerging New Approaches in Desensitization: Targeted Therapies for HLA Sensitization. Front Immunol. 2021 Jun 11; 12:694763. https://doi.org/10.3389/fimmu.2021.694763.
  39. Latvala S, Jacobsen B, Otteneder MB, Herrmann A, Kronenberg S. Distribution of FcRn Across Species and Tissues. J Histochem Cytochem (2017) 65(6):321–33. https://doi.org/1369/0022155417705095.
  40. Zhu X, Meng G, Dickinson BL, Li X, Mizoguchi E, Miao L, et al.. MHC Class I-related Neonatal Fc Receptor for IgG is Functionally Expressed in Monocytes, Intestinal Macrophages, and Dendritic Cells. J Immunol (Baltimore Md 1950) (2001) 166(5):3266–76. https://doi.org/4049/jimmunol.166.5.3266.
  41. Ling LE, Hillson JL, Tiessen RG, Bosje T, van Iersel MP, Nix DJ, et al.. M281, an Anti-FcRn Antibody: Pharmacodynamics, Pharmacokinetics, and Safety Across the Full Range of IgG Reduction in a First-in-Human Study. Clin Pharmacol Ther (2019) 105(4):1031–9. https://doi.org/1002/cpt.1276.
  42. Smith B, Kiessling A, Lledo-Garcia R, Dixon KL, Christodoulou L, Catley MC, et al.. Generation and Characterization of a High Affinity Anti-Human FcRn Antibody, Rozanolixizumab, and the Effects of Different Molecular Formats on the Reduction of Plasma IgG Concentration. MAbs(2018) 10(7):1111–30. https://doi.org/1080/19420862.
  43. Robak T, Kaźmierczak M, Jarque I, Musteata V, Treliński J, Cooper N, et al.. Phase 2 Multiple-Dose Study of an FcRn Inhibitor, Rozanolixizumab, in Patients With Primary Immune Thrombocytopenia. Blood Adv (2020) 4(17):4136–46. https://doi.org/1182/bloodadvances.2020002003.
  44. Manook M, Flores WJ, Schmitz R, Fitch Z, Yoon J, et al. Measuring the Impact of Targeting FcRn-Mediated IgG Recycling on Donor-Specific Alloantibodies in a Sensitized NHP Model. Front Immunol. 2021 Jun 2;12:660900. https://doi.org/10.3389/fimmu.2021.660900.
  45. Everly MJ, Everly JJ, Susskind B, Brailey P, Arend LJ, Alloway RR, et al. Bortezomib Provides Effective Therapy for Antibody- and Cell-Mediated Acute Rejection. Transplantation (2008) 86:1754–61. https://doi.org/10.1097/TP.0b013e318190af83
  46. Mulder A, Heidt S, Vergunst M, Roelen DL, Claas FH. Proteasome Inhibition Profoundly Affects Activated Human B Cells. Transplantation (2013) 95:1331–7. https://doi.org/1097/TP.0b013e3182911739.
  47. Woodle ES, Shields AR, Ejaz NS, Sadaka B, Girnita A, Walsh RC, et al.. Prospective Iterative Trial of Proteasome Inhibitor-Based Desensitization. Am J Transplant (2015) 15:101–18. https://doi.org/10.1111/ajt.13050.
  48. Jeong JC, Jambaldorj E, Kwon HY, Kim MG, Im HJ, Jeon HJ, In JW, Han M, Koo TY, Chung J, Song EY, Ahn C, Yang J. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation. Medicine (Baltimore). 2016 Feb;95(5): e2635. https://doi.org/10.1097/MD.0000000000002635.
  49. Frampton JE. Inebilizumab: First Approval. Drugs. 2020 Aug;80(12):1259-1264. https://doi.org/10.1007/s40265-020-01370-4.
  50. Chavele KM, Merry E, Ehrenstein MR. Cutting Edge: Circulating Plasmablasts Induce the Differentiation of Human T Follicular Helper Cells Via IL-6 Production. J Immunol (2015) 194:2482–5. https://doi.org/4049/jimmunol.1401190.
  51. Vo AA, Choi J, Kim I, Louie S, Cisneros K, Kahwaji J, et al. A Phase I/Ii Trial of the Interleukin-6 Receptor-Specific Humanized Monoclonal (Tocilizumab) + Intravenous Immunoglobulin in Difficult to Desensitize Patients. Transplantation (2015) 99:2356–63. https://doi.org/1097/TP.0000000000000741.
  52. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, et al.. BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth. J Exp Med (1999) 189:1747–56. https://doi.org/1084/jem.189.11.1747.
  53. Mackay F, Browning JL. BAFF: A Fundamental Survival Factor for B Cells. Nature Reviews. Immunology (2002) 2:465–75. https://doi.org/1038/nri844.
  54. Dubey AK, Handu SS, Dubey S, Sharma P, Sharma KK, Ahmed QM. Belimumab: First Targeted Biological Treatment for Systemic Lupus Erythematosus. J Pharmacol Pharmacotherapeutics (2011) 2:317–9. https://doi.org/4103/0976-500X.85930.
  55. Desensitization With Belimumab in Sensitized Patients Awaiting Kidney Transplant. https://clinicaltrials.gov/ct2/show/NCT01025193.

How I Approach Light Chain Amyloidosis

Abstract

Immunoglobulin Light Chain Amyloidosis (AL) is a progressive disease which leads to organ dysfunction and death.  Tremendous progress has been made in staging, response, and treatment.  The key to better survival though is early diagnosis which can be difficult since the symptoms are often nonspecific and can be seen in more common conditions. Once the diagnosis is confirmed, staging systems are available to provide prognosis on overall and renal survival.  There are a number of treatments now available that are effective and well-tolerated. Response criteria have also been developed for hematologic and renal response in order to maximize response and minimize adverse effects.  Newer therapies are being developed in particular anti-fibril therapies that are in clinical trials.  For those patients who had a very good partial response or better, kidney transplantation may be an option if the kidney failure is not reversed.

Keywords: amyloidosis, light chain amyloidosis, light chain, kidney transplantation

Sorry, this entry is only available in Italian.

Introduction

Immunoglobulin Light Chain Amyloidosis (AL) is a progressive and debilitating disease with multiorgan complications and increased mortality [1]. This disease is characterized by misfolding of the variable region of light chains leading to fibril formation and deposition in organs, most commonly in the kidneys [2]. The key to improving survival and quality of life is early diagnosis as median overall survival (OS) of patients diagnosed with stage I vs stage IV AL using the Mayo 2012 model is 94.1 months vs 5.8 months respectively [3]. In this manuscript, our aim is to discuss the key diagnostic approaches and therapeutic options for this complex disorder.  For more in-depth discussion, please refer to the references provided.

 

Diagnosis

The diagnosis of AL can often be delayed as patients may have multiple nonspecific symptoms. The median time to diagnosis from symptom onset can be up to 2.7 years [4].  In a patient survey, nearly 50% of the patients saw more than 3 doctors before their diagnosis was made [5]. These are concerning statistics considering the prognosis worsens as the stage of disease increases [3, 6].  Unfortunately, symptoms are often nonspecific such as fatigue, weight loss, constipation or diarrhea, edema and shortness of breath [7].  The key is extrarenal involvement which is uncommon in other glomerular disease.  Symptoms such as orthostasis, unexplained improvement in hypertension, heart failure, new onset peripheral neuropathy, carpal tunnel syndrome, easy bruisability, when accompanied by proteinuria or renal impairment, should prompt a workup for AL [8]. Diagnostic workup should begin with serum protein electrophoresis and serum free light chains (sFLC), urine protein electrophoresis and a bone marrow biopsy if indicated. However, the diagnosis of amyloidosis requires demonstration of amyloid deposits in tissue, preferably the affected organ, but surrogate sites can be used instead [8]. Once amyloid has been identified, typing is required in order to prescribe the proper treatment [9].  Typing can often be done by immunofluorescence or immunohistochemistry in the kidney but proteomics by mass spectrometry is the gold standard [10].

 

Staging

Staging is crucial to estimating the morbidity and mortality implications of the patient. There are multiple staging systems that have been developed [11].  Majority of the staging systems focus on the overall survival of the patients. These typically involve cardiac assessment using biomarkers such as cardiac troponin and brain natriuretic peptide (BNP); the most commonly used is N-terminal pro b-type natriuretic peptide (NTproBNP).    The first model now known as Mayo 2004 amyloid staging system uses cardiac troponin T and NTproBNP to establish a 3-stage prognosis model where stage 1 denotes normal troponin T and NTproBNP, stage 2 is when one of the laboratory values is abnormal and stage 3 is when both have exceeded the cutoff [12]. The cutoffs for troponin T and NT-proBNP are < 0.035 ng/mL and < 332 pg/mL respectively for this model.  This model has been modified by the European Collaborative studies which divides stage 3 into 3a (NTproBNP > 332 and < 8500 pg/mL) and 3b (NTproBNP > 8500 pg/mL) [13].  Mayo 2004 was later replaced with the Mayo 2012 amyloid staging system which increases the stages to 4 by incorporating the difference between involved to uninvolved free light chain (dFLC) < 180 mg/L along with troponin T < 0.025 ng/mL, NT-proBNP < 1800 pg/mL [3]. Other variations include systolic blood pressure [14] and the use of troponin I and BNP [15].  These models all showed the ability to prognosticate OS based on simple and reproducible laboratory tests.  More importantly, these models help predict treatment related mortality to therapy such as autologous stem cell transplantation (ASCT) which allows for better patient selection and improved outcomes [16, 17].

In addition to prognostic models for OS, prognostic models have also been developed for the kidney.  The Palladini model uses proteinuria (< 5 g/d) and eGFR (< 50 ml/min/1.73m2) to predict kidney survival [18].  Patients with stage 1 have a 0-4% chances of end stage renal disease (ESRD) vs 60-85% for stage 3 patients at 3 years.  The Kastritis model uses proteinuria to eGFR ratio to separate patients by those with a ratio of < 30, 30-99 and > 100.  Dialysis rate of stage 1, 2, and 3 patients were 0%, 9%, 35% respectively [19].   Like the OS prognostic models, renal prognostic models are used to adjust therapy.  In particularly those with Palladini stage 3 and an eGFR of < 20 ml/min/1.73 m2, a hematologic response of very good partial response (VGPR) must be reached within 3 months or else the chance of renal recovery diminishes rapidly.

 

Response Assessment

One of the most important advances in the treatment of AL is the improvement in response assessment.  The original hematologic response criteria for AL had complete response (CR), partial response (PR) stable disease and progression [20].  PR was defined as > 50% reduction of the serum or urine monoclonal (M) protein. Since these guidelines preceded the introduction of sFLC in clinical practice, the reduction of M-protein was mainly from M spike measured by serum protein electrophoresis.  Since AL is most often the result of immunoglobulin light chain, sFLC was found to be a much better marker [21]. After its introduction, sFLC became the main determinant of hematologic response [22].  CR is now defined as a lack of detectable M-protein and a normal kappa to lambda sFLC ratio while an additional category of VGPR was added defined as a dFLC of < 40 mg/L [6].  PR was > 50% reduction of the dFLC.  Multiple studies have found that VGPR is the minimum hematologic response required for renal response to occur and improved OS.  As our ability to measure deeper response improve, so has our response criteria [18, 19, 23, 24].  Recently, a dFLC of < 10 mg/L or involved FLC of < 20 mg/L have been found to produce superior results in organ responses and OS as compared to VGPR or CR [25].  With minimal residue disease (MRD) now becoming routinely used in multiple myeloma response assessment [26], MRD by next generation flow cytometry has also been evaluated in AL patients.  So far, the results are less consistent than those from multiple myeloma.  OS and renal response of MRD negative patients were improved in some studies but not in others [27-30].  However, the differences in outcomes may have been due to the differences in methodology, thus further studies are needed to establish the role of MRD assessment by next generation flow cytometry in AL. MRD like assessment can also be accomplished by mass spectrometry measurement of monoclonal immunoglobulin light chains (mass fix) [31].  In a small study, patients who are in CR and MRD negative by next generation flow cytometry, those who were also negative by mass fix had a better outcome than patients who were mass fix positive.  If confirmed, mass fix could be a very useful tool in gauging response since it is easier to perform than a bone marrow biopsy [32].

 

Clone Directed Therapy

The first effective treatment for AL was a combination of melphalan and prednisone.   In the seminal paper from 1997, Kyle et al reported a median survival of 18 months with oral melphalan and prednisone versus 8.5 months with colchicine alone [33].  This was actually a major improvement at the time; however, the median survival was still less than two years.  High dose dexamethasone achieved a median OS of 31 month in a small trial, but its toxicities made it less tolerable [34].  The next major advance was the introduction of ASCT.  It produced a median OS of 4.6 years which was even higher in patients without cardiac involvement [35].  These results came at a high cost as the treatment related mortality can be over 40% especially in high-risk patients [36].  This high treatment related mortality was the main reason ASCT was found to be inferior to melphalan dexamethasone in a randomized trial [37]. Two small studies found bortezomib, cyclophosphamide, and dexamethasone (CyBorD) was capable of achieving very high hematologic response rates of 81-94% which was very exciting, but real-world data suggested a hematologic rate was closer to 60% [13, 38, 39].  Nevertheless, it was well tolerated making it the therapy of choice in the frontline setting.  This however provided the backbone therapy that led to the landmark 2021 phase 3 open label trial ANDROMEDA, where patients were randomized to standard of care with six cycles of CyBorD OR standard of care plus daratumumab followed by 18 cycles of daratumumab maintenance [40]. Daratumumab is an IgG-Kappa monoclonal antibody directed towards CD-38 cell surface glycoprotein found on plasma cells. The addition of daratumumab to CyBorD improved overall hematologic response at 6 months from 76.7% in CyBorD alone to 91.8%, VGPR or better from 49.2% to 78.5%, cardiac response from 22.2% to 41.2% vs 22.2%.  Renal response also improved from 23.9% in CyBorD to 53.0% with Daratumumab CyBorD. The treatment group had a significantly higher and faster complete response (median time 60 days vs 80 days in control), and longer survival free from hematological progression or organ deterioration.  It appears to have overcome the negative prognostic effect of t(11;14) which in the past required ASCT to overcome. As a result of these extraordinary results, daratumumab CyBorD has become the standard of care for frontline therapy for AL patients.

 

Second Line Therapy and Beyond

Immunomodulators (IMiD) which include thalidomide, lenalidomide and pomalidomide have also been shown to have some positive benefits in AL. Cyclophosphamide thalidomide dexamethasone (CTD) had been used in the frontline setting in AL but in a retrospective matched comparison, CTD was found to be inferior to CyBorD in terms of CR rate (24.6% vs 40.5% respectively) and progression free survival (14 months vs 28 months respectively) [41]. Lenalidomide dexamethasone has been shown to have an overall response rate of 67% and 44.5 months of progression-free survival, but tolerability was an issue with a high dropout rate [42]. In a retrospective study comparing lenalidomide dexamethasone vs full dose bortezomib dexamethasone and risk adjusted bortezomib dexamethasone was found that hematologic response rates were better with bortezomib dexamethasone (full dose vs risk adjusted) regimens (76% and 77%, respectively) compared to 58%; CR rates were 38% and 40%, respectively, compared to 14%. However, the risk-adjusted bortezomib regimen had the best 1-year OS of 81% vs 56% in full dose bortezomib regimen and 53% in lenalidomide based therapy (p = 0.05) [43]. More recently, a phase II trial with pomalidomide with dexamethasone produced a hematologic response of 68% and a renal response of 17% [44]. Given the poorer tolerability of IMiDs, they are generally used as rescue therapies during relapse rather than frontline treatment.  Venetoclax, a BCL-2 inhibitor approved for treatment of chronic lymphocytic leukemia has been found to be active in multiple myeloma with t(11;14) abnormality [45].  AL patient with t(11;14) abnormality also responds to venetoclax which is exciting since t(11;14) is negative prognostic marker for AL [46-48]. Belantamab, an antibody conjugate drug targeting B-cell maturation antigen (BCMA) has been reported to have a high rate of response in patients with relapsed refractory multiple myeloma and AL in small studies [49, 50].  Unfortunately, belantamab is currently not available in the United States awaiting further studies.

 

Non-Clone Directed Therapy

Most therapies in AL focus on killing the clone that is producing the amyloidogenic light chain.  While these therapies stop the production of the toxic light chains, the amyloid already deposited is untouched. Experimental models have shown the monoclonal antibody 11-1F4 can expedite the dissolution of lambda and Kappa AL amyloidosis in mice [51]. In Phase 1a/1b studies, 15 out of 24 (63%) patients with cardiac, hepatic, GI, soft tissue or renal involvement treated with 11-1F4 had an organ response most notably in cardiac patients with 67% response rate [52].  These encouraging results prompted a phase III randomized controlled multicenter study NCT04504825 that is currently enrolling. Another monoclonal antibody, birtamimab, formally known as NEOD001 has also demonstrated activity in a Phase II (PRONTO) study but did not reach primary outcome in a phase III (VITAL) study [53].  However, in a post hoc analysis, a survival benefit was found in Mayo stage IV patients [54].  A new phase III trial, NCT04973137, is currently enrolling to confirm these results.

 

Kidney Transplantation

It is well appreciated that kidney survival worsens over time in AL with 34% of patients progressing to ESRD at a median time of 18 months [55].  It is also known that AL patients with ESRD have a significantly inferior survival as compared to non-AL patients.  Single center studies report median survival of 10.4 to 39 months after starting dialysis in these patients [55, 56].  This is similar to the results from a study of the Australia and New Zealand Dialysis and Transplant (ANZDATA) Registry that found the median survival of patients with amyloidosis was 2.08 years compared to 6.0 years for non-amyloidosis patients [57].  Renal replacement therapy with kidney transplantation would seem like a better option but it is not without risk.  Early experience showed higher mortality in patients with AL secondary to infection, cardiac causes and amyloidosis [58]. Selecting the ideal candidate for kidney transplantation is crucial for a successful outcome.  Recently, in a multicenter study of AL patients undergoing kidney transplant, the median OS of those with VGPR or better was 8.6 years compared to 6.8 years with less of a hematologic response. Median graft survival was 7.8 years, which was also superior in the VGPR or better group, but MRD was not assessed in this study. Patients with CR had a longer time to recurrence, but this did not affect renal allograft outcome.  Treatment of the AL can also start after the kidney transplant as long as a VGPR or better hematologic response can be attained [59].   Clonal control and cardiac involvement are the two big additional factors to consider when evaluating AL patients for kidney transplantation [59, 60].

 

Conclusion

AL is a complex multisystem disease which used to carry a grim prognosis. With early diagnosis and improved upfront treatment with daratumumab and CyBorD, the outcomes have improved significantly.  VGPR has now been established as the minimum hematologic response required for organ responses and improved survival; however, deeper response such as MRD negativity may prove to be even better.  Kidney transplantation is an option for selected patients who had achieved clonal control and are fit enough from a cardiac standpoint.  In the future, anti-fibril therapies may enhance organ response to clone directed therapy thus improving organ survival and OS.  It is also important to mention that supportive care with diuretics, adrenergic agonist to increase blood pressure, cardiac supportive care with anti-arrhythmic medications and defibrillators are important adjuvant therapies to maintain the wellbeing of the patients while the clone direct therapy is working. On the other hand, there is no role for beta blockers and ACE inhibitors as they are generally poorly tolerated in these patients [61, 62].  The advancement in AL has made this once a rapidly fatal disease to one that can be managed with the proper team of clinicians managing all of the different parts of this disease.

 

Bibliography

  1. Kyle RA, Gertz MA, Greipp PR, et al. A trial of three regimens for primary amyloidosis: colchicine alone, melphalan and prednisone, and melphalan, prednisone, and colchicine. New England Journal of Medicine. 1997;336(17):1202-7. https://doi.org/10.1056/NEJM199704243361702.
  2. Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. New England Journal of Medicine. 2003;349(6):583-96. https://doi.org/10.1056/NEJMra023144
  3. Kumar S, Dispenzieri A, Lacy MQ, et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012;30(9):989-95. https://doi.org/0.1200/JCO.2011.38.5724.
  4. Hester LL, Gifkins DM, K MB, et al. Diagnostic delay and characterization of the clinical prodrome in AL amyloidosis among 1523 US adults diagnosed between 2001 and 2019. Eur J Haematol. 2021;107(4):428-35. https://doi.org/10.1111/ejh.13679.
  5. Lousada I, Comenzo RL, Landau H, et al. Light Chain Amyloidosis: Patient Experience Survey from the Amyloidosis Research Consortium. Adv Ther. 2015;32(10):920-8. https://doi.org/10.1007/s12325-015-0250-0.
  6. Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30(36):4541-9. https://doi.org/10.1200/JCO.2011.37.7614.
  7. Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32(1):45-59.
  8. Muchtar E, Gertz MA, Kyle RA, et al. A Modern Primer on Light Chain Amyloidosis in 592 Patients With Mass Spectrometry-Verified Typing. Mayo Clin Proc. 2019;94(3):472-83. https://doi.org/10.1016/j.mayocp.2018.08.006.
  9. Leung N, Nasr SH, Sethi S. How I treat amyloidosis: the importance of accurate diagnosis and amyloid typing. Blood. 2012;120(16):3206-13. https://doi.org/10.1182/blood-2012-03-413682.
  10. Gonzalez Suarez ML, Zhang P, Nasr SH, et al. The sensitivity and specificity of the routine kidney biopsy immunofluorescence panel are inferior to diagnosing renal immunoglobulin-derived amyloidosis by mass spectrometry. Kidney Int. 2019;96(4):1005-9. https://doi.org/10.1016/j.kint.2019.05.027.
  11. Muchtar E, Therneau TM, Larson DR, et al. Comparative analysis of staging systems in AL amyloidosis. 2019;33(3):811-4. https://doi.org/10.1038/s41375-018-0370-z.
  12. Dispenzieri A, Gertz MA, Kyle RA, et al. Prognostication of survival using cardiac troponins and N-terminal pro-brain natriuretic peptide in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood. 2004;104(6):1881-7. https://doi.org/10.1182/blood-2004-01-0390.
  13. Palladini G, Sachchithanantham S, Milani P, et al. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood. 2015;126(5):612-5. https://doi.org/10.1182/blood-2015-01-620302.
  14. Wechalekar AD, Schonland SO, Kastritis E, et al. A European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosis. Blood. 2013;121(17):3420-7. https://doi.org/10.1182/blood-2012-12-473066.
  15. Gustine JN, Staron A, Szalat RE, et al. Predictors of hematologic response and survival with stem cell transplantation in AL amyloidosis: A 25-year longitudinal study. American journal of hematology. 2022;97(9):1189-99. https://doi.org/10.1002/ajh.26641.
  16. Gertz M, Lacy M, Dispenzieri A, et al. Troponin T level as an exclusion criterion for stem cell transplantation in light-chain amyloidosis. Leuk Lymphoma. 2008;49(1):36-41. https://doi.org/10.1080/10428190701684518.
  17. Gertz MA, Lacy MQ, Dispenzieri A, et al. Autologous stem cell transplant for immunoglobulin light chain amyloidosis: a status report. Leuk Lymphoma. 2010;51(12):2181-7. https://doi.org/10.3109/10428194.2010.524329.
  18. Palladini G, Hegenbart U, Milani P, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood. 2014;124(15):2325-32. https://doi.org/10.1182/blood-2014-04-570010.
  19. Kastritis E, Gavriatopoulou M, Roussou M, et al. Renal outcomes in patients with AL amyloidosis: Prognostic factors, renal response and the impact of therapy. American journal of hematology. 2017;92(7):632-9. https://doi.org/10.1002/ajh.24738.
  20. Gertz MA, Comenzo R, Falk RH, et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18-22 April 2004. American journal of hematology. 2005;79(4):319-28. https://doi.org/10.1002/ajh.20381
  21. Kumar SK, Dispenzieri A, Lacy MQ, et al. Changes in serum-free light chain rather than intact monoclonal immunoglobulin levels predicts outcome following therapy in primary amyloidosis. American journal of hematology. 2011;86(3):251-5. https://doi.org/10.1002/ajh.21948.
  22. Kumar S, Dispenzieri A, Katzmann JA, et al. Serum immunoglobulin free light-chain measurement in primary amyloidosis: prognostic value and correlations with clinical features. Blood. 2010;116(24):5126-9. https://doi.org/10.1182/blood-2010-06-290668.
  23. Leung N, Glavey SV, Kumar S, et al. A detailed evaluation of the current renal response criteria in AL amyloidosis: is it time for a revision? 2013;98(6):988-92. https://doi.org/10.3324/haematol.2012.079210.
  24. Rezk T, Lachmann HJ, Fontana M, et al. Prolonged renal survival in light chain amyloidosis: speed and magnitude of light chain reduction is the crucial factor. Kidney Int. 2017;92(6):1476-83. https://doi.org/10.1016/j.kint.2017.05.004.
  25. Muchtar E, Gertz MA, Lacy MQ, et al. Refining amyloid complete hematological response: Quantitative serum free light chains superior to ratio. American journal of hematology. 2020;95(11):1280-7. https://doi.org/10.1002/ajh.25940.
  26. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328-e46. https://doi.org/10.1016/S1470-2045(16)30206-6.
  27. Kastritis E, Kostopoulos IV, Theodorakakou F, et al. Next generation flow cytometry for MRD detection in patients with AL amyloidosis. Amyloid. 2021;28(1):19-23. https://doi.org/10.1080/13506129.2020.1802713.
  28. Palladini G, Paiva B, Wechalekar A, et al. Minimal residual disease negativity by next-generation flow cytometry is associated with improved organ response in AL amyloidosis. Blood Cancer J. 2021;11(2):34. https://doi.org/10.1038/s41408-021-00428-0.
  29. Sidana S, Muchtar E, Sidiqi MH, et al. Impact of minimal residual negativity using next generation flow cytometry on outcomes in light chain amyloidosis. American journal of hematology. 2020;95(5):497-502. https://doi.org/10.1002/ajh.25746.
  30. Staron A, Burks EJ, Lee JC, et al. Assessment of minimal residual disease using multiparametric flow cytometry in patients with AL amyloidosis. Blood Adv. 2020;4(5):880-4. https://doi.org/10.1182/bloodadvances.2019001331.
  31. Moonen DH, Kohlhagen M, Dasari S, et al. Utilizing Mass Spectrometry to Detect and Isotype Monoclonal Proteins in Urine: Comparison to Electrophoretic Methods. Clin Chem. 2023;69(7):746-53. https://doi.org/10.1093/clinchem/hvad053.
  32. Dispenzieri A, Arendt B, Dasari S, et al. Blood mass spectrometry detects residual disease better than standard techniques in light-chain amyloidosis. Blood Cancer J. 2020;10(2):20. https://doi.org/10.1038/s41408-020-0291-8.
  33. Kyle RA, Gertz MA, Greipp PR, et al. A trial of three regimens for primary amyloidosis: colchicine alone, melphalan and prednisone, and melphalan, prednisone, and colchicine. The New England journal of medicine. 1997;336(17):1202-7. https://doi.org/10.1056/NEJM199704243361702.
  34. Dhodapkar MV, Hussein MA, Rasmussen E, et al. Clinical efficacy of high-dose dexamethasone with maintenance dexamethasone/alpha interferon in patients with primary systemic amyloidosis: results of United States Intergroup Trial Southwest Oncology Group (SWOG) S9628. Blood. 2004;104(12):3520-6. https://doi.org/10.1182/blood-2004-05-1924.
  35. Skinner M, Sanchorawala V, Seldin DC, et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: an 8-year study. Annals of internal medicine. 2004;140(2):85-93. https://doi.org/10.7326/0003-4819-140-2-200401200-00008
  36. Moreau P, Leblond V, Bourquelot P, et al. Prognostic factors for survival and response after high-dose therapy and autologous stem cell transplantation in systemic AL amyloidosis: a report on 21 patients. Br J Haematol. 1998;101(4):766-9. https://doi.org/10.1046/j.1365-2141.1998.00772.x.
  37. Jaccard A, Moreau P, Leblond V, et al. High-dose melphalan versus melphalan plus dexamethasone for AL amyloidosis. The New England journal of medicine. 2007;357(11):1083-93. https://doi.org/10.1056/NEJMoa070484
  38. Venner CP, Lane T, Foard D, et al. Cyclophosphamide, bortezomib, and dexamethasone therapy in AL amyloidosis is associated with high clonal response rates and prolonged progression-free survival. Blood. 2012;119(19):4387-90. https://doi.org/10.1182/blood-2011-10-388462.
  39. Mikhael JR, Schuster SR, Jimenez-Zepeda VH, et al. Cyclophosphamide-bortezomib-dexamethasone (CyBorD) produces rapid and complete hematologic response in patients with AL amyloidosis. 2012;119(19):4391-4. https://doi.org/10.1182/blood-2011-11-390930.
  40. Kastritis E, Palladini G, Minnema MC, et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. The New England journal of medicine. 2021;385(1):46-58. https://doi.org/10.1056/NEJMoa2028631.
  41. Venner CP, Gillmore JD, Sachchithanantham S, et al. A matched comparison of cyclophosphamide, bortezomib and dexamethasone (CVD) versus risk-adapted cyclophosphamide, thalidomide and dexamethasone (CTD) in AL amyloidosis. Leukemia. 2014;28(12):2304-10. https://doi.org/10.1038/leu.2014.218.
  42. Sanchorawala V, Wright DG, Rosenzweig M, et al. Lenalidomide and dexamethasone in the treatment of AL amyloidosis: results of a phase 2 trial. Blood. 2007;109(2):492-6. https://doi.org/10.1182/blood-2006-07-030544.
  43. Kastritis E, Roussou M, Gavriatopoulou M, et al. Long-term outcomes of primary systemic light chain (AL) amyloidosis in patients treated upfront with bortezomib or lenalidomide and the importance of risk adapted strategies. American journal of hematology. 2015;90(4):E60-5. https://doi.org/10.1002/ajh.23936.
  44. Palladini G, Milani P, Foli A, et al. A phase 2 trial of pomalidomide and dexamethasone rescue treatment in patients with AL amyloidosis. Blood. 2017;129(15):2120-3. https://doi.org/10.1182/blood-2016-12-756528.
  45. Moreau P, Chanan-Khan A, Roberts AW, et al. Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM. Blood. 2017;130(22):2392-400. https://doi.org/10.1182/blood-2017-06-788323.
  46. Bochtler T, Hegenbart U, Kunz C, et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J Clin Oncol. 2015;33(12):1371-8. https://doi.org/10.1200/JCO.2014.57.4947.
  47. Muchtar E, Dispenzieri A, Kumar SK, et al. Interphase fluorescence in situ hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category. Leukemia. 2017;31(7):1562-9. https://doi.org/10.1038/leu.2016.369.
  48. Leung N, Thome SD, Dispenzieri A. Venetoclax induced a complete response in a patient with immunoglobulin light chain amyloidosis plateaued on cyclophosphamide, bortezomib and dexamethasone. Haematologica. 2018;103(3):e135-e7. https://doi.org/10.3324/haematol.2017.183749.
  49. Khwaja J, Bomsztyk J, Mahmood S, et al. High response rates with single-agent belantamab mafodotin in relapsed systemic AL amyloidosis. Blood Cancer J. 2022;12(9):128. https://doi.org/10.1038/s41408-022-00717-2.
  50. Zhang Y, Godara A, Pan S, et al. Belantamab mafodotin in patients with relapsed/refractory AL amyloidosis with myeloma. Ann Hematol. 2022;101(9):2119-21. https://doi.org/10.1007/s00277-022-04890-z.
  51. Wall JS, Kennel SJ, Stuckey AC, et al. Radioimmunodetection of amyloid deposits in patients with AL amyloidosis. Blood. 2010;116(13):2241-4. https://doi.org/10.1182/blood-2010-03-273797.
  52. Edwards CV, Rao N, Bhutani D, et al. Phase 1a/b study of monoclonal antibody CAEL-101 (11-1F4) in patients with AL amyloidosis. 2021;138(25):2632-41. https://doi.org/10.1182/blood.2020009039.
  53. Gertz MA, Landau H, Comenzo RL, et al. First-in-Human Phase I/II Study of NEOD001 in Patients With Light Chain Amyloidosis and Persistent Organ Dysfunction. J Clin Oncol. 2016;34(10):1097-103. https://doi.org/10.1200/JCO.2015.63.6530.
  54. Gertz MA, Cohen AD, Comenzo RL, et al. Birtamimab plus standard of care in light chain amyloidosis: the phase 3 randomized placebo-controlled VITAL trial. Blood. 2023. https://doi.org/10.1182/blood.2022019406.
  55. Gertz MA, Leung N, Lacy MQ, et al. Clinical outcome of immunoglobulin light chain amyloidosis affecting the kidney. Nephrol Dial Transplant. 2009;24(10):3132-7. https://doi.org/10.1093/ndt/gfp201
  56. Pinney JH, Lachmann HJ, Bansi L, et al. Outcome in renal Al amyloidosis after chemotherapy. J Clin Oncol. 2011;29(6):674-81. https://doi.org/10.1200/JCO.2010.30.5235.
  57. Tang W, McDonald SP, Hawley CM, et al. End-stage renal failure due to amyloidosis: outcomes in 490 ANZDATA registry cases. Nephrol Dial Transplant. 2013;28(2):455-61. https://doi.org/10.1093/ndt/gfs492.
  58. Pasternack A, Ahonen J, Kuhlback B. Renal transplantation in 45 patients with amyloidosis. Transplantation. 1986;42(6):598-601. https://doi.org/10.1097/00007890-198612000-00005.
  59. Heybeli C, Bentall A, Wen J, et al. Corrigendum to Heybeli C, Bentall A, Wen J, et al. A study from The Mayo Clinic evaluated long-term outcomes of kidney transplantation in patients with immunoglobulin light chain amyloidosis. Kidney Int. 2021;99:707-715. Kidney Int. 2021;100(6):1348-9. https://doi.org/10.1016/j.kint.2021.10.001.
  60. Havasi A, Heybeli C, Leung N, et al. Outcomes of renal transplantation in patients with AL amyloidosis: an international collaboration through The International Kidney and Monoclonal Gammopathy Research Group. Blood Cancer J. 2022;12(8):119. https://doi.org/10.1038/s41408-022-00714-5.
  61. Kitchlu A, Chan CT, Jhaveri KD, et al. Amyloidoses in Onco-Nephrology Practice: A Multidisciplinary Case-Based Conference Report. Can J Kidney Health Dis. 2023;10:20543581231165711. https://doi.org/10.1177/20543581231165711.
  62. Ramsell S, Arias Bermudez C, Takem Baiyee CAM, et al. Beta-Adrenergic Antagonist Tolerance in Amyloid Cardiomyopathy. Front Cardiovasc Med. 2022;9:907597. https://doi.org/10.3389/fcvm.2022.907597.

 

Transplant Candidate with Cancer: Should We Proceed?

Abstract

Individuals who suffer from end-stage renal disease are at a higher risk of developing certain types of tumors. This risk increases as kidney function deteriorates further. Dialysis patients often witness a surge in the incidence of such malignancies. Interestingly, after the initial period following a kidney transplant, there is a dip in the number of deaths related to neoplasms. However, a long-term view reveals a progressive increase in the risk of developing tumors. The evaluation process for transplant candidacy is thorough, taking into account several factors, including the individual’s history of neoplasms and the implications of immunosuppressive therapy. Immunosuppressive therapy is a double-edged tool in managing post-transplant complications, as it can foster environments conducive to neoplasm growth. It is essential to reevaluate, with the aid of an oncological opinion, the waiting time between cancer recovery and the listing for kidney transplantation, based on clinical data and follow-up. Independent of the type of tumor, the requirement to treat and achieve remission delays the listing process, consequently extending the time spent with end-stage renal disease and undergoing dialysis. These factors correlate with increased mortality, heightened risk of cardiovascular disease, and graft loss.

Keywords: Kidney transplant, cancer, immunosuppressant agents

Sorry, this entry is only available in Italian.

Rischio oncologico nel paziente con malattia renale

I pazienti che soffrono di malattia renale terminale si trovano di fronte ad un incremento significativo del rischio di sviluppare neoplasie, in confronto a individui con una funzione renale normale, trovandosi più esposti ad alcuni specifici tipi di tumori.

Un contributo significativo a questa area di studio proviene da un’analisi condotta da William T. Lowrance e collaboratori, basata su un ampio campione retrospettivo di oltre un milione di adulti seguiti dal 2000 al 2008. In questa ricerca, emerge chiaramente come il rischio associato ad alcune neoplasie cresca parallelamente al progredire della malattia renale cronica, evidenziando come una diminuzione del tasso di filtrazione glomerulare (eGFR) sia correlata ad un aumento del rischio di neoplasia renale e, a valori inferiore di 30 ml/min per 1,73 m², anche ad un rischio maggiore di cancro uroteliale. D’altro canto, non è stata riscontrata una correlazione significativa con altri tipi di tumori, tra cui quelli della prostata, del seno e del polmone [1].

Rivolgendo lo sguardo alla popolazione in dialisi, notiamo come diversi registri nazionali abbiano contribuito a delineare lo scenario attuale. Un dato interessante emerge da uno studio taiwanese pubblicato su “PLOS ONE”, dove la popolazione in dialisi mostra un’incidenza di neoplasie significativamente superiore rispetto a un gruppo di controllo abbinato per età e sesso, con un hazard ratio di 3,43. Questo rischio si concentra principalmente sul rene e sull’apparato urinario [2].

Focalizzandoci sul contesto italiano, grazie ad uno studio recente condotto da Taborelli e collaboratori, possiamo confermare una tendenza simile, con un incremento del rischio neoplastico tra i pazienti in dialisi. Tra questi, si osserva una presenza più marcata di tumori della pelle, delle mucose e del rene. Inoltre, non sono rare neoplasie tipiche dei pazienti trapiantati, come il sarcoma di Kaposi e il mieloma multiplo [3].

In una ricerca pubblicata su JASN da Eric H. Au e collaboratori, viene messa in luce una dinamica interessante: se nei primi anni dall’inizio della dialisi si riscontra un aumento dell’incidenza di morte per neoplasia, questo trend si inverte nel post-trapianto. Con il passare degli anni, infatti, il rischio di morte per tumore cresce progressivamente. È interessante notare come il panorama delle neoplasie mortali muti sensibilmente: mentre nel paziente in dialisi predominano il mieloma multiplo, il tumore del polmone e il tumore renale, nel paziente trapiantato si riscontrano più frequentemente linfoma non-Hodgkin, tumore del polmone e tumore del colon-retto [4].

Il confronto con la popolazione generale svela un rapporto di mortalità standardizzato (SMR) pari a 2,6 per tutti i tipi di tumori nei pazienti in dialisi, un dato che cresce ulteriormente nei casi correlati direttamente alla malattia renale terminale. In modo simile, anche i pazienti trapiantati mostrano un SMR elevato, legato soprattutto ai tumori indotti dalla terapia immunosoppressiva.

Una riflessione attenta richiede anche l’analisi delle cause di morte post-trapianto: i tumori rappresentano la seconda causa di morte, paragonabile alle infezioni, e seguono gli eventi cardiovascolari, manifestandosi mediamente dopo circa 8,2 anni dal trapianto. È importante sottolineare che, con il passare del tempo, tanto l’incidenza di diagnosi di neoplasia quanto la mortalità per tale causa aumentano, in linea con la crescita della mortalità per tutte le altre cause [5, 6].

Guardando alla popolazione di pazienti anziani trapiantati, un gruppo in crescita costante, notiamo come le neoplasie si attestino come seconda causa di morte, superando le malattie cardiovascolari e posizionandosi subito dopo le infezioni [7].

 

Valutazione candidato a trapianto renale con storia di neoplasia

Nella valutazione per l’inserimento in lista per trapianto renale di un paziente con anamnesi positiva per neoplasia, sono da considerare alcuni aspetti, divisibili in 4 gruppi [8]. Per quanto riguarda la priorità, a differenza di altri trapianti quali ad esempio il cuore o fegato, è difficile che si presenti un’urgenza che richieda il trapianto di rene che prescinda una valutazione dello stadio del tumore o del follow-up libero da malattia neoplastica, quale la mancanza totale di accesso per dialisi.

Il secondo gruppo di fattori riguarda quelli legati alla neoplasia. È importante valutare la risposta al trattamento, l’andamento del follow-up, eventuali recidive, lo stadio e l’aggressività del tumore, il tempo trascorso dalla completa remissione.
Il terzo gruppo riguarda invece i fattori legati al paziente, al suo stile di vita, fattori modificabili o non modificabili nel post trapianto e l’aspettativa di vita in termini anche etici di ottimizzazione e gestione delle risorse disponibili oltre all’obiettivo di apporre un beneficio concreto rispetto alla permanenza in dialisi.

L’ultimo gruppo di aspetti da considerare è quello legato alla terapia immunosoppressiva. Infatti bisogna ragionare sugli effetti che la terapia può esercitare nel determinare una recidiva, se ci sono delle differenze organo-specifiche dell’immunosoppressione e anche in questo caso il tempo che passa dal momento del completamento del trattamento antineoplastico che il paziente potrebbe aver eseguito.

La terapia immunosoppressiva determina un’alterazione della funzionalità e del fenotipo del sistema immunitario, con relativa riduzione dell’efficienza nel monitoraggio e prevenzione dell’evoluzione in senso tumorale delle cellule. Le cellule dendritiche e le natural killer si riducono di numero e aumenta il numero delle cellule T senescenti e dei Treg.

In particolare, l’utilizzo degli inibitori della calcineurina, ampiamente utilizzati per l’apporto significativo che hanno dato in termini di riduzione del rigetto e il conseguente aumento della sopravvivenza del graft, determina una riduzione della capacità di riparazione del DNA, oltre a un ambiente citochinico che favorisce lo sviluppo del tumore.
Si verifica un aumento del VEGF, del TGFbeta, del segnale RAS-RAF, dell’IL-6.

Questi portano rispettivamente ad un aumento della neoangiogenesi tumorale, della crescita del tumore, dello sviluppo del carcinoma a cellule renali e dei disordini linfoproliferativi post-trapianto mediante proliferazione delle cellule B.

Lo stato di immunosoppressione porta inoltre all’aumento della replicazione di virus intracellulari o comunque associati ad alterazioni del DNA come l’epstein Barr, l’Herpes virus 8, il Papilloma virus, i virus dell’epatite B e C, il polioma virus delle cellule di Merkel  che determinano un aumento dell’incidenza di alcune neoplasie quali, rispettivamente, le malattie linfoproliferative post-trapianto, il sarcoma di Kaposi e il linfoma primitivo effusivo, tumori di testa e collo, della pelle e dell’apparato genitale, il carcinoma epatocellulare e il carcinoma a cellule di Merkel [9].

 

Outcome post-trapianto dei pazienti con storia di neoplasia

Dagli anni ’90 a oggi il numero di pazienti con storia di neoplasia sottoposti a trapianto di rene è cresciuto costantemente, fino a decuplicare, costituendo nel 2016 l’8,3% della popolazione trapiantata negli Stati Uniti  rispetto allo 0,9% del 1994 [10].
Questo riguardava in particolare i pazienti con storia di tumore solido o tumore cutaneo non-melanoma.
In un lavoro di Acuna S. e colleghi del 2016, analizzati più studi in merito, si considera quanto la storia pregressa di neoplasia sia un fattore di rischio di mortalità  post trapianto non solo per quanto riguarda il rischio di morte per neoplasia, con un rapporto di rischio (hazard ratio, HR) pari a 3,13 rispetto a trapiantati senza storia pre-trapianto di neoplasia, ma anche per tutte le cause di morte (HR 1,51) [11].

Due anni più tardi, nel 2018, sempre Acuna approfondisce questo tema, analizzando i pazienti sottoposti a trapianto di organo solido nel ventennio dal 1991 al 2010 in Ontario: i pazienti con storia pregressa di neoplasia presentavano un rischio dell’85% per la mortalità cancro-specifica e del 29% della mortalità per tutte le cause rispetto a chi non aveva storia di neoplasia.

Ma se si approfondisce dal punto di vista clinico, si evince che il rischio si stratifica a seconda del grado di malignità della neoplasia. I pazienti con storia di neoplasia considerata ad alto rischio presentavano un rischio di mortalità maggiore. Il divario si appiana se si pongono a confronto pazienti senza storia pre-trapianto di neoplasia e pazienti con storia di neoplasie considerate a basso rischio (ad esempio il tumore mammario e renale).

Questo risulta fondamentale nella valutazione pre-trapianto dei pazienti, richiedendo inoltre un confronto multidisciplinare con la figura dell’oncologo al fine di meglio valutare il tempo propizio per l’inserimento in lista.

Fino ad ora le Linee Guida, seppur non mandatorie ma indicative, hanno posto uno spartiacque di attesa per l’inserimento in lista di almeno 5 anni dalla diagnosi di neoplasie considerate a più alto rischio nei pazienti in remissione dal tumore.
Questo atteggiamento, corretto o meno, ha portato ad una aumentata mortalità per neoplasia o per tutte le cause post trapianto (HR 2,32 e 1,53 rispettivamente) rispetto ai pazienti senza storia di neoplasia e comunque maggiore rispetto ai pazienti con storia di neoplasia considerata a basso rischio come già analizzato in precedenza.

Ciò pone l’interrogativo se l’aumentata mortalità sia condizionata dal tempo di permanenza con un quadro di malattia terminale in attesa di trapianto piuttosto che dalla malignità della neoplasia.

Da questo quesito risulta critico il tempo di inserimento in lista trapianto, soppesando il rischio di recidiva e la gestione chemioterapica in concomitanza con la terapia immunosoppressiva dagli effetti di una insufficienza d’organo sull’outcome.
Analizzando poi gli outcome dei pazienti trapiantati dopo cinque anni dalla diagnosi di neoplasia, emerge che poco meno di 1 paziente su 6 è deceduto senza presentare recidiva. L’incidenza cumulativa della recidiva è stata del 14,4% che stratificata per neoplasia ad alto e basso rischio è rispettivamente del 21,1% e del 9,2% [12].

Prendendo in considerazione la popolazione dialitica, come si evince da lavori italiani, anche in dialisi vi è un rischio neoplastico. In particolare, l’incidenza cumulativa di sviluppare una neoplasia dall’inizio della dialisi è del 9,8% a 5 anni e del 13,9% a 10 anni. Tale rischio si riscontra maggiormente nella popolazione dialitica più giovane, soprattutto rispetto alla controparte della popolazione generale [13].

 

Timing di inserimento in lista trapianto renale

Considerando le linee guida KDIGO per il candidato a trapianto renale, si pone l’accento e si ribadisce quanto già analizzato: l’inserimento in lista d’attesa e quindi il trapianto dopo remissione della neoplasia dopo terapia dipende dal tipo di tumore e lo stadio.

Questa valutazione necessita del supporto dello specialista oncologo, oltre ad altre figure professionali che accompagnano il follow-up e la gestione nefrologica. Test molecolari, studi sulla genomica possono essere di aiuto nel paziente oncologico ai fini prognostici. Per alcuni tumori, sulla base dello stadio, il trapianto risulta controindicato (ad esempio il melanoma invasivo, il tumore anaplastico della tiroide).

Considerando piuttosto che anche il paziente dializzato presenta un rischio neoplastico superiore alla popolazione generale, così come di mortalità per tutte le cause, sarebbe opportuno, nella valutazione per inserimento in lista, valutare quelli che sono i benefici del trapianto a seguito del recupero della funzione renale in termini non solo di qualità di vita, ma anche di aspettativa di vita, indipendentemente dalla eventuale storia pregressa di neoplasia.

Infatti, la mortalità per infezione in dialisi è pari a 30,5 persone per mille/anno rispetto alle 6,8 in trapianto mentre, il tasso di mortalità per neoplasia del paziente dializzato è di 14 persone per mille/anno rispetto al 4,6 dopo il trapianto renale [13].

Un tempo di attesa di 2 anni tra il trattamento del tumore e il trapianto di rene è consigliato per la maggior parte delle neoplasie.  Nessun tempo di attesa è richiesto per: riscontro incidentale di carcinoma renale, carcinomi in situ, neoplasie focali e isolate, tumore vescicale di basso grado, carcinoma a cellule basali della cute. Per neoplasie quali la maggior parte dei melanomi, carcinomi mammari e colorettali è richiesto un tempo di attesa maggiore di 2 anni [12].

 

Conclusioni

L’outcome di pazienti con storia di neoplasia pre-trapianto considerata a basso rischio risulta sovrapponibile a quello di pazienti senza precedente storia di tumore. D’altro canto, i pazienti con storia precedente di neoplasia considerata ad alto rischio hanno presentato un outcome peggiore, indipendentemente dal tempo intercorso dalla diagnosi di tumore e il trapianto. Il rischio di recidiva neoplastica pare dunque essere condizionato dal tipo di tumore piuttosto che dal tempo che intercorre dalla guarigione. È opportuno riconsiderare sulla base dei dati clinici e del follow-up, con l’ausilio di un parere oncologico, il tempo di attesa tra la guarigione dal tumore e l’inserimento in lista per trapianto renale. Prescindendo dal tipo di tumore, la necessità di trattare e portare a remissione la neoplasia determina un ritardo nell’inserimento in lista attiva e dunque a un aumento del tempo trascorso con una malattia renale terminale e in dialisi. Questi aspetti sono associati, tra i fattori che determinano un’aumentata mortalità, ad un aumentato rischio di malattia cardiovascolare e perdita del graft.

 

Bibliografia

  1. Lowrance, W. T., Ordoñez, J., Udaltsova, N., Russo, P., & Go, A. S. (2014). CKD and the risk of incident cancer. Journal of the American Society of Nephrology, 25(10), 2327–2334. https://doi.org/10.1681/ASN.2013060604
  2. Lin, M. Y., Kuo, M. C., Hung, C. C., Wu, W. J., Chen, L. T., Yu, M. L., Hsu, C. C., Lee, C. H., Chen, H. C., & Hwang, S. J. (2015). Association of dialysis with the risks of cancers. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0122856
  3. Taborelli, M., Toffolutti, F., del Zotto, S., Clagnan, E., Furian, L., Piselli, P., Citterio, F., Zanier, L., Boscutti, G., Serraino, D., Shalaby, S., Petrara, R., Burra, P., Zanus, G., Zanini, S., Rigotti, P., Rendina, M., di Leo, A., Schena, F. P., di Cicco, M. (2019). Increased cancer risk in patients undergoing dialysis: A population-based cohort study in North-Eastern Italy. BMC Nephrology, 20(1). https://doi.org/10.1186/s12882-019-1283-4
  4. Au, E. H., Chapman, J. R., Craig, J. C., Lim, W. H., Teixeira-Pinto, A., Ullah, S., McDonald, S., & Wong, G. (2019). Overall and site-specific cancer mortality in patients on dialysis and after kidney transplant. Journal of the American Society of Nephrology, 30(3), 471–480. https://doi.org/10.1681/ASN.2018090906
  5. Van de Wetering, J., Roodnat, J. I., Hemke, A. C., Hoitsma, A. J., & Weimar, W. (2010). Patient survival after the diagnosis of cancer in renal transplant recipients: A nested case-control study. Transplantation, 90(12), 1542–1546. https://doi.org/10.1097/TP.0b013e3181ff1458
  6. Villeneuve, P. J., Schaubel, D. E., Fenton, S. S., Shepherd, F. A., Jiang, Y., & Mao, Y. (2007). Cancer incidence among Canadian kidney transplant recipients. American Journal of Transplantation, 7(4), 941–948. https://doi.org/10.1111/j.1600-6143.2007.01736.x
  7. S So et al. Kidney International Reports (2021) 6, 727-736
  8. Al-Adra, D. P., Hammel, L., Roberts, J., Woodle, E. S., Levine, D., Mandelbrot, D., Verna, E., Locke, J., D’Cunha, J., Farr, M., Sawinski, D., Agarwal, P. K., Plichta, J., Pruthi, S., Farr, D., Carvajal, R., Walker, J., Zwald, F., Habermann, T., … Watt, K. D. (2021). Pretransplant solid organ malignancy and organ transplant candidacy: A consensus expert opinion statement. In American Journal of Transplantation (Vol. 21, Issue 2, pp. 460–474). Blackwell Publishing Ltd. https://doi.org/10.1111/ajt.16318
  9. Livingston-Rosanoff, D., Foley, D. P., Leverson, G., & Wilke, L. G. (2019). Impact of Pre-Transplant Malignancy on Outcomes After Kidney Transplantation: United Network for Organ Sharing Database Analysis. Journal of the American College of Surgeons, 229(6), 568–579. https://doi.org/10.1016/j.jamcollsurg.2019.06.001
  10. Acuna, S. A., Fernandes, K. A., Daly, C., Hicks, L. K., Sutradhar, R., Kim, S. J., & Baxter, N. N. (2016). Cancer mortality among recipients of solid-organ transplantation in Ontario, Canada. JAMA Oncology, 2(4), 463–469. https://doi.org/10.1001/jamaoncol.2015.5137
  11. Acuna, S. A., Sutradhar, R., Kim, S. J., & Baxter, N. N. (2018). Solid Organ Transplantation in Patients with Preexisting Malignancies in Remission: A Propensity Score Matched Cohort Study. Transplantation, 102(7), 1156–1164. https://doi.org/10.1097/TP.0000000000002178
  12. Chadban SJ, Ahn C, Axelrod DA, Foster BJ, Kasiske BL, Kher V, Kumar D, Oberbauer R, Pascual J, Pilmore HL, Rodrigue JR, Segev DL, Sheerin NS, Tinckam KJ, Wong G, Knoll GA. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation. 2020 Apr;104(4S1 Suppl 1):S11-S103. https://doi.org/10.1097/TP.0000000000003136.
  13. Vogelzang, J. L., van Stralen, K. J., Noordzij, M., Diez, J. A., Carrero, J. J., Couchoud, C., Dekker, F. W., Finne, P., Fouque, D., Heaf, J. G., Hoitsma, A., Leivestad, T., de Meester, J., Metcalfe, W., Palsson, R., Postorino, M., Ravani, P., Vanholder, R., Wallner, M. Jager, K. J. (2015). Mortality from infections and malignancies in patients treated with renal replacement therapy: Data from the ERA-EDTA registry. Nephrology Dialysis Transplantation, 30(6), 1028–1037. https://doi.org/10.1093/ndt/gfv007

Tic douloureux sustained by an eye tumor

Abstract

Cancer is a major cause of morbidity and mortality in solid organ transplantation. Nonmelanoma skin cancer (NMSC) such as basocellular (BCC) and spinocellular (SCC) carcinoma, are common in renal transplant recipients. We report a case of an SCC affecting a lacrimal gland in a subject with kidney transplantation.

A man aged 75 years who had suffered from glomerulopathy since 1967 and subsequently started haemodialysis, in 1989 was transplanted from a living donor. In 2019, he suffered paresthesia and pain in his right eyebrow arch and he was diagnosed to have neuralgia of the fifth cranial nerve. The failure of medical treatment and the development of a mass in his eyelid plus exophthalmos induced healthcare professionals to perform a magnetic resonance. The latter showed a retrobulbar mass measuring 39×22×16 mm3. Biopsy revealed an SCC and the patient underwent eye exenteration.

Although NMSC of the eye is an extremely rare condition, risk factors such as male sex, history of glomerulopathy, and duration of immunosuppression should be taken into consideration at the time of the onset of eye symptoms.

Keywords: Renal transplantation, immunosuppression, non-melanocitic skin cancer, eye cancer

Sorry, this entry is only available in Italian.

Introduzione

La malattia neoplastica rappresenta la seconda causa di morte nei pazienti portatori di trapianto di organo solido [1]. In particolare, i tumori cutanei non melanomatosi – tra cui il carcinoma basocellulare (BCC) e il carcinoma squamocellulare (SCC) – sono molto comuni in questa popolazione, soprattutto nei pazienti portatori di trapianto renale [2]. Secondo uno studio italiano [3], l’incidenza globale di tumori cutanei non melanomatosi dopo trapianto di rene è di circa 10 casi per 1000 persone/anno (con incidenza cumulativa del 5,8% entro 5 anni dal trapianto e del 10,8% entro 10 anni); inoltre, nei trapiantati il rischio di sviluppare SCC e BCC è notevolmente superiore rispetto alla popolazione generale. Anche le lesioni precancerose, come la cheratosi attinica, sono più frequenti nei portatori di graft, con un’incidenza 250 volte superiore rispetto alla popolazione generale [4].

Lo sviluppo di tumori cutanei non melanomatosi è correlato all’immunosoppressione farmacologica (proporzionalmente alla dose e alla durata della terapia), e all’esposizione cumulativa ai raggi ultravioletti [5], oltre al sesso, all’età anagrafica e all’età del trapianto [6, 7].

A livello oculare, il SCC sembra avere origine nel limbus, la zona di transizione tra epitelio congiuntivale bulbare ed epitelio corneale, e generalmente coinvolge tanto la congiuntiva quanto la cornea [8].

In uno studio di coorte condotto su una popolazione australiana di più di diecimila trapiantati di rene, sono stati descritti soltanto 5 casi di SCC oculare, tutti in soggetti con anamnesi positiva per glomerulonefrite [9].

Riportiamo un caso di SCC originato da una ghiandola lacrimale minore in un paziente di 75 anni, portatore di trapianto renale e in duplice terapia anti-rigetto (azatioprina e steroide).

 

Caso clinico

A causa di una glomerulopatia diagnosticata nel 1967, la funzione renale del Paziente è peggiorata progressivamente nell’arco di due decadi. Dopo un anno di trattamento emodialitico sostitutivo, il Paziente è stato sottoposto, infine, a trapianto di rene da donatore vivente (1989), con inizio della terapia con ciclosporina A (poi sospesa dopo circa tre anni per evidenza bioptica di nefrotossicità da inibitori della calcineurina). Nel 1992, in seguito a sospensione della ciclosporina A, è stata asportata una lesione ipercheratosica sospetta a livello del gomito destro.

Nell’agosto 2019, per la comparsa di dolore e parestesie a livello dell’arcata sopracciliare destra associati a dolorabilità alla digitopressione in corrispondenza della branca oftalmica del nervo trigemino (indice di neuropatia sensitiva del V nervo cranico), il Paziente è stato sottoposto a risonanza magnetica (RMN) con riscontro di encefalopatia ischemica cronica a livello della sostanza bianca dei centri semiovali e della corona radiata, bilateralmente, in assenza di lesioni espansive/eteroplastiche. Malgrado la terapia antalgica con carbamazepina e gabapentin (protratta per circa 6 mesi), la sintomatologia neuropatica non è regredita e si è progressivamente associata a esoftalmo e a comparsa di neoformazione palpebrale superiore destra. Una seconda RMN ha, in seguito, dimostrato la presenza di una lesione espansiva retrobulbare destra, bilobata, sovracentimetrica (39×22×16 mm3 circa), a prevalente localizzazione extra-conale, determinante dislocazione caudale del muscolo retto superiore omolaterale (Figura 1).

Figura 1: Risonanza magnetica del globo oculare che evidenzia la presenza della massa.
Figura 1: Risonanza magnetica del globo oculare che evidenzia la presenza della massa.

L’indagine istologica su campione bioptico ha evidenziato la presenza di tessuto fibroadiposo con foci di SCC infiltrante, moderatamente differenziato, in rapporto a formazione cistica rivestita da epitelio cubico semplice (con aree di metaplasia squamosa e di displasia focale). Il reperto, compatibile con SCC a verosimile origine da un dotto lacrimale minore, ha reso necessario l’intervento chirurgico di exenteratio orbitae destra e di plastica con lembo di muscolo temporale. L’indagine istologica su campione operatorio ha confermato la diagnosi di SCC del tessuto fibroadiposo periorbitario (prevalentemente cistico); ha evidenziato, inoltre, alcuni foci di infiltrazione perineurale e di cheratosi attinica bowenoide. Data la natura radicale dell’intervento, non è stata posta indicazione a chemio- e radio-terapia adiuvante.

 

Discussione

Il caso clinico presentato dimostra che un quadro clinico apparentemente compatibile con nevralgia trigeminale aspecifica può, in realtà, mascherare un quadro patologico severo quale una lesione neoplastica. A conforto di tale assunto c’è l’evidenza che un’anamnesi positiva per glomerulonefrite è un fattore predisponente alla comparsa di SCC oculare nei pazienti portatori di trapianto renale [9].

Nel nostro caso, lo SCC oculare ha avuto una peculiare presentazione clinica aspecifica e tardiva, che ha reso l’intervento chirurgico radicale la sola terapia possibile.

Stando alla letteratura [10], circa il 19% dei pazienti portatori di trapianto renale sviluppa almeno una neoplasia cutanea maligna nella sua vita (con incidenza cumulativa del 60% a 20 anni dal trapianto); di questi, fino al 64% presenta lesioni multiple (più frequentemente foci di SCC). Da qui la necessità di un follow-up dermatologico al fine di ottenere una diagnosi precoce. Tale atteggiamento trova supporto anche in altre casistiche [11], da cui si può sussumere la raccomandazione a un’attenta sorveglianza dei pazienti trapiantati con indicazione a eseguire la biopsia cutanea anche in caso di lesioni con minimo sospetto di malignità. La diagnosi e il trattamento adeguati e tempestivi dei tumori cutanei non melanomatosi, infatti, sono fondamentali per prevenire la comparsa di secondarismi [12].

Va sottolineato che il sesso maschile, il fumo di sigaretta, il colore chiaro dell’iride e la familiarità per neoplasie sono fattori di rischio per lo sviluppo di queste lesioni. Lo SCC oculare, inoltre, ha maggiore incidenza nei soggetti con immunocompromissione congenita o acquisita e si configura spesso come un’invasione locale a partire da una lesione cutanea primitiva. Nei pazienti in terapia immunosoppressiva, inoltre, va presa in considerazione la dose cumulativa di immunosoppressore, come suggerito dai dati di registro [13], anche in considerazione del dato, nient’affatto trascurabile, che nei portatori di trapianto renale la sopravvivenza è migliorata e l’età media al trapianto aumentata [14].

 

Conclusioni

Il tumore cutaneo non melanomatoso dell’occhio è una patologia rara e va sospettata nei pazienti portatori di trapianto renale con sintomatologia sospetta, soprattutto in caso di storia di glomerulonefrite. I pazienti sono solitamente di sesso maschile, fumatori e presentano un’elevata dose cumulativa di immunosoppressore. Sebbene i tumori della cute non siano associati a mortalità durante il ricovero [15], è importante sottolineare, come dimostra il caso proposto, che non bisogna sottovalutare sintomi apparentemente associati a quadri clinici di entità lieve o, addirittura, trascurabile. La prevenzione attraverso un attento follow-up dermatologico è fondamentale per l’eradicazione precoce della patologia.

 

Bibliografia

  1. Acuna SA, Fernandes KA, Daly C, Hicks LK, Sutradhar R, Kim SJ, Baxter NN. Cancer Mortality Among Recipients of Solid-Organ Transplantation in Ontario, Canada. JAMA Oncol. 2016 Apr;2(4):463-9. https://doi.org/10.1001/jamaoncol.2015.5137.
  2. Wisgerhof HC, van der Geest LG, de Fijter JW, Haasnoot GW, Claas FH, le Cessie S, Willemze R, Bouwes Bavinck JN. Incidence of cancer in kidney-transplant recipients: a long-term cohort study in a single center. Cancer Epidemiol. 2011 Apr;35(2):105-11. https://doi.org/10.1016/j.canep.2010.07.002.
  3. Naldi L, Fortina AB, Lovati S, Barba A, Gotti E, et al. Risk of nonmelanoma skin cancer in Italian organ transplant recipients. A registry-based study. Transplantation. 2000 Nov 27;70(10):1479-84. https://doi.org/10.1097/00007890-200011270-00015.
  4. Stockfleth E, Kerl H. Guideline Subcommittee of the European Dermatology Forum. Guidelines for the management of actinic keratoses. Eur J Dermatol. 2006 Nov-Dec;16(6):599-606.
  5. Fania L, Abeni D, Esposito I, Spagnoletti G, Citterio F, et al. Behavioral and demographic factors associated with occurrence of non-melanoma skin cancer in organ transplant recipients. G Ital Dermatol Venereol. 2020 Oct;155(5):669-675. https://doi.org/10.23736/S0392-0488.18.06099-6.
  6. O’Reilly Zwald F, Brown M. Skin cancer in solid organ transplant recipients: advances in therapy and management: part II. Management of skin cancer in solid organ transplant recipients. J Am Acad Dermatol. 2011 Aug;65(2):263-279. https://doi.org/10.1016/j.jaad.2010.11.063.
  7. Asch WS, Bia MJ. Oncologic issues and kidney transplantation: a review of frequency, mortality, and screening. Adv Chronic Kidney Dis. 2014 Jan;21(1):106-13. https://doi.org/10.1053/j.ackd.2013.07.003.
  8. Sun EC, Fears TR, Goedert JJ. Epidemiology of squamous cell conjunctival cancer. Cancer Epidemiol Biomarkers Prev. 1997 Feb;6(2):73-7.
  9. Vajdic CM, van Leeuwen MT, McDonald SP, McCredie MR, Law M, Chapman JR, Webster AC, Kaldor JM, Grulich AE. Increased incidence of squamous cell carcinoma of eye after kidney transplantation. J Natl Cancer Inst. 2007 Sep 5;99(17):1340-2. https://doi.org/10.1093/jnci/djm085.
  10. Bordea C, Wojnarowska F, Millard PR, Doll H, Welsh K, Morris PJ. Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation. 2004 Feb 27;77(4):574-9. https://doi.org/10.1097/01.tp.0000108491.62935.df.
  11. Cheng JY, Li FY, Ko CJ, Colegio OR. Cutaneous Squamous Cell Carcinomas in Solid Organ Transplant Recipients Compared With Immunocompetent Patients. JAMA Dermatol. 2018 Jan 1;154(1):60-66. https://doi.org/10.1001/jamadermatol.2017.4506.
  12. Genders RE, Osinga JAJ, Tromp EE, O’Rourke P, Bouwes Bavinck JN, Plasmeijer EI. Metastasis Risk of Cutaneous Squamous Cell Carcinoma in Organ Transplant Recipients and Immunocompetent Patients. Acta Derm Venereol. 2018 Jun 8;98(6):551-555. https://doi.org/10.2340/00015555-2901.
  13. Infante B, Coviello N, Troise D, Gravina M, Bux V, Castellano G, Stallone G. Rapamycin Inhibitors for Eye Squamous Cell Carcinoma after Renal Transplantation: A Case Report. Kidney Blood Press Res. 2021;46(1):121-125. https://doi.org/10.1159/000512364.
  14. Moloney FJ, Comber H, O’Lorcain P, O’Kelly P, Conlon PJ, Murphy GM. A population-based study of skin cancer incidence and prevalence in renal transplant recipients. Br J Dermatol. 2006 Mar;154(3):498-504. https://doi.org/10.1111/j.1365-2133.2005.07021.x.
  15. Fabbian F, De Giorgi A, Tiseo R, Cappadona R, Zucchi B, Rubbini M, Signani F, Storari A, De Giorgio R, La Manna G, Manfredini R. Neoplasms and renal transplantation: impact of gender, comorbidity and age on in-hospital mortality. A retrospective study in the region Emilia-Romagna of Italy. Eur Rev Med Pharmacol Sci. 2018 Apr;22(8):2266-2272. https://doi.org/10.26355/eurrev_201804_14814.

Nefropatia cronica del trapianto: focus sul ruolo della microinfiammazione

Abstract

La nefropatia cronica del trapianto è una condizione patologica multifattoriale presente in una larga percentuale di reni trapiantati la cui comprensione è stata accelerala dall’estesa applicazione della biologia molecolare e dall’impiego della biopsia protocollare in molti centri nefro-trapiantologici. Grazie a queste innovazioni, si è compreso che questo processo può comparire molto precocemente nel post-trapianto e che la microinfiammazione parenchimale gioca un ruolo chiave. Molte condizioni patologiche, anche precoci (come il danno da ischemia/riperfusione, la presenza di rigetti cellulari e umorali, e le infezioni virali e batteriche) possono contribuire alla genesi della fibrosi renale. Da un punto di vista prettamente biologico, il danno cronico inflammatorio-mediato del graft è orchestrato da cellule immunitarie (principalmente macrofagi, cellule dendritiche, linfociti) e cellule effettrici che mediano la deposizione di matrice extracellulare (ECM) e la fibrosi. Molti degli elementi chiave di questi pathway biologici potrebbero rappresentare in futuro ottimi bersagli terapeutici. Al momento, però, non esiste una terapia specifica per arginare questa condizione, ma appare evidente che l’impiego di una immunosoppressione sostenibile (utilizzo combinato di più farmaci alle più basse dosi possibili) e l’attenzione alle comorbidità (dedicando sufficiente tempo al follow-up clinico e incrementando il network multi-specialistico) sia la via da perseguire per ottenere un accettabile rallentamento della progressione delle lesioni croniche del graft e una sua maggiore sopravvivenza.

Parole chiave: Nefrologia, Trapianto renale, Microinfiammazione, Fibrosi, Immunosoppressione

Sorry, this entry is only available in Italian.

Introduzione

Sebbene la sopravvivenza ad un anno del rene trapiantato sia significativamente migliorata, quella a lungo termine è ancora non ottimale con un’incidenza di perdita del graft dopo 15-20 anni di circa il 40-50% [1].

Per anni la genesi del danno cronico del rene trapiantato è stata attribuita principalmente agli inevitabili e cronici effetti nefrotossici degli inibitori della calcineurina (CNI, ciclosporina e tacrolimus). Questo assioma è stato ampiamente validato dallo Studio Symphony che ha sottolineato come l’utilizzo di basse dosi di CNI (principalmente tacrolimus) fosse associato ad una migliore sopravvivenza del graft a 3 anni [2]. Questi risultati avevano innescato nella comunità trapiantologica internazionale la tendenza a minimizzare la terapia immunosoppressiva (spesso anche in pazienti a maggiore rischio immunologico).

Tuttavia, negli ultimi anni, grazie all’utilizzo della biologia molecolare (in particolare delle scienze omiche) [3] e allo sviluppo di programmi di biopsie protocollari [4], si è compreso che questa strategia aveva importanti limitazioni e il danno cronico da CNI coinvolgeva un numero di pazienti meno ampio rispetto a quanto si pensasse in passato e non tendeva ad evolvere molto rapidamente [5]. Inoltre, si è chiarito che il danno cronico del graft può comparire anche molto precocemente nel post-trapianto e avere connotazioni fisiopatologiche molto complesse [6].

Infatti, la fibrosi del rene trapiantato (meglio definita come infiammazione interstiziale/atrofia tubulare, IF/TA) non rappresentava più una semplice “cicatrizzazione parenchimale”, ma un processo complesso, inevitabile, dinamico e progressivo indotto da molti fattori patologici e caratterizzata da un significativo rimodellamento dell’interstizio associato ad un’eccessiva produzione/deposizione di matrice fibrillare extracellulare (ECM) [7] con conseguente alterazione della normale architettura del tessuto renale e della microperfusione che portava allo sviluppo di insufficienza d’organo (fino all’end-stage renal disease).

L’IF/TA è diagnosticabile istologicamente in circa il 40% dei reni trapiantati 3-6 mesi dopo il trapianto [8, 9] e coinvolge circa il 65% degli organi a 2 anni [10].

Dati della letteratura hanno poi sottolineato che questa condizione ha un drammatico impatto sull’outcome. Infatti, la sopravvivenza del trapianto a 10 anni è del 90-95% nei pazienti con istologia normale, dell’80-85% nei pazienti con IF/TA (senza vasculopatia) e del 40-45% nei pazienti che sviluppano IF/TA associata a vasculopatia [4].

In questo contesto fisiopatologico, inoltre, la microinfiammazione dell’organo svolge un ruolo chiave e può contribuire ad accelerare lo sviluppo delle lesioni parenchimali croniche e del danno funzionale dell’organo trapiantato [11]. L’infiammazione nelle aree cicatriziali/fibrotiche è stata ampiamente riconosciuta dalla classificazione Banff che ha coniato il termine di IF/TA con infiammazione (i-IF/TA). In particolare, i-IF/TA rispecchia il grading di Banff i (con soglie uguali), ma viene applicato solo al parenchima corticale cicatrizzato [12].

Questa condizione, segnalata per la prima volta nel 2009, è associata ad una peggiore sopravvivenza dell’organo trapiantato e rappresenta una risposta al danno tissutale acuto derivante da molte forme di insulto parenchimale (come rigetti acuti e cronici mediati da cellule T e anticorpi) innescato spesso da uno stato di sotto-immunosoppressione farmacologica [13,14].

 

Cenni di biologia del danno fibrotico del rene trapiantato associato alla microinfiammazione parenchimale

Da un punto di vista prettamente biologico, nel danno fibrotico associato alla micro-infiammazione, le lesioni iniziali coinvolgono diversi tipi cellulari (come macrofagi, cellule dendritiche, linfociti) [15] e implicano il coinvolgimento di cellule effettrici che mediano la deposizione di matrice extracellulare (ECM) e la fibrosi come i miofibroblasti (derivati ​​da cellule mesenchimali residenti), i fibroblasti, i fibrociti (derivati dal midollo osseo), le cellule epiteliali, le cellule endoteliali e i periciti attivati ​​da citochine pro-fibrotiche e fattori di crescita secreti dai linfociti dopo danno dell’endotelio [16, 17].

I fattori alla base dello sviluppo rapido di questa condizione sono molteplici, tra cui: 1) gli inevitabili effetti del danno da ischemia-riperfusione; 2) le infezioni virali (principalmente BK virus) e batteriche (spesso ricorrenti); 3) l’insorgenza e il numero di episodi di rigetto acuto cellulare ed umorale (anche forme subcliniche e borderline).

Come ampiamente riportato in letteratura [15, 17, 18], il processo fibrotico dell’organo trapiantato è indotto da una rete biologica multifattoriale e finemente regolata. Nella fase iniziale l’infiammazione intra-parenchimale, parte integrante dei meccanismi di difesa dell’ospite in risposta al danno, si attiva e, se non risolta, può portare allo sviluppo di un danno fibrotico [19]. In questo contesto, diverse citochine pro-infiammatorie, pro-fibrotiche e molecole di adesione vengono prodotte/secrete causando cambiamenti del microambiente locale e inducendo un reclutamento di cellule immuno-infiammatorie che, interagendo con diversi tipi cellulari nel rene, possono perpetuare la risposta fibrotica [19]. Inoltre, gli infiltrati infiammatori (inclusi neutrofili, macrofagi e linfociti T e B), potenziano il processo fibrotico e, attivando le cellule endoteliali capillari peri-tubulari, possono facilitare il reclutamento di nuove cellule mononucleate [11] che, infiltrando i tessuti, secernono citochine fibrotiche (come il TGF-β1).

Altre citochine coinvolte nel reclutamento di cellule infiammatorie sono: la proteina chemiotattica dei monociti-1 (MCP-1), la proteina infiammatoria dei macrofagi-1 (MIP-1) e la proteina infiammatoria dei macrofagi-2 (MIP-2) [20]. La sovra-espressione di queste molecole rilasciate dalle cellule tubulari danneggiate crea un gradiente di infiltrazione di monociti/macrofagi infiammatori e cellule T nei siti interessati dal processo patologico che alimenta il pathway immuno-infiammatorio (e pro-fibrotico).

In una successiva fase di attivazione, il network biologico descritto porta all’attivazione dei miofibroblasti, un ampio gruppo di cellule coinvolte nella produzione di componenti dell’ECM e che derivano da molteplici fonti, tra cui fibroblasti, fibrociti, cellule epiteliali renali che subiscono transizione mesenchimale (EMT) e periciti [16].

Durante questa condizione, poi, le cellule subiscono profondi cambiamenti morfologici e funzionali tra cui: iper-espressione dei marcatori mesenchimali (vimentina, α-actina del muscolo liscio, fibronectina), rilascio di metallopeptidasi della matrice (MMP) -9 e -2, aumento della motilità, riduzione della citocheratina e della E-caderina [21] e cambiamento nella composizione dei proteoglicani eparan solfato (HSPG) [22].

L’HSPG più abbondante nelle cellule epiteliali tubulari renali è il sindecano-1 che promuove la riparazione e la sopravvivenza tubulare renale dopo danno, e la cui funzione sembra essere correlata al miglioramento funzionale nel trapianto renale sottoposto a danno da I/R [23]. Diversi fattori possono modulare il sindecano-1, tra cui l’eparanasi (HPSE), un’endo-β-D-glucuronidasi che scinde le catene di eparan solfato in frammenti da 4 a 7 kDa e che è stata implicata nella patogenesi di diverse malattie renali [24] tra cui la nefropatia diabetica e la patologia cronica del graft [25].

Come recentemente dimostrato dal nostro gruppo, l’HPSE risulta iper-espressa e attivata dopo danno da I/R ed è in grado di rimodellare la matrice extracellulare, di indurre EMT e di controllare alcune delle complesse interazioni tra cellule tubulari renali e macrofagi (principalmente pro-infiammatori M1) che si infiltrano nel trapianto dopo il danno [26-29]. Questo crosstalk tra i macrofagi M1 e le cellule epiteliali tubulari renali, che coinvolge anche l’apoptosi, la produzione di pattern molecolari associati al danno (DAMP) e l’up-regulation del Toll-Like Receptor (TLR)-2 e TLR-4 nelle cellule epiteliali tubulari e le cellule endoteliali vascolari [30,31], promuove il rilascio di mediatori proinfiammatori, facilita la migrazione e l’infiltrazione dei leucociti, attiva le risposte immunitarie innate e adattative e potenzia la fibrosi renale [32].

Nella genesi e progressione del danno fibrotico infiammatorio-mediato del graft, come nel rene nativo, comunque, entrano in gioco anche le principali comorbidità (come malattia cardiovascolare, diabete, dislipidemia, obesità) che direttamente, o attraverso l’attivazione del pathway infiammatorio intra-parenchimale, possono indurre fibrosi e danno cronico del graft.

 

Potenziali approcci terapeutici

Strategie attuali

Per poter garantire una migliore sopravvivenza del graft e rallentare la progressione del danno cronico (soprattutto infiammatorio-mediato) è necessario gestire in maniera ottimale la terapia immunosoppressiva.

Nell’ultimo ventennio, una serie di studi clinici ha analizzato l’impatto della terapia immunosoppressiva (in particolare dei CNI) sulla genesi della fibrosi del rene trapiantato e sullo sviluppo della disfunzione cronica del trapianto (CAD) [33]. Tuttavia, l’esatto meccanismo biologico alla base del danno fibrotico farmaco-indotto non è stato ancora completamente definito.

I CNI sembrano causare fibrosi d’organo inducendo vasocostrizione renale e sistemica attraverso un aumento del rilascio di endotelina-1 [34], l’attivazione del sistema renina-angiotensina, una maggiore produzione di trombossano A2 e una ridotta produzione di vasodilatatori come l’ossido nitrico e la prostaciclina [35].

Questi farmaci possono anche causare stress ossidativo attraverso il disaccoppiamento della fosforilazione ossidativa mitocondriale, l’inibizione del ciclo di Krebs e l’attivazione della glicolisi anaerobica nel citosol [36]. Inoltre, l’IF/TA associato alla tossicità da CNI è correlato all’aumento dell’espressione di mRNA di TGF-β intrarenale [37]. Il TGF-β può promuovere la fibrosi interstiziale diminuendo la degradazione e aumentando la produzione di proteine ​​della matrice extracellulare [38].

Comunque, i CNI a dosi più elevate rappresentano una possibile soluzione allo sviluppo delle lesioni indotte dal sistema immune e che si concretizzano con la genesi della chronic active antibody mediated rejection (CAMR). È evidente, però, che una strategia di potenziamento dei CNI può incrementare lo sviluppo di comorbidità (malattia cardio-vascolare, neoplasie, malattie infettive) riducendo potenzialmente la sopravvivenza del trapianto.

Pertanto, è indispensabile pensare a trattamenti terapeutici multi-farmacologici che permettano la minimizzazione o la sospensione dei CNI. In questa filosofia terapeutica gli inibitori di mammalian target of rapamycin (mTOR-I, Everolimus, Sirolimus) possono avere un ruolo chiave.

Bisogna, però, tenere presente che, anche per questa categoria farmacologica, la dose ha un ruolo chiave. Stanno, infatti, emergendo evidenze cliniche che sottolineano un possibile effetto duale ed opposto dose-correlato degli mTOR-I. Secondo recenti studi biomolecolari, basse dosi di questi farmaci possano avere effetti protettivi (o neutri) sulla fibrosi del trapianto, mentre a concentrazioni elevate possono indurre fibrosi principalmente attraverso EMT delle cellule tubulari renali [39-41].

Pertanto, visti questi studi, sarebbe auspicabile proporre una strategia terapeutica “sostenibile” che contempli l’utilizzo delle più basse dosi possibili di più farmaci immunosoppressori somministrati contemporaneamente (incluso gli mTOR-I).

Questa filosofia è stata recentemente riportata nello studio Transform [42]. Questo ampio studio osservazionale, prospettico, e retrospettivo, internazionale multicentrico ha dimostrato la non inferiorità del trattamento combinato di mTOR-I a basse dosi con CNI a basse dosi versus la classica triplice terapia immunosoppressiva (Dosi standard di CNI associate a citostatici) e il positivo impatto sullo sviluppo di comorbidità (come le infezioni virali).

Resta implicito che l’impiego di altri preparati farmacologici come il Belatacept possa essere un’utile strategia per raggiungere questo target [43].

In aggiunta, il controllo delle comorbidità (anche attraverso la modulazione della terapia immunosoppressiva) può aiutare a rallentare la progressione della fibrosi. Negli ultimi anni, gli inibitori dei trasportatori sodio-glucosio tipo 2 (SGLT2) hanno mostrato interessanti potenzialità cardio-nefro-protettrici candidandosi a possibili nuove armi terapeutiche da sfruttare in ambito trapiantologico [44].

Nuovi potenziali agenti anti-fibrotici

Sulla base di recenti osservazioni, un gran numero di farmaci innovativi sono stati proposti per rallentare la progressione della fibrosi renale in nefrologia [45] (anche se scarsamente sperimentati in campo trapiantologico): (a) anticorpi neutralizzanti contro diverse isoforme di TGF-β [46]; (b) pirfenidone (5-metil-1-fenil-2(1H)-piridone), un derivato della piridina disponibile per via orale che inibisce la formazione di collagene e che mostra proprietà antifibrotiche in una varietà di modelli in vitro e animali di fibrosi epatica e renale [47], e usato per trattare la fibrosi polmonare idiopatica [48]; (c) tranilast (e i suoi derivati ​cinnamoyl antranilati), un farmaco antiallergico che inibisce il rilascio di mediatori chimici dai mastociti [49]; (d) THR-123 (Thrasos Therapeutics, Canada), un piccolo agonista peptidico della bone morphogenetic protein (BMP)-7, somministrato per via orale, funziona attraverso la segnalazione della activin-like kinase (ALK3) per sopprimere l’infiammazione, l’apoptosi e l’EMT, e la fibrosi in diversi modelli murini di danno renale acuto e cronico [50]; (e) pentossifillina, inibitore della fosfodiesterasi (PDE) che ha dimostrato di inibire l’espressione di connective tissue growth factor (CTGF) indotta da TGF-β1 così come l’espressione di collagene di tipo I e α-SMA [51]; (f) inibitore di Nox1/4, GKT137831 (Genkyotex) che ha soppresso la produzione di ROS e l’espressione genica fibrotica e ha attenuato la fibrosi (principalmente nel modello animale con nefropatia diabetica) [52].

Tuttavia, al momento, nessuno di loro è stato testato nel trapianto di rene. Pertanto, dovrebbero essere intrapresi più studi e sperimentazioni cliniche per valutare meglio la loro efficacia terapeutica e tossicità in questo contesto clinico.

 

Conclusioni

La nefropatia cronica del trapianto è un evento che può iniziare molto precocemente nel post-trapianto e che, in una larga percentuale dei casi, è associato all’attivazione di un pathway immuno-infiammatorio intra-parenchimale. Al momento, sono in corso una serie di studi finalizzati all’analisi e all’identificazione di nuovi elementi potenzialmente coinvolti nell’ esteso pathway pro-fibrotico del rene trapiantato, ma non dobbiamo dimenticare che fattori come la terapia immunosoppressiva, l’ipertensione, l’anemia e l’obesità sono ancora implicati nella genesi del danno cronico “non immuno-infiammatorio” del graft. In attesa di innovativi agenti terapeutici, l’utilizzo “ragionato e personalizzato” degli attuali farmaci antirigetto (principalmente CNI+mTOR-I) e l’attenzione alle comorbidità (non dimenticando di dedicare tempo al follow-up e incrementare il network multi-specialistico) è una via da perseguire per ottenere un accettabile rallentamento delle lesioni croniche del graft. Tutte queste considerazioni, affrontate nel Congresso Nefrologico di Grado del 2022, hanno infine fatto emergere che c’è ancora tanto da fare non solo per comprendere le basi fisiopatologiche del danno cronico del rene trapiantato, ma anche per individuare biomarkers predittivi e nuovi target terapeutici utili per arginare l’evoluzione di questa condizione clinica.

 

Bibliografia

  1. Caletti C, Manuel Ferraro P, Corvo A, Tessari G, Sandrini S, Capelli I, Minetti E, Gesualdo L, Girolomoni G, Boschiero L, Lupo A, Zaza G. Impact of 3 Major Maintenance Immunosuppressive Protocols on Long-term Clinical Outcomes: Result of a Large Multicenter Italian Cohort Study Including 5635 Renal Transplant Recipients. Transplant Proc. 2019 Jan-Feb;51(1):136-139, https://doi.org/10.1016/j.transproceed.2018.02.209
  2. Ekberg H, Tedesco-Silva H, Demirbas A, Vítko S, Nashan B, Gürkan A, Margreiter R, Hugo C, Grinyó JM, Frei U, Vanrenterghem Y, Daloze P, Halloran PF. ELITE-Symphony Study. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007 Dec 20;357(25):2562-75, https://doi.org/10.1056/NEJMoa067411
  3. Zaza G, Granata S, Tomei P, Dalla Gassa A, Lupo A. Personalization of the immunosuppressive treatment in renal transplant recipients: the great challenge in “omics” medicine. Int J Mol Sci. 2015 Feb 17;16(2):4281-305, https://doi.org/10.3390/ijms16024281.
  4. Serón D, Moreso F, Ramón JM et al. Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy. Transplantation. 2000 May 15;69(9):1849-55, https://doi.org/10.1097/00007890-200005150-00019
  5. Stegall MD, Park WD, Larson TS et al. The histology of solitary renal allografts at 1 and 5 years after transplantation. Am J Transplant. 2011 Apr;11(4):698-707. https://doi.org/10.1111/j.1600-6143.2010.03312.x.
  6. Granata S, Benedetti C, Gambaro G, Zaza G. Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol. 2020 Dec;33(6):1201-1211. https://doi.org/10.1007/s40620-020-00726-z
  7. Mannon RB, Matas AJ, Grande J, Leduc R et al. Inflammation in areas of tubular atrophy in kidney allograft biopsies: a potent predictor of allograft failure. Am J Transplant. 2010 Sep;10(9):2066-73, https://doi.org/10.1111/j.1600-6143.2010.03240.x.
  8. Melk A, Schmidt BM, Vongwiwatana A, Rayner DC, Halloran PF. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am J Transplant. 2005 Jun;5(6):1375-82, https://doi.org/10.1111/j.1600-6143.2005.00846.x.
  9. Dimény E, Wahlberg J, Larsson E, Fellström B. Can histopathological findings in early renal allograft biopsies identify patients at risk for chronic vascular rejection? Clin Transplant. 1995 Apr;9(2):79-84.
  10. Isoniemi HM, Krogerus L, von Willebrand E, Taskinen E, Ahonen J, Häyry P. Histopathological findings in well-functioning, long-term renal allografts. Kidney Int. 1992 Jan;41(1):155-60, https://doi.org/10.1038/ki.1992.21
  11. Torres IB, Moreso F, Sarró E, Meseguer A, Serón D. The Interplay between inflammation and fibrosis in kidney transplantation. Biomed Res Int. 2014;2014:750602. https://doi.org/10.1155/2014/750602.
  12. Roufosse C, Simmonds N, Clahsen-van Groningen M et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation. 2018 Nov;102(11):1795-1814. https://doi.org/10.1097/TP.0000000000002366
  13. Modena BD, Kurian SM, Gaber LW, Waalen J, Su AI et al. Gene Expression in Biopsies of Acute Rejection and Interstitial Fibrosis/Tubular Atrophy Reveals Highly Shared Mechanisms That Correlate With Worse Long-Term Outcomes. Am J Transplant. 2016 Jul;16(7):1982-98, https://doi.org/10.1111/ajt.13728.
  14. Lefaucheur C, Gosset C, Rabant M et al. T cell-mediated rejection is a major determinant of inflammation in scarred areas in kidney allografts. Am J Transplant. 2018 Feb;18(2):377-390, https://doi.org/10.1111/ajt.14565.
  15. Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant. 2015 Apr;15(4):863-86, https://doi.org/10.1111/ajt.13180.
  16. Mack M, Yanagita M. Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int. 2015 Feb;87(2):297-307, https://doi.org/10.1038/ki.2014.287.
  17. Li L, Greene I, Readhead B, Menon MC, Kidd BA et al. Novel Therapeutics Identification for Fibrosis in Renal Allograft Using Integrative Informatics Approach. Sci Rep. 2017 Jan 4;7:39487. https://doi.org/10.1038/srep39487.
  18. Shrestha BM, Haylor J. Biological pathways and potential targets for prevention and therapy of chronic allograft nephropathy. Biomed Res Int. 2014;2014:482438, https://doi.org/10.1155/2014/482438.
  19. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011 Oct 18;7(12):684-96, https://doi.org/10.1038/nrneph.2011.149.
  20. Anders HJ, Vielhauer V, Schlöndorff D. Chemokines and chemokine receptors are involved in the resolution or progression of renal disease. Kidney Int. 2003 Feb;63(2):401-15. https://doi.org/10.1046/j.1523-1755.2003.00750.x.
  21. Carew RM, Wang B, Kantharidis P. The role of EMT in renal fibrosis. Cell Tissue Res. 2012 Jan;347(1):103-16, https://doi.org/10.1007/s00441-011-1227-1.
  22. Celie JW, Rutjes NW, Keuning ED et al. Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. Am J Pathol. 2007 Jun;170(6):1865-78, https://doi.org/10.2353/ajpath.2007.070061.
  23. Celie JW, Katta KK, Adepu S et al. Tubular epithelial syndecan-1 maintains renal function in murine ischemia/reperfusion and human transplantation. Kidney Int. 2012 Apr;81(7):651-61, https://doi.org/10.1038/ki.2011.425.
  24. Garsen M, Rops AL, Rabelink TJ, Berden JH, van der Vlag J. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol Dial Transplant. 2014 Jan;29(1):49-55, https://doi.org/10.1093/ndt/gft410.
  25. Shafat I, Agbaria A, Boaz M, Schwartz D, Baruch R, Nakash R, Ilan N, Vlodavsky I, Weinstein T. Elevated urine heparanase levels are associated with proteinuria and decreased renal allograft function. PLoS One. 2012;7(9):e44076, https://doi.org/10.1371/journal.pone.0044076.
  26. Masola V, Zaza G, Secchi MF, Gambaro G, Lupo A, Onisto M. Heparanase is a key player in renal fibrosis by regulating TGF-β expression and activity. Biochim Biophys Acta. 2014 Sep;1843(9):2122-8, https://doi.org/10.1016/j.bbamcr.2014.06.005.
  27. Masola V, Bellin G, Vischini G, Dall’Olmo L, Granata S, Gambaro G, Lupo A, Onisto M, Zaza G. Inhibition of heparanase protects against chronic kidney dysfunction following ischemia/reperfusion injury. Oncotarget. 2018 Nov 16;9(90):36185-36201, https://doi.org/10.18632/oncotarget.26324.
  28. Masola V, Zaza G, Onisto M, Lupo A, Gambaro G. Impact of heparanase on renal fibrosis. J Transl Med. 2015 Jun 4;13:181. https://dx.doi.org/10.1186/s12967-015-0538-5.
  29. Masola V, Zaza G, Bellin G, Dall’Olmo L, Granata S, Vischini G, Secchi MF, Lupo A, Gambaro G, Onisto M. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury. FASEB J. 2018 Feb;32(2):742-756. https://doi.org/10.1096/fj.201700597R.
  30. Vesey DA, Cheung CW, Cuttle L, Endre ZA, Gobé G, Johnson DW. Interleukin-1beta induces human proximal tubule cell injury, alpha-smooth muscle actin expression and fibronectin production. Kidney Int. 2002 Jul;62(1):31-40. https://doi.org/10.1046/j.1523-1755.2002.00401.x.
  31. Goodall KJ, Poon IK, Phipps S, Hulett MD. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One. 2014 Oct 8;9(10):e109596, https://doi.org/10.1371/journal.pone.0109596.
  32. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010 Dec;10(12):826-37. https://doi.org/10.1038/nri2873.
  33. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009 Feb;4(2):481-508. https://doi.org/10.2215/CJN.04800908.
  34. Prókai Á, Csohány R, Sziksz E et al. Calcineurin-inhibition Results in Upregulation of Local Renin and Subsequent Vascular Endothelial Growth Factor Production in Renal Collecting Ducts. Transplantation. 2016 Feb;100(2):325-333. https://doi.org/10.1097/TP.0000000000000961.
  35. Li X, Zhuang S. Recent advances in renal interstitial fibrosis and tubular atrophy after kidney transplantation. Fibrogenesis Tissue Repair. 2014 Oct 2;7:15. https://doi.org/10.1186/1755-1536-7-15.
  36. Fournier N, Ducet G, Crevat A. Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr. 1987 Jun;19(3):297-303. https://doi.org/10.1007/BF00762419.
  37. Khanna A, Plummer M, Bromberek C, Bresnahan B, Hariharan S. Expression of TGF-beta and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicity. Kidney Int. 2002 Dec;62(6):2257-63. https://doi.org/10.1046/j.1523-1755.2002.00668.x.
  38. Feldman G, Kiely B, Martin N, Ryan G, McMorrow T, Ryan MP. Role for TGF-beta in cyclosporine-induced modulation of renal epithelial barrier function. J Am Soc Nephrol. 2007 Jun;18(6):1662-71, https://doi.org/10.1681/ASN.2006050527.
  39. Masola V, Zaza G, Granata S, Gambaro G, Onisto M, Lupo A. Everolimus-induced epithelial to mesenchymal transition in immortalized human renal proximal tubular epithelial cells: key role of heparanase. J Transl Med. 2013 Nov 20;11:292, https://doi.org/10.1186/1479-5876-11-292.
  40. Masola V, Carraro A, Zaza G, Bellin G, Montin U, Violi P, Lupo A, Tedeschi U. Epithelial to mesenchymal transition in the liver field: the double face of Everolimus in vitro. BMC Gastroenterol. 2015 Sep 14;15:118, https://doi.org/10.1186/s12876-015-0347-6.
  41. Granata S, Santoro G, Masola V, Tomei P, Sallustio F, Pontrelli P, Accetturo M, Antonucci N, Carratù P, Lupo A, Zaza G. In Vitro Identification of New Transcriptomic and miRNomic Profiles Associated with Pulmonary Fibrosis Induced by High Doses Everolimus: Looking for New Pathogenetic Markers and Therapeutic Targets. Int J Mol Sci. 2018 Apr 20;19(4):1250, https://doi.org/10.3390/ijms19041250.
  42. Berger SP, Sommerer C, Witzke O et al. Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant. 2019 Nov;19(11):3018-3034. https://doi.org/10.1111/ajt.15480.
  43. Kumar D, LeCorchick S, Gupta G. Belatacept As an Alternative to Calcineurin Inhibitors in Patients with Solid Organ Transplants. Front Med (Lausanne). 2017 May 19;4:60, https://doi.org/10.3389/fmed.2017.00060.
  44. Codina S, Manonelles A, Tormo M, Sola A, Cruzado JM. Chronic Kidney Allograft Disease: New Concepts and Opportunities. Front Med (Lausanne). 2021 Jul 14;8:660334. https://doi.org/10.3389/fmed.2021.660334.
  45. Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res. 2015 Apr;165(4):512-30. https://doi.org/10.1016/j.trsl.2014.07.010.
  46. Murphy SR, Dahly-Vernon AJ, Dunn KM, Chen CC, Ledbetter SR, Williams JM, Roman RJ. Renoprotective effects of anti-TGF-β antibody and antihypertensive therapies in Dahl S rats. Am J Physiol Regul Integr Comp Physiol. 2012 Jul 1;303(1):R57-69. https://doi.org/10.1152/ajpregu.00263.2011.
  47. Chen JF, Ni HF, Pan MM, Liu H, Xu M, Zhang MH, Liu BC. Pirfenidone inhibits macrophage infiltration in 5/6 nephrectomized rats. Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F676-85. https://doi.org/10.1152/ajprenal.00507.2012.
  48. Noble PW, Albera C, Bradford WZ, Costabel U, Glassberg MK, Kardatzke D, King TE Jr, Lancaster L, Sahn SA, Szwarcberg J, Valeyre D, du Bois RM; CAPACITY Study Group. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011 May 21;377(9779):1760-9, https://doi.org/10.1016/S0140-6736(11)60405-4.
  49. Gilbert RE, Zhang Y, Williams SJ, Zammit SC, Stapleton DI, Cox AJ, Krum H, Langham R, Kelly DJ. A purpose-synthesised anti-fibrotic agent attenuates experimental kidney diseases in the rat. PLoS One. 2012;7(10):e47160, https://doi.org/10.1371/journal.pone.0047160.
  50. Sugimoto H, LeBleu VS, Bosukonda D et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med. 2012 Feb 5;18(3):396-404, https://doi.org/10.1038/nm.2629.
  51. Lin SL, Chen RH, Chen YM, Chiang WC, Lai CF, Wu KD, Tsai TJ. Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. J Am Soc Nephrol. 2005 Sep;16(9):2702-13. https://doi.org/10.1681/ASN.2005040435.
  52. Gorin Y, Cavaglieri RC, Khazim K, Lee DY et al. Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol. 2015 Jun 1;308(11):F1276-87, https://doi.org/10.1152/ajprenal.00396.2014.

Long-term efficacy and safety of treatment with cinacalcet in hypercalcemic persistent secondary hyperparathyroidism in renal transplant

Abstract

Introduction: persistent hypercalcemic secondary hyperparathyroidism (PSHPT) in kidney transplantation (KTx) can expose renal transplant recipients (RTRs) to a series of complications. Cinacalcet has been shown to be effective in controlling hypercalcemic PSHPT. Therefore, we evaluated the efficacy and tolerability of cinacalcet, over a period of 3 years, in the treatment of hypercalcemic PSHPT in a group of RTRs.

Patients and Methods: eight patients with a kidney transplant age > 12 months, parathyroid hormone (PTH) levels > 120 pg/ml and total serum calcium (TCa) levels > 10.5 mg/dl, were treated with cinacalcet at an initial dose of 30 mg/day. Hypercalcemic PSHPT picture must have been present for at least 6 months before the start of treatment with cinacalcet. Every 6-8 weeks were determined: estimated glomerular filtration rate (eGFR), PTH, TCa, serum phosphorus, fractional excretion of calcium (FECa), tubular maximum reabsorption rate of phosphate (TmP/GFR), serum tacrolimus. Annually all patients underwent to ultrasound control of the transplanted kidney. The main endpoints of the study were the reduction of PTH levels > 30% from baseline and the normalization of TCa levels (<10.2 mg/dl).

Results: the results are shown as median ± interquartile range (IQR). At follow-up PTH levels decreased from 223 (202-440) to 135 pg/ml (82-156) (P < 0.01), with a percentage decrease of -54 (-68;-44), TCa levels decreased from 11.0 (10.7-11.7) to 9.3 mg/dl (8.8-9.5) (P < 0.001). Serum phosphorus levels increased from 2.7 (2.0-3.0) to 3.2 mg/dl (2.9-3.5) (P < 0.05). Fractional excretion of calcium did not change, while TmPO4/GFR increased even not significantly. Renal function and serum levels of tacrolimus did not change throughout the observation period. At end of the study the average cinacalcet dosages were 30 mg/day (30-30). Ultrasound scans of the transplanted kidney showed no development of nephrocalcinosis and/or nephrolithiasis. Conclusions: cinacalcet has proved effective and well tolerated in the treatment of hypercalcemic PSHPT in RTRs.

Keywords: cinacalcet, hypercalcemia, persistent hypercalcemic secondary hyperparathyroidism, renal transplant.

Sorry, this entry is only available in Italian.

Introduzione

Il trapianto renale (RTx) rimane il trattamento di scelta nel paziente con insufficienza renale terminale (ESRD) in quanto ne migliora la sopravvivenza e la qualità di vita rispetto ai pazienti che rimangono in dialisi. La sopravvivenza del rene trapiantato è andata progressivamente migliorando nel corso degli anni, risultando di un anno in oltre 93% dei pazienti trapiantati (RTRs) e di cinque anni in oltre il 72% [1]. Il buon funzionamento del rene trapiantato migliora alcune delle alterazioni del metabolismo minerale presenti nella ESRD, tuttavia nel 30-50% dei RTRs l’iperparatiroidismo secondario (IPS) può persistere anche dopo diversi anni dalla riuscita del RTx [2, 3]. I principali fattori di rischio per la persistenza dell’IPS nel post-RTx sono rappresentati dalla lunga durata dell’età dialitica e dall’entità della sua gravità nel periodo di terapia sostitutiva [3, 4]. L’iperparatiroidismo secondario persistente (IPSP) del post-RTx si caratterizza per la presenza di elevati livelli di paratormone (PTH), associati o meno ad ipercalcemia e/o ipofosforemia [5]. L’ipercalcemia associata ad IPSP si riscontra nel 10-40% dei RTRs [6] ed è secondaria ad un aumentato riassorbimento osseo, ad una ridotta escrezione urinaria del calcio, all’aumentata produzione di calcitriolo da parte del rene trapiantato, che a sua volta aumenta l’assorbimento intestinale del calcio [3]. Elevati livelli di calcemia possono aumentare il rischio che si sviluppino calcificazioni nel rene trapiantato con conseguente riduzione della funzione renale e si associano ad una riduzione della sopravvivenza del paziente [6, 7]. Inoltre, l’aumentata secrezione di PTH determina un ridotto riassorbimento tubulare dei fosfati con conseguente ipofosforemia [8]. Inoltre, l’IPSP può ridurre la massa ossea aumentando il rischio di fratture, nonché favorire la progressione delle calcificazioni vascolari [9, 10].

Attualmente la terapia dell’IPSP si basa sull’impiego del calcitriolo, degli analoghi della vitamina D e del cinacalcet, e nelle forme gravi sulla paratiroidectomia [11]. Tuttavia, tanto l’impiego del calcitriolo quanto quello degli analoghi della vitamina D è gravato dal rischio di ipercalcemia e quindi di calcificazioni vascolari e mortalità cardiovascolare [12]. Inoltre, l’impiego del calcitriolo nei RTRs è stato associato ad un significativo incremento della calciuria, cosa che se protratta nel tempo può esporre il rene trapiantato al rischio di sviluppare nefrocalcinosi [13]. Sebbene l’utilizzo del cinacalcet si sia dimostrato efficace quanto la paratiroidectomia nel normalizzare la calcemia nell’IPSP ipercalcemico nei RTRs [14], il suo impiego nei RTRs non è stato ancora approvato ufficialmente. Tuttavia anche l’impiego del cinacalcet è gravato da potenziali effetti collaterali quali l’aumento dell’escrezione urinaria di calcio che può associarsi allo sviluppo di nefrocalcinosi e/o nefrolitiasi del rene trapiantato e riduzione della funzione renale [15, 16]. Inoltre il cinacalcet può potenzialmente interferire con il metabolismo degli inibitori delle calcineurine e quindi con conseguenti possibili ripercussioni sulla funzione renale [17]. La paratiroidectomia dovrebbe essere riservata a casi selezionati e comunque soltanto dopo un periodo di osservazione non inferiore ai 12 mesi dal RTx [11]. Infatti, anche se con tempi non prevedibili, spesso l’IPS risolve spontaneamente nel tempo [18]. Inoltre, la paratiroidectomia è stata associata ad un peggioramento della funzione renale e può essere seguita da una recidiva dell’IPS [19]. Quindi, da quanto riportato in letteratura, nel caso di IPSP ipercalcemico il trattamento di scelta, quando non ci siano evidenti indicazioni cliniche alla paratiroidectomia, sembrerebbe essere quello con il cinacalcet, quanto meno per il controllo dell’ipercalcemia [2022]. Nel presente studio abbiamo valutato nel lungo termine l’efficacia e la tollerabilità del cinacalcet nel trattamento dell’IPSP ipercalcemico in un gruppo di RTRs.

 

Materiali e Metodi

Questo studio di natura retrospettiva è stato condotto in un singolo centro ed ha avuto una durata di 36 mesi. Nel periodo tra gennaio 2012 e dicembre 2016 sono stati selezionati 8 RTRs tra una popolazione ambulatoriale di 120 pazienti. I principali criteri di selezione erano rappresentati dalla presenza stabile nei sei mesi antecedenti l’arruolamento nello studio di livelli di PTH > di 120 pg/ml (v.n. 9-63 pg/ml) e livelli di calcemia totale > 10.5 mg/dl (v.n. 8.5-10.2 mg/dl). Altri criteri di inclusione erano una età del RTx > 12 mesi, un filtrato glomerulare stimato (eGFR) stabilmente > 15 ml/min/1.73 m2 e negatività per storia di pregressa paratiroidectomia. Il trattamento con cinacalcet (Mimpara, Sensipar, Amgen Inc., Thousand Oaks, USA) veniva iniziato al dosaggio di 30 mg/die; il dosaggio veniva quindi aggiustato in base all’andamento dei livelli della calcemia totale (CaT) e del PTH. Gli obiettivi principali dello studio erano la normalizzazione della CaT (<10.2 mg/dl) e la riduzione dei livelli del PTH > 30% rispetto ai valori basali. Nel corso del trattamento, se la calcemia totale si riduceva a livelli sierici < 8.5 mg/dl veniva associato il paricalcitolo ad un dosaggio iniziale di 1 µg a giorni alterni, se l’ipocalemia era sintomatica la somministrazione del cinacalcet veniva temporaneamente sospesa. Ogni 6-8 settimane venivano determinati: CaT, fosforemia, PTH, fosfatasi alcalina totale (t-ALP), eGFR, proteinuria, creatininuria, calciuria e fosfaturia delle 24 ore, livelli sierici del tacrolimus. Dove necessario la CaT veniva determinata con una frequenza maggiore. La pressione arteriosa veniva rilevata ad ogni visita ambulatoriale. Il filtrato glomerulare stimato veniva calcolato utilizzando la formula Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) [23]. La frazione di escrezione urinaria del calcio veniva calcolata con la formula (calciuria 24 ore/calcemia)/(creatininuria 24 ore/creatininemia) × 100. Il riassorbimento tubulare massimo dei fosfati (TmPO4) rapportato al filtrato glomerulare (TmPO4/GFR) veniva calcolato con la formula fosforemia – (fosfaturia x creatininemia/creatininuria). La proteinuria veniva espressa in milligrammi per grammo di creatinina urinaria (mg/gCr). I principali parametri biochimici venivano determinati con metodiche di laboratorio standard. Il paratormone veniva dosato con tecnica di immunochemiluminescenza di seconda generazione (Architect Intact PTH, Abbott). I risultati sono stati espressi come mediana ± scarto interquartile (IQR) per le variabili continue, dopo aver verificato la non normalità della distribuzione dei loro valori, attraverso un test statistico che conta sia dell’asimmetria sia della curtosi. La significatività statistica della differenza tra i valori misurati al basale e nei successivi periodi di follow-up (6, 12, 18, 24, 30, 36 mesi) è stata valutata attraverso il test non parametrico di uguaglianza delle mediane; un valore di P < 0.05 è stato considerato statisticamente significativo. L’analisi statistica è stata eseguita con Stata (Stata Corp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC).

 

Risultati

L’età media dei pazienti era di 58 ± 9 anni, quella dialitica di 63 ± 47 mesi e quella del RTx 61 ± 69 mesi. Al momento della diagnosi di IPSP ipercalcemico i livelli medi della CaT erano 10.8 mg/dl (10.6-11.8) e quelli del PTH 202 pg/ml (175-378).  Il trattamento con cinacalcet veniva iniziato mediamente a 60 ± 61 mesi (range 15-180 mesi) dal RTx. Tutti i pazienti erano in terapia immunosoppressiva combinata con tacrolimus, micofenolato mofetile e steroide. Prima del RTx, quando ancora in terapia sostitutiva, tutti i pazienti erano in terapia combinata con cinacalcet al dosaggio medio di 36 ± 13 mg/die (range 30-60 mg/die) e paricalcitolo al dosaggio medio di 10.7 ± 1.9 µg/settimana (range 10-15 µg/settimana). All’inizio del trattamento con cinacalcet nessuno dei pazienti era in terapia con calcitriolo o analoghi della vitamina D. Il dosaggio iniziale del cinacalcet era di 30 mg/die fino ad un dosaggio massimo di 60 mg/die. Nel corso dello studio in 2 pazienti, al terzo ed al dodicesimo mese di terapia con il cinacalcet, veniva introdotto il paricalcitolo al dosaggio di 1 µg a giorni alterni e quindi di 1 µg/die al fine di mantenere la calcemia a livelli > 8.5 mg/dl, non venivano utilizzati sali di calcio. I livelli del PTH si riducevano significativamente soltanto dopo 21 mesi dall’inizio del trattamento con cinacalcet (140 ± 34 pg/ml; -49 ± 18%; P < 0.05 vs basale) e si mantenevano significativamente più bassi rispetto al basale per tutto il resto della durata dell’osservazione, al F-U la riduzione percentuale dei livelli del PTH era di -54 (-68;-44) (Tabella 1 e Figura 1a – 1b).

Abbreviazioni: vedi testo; P vs basale: ° < 0.05; * < 0.01; ^ < 0.001.

Variabile Mesi
-6 Basale 6 12 18 24 30 36
mediana (IQR) mediana (IQR) mediana (IQR) mediana (IQR) mediana (IQR) mediana

(IQR)

mediana (IQR) mediana

(IQR)

eGFR, mL/min/1.732 56 (35–64) 53 (37-67) 52 (39-65) 47 (38-74) 53 (42-71) 52 (37-71) 51 (36-71) 52 (35-63)
Calcemia, mg/dL 10.8 (10.6-11.8) 11.0 (10.7-11.7) 9.9 (9.5-10.4) ^ 9.9 (9.0-10.8) 9.7 (9.4-10.6) ° 9.4 (9.1-10.0) ^ 9.4 (9.3-9.8) ^ 9.3 (8.8-9.5) ^
Fosforemia, mg/dL 2.4 (2.0-3.0) 2.7 (2.0-3.0) 2.8 (2.3-3.4) 3.0 (2.5-3.1) 2.8 (2.5-3.0) 3.1 (2.4-3.5) 3.1 (2.9-3.1) 3.2 (2.9-3.5) °
PTH, pg/Ml 202 (175-378) 223 (202-440) 166 (85-294) ° 154 (81-260) 155 (117-254) ° 142 (98-199) ° 134 (94-195) * 135 (82-156) *
Decremento % PTH, % -50 (-56;-20) -51 (-62;-29) -40 (-51;-32) -53 (-61;-35) -52 (-59;-35) -54 (-68;-44)
t-ALP, mU/mL 114 (63-213) 104 (67-216) 73 (67-151) 86 (66-123) 78 (63-120) 71 (62-95) 82 (68-94) 83 (71-84)
FECa, % 0.016

(0.009-0.025)

0.015

(0.008-0.024)

0.018

(0.014-0.047)

0.019

(0.017-0.031)

0.022

(0.014-0.026)

0.018

(0.012-0.023)

0.027

(0.013-0.035)

0.018

(0.012-0.031)

TmPO 4/GFR, mg/dL 1.5 (1.1-2.0) 1.8 (1.4-2.0) 1.9 (1.4-2.8) 1.8 (1.4-2.3) 2.0 (1.9-2.2) ° 2.4 (1.7-2.8) 2.2 (1.9-2.5) ° 2.2 (1.8-2.8)
Proteinuria, mg/grCr 108 (104-113) 117 (108-233) 119 (105-224) 115 (108-367) 114 (113-197) 122 (112-156) 116 (110-153) 110 (83-117)
PAM, mmHg 97 (90-102) 94 (89-100) 93 (92-97) 94 (90-97) 93 (87-95) 95 (93-100) 92 (89-99) 94 (90-99)
Tacrolimus, ng/mL 8.8 (6.7-11.6) 7.1 (5.2-8.7) 6.7 (6.0-9.1) 7.5 (5.7-10.3) 5.5 (3.9-6.4) 5.9 (4.7-8.7) 6.5 (4.6-8.4) 6.3 (5.0-8.2)
Cinacalcet, mg/die 0 30 (30-30) 30 (30-30) 30 (30-30) 30 (30-30) 30 (30-30) 30 (30-45) 30 (30-30)
Paricalcitolo, µg/settimana (n° pts) 0 0 0 (0-0) (1) 0 (0-0.5) (1) 0 (0-0.25) (2) 0 (0-0.25) (2) 0 (0-0.25) (2) 0 (0-0.25) (2)
Abbreviazioni: vedi testo; P vs basale: ° < 0.05; * < 0.01; ^ < 0.001.
Tabella 1: Andamento dei principali dati clinici nel corso del trattamento con cinacalcet dell’iperparatiroidismo secondario persistente ipercalcemico nei pazienti portatori di trapianto renale
Figura 1: Andamento dei livelli del PTH (a) e decremento percentuale dei livelli del PTH (b) nel corso del follow-up
Figura 1: Andamento dei livelli del PTH (a) e decremento percentuale dei livelli del PTH (b) nel corso del follow-up

I livelli della CaT si riducevano significativamente già dopo soli tre mesi dall’inizio del trattamento con cinacalcet (-1.3 mg/dl; P < 0.01 vs basale), nel corso dell’osservazione si registrava un’ulteriore riduzione dei suoi livelli che al termine dello studio era pari a – 2.0 mg/dl con normalizzazione dei suoi valori (Tabella 1 e Figura 2a).

Figura 2: Andamento dei livelli della calcemia totale (a) e della frazione di escrezione urinaria del calcio (b) nel corso del follow-up
Figura 2: Andamento dei livelli della calcemia totale (a) e della frazione di escrezione urinaria del calcio (b) nel corso del follow-up

I livelli della fosforemia mostravano un progressivo incremento nel corso dello studio, tuttavia questo risultava statisticamente significativo soltanto al termine dell’osservazione ed era pari a +0.6 mg/dl (Tabella 1 e Figura 3a).

Figura 3: Andamento dei livelli della fosforemia (a) e del riassorbimento tubulare dei fosfati in rapporto al filtrato glomerulare (TmPO4/eGFR) (b) nel corso del follow-up
Figura 3: Andamento dei livelli della fosforemia (a) e del riassorbimento tubulare dei fosfati in rapporto al filtrato glomerulare (TmPO4/eGFR) (b) nel corso del follow-up

I livelli di t-ALP si riducevano da 104 (67-216) a 83 mU/mL (71-84), tuttavia questa riduzione non risultava statisticamente significativa (Tabella 1). In quattro pazienti che al basale presentavano livelli di t-ALP francamente elevati questi si normalizzavano al termine dell’osservazione. La frazione di escrezione del calcio mostrava un incremento già nei primi mesi di terapia con il cinacalcet, pur non risultando statisticamente significativo, per poi ritornare già dal nono mese a valori sovrapponibili a quelli basali (Tabella 1 e Figura 2b). L’iniziale incremento della FECa coincideva con la significativa riduzione della calcemia (Tabella 1). Il riassorbimento tubulare dei fosfati mostrava un costante e progressivo incremento che tuttavia al termine dello studio non risultava statisticamente significativo (Tabella 1 e Figura 3b). Il progressivo incremento del riassorbimento tubulare dei fosfati era seguito da un aumento dei livelli della fosforemia (Tabella 1). I controlli ecografici del rene trapiantato, eseguiti annualmente, risultavano negativi per nefrolitiasi e/o nefrocalcinosi. Il filtrato glomerulare stimato, la proteinuria ed i livelli sierici del tacrolimus non subivano variazioni significative nel corso di tutto il periodo di osservazione (Tabella 1 e Figura 4a – 4b). Il profilo di sicurezza e tollerabilità del cinacalcet si dimostrava soddisfacente, infatti nel corso del trattamento non abbiamo registrato episodi di ipocalcemia sintomatica o effetti collaterali riconducibili al farmaco che abbiano richiesto, neanche temporaneamente, la riduzione del suo dosaggio o la sua sospensione.

Figura 4: Andamento del filtrato glomerulare stimato (eGFR) (a) e dei livelli sierici del tacrolimus (b) nel corso del follow-up
Figura 4: Andamento del filtrato glomerulare stimato (eGFR) (a) e dei livelli sierici del tacrolimus (b) nel corso del follow-up

 

Discussione

Dalla nostra esperienza, seppur limitata, emerge che nei RTRs con IPSP ipercalcemico il trattamento con cinacalcet non solo controlla l’ipercalcemia, già a pochi mesi dall’inizio del trattamento, ma è anche in grado di ridurre i livelli del PTH ed aumentare quelli della fosforemia, sebbene nel lungo termine. Il trattamento con cinacalcet non sembra influenzare l’escrezione urinaria di calcio, se non nel breve termine. Inoltre il cinacalcet si è dimostrato ben tollerato anche dopo un lungo periodo di trattamento.

Diversi studi prospettici e retrospettivi hanno esaminato i potenziali effetti del cinacalcet nell’IPSP ipercalcemico, ma soltanto quattro di questi hanno avuto una durata ≥ 3 anni [2022, 24]. Tra questi studi soltanto in uno [21] c’è stato il monitoraggio non solo dei principali parametri bioumorali del metabolismo minerale ma anche di quelli urinari, e pochi hanno valutato l’andamento dei livelli sierici degli inibitori delle calcineurine, in particolare quelli del tacrolimus. In ultimo, ma non meno importante, è il fatto che in questi studi i criteri di arruolamento sono stati quanto mai dissimili. Infatti in alcuni di questi sono stati arruolati pazienti nell’immediato post-RTx, con livelli di PTH appena al disopra della norma, calcemie borderline ed escrezione urinaria del calcio espressa non in rapporto al filtrato glomerulare. Al contrario, nel nostro studio i criteri di selezione sono stati particolarmente rigidi. Infatti la durata dell’osservazione in corso di terapia con cinacalcet non doveva essere inferiore ai tre anni, i livelli del PTH a 12 mesi dal RTx dovevano essere stabilmente al disopra di due volte i limiti alti della norma, i livelli della CaT dovevano essere ben al disopra dei nostri valori di normalità, tutti i pazienti dovevano avere un adeguato monitoraggio della escrezione urinaria di calcio e fosforo e dei livelli sierici del tacrolimus. L’iperparatiroidismo secondario persistente è una complicanza comune nel post-RTx, riscontrandosi ad un anno da questo nel 30-50% dei RTRs, e nel 10-40% dei casi si associa ad ipercalcemia [6]. Nella nostra popolazione ambulatoriale, costituita da circa 120 RTRs, ad un anno dal RTx l’IPSP ipercalcemico era presente nell’8.5% dei pazienti. Il trattamento di questi pazienti con cinacalcet è stato seguito da un rapido e significativo decremento della CaT e concomitantemente da un incremento, seppur non significativo, della escrezione urinaria di calcio. Nel tempo la CaT è andata ulteriormente riducendosi, mentre l’escrezione urinaria di calcio a nove mesi dall’inizio del trattamento con cinacalcet è ritornata ai valori basali. Questo andamento della calciuria in corso di terapia con cinacalcet è stato già descritto in precedenti esperienze e in maniera analoga alla nostra soprattutto nelle prime fasi del trattamento [21, 2529]. Ciò potrebbe essere ricondotto all’azione diretta del cinacalcet sui calcium-sensing receptor (CaSR) a livello renale [30] con riduzione del riassorbimento tubulare renale del calcio, e successivamente alla riduzione dei livelli del PTH. In rari casi clinici all’incremento della calciuria indotto dal cinacalcet è stato ricondotto lo sviluppo di nefrocalcinosi e nefrolitiasi del rene trapiantato con associato peggioramento della funzione renale [31, 32]. Tuttavia questi potenziali rischi non sembrano essere stati confermati nello studio, ben condotto, da Courbebaisse et al., in cui un gruppo di RTRs con IPSP ipercalcemico veniva trattato con cinacalcet per 12 mesi. Gli autori hanno osservato che a fronte di un significativo incremento della escrezione urinaria di calcio non vi era un aumento delle calcificazioni a livello del rene trapiantato, come testimoniato dalle biopsie renali ripetute nel tempo, rispetto ai controlli [26]. Nel nostro studio, anche se soltanto ecograficamente, non abbiamo riscontrato evidenze macroscopiche di nefrocalcinosi e/o nefrolitiasi del rene trapiantato. L’andamento della CaT che abbiamo osservato nel corso del trattamento, ossia l’ulteriore progressiva riduzione dei suoi livelli a fronte della normalizzazione della FECa, potrebbe essere ricondotto alla più tardiva riduzione del turnover osseo secondaria alla riduzione dei livelli del PTH. Pur essendo i livelli del PTH scarsamente predittivi del turnover osseo [17], non possiamo escludere che nei nostri pazienti l’IPSP ipercalcemico fosse associato ad una patologia ossea ad alto turnover, vista la loro storia clinica di IPS grave nel periodo del trattamento sostitutivo. Parte dei nostri pazienti al momento di iniziare la terapia con cinacalcet presentavano livelli di t-ALP elevati o ai limiti alti della norma. L’associazione di livelli di t-ALP e di PTH elevati possono, con una discreta approssimazione, essere in grado di differenziare una patologia ossea ad elevato turnover da una a basso turnover [33]. Nello studio di Borchhardt et al., condotto su un gruppo di RTRs con IPSP ipercalcemico trattati con cinacalcet, gli autori hanno osservato che la riduzione del turnover osseo era più evidente a 20 mesi dall’inizio della terapia [34]. Questo dato confermerebbe quanto da noi osservato, ossia che l’ulteriore calo dei livelli della calcemia, così come quello dei livelli del PTH e della t-ALP, era più evidente proprio a due anni dall’inizio della terapia con cinacalcet. La tardiva e significativa riduzione dei livelli del PTH in corso di terapia con cinacalcet da noi riportata è stata già descritta in precedenti studi [2022]. Questo comportamento del PTH potrebbe essere ricondotto alla possibile presenza di iperplasia diffusa delle ghiandole paratiroidee, ovviamente non di tipo nodulare, che in alcuni studi condotti nei RTRs con IPSP ipercalcemico, quando presente, è stata sempre associata ad una mancata risposta al trattamento con cinacalcet [27, 36]. La presenza di iperplasia delle ghiandole paratiroidee, in particolare quella di tipo nodulare, si caratterizza per una ridotta espressione dei CaSR [36], tuttavia nei pazienti in emodialisi affetti da IPS grave con iperplasia diffusa delle paratiroidi è stato descritto che il trattamento con cinacalcet, per un periodo non inferiore ai 12 mesi, è stato seguito da una aumentata espressione dei CaSR e dalla mancata progressione dell’IPS, al contrario di quanto accadeva nei pazienti con iperplasia nodulare [37]. Di conseguenza possiamo ipotizzare che nei nostri pazienti la tardiva riduzione dei livelli del PTH sia da ricondurre ad una aumentata espressione dei CaSR, ma soltanto dopo un lungo periodo di terapia con cinacalcet, che ha consentito una migliore risposta terapeutica. L’ipofosforemia di entità lieve-moderata è un reperto estremamente comune nei primi mesi del post-RTx, tuttavia in alcuni casi questa può perdurare nel tempo probabilmente a seguito dell’IPSP [38]. Sebbene l’ipofosforemia, soprattutto nei primi mesi del post-trapianto, possa essere ricondotta all’azione del fibroblast growth factor-23 (FGF23) e non solo del PTH [39], nella nostra esperienza il significativo incremento della fosforemia e dei valori del TmP/GFR si è registrato soltanto nelle fasi finali dell’osservazione allorché vi è stata una significativa riduzione dei livelli del PTH. Questi dati suggeriscono che l’incremento della fosforemia sia principalmente da ricondurre alla riduzione dell’effetto fosfaturico indotto dal PTH e probabilmente all’incremento dei livelli di 1,25-diidrossicolecalciferolo. Ovviamente non possiamo escludere un potenziale ruolo della riduzione dei livelli del FGF23 anche se diversi studi hanno dimostrato che la normalizzazione dei suoi livelli sierici avviene già nei primi 12 mesi del RTx [39], normalizzazione a cui potrebbe contribuire anche il trattamento con cinacalcet [40]. L’impiego del cinacalcet è stato associato, seppur sporadicamente, ad un peggioramento della funzione renale [31]. Tuttavia in uno studio condotto su RTRs con IPSP ipercalcemico trattati con cinacalcet dove la funzione renale veniva determinata con tecniche molto sensibili, quali la clearance dello ioexolo e dell’inulina, questa non subiva modificazioni [26]. Nel nostro studio, sebbene la valutazione della funzione renale sia stata effettuata soltanto con l’eGFR, non abbiamo registrato variazioni del filtrato glomerulare per tutta la durata dell’osservazione. Il trattamento con cinacalcet potrebbe interferire, seppur modestamente, con la farmacocinetica del tacrolimus riducendone i livelli sierici, tuttavia senza conseguenze di rilievo sulla funzione renale [41]. Analogamente a precedenti esperienze condotte nel lungo termine [20, 22], non abbiamo registrato significative variazioni dei livelli sierici del tacrolimus. In ultimo, il trattamento con cinacalcet è stato ben tollerato e privo degli effetti collaterali più comuni legati al suo impiego risultando in una buona aderenza terapeutica, infatti nei nostri pazienti non vi è mai stata la necessità di ridurre il dosaggio del farmaco o sospenderne la somministrazione, neanche temporaneamente. Il nostro studio ha diversi limiti, il principale è sicuramente rappresentato dalla scarsa numerosità dei pazienti selezionati dovuta alla bassa percentuale di pazienti con IPSP ipercalcemico presente nella nostra popolazione ambulatoriale, questo ha determinato l’altro limite, ossia l’impossibilità di costituire un gruppo di controllo. Altro limite dello studio è la sua natura retrospettiva dovuta al reclutamento dei pazienti in tempi diversi. Questi limiti tuttavia sono comuni in molti dei lavori fin qui pubblicati. A fronte di quanto premesso, il nostro studio ha anche qualche pregio. Infatti, diversamente da quanto fatto nella maggior parte dei precedenti lavori, non ci si è limitati a monitorare solo l’andamento dei parametri sierici del metabolismo minerale, ma anche di quelli urinari per un periodo di osservazione particolarmente lungo. Inoltre, cosa riscontrabile in pochissimi altri studi, nel nostro è stato valutato anche il comportamento dei livelli sierici del tacrolimus in corso di terapia con cinacalcet.

 

Conclusioni

Il presente studio ha mostrato che nei RTRs con IPSP ipercalcemico il trattamento a lungo termine con cinacalcet è efficace nel controllo tanto dei livelli della CaT quanto di quelli del PTH, senza influenzare la funzione renale ed i livelli sierici del tacrolimus. Il trattamento con cinacalcet è risultato non solo efficace ma anche ben tollerato. La nostra esperienza ha inoltre confermato che la combinazione di lunga età dialitica, elevati livelli del PTH e necessità di un trattamento dell’IPS più aggressivo con cinacalcet in associazione agli analoghi della vitamina D nel periodo di terapia sostitutiva rappresenta uno dei principali fattori di rischio per lo sviluppo di IPSP ipercalcemico nel post-RTx. Questa considerazione dovrebbe invitarci a rivedere l’atteggiamento terapeutico nell’IPS grave del paziente in dialisi, soprattutto quando in lista d’attesa per il RTx, che con l’avvento dei calciomimetici nel tempo è divenuto sempre più conservativo. In ultimo sarebbe opportuno valutare, con trials clinici randomizzati condotti nel lungo termine, se il trattamento dell’IPSP ipercalcemico con cinacalcet nei RTRs possa migliorare alcuni hard outcomes e se sia comparabile a quello della paratiroidectomia.

 

Bibliografia

  1. Wang JH, Skeans MA, Israni AK. Current status of kidney transplant outcomes: dying to survive. Adv Chronic Kidney Dis. 2016; 23(5):281–6, https://doi.org/10.1053/j.ackd.2016.07.001.
  2. Evenepoel P, Claes K, Kuypers D, et al. Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant. 2004; 19(5):1281–7, https://doi.org/10.1093/ndt/gfh128.
  3. Messa P, Sindici C, Cannella G, et al. Persistent secondary hyperparathyroidism after renal transplantation. Kidney Int. 1998; 54(5):1704–13, https://doi.org/10.1046/j.1523-1755.1998.00142.x.
  4. Torres A, Rodriguez AP, Concepcion MT, et al. Parathyroid function in long-term renal transplant patients: importance of pretransplant PTH concentrations. Nephrol Dial Transplant. 1998; 13 Suppl 3:94-7, https://doi.org/1093/ndt/13.suppl_3.94.
  5. Torres A, Lorenzo V, Salido E. Calcium metabolism and skeletal problems after transplantation. J Am Soc Nephrol. 2002 Feb;13(2):551-558, https://doi.org/1681/ASN.V132551.
  6. Gwinner W, Suppa S, Mengel M, et al. Early calcification of renal allografts detected by protocol biopsies: causes and clinical implications. Am J Transplant. 2005 Aug; 5 (8): 1934-41, https://doi.org/1111/j.1600-6143.2005.00938.x.
  7. Egbuna OI, Taylor JG, Bushinsky DA, et al. Elevated calcium phosphate product after renal transplantation is a risk factor for graft failure. Clin Transplant. Jul-Aug 2007; 21 (4): 558-66, https://doi.org/1111/j.1399-0012.2007.00690.x.
  8. van Londen M, Aarts BM, Deetman PE, et al. Post-Transplant Hypophosphatemia and the Risk of Death-Censored Graft Failure and Mortality after Kidney Transplantation. Clin J Am Soc Nephrol. 2017 Aug 7;12(8):1301-1310, https://doi.org/2215/CJN.10270916.
  9. Akaberi S, Lindergård B, Simonsen O, Nyberg G. Impact of parathyroid hormone on bone density in long-term renal transplant patients with good graft function. 2006 Sep 27; 82 (6): 749-52. https://doi.org/10.1097/01.tp.0000230130.50451.78.
  10. Mazzaferro S, Pasquali M, Taggi F, et al. Progression of Coronary Artery Calcification in Renal Transplantation and the Role of Secondary Hyperparathyroidism and Inflammation. Clin J Am Soc Nephrol. 2009 Mar; 4 (3): 685-90. Epub 2009 Feb 11, https://doi.org/2215/CJN.03930808.
  11. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009 Aug;(113):S1-130, https://doi.org/1038/ki.2009.188.
  12. Moe SM, Drüeke TB. Management of secondary hyperparathyroidism: the importance and the challenge of controlling parathyroid hormone levels without elevating calcium, phosphorus, and calcium-phosphorus product. Am J Nephrol. Nov-Dec 2003; 23 (6): 369-79. Epub 2003 Oct 9, https://doi.org/1159/000073945.
  13. Mitchell DM, Regan S, Cooley MC, et al. Long-term follow-up of patients with hypoparathyroidism. J Clin Endocrinol Metab. 2012 Dec;97(12):4507-14, https://doi.org/1210/jc.2012-1808.
  14. Dulfer RR,Koh EY, van der Plas WY, et al. Parathyroidectomy versus cinacalcet for tertiary hyperparathyroidism; a retrospective analysis. Langenbecks Arch Surg. 2019; 404(1): 71–79, https://doi.org/10.1007/s00423-019-01755-4
  1. Peng LW, Logan JL, James SH, et al. Cinacalcet-associated graft dysfunction and nephrocalcinosis in a kidney transplant recipient. Am J Med. 2007 Sep; 120 (9): e7-9. https://doi.org/1016/j.amjmed.2005.09.041.
  2. SeagerCM, Srinivas TR, Flechner Development of nephrolithiasis in a renal transplant patient during treatment with Cinacalcet. Ann Transplant. 2013 Jan 22;18:31-5, https://doi.org/10.12659/AOT.883809.
  3. Falk P, Vethe NT, Åsberg A, et al. Cinacalcet’s effect on the pharmacokinetics of tacrolimus, cyclosporine and mycophenolate in renal transplant recipients. Nephrol Dial Transplant. 2008 Mar; 23(3): 1048–53, https://doi.org/1093/ndt/gfm632.
  4. Fukagawa M, Drüeke TB. Parathyroidectomy or Calcimimetic to Treat Hypercalcemia after Kidney Transplantation? J Am Soc Nephrol. 2016 Aug; 27(8): 2221-4, https://doi.org/1681/ASN.2015121349.
  5. Evenepoel P, Claes K, Kuypers D, et al. Impact of parathyroidectomy on renal graft function, blood pressure and serum lipids in kidney transplant recipients: a single centre study. Nephrol Dial Transplant. 2005 Aug; 20(8): 1714-20, https://doi.org/1093/ndt/gfh892
  6. Torregrosa J-V, Morales E, Díaz JM, et al. Cinacalcet for hypercalcaemic secondary hyperparathyroidism after renal transplantation: a multicentre, retrospective, 3-year study. Nephrology (Carlton). 2014 Feb;19(2):84-93, https://doi.org/1111/nep.12186.
  7. Thiem U, Gessl A, Borchhardt Long-term clinical practice experience with cinacalcet for treatment of hypercalcemic hyperparathyroidism after kidney transplantation. Biomed Res Int. 2015;2015:292654, https://doi.org/10.1155/2015/292654.
  8. Zavvos V, Fyssa L, Papasotiriou M, et al. Long-Term Use of Cinacalcet in Kidney Transplant Recipients With Hypercalcemic Secondary Hyperparathyroidism: A Single-Center Prospective Study. Exp Clin Transplant. 2018 Jun;16(3):287-293, https://doi.org/6002/ect.2016.0342.
  9. Levey AS, Stevens LA, Schmid CH, et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A New Equation to Estimate Glomerular Filtration Rate. Ann Intern Med. 2009 May 5; 150 (9): 604-612, https://doi.org/7326/0003-4819-150-9-200905050-00006
  10. Paschoalin RP, Torregrosa JV, Sanchez-Escuredo A, et al. Cinacalcet treatment for stable kidney transplantation patients with hypercalcemia due to persistent secondary hyperparathyroidism: a long-term follow-up. Transplant Proc. 2012 Nov;44(9):2588-9. https://doi.org/1016/j.transproceed.2012.09.049.
  11. Serra AL, Savoca R, Huber AR, et al. Effective control of persistent hyperparathyroidism with cinacalcet in renal allograft recipients. Nephrol Dial Transplant. 2007 Feb;22(2):577-83, https://doi.org/1093/ndt/gfl560.
  12. Courbebaisse M, Diet C, Timsit MO, et al. Effects of cinacalcet in renal transplant patients with hyperparathyroidism. Am J Nephrol. 2012;35(4):341-8, https://doi.org/1159/000337526.
  13. Borchhardt KA, Heinzl H, Mayerwöger E, et al. Cinacalcet Increases Calcium Excretion in Hypercalcemic Hyperparathyroidism After Kidney Transplantation. Transplantation. 2008 Oct 15;86(7):919-24, https://doi.org/1097/TP.0b013e318186b7fb.
  14. Zitt E, Woess W, Mayer G, et al. Effect of cinacalcet on renal electrolyte handling and systemic arterial blood pressure in kidney transplant patients with persistent hyperparathyroidism. Transplantation. 2011 Oct 27;92(8):883-9, https://doi.org/1097/TP.0b013e31822d87e8.
  15. Serra AL, Braun SC, Starke A, et al. Pharmacokinetics and pharmacodynamics of cinacalcet in patients with hyperparathyroidism after renal transplantation. Am J Transplant. 2008 Apr;8(4):803-10, https://doi.org/1111/j.1600-6143.2007.02136.x
  16. Riccardi D, Brown Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol. 2010 Mar;298(3):F485-99, https://doi.org/0.1152/ajprenal.00608.2009.
  17. Peng LW, Logan JL, James SH, et al. Cinacalcet-associated graft dysfunction and nephrocalcinosis in a kidney transplant recipient. Am J Med. 2007 Sep;120(9):e7-9, https://doi.org/1016/j.amjmed.2005.09.041.
  18. SeagerCM, Srinivas TR, Flechner Development of nephrolithiasis in a renal transplant patient during treatment with Cinacalcet. Ann Transplant. 2013 Jan 22;18:31-5, https://doi.org/10.12659/AOT.883809.
  19. Sprague SM , Bellorin-Font E, Jorgetti V, et al. Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am J Kidney Dis. 2016 Apr;6 7 (4): 559-566, https://doi.org/10.1053/j.ajkd.2015.06.023.
  20. BorchhardtKA, Diarra D, Sulzbacher I, et al. Cinacalcet decreases bone formation rate in hypercalcemic hyperparathyroidism after kidney transplantation. Am J Nephrol. 2010;31(6):482-9, https://doi.org/1159/000304180.
  21. Oruc A, Ersoy A, Kocaeli AA, et al. Association Between Resistance to Cinacalcet and Parathyroid Gland Hyperplasia in Kidney Transplant Recipients with Persistent Hypercalcemia. Int J Organ Transplant Med. 2020;11(3):107-114. PMID: 32913586.
  22. Yano S, Sugimoto T, Tsukamoto T, et al. Association of decreased calcium-sensing receptor expression with proliferation of parathyroid cells in secondary hyperparathyroidism. Kidney Int. 2000 Nov;58(5):1980-6, https://doi.org/10.1111/j.1523-1755.2000.00370.x.
  23. Sumida K, Nakamura M, Ubara Y, et al. Cinacalcet upregulates calcium-sensing receptors of parathyroid glands in hemodialysis patients. Am J Nephrol. 2013;37(5):405-12, https://doi.org/1159/000350211.
  24. Sirilak S, Chatsrisak K, Ingsathit A, et al. Renal Phosphate Loss in Long-Term Kidney Transplantation. Clin J Am Soc Nephrol. 2012 Feb; 7 (2): 323–31, https://doi.org/10.2215/CJN.06380611.
  25. Prasad N, Jaiswal A, Agarwal V, et al. FGF23 is associated with early post-transplant hypophosphataemia and normalizes faster than iPTH in living donor renal transplant recipients: a longitudinal follow-up study. Clin Kidney J. 2016 Oct; 9 (5): 669–76, https://doi.org/10.1093/ckj/sfw065.
  26. Sprague SM, Wetmore JB, Gurevich K, et al. Effect of Cinacalcet and Vitamin D Analogs on Fibroblast Growth Factor-23 during the Treatment of Secondary Hyperparathyroidism. Clin J Am Soc Nephrol. 2015 Jun 5; 10 (6): 1021–30, https://doi.org/10.2215/CJN.03270314.
  27. Falck P, Vethe NT, Asberg A, et al. Cinacalcet’s effect on the pharmacokinetics of tacrolimus, cyclosporine and mycophenolate in renal transplant recipients. Nephrol Dial Transplant. 2008 Mar; 23 (3): 1048-53, https://doi.org/1093/ndt/gfm632.

Lymphocytic leukopenia in two patients affected by polycystic kidney disease waiting for renal transplantation

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease, responsible for 10% of patients on renal replacement therapy. The disease is well known to be associated with many extrarenal manifestations. Leukopenia may also be present, even if it is not commonly identified as a typical extrarenal manifestation.

Herein we describe two case reports of ADPKD patients with leukopenia. The first case is about a 47-year-old patient affected by ADPKD, regularly treated with peritoneal dialysis, who showed a progressive reduction of white blood cell count, mostly of lymphocytes. Lymphocytic leukopenia was so severe that, when he was called for transplantation from a deceased donor, he was considered temporarily not eligible. We then describe a second ADPKD patient regularly treated with peritoneal dialysis, who had stable lymphopenia for years. Six years after starting PD, it was necessary to perform bone marrow aspirate to investigate the simultaneous presence of hypogammaglobulinemia together with M-protein and to exclude monoclonal gammopathy.

All the exams performed did not show any significant results, the patients were re-included in the waiting list and one of them was transplanted. Given our experience and what is reported in the literature, there seems to be enough evidence to consider leukopenia as an extrarenal manifestation of ADPKD.

However, the clinical significance of leukopenia in ADPKD patients is not known. It could be interesting to investigate the leucocytes’ function and if ADPKD patients with leukopenia are more susceptible to infection, or not. Moreover, it would be very useful to analyze the relationship between such manifestation and genotype/phenotype.

Keywords: ADPKD, lymphopenia, leukopenia, kidney transplant, chronic kidney disease

Sorry, this entry is only available in Italian.

Introduzione

La malattia del rene policistico (ADPKD) è la malattia genetica renale più comune nei pazienti affetti da insufficienza renale cronica (IRC), presente nel 10% dei pazienti in terapia sostitutiva renale [1]. I geni principalmente implicati sono PKD1 e PKD2 responsabili della malattia nel 72-75% e nel 15-18% dei casi rispettivamente, mentre il 7-10% dei casi restano geneticamente irrisolti (GUR). La patologia è associata a una grande variabilità fenotipica inter ed intra-familiare, perlopiù legata alla estrema variabilità genetica [1].

La progressione della patologia è caratterizzata dallo sviluppo ed espansione inesorabile di cisti nel parenchima renale, causa della progressiva perdita di funzione renale e della conseguente insufficienza renale cronica terminale, che solitamente avviene intorno alla quinta-sesta decade di vita. La malattia è tipicamente caratterizzata da manifestazioni extra-renali quali l’ipertensione arteriosa, le cisti epatiche e pancreatiche, gli aneurismi cerebrali, la diverticolosi del colon e il prolasso delle valvola mitrale [2].

In alcuni studi osservazionali l’ADPKD è stata inoltre associata a diverse forme di leucopenia, in particolare alla riduzione della concentrazione dei linfociti [3,4]. I primi ad evidenziare questa correlazione sono stati Banerjee et al.[3], i quali hanno analizzato i parametri ematologici di 360 pazienti in trattamento emodialitico. La conta totale dei globuli bianchi risultava significativamente ridotta nei 26 pazienti affetti da ADPKD rispetto ai 334 pazienti affetti da altre patologie (6,03 ±1,66 vs. 7,20 ±1,96×109/l). Non avendo a disposizione la formula leucocitaria di questi soggetti, hanno analizzato una seconda coorte di pazienti in cui questo dato era disponibile, riscontrando che i pazienti con ADPKD (n=11) avevano in media 0,61×109/l (40%) linfociti in meno rispetto ai controlli dello stesso genere ed età non affetti da ADPKD (n=33). Nei pazienti ADPKD di questa seconda coorte anche la conta dei monociti e degli eosinofili risultava ridotta, mentre non venivano riscontrante differenze nella conta dei neutrofili, dei basofili e delle piastrine.

Successivamente Van Laecke et al. [4] hanno condotto uno studio trasversale caso-controllo analizzando anch’essi due coorti di pazienti: la prima costituita da pazienti affetti da IRC stadio 5 candidati a trapianto di rene, la seconda da pazienti affetti da IRC stadio 1-5. I pazienti sono stati stratificati per età, sesso, valori di Proteina C Reattiva (PCR) e stima del filtrato glomerulare (eGFR) ed è risultata, rispettivamente, una conta linfocitaria in media minore di 0,26×109/l (prima coorte) e di 0,35×109/l (seconda coorte) nei soggetti affetti da ADPKD rispetto ai soggetti affetti da altre patologie. In particolare, nella prima coorte sono state riscontrate minori concentrazioni di linfociti T CD8 e linfociti B oltre che una conta minore di neutrofili, monociti e piastrine nei pazienti affetti da ADPKD rispetto ai non affetti. Nei pazienti ADPKD della seconda coorte è stata osservata una simile riduzione di linfociti, monociti e piastrine, ma nessuna differenza nella conta dei neutrofili. Gli autori concludono che l’ADPKD sembrerebbe caratterizzata da varie forme di citopenia, specialmente da linfopenia, indipendentemente dalla funzione renale e da altri fattori confondenti quali età, sesso e stato di infiammazione.

L’eziologia della linfopenia in questi pazienti non è nota. Diverse sono le ipotesi formulate, tra cui il sequestro dei globuli bianchi da parte degli organi affetti o l’intossicazione uremica nei pazienti affetti da IRC. Non è inoltre noto se la riduzione del numero dei linfociti abbia un impatto funzionale, ovvero se i linfociti, pur essendo pochi, mantengano un’adeguata capacità di rispondere allo stimolo. A questo proposito è possibile che le mutazioni nei geni PKD1 e PKD2 possano avere un ruolo diretto, promuovendo sia una ridotta proliferazione sia l’aumento dell’apoptosi dei linfociti [5].

In merito a quest’ultima teoria, vari studi condotti in vitro hanno analizzato il comportamento delle cellule della linea linfoide nei soggetti affetti da mutazioni nei geni PKD. In particolare, Aguiari et al. [6,7] hanno evidenziato come, dopo stimolazione con fattore attivante le piastrine (PAF), le concentrazioni intracellulari di Ca2+ nelle cellule linfoblastoidi di tipo B (LCL) ottenute da soggetti affetti da mutazione in PKD2 (PKD2-LCL) e, di conseguenza, con ridotta espressione di policistina 2 (PC2, codificata da PKD2) fossero nettamente minori rispetto alle LCL non affette da mutazione PKD. Questa riduzione è stata riscontrata anche nelle LCL affette da mutazione PKD1 in presenza di valori normali di PC2. La proliferazione cellulare, controllata dalla concentrazione intracellulare di Ca2+, è risultata ridotta nelle LCL affette sia da mutazioni in PKD2 che in PKD1. Rimane da chiarire se la minor proliferazione di queste cellule PKD in vitro si traduca in un simile effetto anche in vivo.

Anche nelle cellule T con mutazione di PKD2 e ridotta espressione di PC2 l’ingresso di calcio dopo stimolo con ATP sembrerebbe ridotto. Tuttavia, i linfociti T derivati dai pazienti con mutazioni PKD1 e PKD2 sembrerebbero avere un aumento della proliferazione cellulare, della chemiotassi e dell’aggregazione cellulare, cosa che potrebbe avere un ruolo nella patogenesi dell’infiammazione interstiziale [8].

Per quanto riguarda invece le mutazioni nel gene PKD1, è noto come la policistina 1 (PC1 codificata da PKD1) possa interferire con alcune vie di segnalazione, tra cui la cascata di attivazione delle chinasi N-terminali c-Jun (JNKs). La stimolazione di questa cascata provoca la degradazione della proteina anti-apoptotica Bcl-2 e causa conseguentemente un incremento dell’apoptosi delle cellule renali, dei linfociti e di varie altre linee cellulari [9,10,11].

Da queste evidenze è ipotizzabile che il deficit delle policistine possa disturbare l’omeostasi delle cellule immunitarie e che la citopenia possa essere un’intrinseca manifestazione di ADPKD correlata a fattori genetici. La linfopenia potrebbe perciò essere considerata una manifestazione extrarenale di ADPKD [5].

Infine non dimentichiamo che l’ADPKD rientra nella classificazione delle ciliopatie, un esteso gruppo di malattie genetiche accomunate dall’alterazione funzionale del ciglio primario, e che l’associazione tra immunodeficienza (sia umorale che cellulare) e ciliopatie è stata osservata e riportata più volte nel tempo [12,13]. Anomalie nel processo apoptotico, nella polarità cellulare, nell’espressione genica e nella ECM (ExtraCellular Matrix) risultano implicate nella patogenesi di ADPKD nonostante, a capo del processo che determina la crescita e sviluppo delle cisti, sembrano esserci un incremento della proliferazione cellulare e la secrezione di fluido [14].

Le similitudini strutturali e funzionali tra il ciglio primario e le sinapsi immunologiche potrebbero nascondere i link mancanti tra citopenia e ADPKD [12,13,15].

 

Caso clinico 1

Descriviamo il caso di un paziente affetto da ADPKD con riscontro di insufficienza renale cronica a 36 anni e successivo raggiungimento dello stadio di uremia terminale ed inizio di dialisi peritoneale (DP) a 42 anni. Regolarmente iscritto in lista trapianto da donatore cadavere, il paziente è stato successivamente sottoposto a nefrectomia bilaterale per motivi di ingombro addominale.

Dopo circa cinque anni dall’inizio della DP, il paziente ha ricevuto una prima convocazione per trapianto da donatore cadavere. Tuttavia, al momento del ricovero gli esami ematici dell’ingresso mostravano una significativa leucopenia linfocitopenica (globuli bianchi 3,4×109/l di cui linfociti 0,4×109/l), motivo per cui il paziente è stato ritenuto non idoneo al trapianto ed è stato dimesso con temporanea sospensione dalla lista, in attesa di eseguire approfondimenti clinici.

Gli esami degli anni precedenti avevano evidenziato una conta dei globuli bianchi e linfocitaria sempre ai limiti bassi della norma, ma nell’ultimo anno il dato sembrava essere in ulteriore progressiva riduzione.

In seguito a consulenza ematologica ed infettivologica, sono stati eseguiti i seguenti esami: tipizzazione linfocitaria, dosaggio delle immunoglobuline, elettroforesi proteica, pannello dell’autoimmunità, dosaggio degli indici di flogosi, sierologia per Toxoplasmosi, Rosolia, CMV, EBV, HSV, VZV e HIV, risultati tutti negativi. Dopo aver escluso le cause secondarie, si è quindi tentato di incrementare la depurazione dialitica massimizzando gli scambi di CAPD (5×2L). Nonostante questo, i globuli bianchi sono rimasti ai limiti inferiori della norma (Figura 1) con persistenza di una lieve linfopenia (Tabella I e Figura 1), motivo per cui il quadro è stato ritenuto benigno ed associato ad ADPKD. Il paziente è stato reinserito in lista ed è stato trapiantato con successo l’anno dopo. Un anno dopo il paziente non ha avuto complicanze legate all’immunosoppressione post-trapianto, pur persistendo una lieve linfopenia (globuli bianchi 3,9×109/l di cui linfociti 0,6×109/l).

  Globuli Bianchi

(×109/l)

Neutrofili

(×109/l)

Linfociti

(×109/l)

INIZIO DP 4,9 2,9 1,1
1° anno in DP 5,2 3,6 1,1
2° anno in DP 4,3 2,9 0,9
3° anno in DP 4,9 3,6 0,4
4° anno in DP 3 2 0,4
POST-BINEFRECTOMIA 3,7 2,5 0,5
5° anno in DP 2,7 1,7 0,3
1a CONVOCAZIONE 3,4 2,1 0,4
6° mese post-CONVOCAZIONE 3,4 2,4 0,3
8° mese post-CONVOCAZIONE 4,2 2,8 0,4
1° ANNO POST-TX 3,9 2,9 0,6
Tabella I: Conta dei globuli bianchi, neutrofili e linfociti dall’inizio della DP al post-trapianto del caso clinico 1
Figura 1: Grafico della variazione dei globuli bianchi, neutrofili e linfociti dall’inizio della DP al post-trapianto del caso clinico 1
Figura 1: Grafico della variazione dei globuli bianchi, neutrofili e linfociti dall’inizio della DP al post-trapianto del caso clinico 1

 

Caso clinico 2

Descriviamo di seguito un secondo caso clinico di un paziente di 60 anni affetto da ADPKD in trattamento dialitico peritoneale dall’età di 53 anni. Iscritto in lista trapianto da circa sei anni, esegue periodicamente i regolari esami di aggiornamento. Fin dall’inizio della DP è sempre stata evidente una moderata leucopenia (globuli bianchi <4×109/l), mai indagata perché stabile ed asintomatica (Tabella II). Tuttavia, in seguito al riscontro, circa due anni fa, di riduzione percentuale delle gammaglobuline (9,7%) e sospetto picco monoclonale in zona gamma, il paziente è stato temporaneamente sospeso dalla lista trapianto in attesa di eseguire accertamenti ematologici per escludere la presenza di gammopatia monoclonale. Sono stati eseguiti dosaggio delle immunoglobuline e delle catene leggere libere plasmatiche (rapporto k/l conservato), tipizzazione linfocitaria, pannello autoimmunitario, dosaggio degli indici di flogosi, sierologia per CMV, EBV e HIV, risultati tutti negativi.

Il paziente è stato quindi sottoposto ad agoaspirato midollare, il cui esito non evidenziava nulla di patologico. In particolare, lo studio immunofenotipico su sangue midollare mostrava linfociti T, B e NK pari a 67,2%, 6,3% e 26,3% rispettivamente, mentre le sottopopolazioni T CD8 e CD4 risultavano pari al 26% e 40%. Il paziente è stato quindi reinserito in lista trapianto attiva.

  Globuli Bianchi

(×109/l)

Neutrofili

(×109/l)

Linfociti

(×109/l)

INIZIO DP 3,5 2,4 0,9
1° anno in DP 3,8 2,5 0,8
2° anno in DP 4,3 2,9 0,9
3° anno in DP 3,3 2,1 0,9
4° anno in DP 3,6 2,4 0,8
5° anno in DP 3,6 2,4 0,8
6° anno in DP 2,9 1,8 0,8
7° anno in DP 3,2 2,1 0,7
Tabella II. Conta dei globuli bianchi, neutrofili e linfociti del caso clinico 2

 

Discussione

I casi descritti riguardano il riscontro occasionale di leucopenia linfocitopenica in due pazienti affetti da ADPKD.

In uno dei casi, addirittura, la leucopenia era risultata talmente severa da ritenere il paziente temporaneamente non idoneo per il trapianto. L’esecuzione di esami di approfondimento ematologici ed infettivologici ha poi permesso di inquadrare la leucopenia linfocitopenica come benigna, motivo per cui il paziente è stato reinserito in lista trapianto e trapiantato con successo l’anno dopo, mantenendo l’immunosoppressione al minimo indispensabile. Nel secondo caso clinico invece, la leucopenia linfocitopenica era di entità meno rilevante e stabile da tempo, motivo per cui il paziente era regolarmente inserito in lista d’attesa per trapianto renale. Tuttavia, la comparsa di ipogammaglobulinemia associata a componente monoclonale ha reso necessario l’esecuzione di agoaspirato midollare. L’esame ha escluso la presenza di gammopatia monoclonale e ci ha permesso di studiare le popolazioni linfocitarie direttamente su sangue midollare, risultate nella norma.

Da notare che in entrambi i casi si tratta di pazienti in trattamento dialitico peritoneale, a differenza della maggior parte della casistica riportata in letteratura che descrive pazienti in trattamento emodialitico. Questo ci ha permesso di escludere l’ipotesi di leucopenia secondaria alla disregolazione immunitaria che tipicamente caratterizza i pazienti emodializzati (legata principalmente al grado di biocompatibilità delle membrane di dialisi e all’adeguatezza dialitica [16,17,18]) e di avvalorare invece altre ipotesi, tra cui quella di leucopenia associata ad ADPKD, motivo per cui abbiamo condotto una revisione della letteratura a riguardo.

La leucopenia linfocitopenica infatti è sempre più comunemente descritta nei pazienti ADPKD tanto da poter essere considerata una manifestazione non cistica extrarenale della malattia [19]; tuttavia, è difficile stabilire fino a che punto questa sia una condizione benigna, o quando invece rappresenti una spia di una malattia ematologica, o al contrario possa rappresentare un rischio per lo sviluppo di malattie infettive o oncologiche.

Tutto questo ha ancora più senso se pensiamo che i pazienti ADPKD sono ottimi candidati al trapianto renale, avendo riportato elevata sopravvivenza del paziente e dell’organo sia da donatore cadavere che da vivente [20,21]. Inoltre nei pazienti ADPKD si è osservato nel corso degli ultimi anni un aumento della probabilità di ricevere un trapianto, con una prevalenza di trapianto come modalità di terapia sostitutiva, aumentata dal 43,5% al 59,1% tra il periodo 1991-1996 e 2006-2010, rispetto ai pazienti non ADPKD in cui si è osservato un aumento di prevalenza molto meno significativo dal 41,2% al 44,1% [22]. Tutto ciò è dovuto probabilmente al miglior follow-up nel periodo pre-dialitico che dà la possibilità di affrontare per tempo la tematica del trapianto e nello specifico quella da donatore vivente.

La prima questione è quindi: come inquadriamo la leucopenia linfocitopenica nei pazienti affetti da ADPKD? Da questo punto di vista esistono al momento sufficienti evidenze per definirla una manifestazione benigna extrarenale della malattia policistica. Tuttavia, se è di primo riscontro, particolarmente severa o associata ad altre alterazioni ematologiche, la leucopenia merita di essere indagata al fine di escludere malattie ematologiche sottostanti. In entrambi i nostri casi clinici è stato necessario indagare la leucopenia, nel primo caso solo con esami ematici, nel secondo, essendo anche presente la componente monoclonale, si è reso necessario l’esame invasivo midollare.

La seconda questione è: che impatto ha la leucopenia linfocitopenica sul rischio infettivologico e oncologico post-trapianto? È necessario modulare la terapia immunosoppressiva post-trapianto?

Relativamente a questi aspetti i dati non sono così chiari e non permettono di giungere a conclusioni definitive. Tuttavia, già indipendentemente dal trapianto, i pazienti ADPKD hanno un maggior rischio di sviluppare alcuni tipi di infezioni, quali diverticolite ed infezioni delle vie urinarie [23,24]. Tale rischio è perlopiù legato alle condizioni anatomiche favorenti, e potrebbe essere aumentato nel post-trapianto per via dell’effetto dell’immunosoppressione. Dati di registro danese relativi ai pazienti trapiantati con ADPKD, hanno mostrato come in questo sottogruppo di pazienti sia maggiore il rischio di polmonite da Pneumocistis jirovecii rispetto ai pazienti non ADPKD e come questo sia associato ad un aumento dell’ospedalizzazione e della mortalità [25] . In altri studi retrospettivi condotti sui pazienti trapiantati, è stata evidenziata una maggiore incidenza di bronchiectasie e di infezioni polmonari ricorrenti nei pazienti ADPKD [26,27]. Da questo punto di vista, da un lato il deficit di PC1 e PC2 nelle ciglia dell’epitelio bronchiale potrebbe essere responsabile della loro alterata funzione e favorire perciò la formazione di bronchiectasie [28], dall’altro la superinfezione potrebbe poi essere favorita dalla compromessa meccanica ventilatoria legata all’ingombro addominale.

A tutte queste condizioni anatomiche si aggiunge la presenza di linfopenia che è più frequente nei pazienti ADPKD e che è ben noto essere un fattore predisponente alle infezioni e alla mortalità per infezioni nella popolazione generale [4]. In uno studio prospettico danese condotto su un ampio campione di popolazione generale (n=98,344) la linfopenia (conta dei linfociti <1,1×109/l) è risultata associata ad un rischio maggiore di 1,4 volte di sviluppare infezioni e ad un rischio maggiore di 1,7 volte di decesso correlato alle infezioni [29].

Se queste evidenze sono valide per i trapiantati di rene e per la popolazione generale, rimane ancora da chiarire se la linfopenia associata ad ADPKD sia clinicamente rilevante e quale possa essere il suo ruolo nel decorso clinico e prognostico dei pazienti affetti da ADPKD [5].

Due studi retrospettivi condotti sulla popolazione taiwanese hanno rilevato come i soggetti affetti da ADPKD, probabilmente a causa del loro aumentato rischio di sviluppare linfopenia, abbiano potenzialmente un maggior rischio di incorrere in infezioni virali (specie quelle dovute a herpes virus come Varicella Zoster Virus in forma severa) e in infezione da tubercolosi rispetto ai controlli affetti da altre patologie stratificati per età, genere e comorbidità [30,31].

D’altra parte, anche se l’associazione teorica tra linfopenia ed infezioni sembra plausibile, questo non significa che tutti i pazienti ADPKD abbiano un rischio infettivo aumentato.

A riprova di ciò in alcuni studi retrospettivi condotti sui pazienti trapiantati, il rischio di infezione da BK polioma e di infezioni fungine sembrerebbe addirittura ridotto nei pazienti ADPKD rispetto ai non ADPKD [19,32] . Inoltre, anche il rischio di infezione da CMV post-trapianto non sembrerebbe essere influenzato dalla nefropatia di base [33].

Relativamente al rischio oncologico è fatto ben noto che i pazienti affetti da ADPKD abbiano un rischio aumentato di tumore renale, il cui riscontro è per lo più occasionale in nefrectomie eseguite per altri motivi [34]. In alcune casistiche i pazienti affetti da ADPKD sembrerebbero anche avere un aumentato rischio di tumore del colon ed epatico [35]. Tuttavia, anche a questo riguardo i dati sono inconclusivi probabilmente perché la biologia dei tumori è estremamente varia e non solo spiegabile dall’alterazione di un’unica via del segnale. Certo è che le vie del segnale a valle di mTOR, di PC1 e PC2, tutte alterate in corso di malattia policistica, hanno un effetto favorente sulla proliferazione cellulare [36]. Nel post-trapianto, inoltre, nei pazienti affetti da ADPKD sembrerebbe esserci un rischio di sviluppare carcinomi cutanei non melanoma 1,5 volte maggiore rispetto ai pazienti non ADPKD [19,37,38].

A questo proposito sappiamo che la riduzione dei linfociti CD4 è un fattore di rischio, mentre la riduzione anche dei linfociti T CD8 e dei linfociti B è un fattore di rischio per i tumori solidi [39,40]. Tuttavia, l’impatto della linfopenia sul rischio oncologico nei pazienti ADPKD (trapiantati e non) non è noto.

In conclusione, le evidenze finora disponibili non consentono di avere dati definitivi e sono necessari studi prospettici che analizzino se i pazienti affetti da ADPKD linfocitopenici sottoposti a trapianto abbiamo davvero un aumentato rischio infettivologico e oncologico rispetto agli stessi pazienti senza linfopenia. Tutto ciò avrebbe delle importanti ripercussioni pratiche sulla scelta della terapia immunosoppressiva nei pazienti ADPKD che potrebbe essere personalizzata in base al profilo di rischio. Sarebbe inoltre interessante valutare l’associazione genotipo/fenotipo, che ci consentirebbe di capire se la linfopenia è un riscontro casuale, legato al solo ambiente uremico o al sequestro renale dei leucociti, o se al contrario siano implicati fattori legati alla proliferazione cellulare influenzati dalla genetica del rene policistico.

 

Conclusioni

La leucopenia linfocitopenica potrebbe essere considerata una manifestazione non cistica extrarenale dell’ADPKD, le cui implicazioni cliniche non sono ancora ben note. L’eziologia non è stata ancora identificata: è possibile che l’ambiente uremico, così come il sequestro dei linfociti da parte degli organi aumentati di volume, possa avere un ruolo. Tuttavia, sembrerebbe che le mutazioni nei geni PKD1 e PKD2 possano essere associate sia ad una ridotta proliferazione sia all’aumento dell’apoptosi dei linfociti.

La linfopenia nel paziente affetto da ADPKD pone alcuni problemi di gestione, legati dapprima al riconoscimento della condizione come benigna ed associata alla malattia e successivamente alla gestione anche in vista del trapianto. In modo particolare l’entità della linfopenia da un lato potrebbe condizionare l’eleggibilità al trapianto alla luce del rischio immediato infettivo, e dall’altro necessita di una personalizzazione e modulazione anche a lungo termine dell’immunosoppressione.

La linfopenia potrebbe essere un’altra delle espressioni della variabilità genotipo/fenotipo della malattia policistica e sarebbe interessante valutarne la prevalenza, le caratteristiche ed eventualmente relazionarla al genotipo e alla severità di malattia. Studi prospettici condotti specificatamente sulla popolazione ADPKD sono necessari per valutare l’effettiva relazione tra linfopenia e rischio infettivologico ed oncologico, in assenza dei quali ogni conclusione può solo essere dedotta dai dati sulla popolazione generale.

 

Bibliografia

  1. Corradi V, Giuliani A, Gastaldon F, et al. Genetics and Autosomal Dominant Polycystic Kidney Disease Progression. Contrib Nephrol 2017; 190:117-23. https://doi.org/10.1159/000468956
  2. Cornec-Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet 2019; 393(10174):919-35. https://doi.org/10.1016/S0140-6736(18)32782-X
  3. Banerjee A, Chandna S, Jayasena D, Farrington K. Leucopenia in adult polycystic kidney disease patients on haemodialysis [3]. Nephron 2002; 91(1):175-76. https://doi.org/10.1159/000057625
  4. Van Laecke S, Kerre T, Nagler E V., et al. Hereditary polycystic kidney disease is characterized by lymphopenia across all stages of kidney dysfunction: An observational study. Nephrol Dial Transplant 2018; 33(3):489-96. https://doi.org/10.1093/ndt/gfx040
  5. Schellekens P, Roosens W, Meyts I, Vennekens R, Bammens B, Mekahli D. Cytopenia in autosomal dominant polycystic kidney disease (ADPKD): merely an association or a disease-related feature with prognostic implications? Pediatr Nephrol 2021; 36(11):3505-14. https://doi.org/10.1007/s00467-021-04937-9
  6. Aguiari G, E Manzati, L Penolazzi, F Micheletti, G Augello, E D Vitali, G Cappelli, Y Cai, D Reynolds, S Somlo, R Piva L del S. Mutations in autosomal dominant polycystic kidney disease 2 gene: Reduced expression of PKD2 protein in lymphoblastoid cells. Am J Kidney Dis 1999; 33(5):880-85. https://doi.org/10.1016/s0272-6386(99)70420-8
  7. Aguiari G, Banzi M, Gessi S, et al. Deficiency of polycystin-2 reduces Ca2+ channel activity and cell proliferation in ADPKD lymphoblastoid cells. FASEB J 2004; 18(7):884-86. https://doi.org/10.1096/fj.03-0687fje
  8. Magistroni R, Mangolini A, Guzzo S, et al. TRPP2 dysfunction decreases ATP-evoked calcium, induces cell aggregation and stimulates proliferation in T lymphocytes. BMC Nephrol 2019; 20(1):1-14. https://doi.org/10.1186/s12882-019-1540-6
  9. Nakayama K, Negishi I, Kuida K, Sawa H, Loh DY. Targeted disruption of Bcl-2 alpha beta in mice: occurrence of gray hair, polycystic kidney disease, and lymphocytopenia. Proc Natl Acad Sci USA 1994; 91(9):3700-04. https://doi.org/10.1073/pnas.91.9.3700
  10. Ecder T, Melnikov VY, Stanley M, et al. Caspases, Bcl-2 proteins and apoptosis in autosomal-dominant polycystic kidney disease. Kidney Int 2002; 61(4):1220-30. https://doi.org/10.1046/j.1523-1755.2002.00250.x
  11. Yu W, Kong T, Beaudry S, et al. Polycystin-1 protein level determines activity of the Gα 12/JNK apoptosis pathway. J Biol Chem 2010; 285(14):10243-51. https://doi.org/10.1074/jbc.M109.070821
  12. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies STRUCTURE AND FUNCTION OF THE CILIUM-CENTROSOME COMPLEX. N Engl J Med 2011; 364(16):1533-43. https://doi.org/10.1056/NEJMra1010172.Ciliopathies
  13. Boon M, De Boeck K, Jorissen M, Meyts I. Primary ciliary dyskinesia and humoral immunodeficiency – Is there a missing link? Respir Med 2014; 108(6):931-34. https://doi.org/10.1016/j.rmed.2014.03.009
  14. Köttgen M. TRPP2 and autosomal dominant polycystic kidney disease. Biochim Biophys Acta – Mol Basis Dis 2007; 1772(8):836-50. https://doi.org/10.1016/j.bbadis.2007.01.003
  15. Cassioli C, Baldari CT. A Ciliary View of the Immunological Synapse. Cells 2019; 8(8). https://doi.org/10.3390/cells8080789
  16. Hörl WH. Hemodialysis membranes: Interleukins, biocompatibility, and middle molecules. J Am Soc Nephrol 2001; 13(S1):62-71. https://doi.org/10.1681/asn.v13suppl_1s62
  17. Poppelaars F, Faria B, da Costa MG, et al. The complement system in dialysis: A forgotten story? Front Immunol 2018; 9:1-12. https://doi.org/10.3389/fimmu.2018.00071
  18. Angeletti A, Zappulo F, Donadei C, et al. Immunological effects of a single hemodialysis treatment. Med 2020; 56(2). https://doi.org/10.3390/medicina56020071
  19. Van Laecke S, Van Biesen W. Novel non-cystic features of polycystic kidney disease: having new eyes or seeking new landscapes. Clin Kidney J 2021; 14(3):746-55. https://doi.org/10.1093/ckj/sfaa138
  20. Mehrabi A, Golriz M, Maier J, et al. Long-term follow-up of kidney transplant recipients with polycystic kidney disease. Exp Clin Transplant 2015; 13(5):413-20. https://doi.org/10.6002/ect.2014.0041
  21. Jacquet A, Pallet N, Kessler M, et al. Outcomes of renal transplantation in patients with autosomal dominant polycystic kidney disease: A nationwide longitudinal study. Transpl Int 2011; 24(6):582-87. https://doi.org/10.1111/j.1432-2277.2011.01237.x
  22. Spithoven EM, Kramer A, Meijer E, Orskov B. Renal replacement therapy for ADPKD in Europe: prevalence and survival. An analysis of data from the ERA-EDTA Registry. Nephrol Dial Transplant 2014; 4(4). https://doi.org/10.1093/ndt/gfu017
  23. Scotti A, Santangelo M, Federico S, et al. Complicated diverticulitis in kidney transplanted patients: Analysis of 717 cases. Transplant Proc 2014; 46(7):2247-50. https://doi.org/10.1016/j.transproceed.2014.07.044
  24. Sklar AH, Caruana RJ, Lammers JE, Strauser GD. Renal Infections in Autosomal Dominant Polycystic Kidney Disease. Am J Kidney Dis 1987; 10(2):81-88. https://doi.org/10.1016/S0272-6386(87)80036-7
  25. Leth S, Jensen-Fangel S, Ostergaard L, Rostved AA, Jespersen B, Sogaard OS. Pneumocystis jirovecii pneumonia in patients with end-stage renal disease: A comparison with the general population. Scand J Infect Dis 2014; 46(10):704-11. https://doi.org/10.3109/00365548.2014.936492
  26. Driscoll JA, Bhalla S, Liapis H, Ibricevic A, Brody SL. Autosomal dominant polycystic kidney disease is associated with an increased prevalence of radiographic bronchiectasis. Chest 2008; 133(5):1181-88. https://doi.org/10.1378/chest.07-2147
  27. Dury S, Colosio C, Etienne I, et al. Bronchiectasis diagnosed after renal transplantation: A retrospective multicenter study. BMC Pulm Med 2015; 15(1):1-7. https://doi.org/10.1186/s12890-015-0133-9
  28. Wu J, Du H, Wang X, Mei C, Sieck GC, Qian Q. Characterization of primary cilia in human airway smooth muscle cells. Chest 2009; 136(2):561-70. https://doi.org/10.1378/chest.08-1549
  29. Warny M, Helby J, Nordestgaard BG, Birgens H, Bojesen SE. Lymphopenia and risk of infection and infection-related death in 98,344 individuals from a prospective Danish population-based study. PLoS Med 2018; 15(11):1-22. https://doi.org/10.1371/journal.pmed.1002685
  30. Yu TM, Li CY, Chuang YW, et al. Risk of severe herpes zoster infection in patients with polycystic kidney disease: A nation-wide cohort study with propensity score matching analysis. Int J Clin Pract 2021; 75(4):0-2. https://doi.org/10.1111/ijcp.13675
  31. Chiu TF, Yu TM, Chiu CW, et al. Increased risk of pulmonary and extrapulmonary tuberculosis infection in patients with polycystic kidney disease: a nationwide population-based study with propensity score-matching analysis. J Transl Med 2021; 19(1):1-7. https://doi.org/10.1186/s12967-021-02921-3
  32. Plafkin C, Singh T, Astor BC, et al. Kidney transplant recipients with polycystic kidney disease have a lower risk of post-transplant BK infection than those with end-stage renal disease due to other causes. Transpl Infect Dis 2018; 20(6):0-3. https://doi.org/10.1111/tid.12974
  33. Singh T, Peery S, Astor BC, Parajuli S, Djamali A, Panzer SE. Cause of End-Stage Renal Disease Is Not a Risk Factor for Cytomegalovirus Infection After Kidney Transplant. Transplant Proc 2019; 51(6):1810-15. https://doi.org/10.1016/j.transproceed.2019.02.029
  34. Jilg CA, Drendel V, Bacher J, et al. Autosomal dominant polycystic kidney disease: Prevalence of renal neoplasias in surgical kidney specimens. Nephron – Clin Pract 2013; 123(1-2):13-21. https://doi.org/10.1159/000351049
  35. Yu TM, Chuang YW, Yu MC, et al. Risk of cancer in patients with polycystic kidney disease: a propensity-score matched analysis of a nationwide, population-based cohort study. Lancet Oncol 2016; 17(10):1419-25. https://doi.org/10.1016/S1470-2045(16)30250-9
  36. Conduit SE, Davies EM OL et al. AKT signaling promotes DNA damage accumulation and proliferation in polycystic kidney disease. Hum Mol Genet 2020; 29(1):31-48. https://doi.org/10.1093/hmg/ddz232
  37. Bretagnol A, Halimi JM, Roland M, et al. Autosomal dominant polycystic kidney disease: Risk factor for nonmelanoma skin cancer following kidney transplantation. Transpl Int 2010; 23(9):878-86. https://doi.org/10.1111/j.1432-2277.2010.01070.x
  38. Jankowska M, Debska-Ślizień A, Imko-Walczuk B, et al. Skin cancer in kidney transplant recipients affected with autosomal dominant polycystic kidney disease. Clin Transplant 2016; 30(4):339-43. https://doi.org/10.1111/ctr.12707
  39. Ducloux D, Carron PL, J M Rebibou, et al. CD4 lymphocytopenia as a risk factor for skin cancers in renal transplant recipients. Transplantation 1998; 65(9):1270-72. https://doi.org/10.1097/00007890-199805150-00022
  40. Ducloux D, Carron PL, Motte G, et al. Lymphocyte subsets and assessment of cancer risk in renal transplant recipients. Transpl Int 2002; 15(8):393-96. https://doi.org/10.1111/j.1432-2277.2002.tb00187.x

Impact of the Covid-19 pandemic on kidney transplantation: focus on the Sicilian experience

Abstract

The COronaVIrus Disease 2019 (Covid-19) pandemic has rapidly changed hospital structures in our country, radically modifying clinical activity. Nephrology, and kidney transplant in particular, has been heavily influenced by it, with a reduced number of organ donations and, consequently, transplantations.

Here we report the data on kidney transplants in our region, Sicily, for the period 2019-July 2021, and we analyze the effects of the pandemic.

Keywords: Covid-19, pandemic, kidney transplantation, Sicilian experience

Sorry, this entry is only available in Italian.

Introduzione

La pandemia da Covid-19 ci ha colti estremamente impreparati, con drammatiche conseguenze di tipo sociale, economico e politico. La crisi sanitaria che ne è scaturita, è stata caratterizzata da una rapida e drastica trasformazione degli ospedali dell’intero paese.

In particolare, la sindrome respiratoria acuta severa da coronavirus 2 (SARS-CoV 2) ha posto una serie di problematiche di decision-making clinico ed amministrativo in tutto l’ambito nefrologico, e soprattutto nell’area dei trapianti di rene. Sin dalla sua prima manifestazione alla fine del 2019 [1], è apparso chiaro il maggior rischio di morte e di gravi complicanze respiratorie per i pazienti immunocompromessi, tra cui i riceventi di trapianto d’organo solido [2]. Inoltre, il rischio di sviluppare la malattia da un donatore di organi infetto era sconosciuto. Fattori epidemiologici, periodo di incubazione, viremia e vitalità del CoV-2 nel sangue e nei compartimenti dei diversi organi rendono inoltre variabile la probabilità di trasmissione del virus.

In tale contesto, i centri di trapianto renale della Regione Sicilia e di tutta Italia hanno dovuto far fronte a numerosi problemi di gestione clinica, correlati all’elevata incidenza di infezione in alcune aree del nostro paese [3]. Proprio per l’eterogeneità dei tassi di incidenza regionali dell’infezione, i centri sono stati lasciati liberi di sviluppare delle linee guida interne relative ai diversi aspetti dell’attività trapiantologica, attenendosi comunque alle linee guida del Centro Nazionale Trapianti in merito alla gestione dei donatori [4].

La comunità scientifica internazionale e le organizzazioni di trapianto con un pronto e immediato sistema di collaborazione hanno, infatti, utilizzato le conoscenze disponibili e le esperienze dei centri operanti nelle aree endemiche più coinvolte, per creare delle linee guida per gli operatori sanitari.

 

I trapianti in Italia e nel mondo

Secondo una recente indagine epidemiologica condotta in 22 paesi e pubblicata su Lancet Public Health, durante la prima ondata della pandemia da SARS-CoV 2 il numero dei trapianti d’organo nel mondo è diminuito di un terzo rispetto allo stesso periodo dell’anno precedente, con casi di interruzione dell’attività chirurgica fino al 90%. I trapianti di rene, in tale contesto, hanno mostrato la maggiore riduzione (circa il 40%). L’attività di trapianto si è ridotta in misura marcata nei paesi dove ci sono stati più decessi a causa del Covid ma in Italia, USA, Slovenia, Svizzera e Belgio, nonostante l’elevata mortalità, l’attività è presto ripresa [5]. Nel corso di questa pandemia, si è passati, infatti, da un momento iniziale di arresto dell’attività trapiantologica, limitata a trapianti urgenti salvavita, all’attuale momento storico in cui, forti delle esperienze positive, esistono protocolli che consentono di utilizzatore organi da donatori guariti dall’infezione.

Ad oggi, non è stata ancora segnalata alcuna trasmissione di Cov-2 con il trapianto di organi e le esperienze preliminari effettuate nel nostro paese con l’utilizzo di organi da donatori con infezione virale attiva, di cui una delle prime in Sicilia, con un trapianto di fegato, non hanno comportato alcuna conseguenza negativa nei riceventi. Secondo il protocollo stilato dal Centro Nazionale Trapianti, è possibile effettuare trapianti di organi salvavita provenienti da donatori deceduti positivi al Covid. Secondo le linee guida, i pazienti devono essere in gravi condizioni cliniche, per le quali, a giudizio del team medico responsabile del trapianto, il rischio di morte o di evoluzione di gravi patologie connesso al mantenimento in lista d’attesa rende accettabile quello conseguente all’eventuale trasmissione di patologia donatore-ricevente.

 

I trapianti in Sicilia

La Sicilia è stata tra le regioni italiane inizialmente meno colpite dalla pandemia, che stava invece vessando le regioni settentrionali. Le esperienze dei centri trapianto del Nord Italia sono state fondamentali per consentirci di lavorare in anticipo creando un sistema sicuro.

Per quanto concerne la Regione Sicilia, nonostante la pandemia, tutti i centri sono rimasti attivi con un aumento dell’attività di trapianto renale, sia regionale che extra-regionale (Tabella I) [6].

  2019   2020   2021  
  REGIONE FUORI REGIONE REGIONE FUORI REGIONE REGIONE FUORI REGIONE
ISMETT 15 27 16 32 14 15
OSPEDALE CIVICO DI PALERMO 14 22 12 30 5 11
POLICLINICO UNIVERSITARIO DI CATANIA 8 1 24 10 12 3
Tabella I: Attività di trapianto renale nei centri siciliani dal 2019 a luglio 2021

Anche il numero di trapianti combinati (fegato-rene, rene-pancreas e cuore-rene) è aumentato nel 2020 e fino a luglio 2021, in confronto al 2019 (Tabella II) [6].

  2019 2020 2021
  REGIONE FUORI REGIONE REGIONE FUORI REGIONE REGIONE FUORI REGIONE
FEGATO-RENE 1 1 4 1
RENE-PANCREAS 1 1 1
CUORE-RENE 1
Tabella II: Trapianti combinati eseguiti in Sicilia dal 2019 a luglio 2021

Questi dati sono il risultato, in parte, della sospensione dell’attività dei centri trapianto del Nord Italia che, per l’emergenza Covid, sono stati costretti a sospendere un’attività elettiva, non urgente e non salvavita come il trapianto di rene ed, in parte, del miglioramento dell’attività del procurement regionale. Sono stati, infatti, eseguiti 72 trapianti con reni provenienti da donatori extra-regione nel 2020 [6]. Inoltre, in Sicilia, l’attività di trapianto da vivente è stata sospesa solo nei mesi cruciali del secondo trimestre del 2020, per poi riprendere e mantenere degli adeguati standard di sicurezza, posticipando i trapianti di rene non pre-emptive.

 

La riorganizzazion della attività clinica e non solo

I centri trapianto hanno riorganizzato l’attività clinica, creando un sistema di protezione per i neo trapiantati in regime di degenza che prevedeva tamponi molecolari seriali per i pazienti ricoverati e per il personale coinvolto nella loro gestione. L’attività ambulatoriale di follow-up post-trapianto è stata modificata radicalmente, limitando le visite in presenza ai trapiantati recenti ed effettuando video consulti per i trapiantati di vecchia data, con il controllo degli esami ematochimici, del diario pressorio, del bilancio idrico ed un colloquio. Questa modalità ha consentito di limitare gli accessi non urgenti, ma ha evitato di abbandonare i pazienti in follow-up.

Inoltre, i trapiantati con infezione attiva sono stati presi in carico dai nefrologi dei centri trapianto, in collaborazione con il territorio e le unità di pneumologia, per la gestione delle complicanze e della terapia immunosoppressiva. I casi più gravi sono stati trasferiti presso l’unità operativa di terapia intensiva dell’ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) di Palermo, selezionata dalla regione Sicilia per la cura dei pazienti con necessità di ossigenazione extra-corporea a membrana (ECMO).

Il Centro Regionale Trapianti siciliano ha recentemente realizzato un’app in grado di fornire tutte le informazioni necessarie sulla donazione degli organi, sui trapianti e sulle liste d’attesa, e permettere l’invio del modulo per esprimere la propria volontà alla donazione. In piena pandemia, la regione siciliana ha puntato, dunque, a ridurre le distanze ed avvicinare i cittadini ai temi della donazione e del trapianto.

Inoltre, al fine di assicurare un nuovo impulso all’attività trapiantologica, l’assessorato regionale ha individuato forme di incentivo e remunerazione delle prestazioni correlate allo svolgimento di attività mediche di rianimazione nel settore della donazione degli organi.

Infine, con l’avvento della vaccinazione, pur consapevoli della ridotta risposta nei pazienti riceventi un trapianto d’organo, è stata data priorità ai trapiantati, con il coinvolgimento diretto di alcuni centri trapianto e del Centro Regionale Trapianti, per la somministrazione del vaccino nei pazienti e nei loro familiari.

 

Conclusioni

Da quanto detto, scaturiscono alcune importanti considerazioni. La Rete Regionale Trapianti Siciliana è riuscita a mantenere la propria attività, nonostante la crisi sanitaria senza precedenti conseguente alla pandemia. Ha continuato ad agire sotto il coordinamento del Centro Nazionale Trapianti, attenendosi alle linee guida dell’Istituto Superiore di Sanità, assicurando così l’attività trapiantologica con impegno encomiabile. Tuttavia, il perdurare della pandemia rischia di inginocchiare il sistema sanitario; da qui la necessità di ottenere alti tassi di vaccinazione della popolazione generale al fine di creare un’immunità di gregge per i nostri pazienti immunodepressi, meno responsivi alla vaccinazione diretta.

Pur essendoci stata una solerte e coesa risposta della comunità trapiantologica italiana per far fronte alla crisi sanitaria della pandemia, è necessario un costante sforzo nel trovare nuove e più raffinate strategie per continuare ad assicurare la disponibilità di un trapianto di rene ai nostri pazienti uremici.

 

Bibliografia

  1. Fauci AS, Clifford Lane H, Redfield RR. Covid 19. Navigating the uncharted. N Engl J Med 2020; 382:1268-9. https://doi.org/10.1056/NEJMe2002387
  2. D’Antiga L. Coronavirus and immunosuppressed patients. The facts during the third epidemic. Liver Transpl 2020; 26:832-4. https://doi.org/10.1002/lt.25756
  3. Gori A, Dondossola D, Antonelli B, et al. Coronavirus disease 2019 and transplantation: a view from the inside. Am J Transplant 2020; 20:1939-40. https://doi.org/10.1111/ajt.15853
  4. Centro Nazionale Trapianti. Nota avente oggetto: aggiornamento delle misure di prevenzione della trasmissione dell’infezione da nuovo Coronavirus (SARS-CoV 2) in Italia attraverso il trapianto di organi, tessuti e cellule. 28 Febbraio 2020 Prot. 482/CNT 2020.
  5. Aubert O, et al. COVID-19 pandemic and worldwide organ transplantation: a population-based study. Lancet Public Health 2021; 6(10):E709-19. https://doi.org/10.1016/S2468-2667(21)00200-0
  6. Registro Siciliano di Dialisi e Trapianto. https://ridt.sinitaly.org/

Cholecalciferol supplementation improves secondary hyperparathyroidism control in renal transplant recipient

Abstract

Introduction: Vitamin D deficiency (25(OH)D <30 ng/mL) in renal transplant recipients (RTRs) is a frequent finding and represents an important component in the pathogenesis of secondary hyperparathyroidism (SHPT). Therefore, its more systematic supplementation is recommended. We herein report our experience on the impact of cholecalciferol supplementation on PTH and 25(OH)D levels in a group of RTRs with 25(OH)D <30 ng/mL and SHPT. Patients and Methods: For this purpose, 52 RTRs with SHPT were treated with cholecalciferol at the fixed dose of 25,000 IU p.o. weekly for 12 months. For the control group we selected 23 RTRs with SHPT and 25(OH)D levels <30 ng/mL. Every 6 weeks eGFR, sCa and sPO4 levels were evaluated; PTH, 25(OH)D, FECa e TmPO4 were evaluated every 6 months. Results: At baseline, the two groups had similar clinical characteristics and biohumoral parameters. Parathormone was negatively correlated with 25(OH)D levels (r=-0.250; P <0.001) and TmPO4 values (r=-0.425; P<0.0001). At F-U there was a significant reduction in PTH levels in the supplemented group, from 131 ± 46 to 103 ± 42 pg/mL (P<0.001), while vitamin D levels, TmPO4 values, PO4 and sCa levels increased significantly, from 14.9 ± 6.5 to 37.9 ± 13.1 ng/mL (P<0.001), from 1.9 ± 0.7 to 2.6 ± 0.7 mg/dL (P<0.001), from 3.1 ± 0.5 to 3.5 ± 0.5 mg/dL (P<0.001), and from 9.3 ± 0.5 to 9.6 ± 0.4 (P<0.01), respectively. During the study there were no episodes of hypercalcaemia and/or hypercalciuria, while 25(OH)D levels always remained <100 ng/mL. In the control group, at F-U, PTH levels increased from 132 ± 49 to 169 ± 66 pg/ml (P <0.05), while 25(OH)D levels remained stable at <30 ng/mL. Conclusions: Vitamin D deficiency in RTRs is very frequent. Cholecalciferol supplementation is associated with a better control of SHPT and a correction of vitamin D deficiency in most patients, representing an effective, safe and inexpensive therapeutic approach to IPS.

Keywords: vitamin D, cholecalciferol, renal transplant, secondary hyperparathyroidism

Sorry, this entry is only available in Italian.

Introduzione

Il trapianto renale rappresenta il trattamento di scelta per molti pazienti con malattia renale cronica in stadio 5D (ESRD), in quanto ne migliora la sopravvivenza e la qualità di vita rispetto a coloro che rimangono in dialisi [1]. Tuttavia, i pazienti con trapianto renale (RTRs), pur beneficiando della migliore sopravvivenza del rene trapiantato, continuano ad essere gravati da alcune problematiche già presenti nella fase della terapia sostitutiva. Una di queste, che spesso non risolve con il trapianto, è l’iperparatiroidismo secondario (IPS). Questa condizione è più frequente in quei RTRs che durante la fase sostitutiva hanno richiesto il trattamento dell’IPS [26]. Sebbene i livelli di paratormone (PTH) tendono a ridursi nei primi 12 mesi del post-trapianto [26], si stima che in circa il 30%-50% dei casi questi rimangono elevati anche negli anni successivi [2, 3, 68]. La persistenza dell’IPS (IPSP) nel post-trapianto è stata associata a patologia ossea ad elevato turnover, responsabile di perdita della massa ossea e quindi maggior rischio di fratture [9, 10] e progressione delle calcificazioni vascolari [11]. L’importanza delle potenziali conseguenze dell’IPSP ha portato a prendere in considerazione un suo più precoce trattamento. Sebbene non vi sia ancora condivisione sulla definizione dell’IPSP, utile a tal fine sembrerebbe la definizione riportata nelle linee guida NKF-KDOQI (National Kidney Foundation–Kidney Disease Outcomes Quality Initiative), secondo le quali si parla di IPSP quando negli stadi 1-3 della malattia renale cronica (MRC) i livelli di PTH permangono nel tempo al disopra dei limiti alti della norma, mentre nello stadio 4 quando questi permangono a livelli di 1.5 volte maggiori i limiti alti della norma [12]. Nell’approccio terapeutico dell’IPSP nel trapianto renale spesso viene dimenticata, prima ancora di intraprendere qualsiasi terapia come suggerito dalle linee guida NKF/KDOQI, la valutazione dello stato nutrizionale della vitamina D attraverso la determinazione dei livelli sierici della 25-idrossi-vitamina D [25(OH)D] [12]. Infatti, bassi livelli sierici di 25(OH)D possono essere una delle cause responsabili dell’IPSP nei RTRs [13, 14]. Le concentrazioni sieriche di 25(OH)D sono il principale indice del patrimonio in vitamina D del nostro organismo e sono utilizzate per definire uno stato carenziale di vitamina D [15]. Nelle linee guida NKF/KDOQI livelli sierici di 25(OH)D <5 ng/mL sono utilizzati per indicare una grave deficienza di vitamina D, livelli tra 5 e 15 ng/mL indicano una lieve insufficienza, livelli tra 16 e 30 ng/mL indicano una insufficienza, mentre livelli ≥ 30 ng/mL vengono considerati ottimali, anche se non vi è consenso unanime su quelli che sono i livelli sierici di vitamina  D da considerarsi ottimali [12, 16]. Bassi livelli sierici di 25(OH)D si ritrovano frequentemente nei RTRs [17, 18]. Le cause possono essere diverse, sicuramente una delle principali è la ridotta disponibilità di vitamina D per la 25-idrossilazione a seguito della scarsa esposizione ai raggi solari per l’aumentato rischio di tumori della pelle che si ha a seguito alla terapia immunosoppressiva [1924]. Nella malattia renale cronica stadio 3-4 le linee guida NKF/KDOQI raccomandano la supplementazione con vitamina D quando i livelli sierici di 25(OH)D sono <30 ng/mL [12]. In accordo con queste linee guida i RTRs dovrebbero essere trattati come i pazienti con MRC non trapiantati e con analogo filtrato glomerulare [12]. Tuttavia, nonostante le indicazioni delle linee guida NKF/KDOQI, non vi è una univoca posizione su diversi punti quali: quando iniziare il trattamento con vitamina D; quale tipo di vitamina D impiegare; quale dosaggio; durata del periodo di supplementazione [2527]. Nei pazienti con trapianto renale le esperienze circa l’impatto della supplementazione di vitamina D sui livelli di PTH nell’IPSP e su quelli del 25(OH)D in pazienti con deficit di vitamina D sono estremamente carenti, a differenza di quanto riportato nei pazienti con MRC stadio 3-5D. Nei vari studi finora condotti la supplementazione di vitamina D è stata a volte giornaliera, altre settimanale ed altre ancora mensile. Anche i dosaggi della supplementazione con vitamina D rimangono un problema aperto come sottolineato da Levi e Silver [28]. Tangpricha e Wasse [29], confrontando una serie di studi condotti in pazienti in emodialisi con schemi posologici di supplementazione di vitamina D molto diversi tra loro, hanno concluso che un dosaggio di vitamina D insufficiente, stimato come <100,000 UI/mese, potrebbe non essere in grado di ristabilire i normali livelli di 25(OH)D e ridurre i livelli di PTH. I pochi studi condotti nei RTRs sulla supplementazione di vitamina D hanno dato risultati contrastanti. In uno studio di Courbebaisse et al [30] condotto su RTRs con bassi livelli di 25(OH)D, una dose di colecalciferolo (un precursore del 25(OH)D) <100,000 UI/mese non sembra in grado di mantenere i livelli di 25(OH)D ≥ 30 ng/mL in tutti i RTRs supplementati. In un altro studio condotto su RTRs nei pazienti con deficienza di vitamina D [25(OH)D <15 ng/ml] una dose mensile cumulativa di 64,000 UI di colecalciferolo è risultata sufficiente per normalizzare i livelli sierici di 25(OH)D, mentre nei pazienti con insufficienza di vitamina D [25(OH)D 15-30 ng/ml] questo risultato si otteneva impiegando 40,000 UI/mese [31]. Inoltre, come emerge dal confronto tra le varie esperienze di supplementazione con vitamina D nei pazienti con MRC, la diversità dei risultati riportati in letteratura è probabilmente da ricondurre alla diversa durata della supplementazione, in molte esperienze estremamente breve [2931]. Infatti, molte delle esperienze fin qui fatte hanno avuto una durata inferiore alle 36 settimane [29]. Nel nostro ambulatorio dedicato al F-U dei RTRs da oltre 10 anni determiniamo regolarmente e periodicamente i livelli sierici del 25(OH)D e da allora tutti quelli che presentano livelli di 25(OH)D <30 ng/mL vengono regolarmente supplementati con vitamina D, quando non vi sia concomitante ipercalcemia. In questo studio abbiamo valutato, retrospettivamente, in un gruppo di RTRs con livelli di 25(OH)D <30 ng/mL ed uno stato di IPSP, l’impatto della terapia con colecalciferolo sui livelli sierici del 25(OH)D, del PTH e del bilancio calcio-fosforico e abbiano raffrontato i risultati con quelli di un analogo gruppo che rifiutava la supplementazione con vitamina D e quindi di controllo.

  

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Association between low serum magnesium levels and the extent of abdominal aortic calcification in renal transplant recipients

Abstract

Introduction – In renal transplant recipients (RTRs) vascular calcifications has been associated with an increased risk of cardiovascular as well as all-cause mortality.  Recent experimental and clinical studies showed that magnesium (Mg) deficiency may be related to the progression of vascular calcification. Aim of this study was to determine the hypothetical association between Mg and vascular calcifications in RTRs. Methods – Seventy-one RTRs underwent a lateral X-ray of the lumbar spine to assess the presence of calcification of the abdominal aorta. Abdominal aortic calcium (AAC) content was graded with a score ranging from 0 to 24 points. At the same time were evaluated: carotid artery intima-media thickness (IMT);  left ventricular mass index (LVMi); sCa, sPO4, sMg, uMg, PTH, HDL, LDL, blood pressure (BP). Results – AAC was correlated with: age (r=0.601; P<0.001), dialysis vintage  (r=0.314; P<0.01), sMg (r=-0.438; P<0.001), PTH (r=0.322; P<0.01), SBP (r=0.539; P<0.001), IMT (r=0.706; P<0.001), LVMi  (r=0.326; P<0.01). Serum Mg was correlated with PTH (r= -0.304; P<0.01). IMT was correlated with LVMi and SBP (r=0.330, P<0.01; r=0.494, P <0.0001; respectively). Stepwise multiple regression analysis showed that the final model contained six predictor variables for AAC (IMT, sMg, age, SBP, proteinuria, and dialysis vintage; F5,64=31.7, P<0.001; Adjusted R2 =0.718). Patients in higher AAC thirtile (8-24) were older, with longer dialysis vintage, lower sMg, higher PTH, and higher IMT values. Conclusions – Our results suggest a hypothetical interrelationship between sMg  and ACC, and IMT in RTRs.

Keywords: magnesium, vascular calcification, carotid artery intima-media thickness, renal transplantation

Sorry, this entry is only available in Italian.

Introduzione

Il rischio di malattia cardiovascolare aumenta progressivamente con il ridursi della funzione renale, arrivando ad essere di 20 volte superiore a quello che si riscontra nella popolazione generale quando viene avviata la terapia sostitutiva [1]. Il trapianto renale riduce, ma non normalizza, il rischio cardiovascolare, che risulta infatti di cinque volte maggiore a quanto riportato nella popolazione generale ed aumenta significativamente con il ridursi del funzionamento del rene trapiantato [2,3]. Ad un anno dal trapianto, su una popolazione di 19.103 pazienti con trapianto renale (RTRs), gli eventi cardiovascolari erano la causa di morte nel 21.6% della popolazione studiata [4]; con la progressiva estensione del follow-up, la prevalenza di malattia cardiovascolare aumentava fino ad arrivare ad essere la causa di morte nel 31% della popolazione con trapianto funzionante [5]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.