Review and Practical Excursus of the Propensity Score: Low Protein Diet Compared to Mediterranean Diet in Patients With Chronic Kidney Disease

Abstract

Although Randomized clinical trials (RCT) represent the gold standard to compare two or more treatments, the impact of observational studies cannot be ignored. Obviously, these latter are performed on unbalanced sample, and differences among the compared groups could be detected. These differences could have an impact on the estimated association between our allocation and our outcome. To avoid it, some methods should be applied in the analysis of observational cohort.
Propensity score (PS) can be considered as a value which sums up and balances the known variables. It aims to adjust or balance the probability of receiving a specific allocation group, and could be used to match, stratify, weight, and perform a covariate adjustment. PS is calculated with a logistic regression, using allocation groups as the outcome. Thanks to PS, we compute the probability of being allocated to one group and we can match patients obtaining two balanced groups. It avoids computing analysis in unbalanced groups.
We compared low protein diet (LPD) and the Mediterranean diet in CKD patients and analysed them using the PS methods. Nutritional therapy is fundamental for the prevention, progression and treatment of Chronic Kidney Disease (CKD) and its complications. An individualized, stepwise approach is essential to guarantee high adherence to nutritional patterns and to reach therapeutic goals. The best dietary regimen is still a matter of discussion.  In our example, unbalanced analysis showed a significant renal function preservation in LPD, but this correlation was denied after the PS analysis.
In conclusion, although unmatched analysis showed differences between the two diets, after propensity analysis no differences were detected. If RCT cannot be performed, balancing the PS score allows to balance the sample and avoids biased results.

Keywords: Chronic Kidney Disease, Low Protein Diet, Matching, Mediterranean Diet, Nutritional Therapy, Propensity Score, Randomized Clinical Trials

Introduction

Clinical investigations are mainly categorized in observational and interventional studies, the latter including randomized controlled trials (RCT) [1]. Comparative effectiveness studies belong to the family of observational studies and aim to compare two active treatments to identify which one is more efficient in improving the time course of a disease or reducing the risk of a given condition in real life (i.e., in a context different from an RCT) [2]. From this perspective, this type of study design differs from RCTs because the latter specifically contemplate ‘no intervention’ (i.e., the placebo arm).

Treatments are candidates to be investigated by a study of comparative effectiveness only when the same treatment was proved to be effective versus a control in an RCT. The main reason why these studies are considered with caution by the scientific community is the lack of randomization, which implies that the results of these studies are prone to a peculiar type of bias called ‘confounding by indication’ [3]. In a given treatment-outcome pathway, a confounder is a variable that is associated with the treatment (i.e., it differs between the study arms). It is not an effect of the treatment, does not lie in the causal pathway between the treatment and the outcome, and represents a risk factor for the outcome. In real life, a confounder can increase, reduce, or definitely obscure the true effect of treatment on an outcome. Despite these challenges, observational studies of effectiveness offer opportunities to examine questions impossible to be investigated by RCTs [4]. First, they can be used to examine the effectiveness of medication that has already obtained marketing authorization and for which funding for further trials may be limited. Second, they can allow the examination of effectiveness for rare treatment indications. Third, a large observational study can be more representative of a clinical population and less prone to selection bias than a trial.

In observational studies of effectiveness, common methods used to adjust to confounding are multiple regression models [5], the use of instrumental variables [6], and the propensity score (PS) [7]. Briefly, multiple regression analyses are performed by including in the model all variables that meet the criteria to be considered as confounders. An instrument is a variable that predicts exposure, but conditional on exposure shows no independent association with the study outcome. As an example, we can consider an observational multicenter study that evaluates how different treatments can affect a clinical outcome. The facility allocation can be considered as the result of a ‘natural experiment’ by simulating a randomization. In this manuscript, we describe an efficient statistical technique used by researchers to mitigate the problem of confounding in observational studies of effectiveness.

 

Propensity score

The propensity score (PS) was described in 1983. This method allows adjusting or balancing for the probability to receive a specific allocation group, an estimation of the likelihood of being in one or in another group in relation to a set of covariates [8]. PS could be used to match, stratify, weight, and perform a covariate adjustment. If the outcome is a binary variable, matching has less bias than stratification or covariate adjustment, as in a time-dependent outcome both matching and Inverse Probability of Treatment Weighting (IPTW) are less biased than stratification or covariate adjustment. PS is calculated with a logistic regression, using allocation groups as outcome. Thanks to this method, we can compute the probability of confounder variables to be allocated in one group. Since PS has no limits of variables, it can be used in small samples and for rare diseases [9], unlike multivariate regression.

Matching

Matching with PS methods allows us to compare one or more patients with the same allocation probability, so it follows that matched patients have similar features, decreasing bias. This method consists of matching cases of two or more groups on the basis of similar predicted PS, thus allowing the comparison of groups with an equal distribution of confounders (covariate balance) [10, 11]. Imaging having two groups of patients, at first, we need to compute PS, corresponding to the probability of receiving allocation in group A, for each one of them [12]. By doing this, a binomial logistic regression is performed to select, among the study variables, those associated with the allocation variable. Patients with the same PS value are thus compared. Minimizing the differences between patients, and comparing homogeneous groups, confounding is reduced.

Stratification

The stratification by PS follows the matching methods. Strata will be created between subjects with similar PS of treatments. The Stratification method removes about 90% of bias due to covariate imbalance [13].

Formally, stratification by PS can be resumed as follows:

  • choosing variables included in the PS model among personal data, comorbidities, laboratory data, and variables clinically related to outcome
  • estimating PS value for each subject, with logistic regression using allocation as the dependent variable
  • calculating the Cumulative Distribution Function for each subject, able to define the distribution also in a discrete and binomial variable
  • ranking population based on PS value, dividing the whole sample into quartiles, tertiles, deciles, etc., based on PS values
  • assessing balance for each of the K (K is the indicator of the treatment group), analyzing the baseline features
  • retaining the PS value ordering that creates strata with the best covariate balance and conducting a stratified outcome analysis to estimate ATE or ATT [14].

The number of strata can be evaluated based on the number of covariates (2×covariates – 1) with groups of more than ten subjects [15]. In a large observational study, Cernaro V. et al. [16], on behalf of the Workgroup of the Sicilian Registry of Nephrology, analyzed the impact of convective dialysis on mortality and cardiovascular mortality. They performed Cox Regression analysis with incremental multivariate models but, although the independent impact of convective dialysis on mortality, many other variables were related to the outcome.

Thus, as highlighted in their methods section, PS stratification was computed to perform a sensitivity analysis [17]. PS was computed through a multivariate logistic regression model including age, gender, ethnicity, arterial hypertension, diabetes mellitus, and cardiac diseases. Then, the whole sample was divided into quartiles (based on PS value) and survival analyses computed in the whole sample were repeated. These latter results confirmed the independent impact of the treatment, but in subsamples that are theoretically more homogenous because PS value was computed on the bases of the possible confounding.

Inverse Probability of Treatment Weighting (IPTW) Estimation

IPTW analyses aimed to create a weighted sample in which the distribution of each confounding variable was the same between the compared groups [18]. Patients will be allocated the reciprocal of the PS value: each patient of the treated group receives the weight of 1/PS and each patient of the untreated group receives the weight of 1/(1-PS). A treated patient with a low PS value enters in the analysis with a high weighting because he is considered likely an untreated patient in terms of comorbidities, so a valid comparison can be made between the two [19]. Practically, in the analysis, each patient is evaluated as many times as their IPTW is.  A treated patient with a PS of 0.1 will weigh 1/0.1=10 and will be considered in the analysis ten times. Similarly, a treated patient with high PS, for example 0.8, will weigh 1/0.8=1.25 and it will be considered in the analysis 1.25 times. Moreover, IPTW was at the basis of the Marginal Structured Models, a multistep estimation procedure designed to control confounding variables at different time points in longitudinal studies [20]. IPTW method is not robust against the outliers.

Covariate adjustment

This method uses the PS values as a covariate in a linear regression analysis. Even if there is no significant association between the covariates used to compute PS value and the outcome, the use of PS value as a covariate allows us to approximate the effect of each of the aforementioned covariates [21].

 

Practical example

To explain these methods, we will use a dataset containing 75 non-randomized patients with CKD stage III-IV.

All the remaining patients gave written consent to data processing for research purposes in respect of privacy. Ethical approval was not necessary according to National Code on Clinical Trials declaration and according to Italian ministerial rules of September 6, 2002 n°6, because our observation derives from a real-life retrospective study.

Patients were followed up for one year.  40 patients followed an LPD, defined by a protein intake of 0.6 g/kg/day (Group A), and 35 patients were subjected to the Mediterranean diet (Group B). The allocation, according to the real-life observation design, was based on dietician suggestions, patient’ habits, and adherence abilities, which were evaluated during the baseline visit.  Supplementary Table 1 and Table 2 summarized the details about the quantity and the nature of both diet regimens. Laboratory data were collected at the baseline visit (T0) and the annual follow-up (T1), as follows: serum urea (mg/dl), serum creatinine(mg/dl), serum phosphorous (mg/dl), serum sodium (mmol/l), serum potassium (mmol/l), white blood cells (WBC) (cc/mmc).

The groups had significant differences in BMI (28.7 [25.0, 34.7] vs 26.4 [24.0, 28.0], p=0.02), age (68 ± 9 vs 74 + 13, p=0.04), and basal creatinine clearance (33 [25, 44] vs 27 [21, 36], p=0.03). Baseline features were summed up in Table 1.

Variable Whole sample Group A (n= 40) Group B (n= 35) p
Age (years) 71 ± 11 68 ± 9 74 + 13 0.04
Sex (M/F) 45/55 40/60 49/51 0.32
BMI (kg/mq) 27.4 [24.2 – 30] 28.7 [25.0 – 34.7] 26.4 [24.0 – 28.0] 0.02
Clearance (ml/min) 31 [23 – 41] 33 [25 – 44] 27 [21- 36] 0.03
Serum Urea (mg/dl) 73 [64 -102] 75 [65 -99] 73 [60 -121] 0.84
Serum creatinine (mg/dl) 1.8 [1.5 – 2.5] 1.7 [1.4 – 2.4] 2.0 [1.6 – 2.7] 0.03
Serum sodium (mmol/L) 141 ±3.3 4.7 [4.5 – 5.0] 4.4 [4.9 – 5.2] 0.40
Serum Potassium (mmol/l) 4.74 ± 0.58 4.72 ± 0.53 4.76 ± 0.64 0.68
Serum phosphorous (mg/dl) 3.8 [3.6 – 4.1] 3.7 [3.5 – 4.0] 3.8 [3.7 – 4.3] 0.35
WBC (cc/mmc) 7744 ± 1824 7575 ± 1947 7932 ±1683 0.46
Delta_Clearance -3.50/ 0.00/ 4.00 -0.25/ 1.00/ 7.25 -5.50/-2.00/ 2.00 0.001
Table 1. Baseline features of whole sample and into the two groups. Body mass index (BMI); White blood cells (WBC).

An unadjusted model with GLM for repeated measures showed a significant effect on creatinine clearance of the Mediterranean diet compared to LPD, with an estimate marginal mean of -9.98 ml/min [95% CI], 15.6/, 4.3]. Adjusted model for age, BMI and sex (Table 2) appeared to confirm this significance in the between-group mean in the joint mean difference (‒9.34, 95%CI ‒15.44/ ‒3.24) (Table 2).

Variable F p 2
Mediterranean diet vs low protein diet ‒9.34 0.003 0.119
Sex (Male vs female) 2.71 0.104 0.038
Age (years) 0.08 0.780 0.001
BMI (kg/m2) 0.04 0.947 0.000
Table 2. Between-group mean in the joint mean differences: Adjusted GLM model for repeated measures. Body mass index (BMI).

Due to the non-randomized study design and the unbalanced groups, we decided to implement the analysis with the PS matching. We computed PS value using the treatment as dependent variable of the logistic regression, and graphically evaluated it (Figure 1). The PS values were not equally distributed between the two groups. Carrying on with the matching, choosing a caliper of 0.2, 20 patients from group A were paired with 20 patients from group B (Table 3). Unmatched patients are excluded from the analysis, reducing sample’s size. This reduction of the patients admitted in the analysis is one of the major limitations of the matching.

Analyzing the standardized means of the baseline features before and after the matching, a better balance between the two groups could be shown (Figures 2a and 2b).

GLM for repeated measures performed in the matched sample did not show significant differences between the two groups (2.737, 95%CI –4.328/9.803). Also using the covariate adjustment, that uses the whole sample, the not significant relationship between the two treatments and the clearance progression was confirmed in the GLM for repeated measures including treatment and ps-value (-3.314, 95%CI -8.524/1.897).

Figure 1. Propensity score distribution before the matching.
Figure 1. Propensity score distribution before the matching.
Group A Group B PS value group A PS value group B
1 48 0.5728 0.5990
2 56 0.5029 0.4885
3 43 0.7979 0.8133
4 53 0.2244 0.2236
5 41 0.8256 0.8244
6 65 0.2370 0.2436
8 49 0.7872 0.7496
9 47 0.7313 0.7068
10 52 0.2709 0.2670
11 66 0.5662 0.5339
12 68 0.6588 0.6768
14 71 0.6731 0.6888
15 75 0.1971 0.2084
16 39 0.6640 0.6990
18 63 0.3849 0.3833
19 55 0.4595 0.6256
21 67 0.6014 0.6256
26 45 0.4350 0.4386
27 42 0.2674 0.2947
31 60 0.4544 0.4280
Table 3. Groups composition based on Propensity Score Matching.
Figure 2a. Balance of the covariate before and after the Matching.
Figure 2a. Balance of the covariate before and after the Matching.
Figure 2b. Propensity score distribution after the Matching.
Figure 2b. Propensity score distribution after the Matching.

 

Usefulness of propensity score

A few RCTs were conducted on ERSD patients due to high costs and their difficult organization. In these cases, a well-structured comparative effectiveness study could be done to generate hypothesis or to add results to existing RCT. For Example, Chan KE et al. conducted a large observational study including more than 10000 patients, the study’s population and structure were modeled on 4D study’s methods, using the same eligibility criteria, endpoints, and similar timeline. To reduce bias caused by known and unknown variables, patients were initially matched in statin-group and control-group based on similar lipid profiles and years of dialytic treatment. Subsequently, a logistic model was performed to compute the probability of receiving the therapy, also all Cox analyses were weighted using the IPTW methods. Differently from the unmatched baseline analysis, the baseline characteristic computed after propensity scoring showed two well-balanced groups. At the outcome analysis, all HRs computed in this observational study were compared with the HRs showed in the 4D Study, and no significant differences were found between these two studies (Figure 1). Furthermore, RCTs are often smaller than observational studies, due to the stronger inclusion criteria and the higher costs than observational design. As shown in Figure 1, PS methods computed in a big sample, allowed to find a smaller confidence interval compared to 4D RCT, without significant differences in anyone outcome.

Through these comparisons, although RCTs were the lowest-biased studies, we can speculate about the effective validity of observational comparative studies using PS methods to reduce biases.

 

Limitation of propensity score methods

PS is applicable when the treatment assignment is neglectable, with unknown and unmeasured confounders. Furthermore, PS value > 0 is necessary. According to G. et Lepeyre-Mestre M. [22], propensity score methods is not very able to reduce selection bias, information bias and instrumental bias. Despite PS reducing inhomogeneity between groups, some unconsidered variables can exist, hence residual bias should be taken into account in the interpretation of results and in the critical appraisal of the study [23].

Leisman D.E. et al., resumed ten “Pearls and Pitfalls” about the use of matching method [24]. They highlighted problems regarding the reduction of sample size: the number of cases does not represent the whole sample because every unpaired subject is excluded from the analysis.  This can impair the external validity of the study, reducing its applicability. Consequently, the power of the study should be computed on the balanced sample, excluding the unmatched patients. Indeed, the analysis reflects the matched sample, losing information about the excluded cases. However, no patients were excluded by the analysis using the covariate adjustment and the IPTW. We highlighted that, similarly to our sample, no significant differences between matching and covariate adjustment were found. However, can be useful performing more PS methods, to compare the results. Furthermore, machine learning methods can be used to compute PS, and they reduce the variability of the PS.

Last but not least, a limitation of these methods is the inability to detect interaction variables. In correlated subgroup effects, these variables could indeed invalidate the PS model and should be excluded from it [25].

 

Discussion

Our analysis seemed to show a slow CKD progression in patients treated with LPD compared to patients treated with Mediterranean diet. However, the unbalanced covariate distribution between the two groups must be highlighted. Conversely to classic analysis, our result showed no difference between the two groups in matched sample, where the two groups were well balanced.

Healthy dietary habits are essential to contrast the progression of chronic diseases such as CKD and the risk factors related to its development. A tailored diet that follows patients’ eating habits can enhance compliance with nutritional therapy, improving the conservative management of CKD patients.

In patients with renal impairment, optimal eating is crucial, representing a high-impact modifiable lifestyle factor for the primary prevention of CKD progression [26], and it avoids the dysregulation of fluid status, pH, electrolytes [27, 29], chronic metabolic acidosis [30], all factors that should be corrected by an adequate dietary regimen and balanced supplementation of the missing nutrients.

Nutritional therapy can be useful to slow CKD progression and delay ESRD with a consistent improvement of the patient’s quality of life [31]. LPD should be started from GFR <30 ml/min, with a protein intake below 0.8 mg/kg/die, and it shown slower CKD progression and reduction of the mortality [32]. Rhee et al. (2018) [33] in their meta-analysis of randomized controlled trials (RCTs) found that the risk of progression to ESRD was significantly lower in patients with LPD regimens than those with higher‐protein diets, with serum bicarbonate augmentation. Notwithstanding its restrictions, LPD does not seem to impair the quality of life of CKD patients. The study of Piccoli et al. (2020) [34] on 422 CKD patients with stages III-V demonstrated that moderately protein-restricted diets (0.6 g/kg/day) guaranteed good compliance to therapy, with a median dietary satisfaction of 4 on a 1-5 scale with a minimal dropout.

The Mediterranean diet is a nutritious regimen first proposed by Keys in the mid-1980s that has been demonstrated to exert a favourable action on inflammation, CKD, cardiovascular health, and overall mortality [35, 37]. Different studies demonstrated a tight link between CKD prevention and Mediterranean diet regimen [38, 39]. How the Mediterranean diet exerts kidney protection is still under debate, and the anti-inflammatory and antioxidant effects were suggested [40, 41]. Moreover, tighter adherence to a healthy plant-based diet was associated with a slower eGFR decrease [42].

Asghari et al. (2017) [43] showed, in a six-year follow-up study, that adherence to the Mediterranean diet is associated with a reduced risk of 50% of incident CKD. These results are in line with the ones from the Northern Manhattan Study. In this cohort of patients, the patients with relatively preserved renal function and high adherence to the Mediterranean diet experienced an approximate 50% decreased odds for incidence of eGFR<60 ml/min/1.73m2.

The effectiveness of LPD compared to the Mediterranean diet is still a matter of debate. Mediterranean diet is characterized by free fat, abundant vegetables, legumes, fresh fruits, cereals, moderate wine consumption, low milk and milk products, low meat/animal products, and frequent fish. Moreover, both the Mediterranean diet and LPD are effective in the modulation of gut microbiota, reducing protein-bound uremic toxins levels, especially in patients suffering from moderate to advanced CKD.

Davis et al. (2015) [44] tried to define nutrient content and range of servings for the Mediterranean diet, analysing the variations in the quantity of this diet components in recent literature. The Mediterranean diet’s positive effects are not only limited to metabolic influence, but the conviviality, culinary and physical activity exerts a beneficial effect on mental health, ameliorating body homeostasis and reactivity to the chronic disease [45].

A diet regimen feasible in different settings is essential for adherence to nutritional therapy. Different dietetic strategies have been investigated over the years, but which is the best nutritional regimen remains controversial. Kim et al. analysed the data of 4343 incident CKD patients, during a median follow-up of 24 years and showed that higher adherence to a balanced diet was linked to a lower risk of CKD progression.

In conclusion, although our previous analysis showed differences between the two diets, after propensity match no differences were detected, as well as after the covariate adjustment methods. In the study of Hu et al. (2021) [46] adherence to healthy nutritional patterns was associated with lower risk for renal impairment progression and all-cause mortality in CKD patients. Thus, based on our results and according to the literature, the Mediterranean diet should be a good choice for patients who are not compliant with a low-protein diet, without a significant increase of CKD progression risk [47].

 

Bibliography

  1. Yang, J. Y. et al. Propensity score methods to control for confounding in observational cohort studies: a statistical primer and application to endoscopy research. Gastrointest. Endosc. 90, 360–369 (2019). https://doi.org/1016/j.gie.2019.04.236.
  2. Loke, Y. K. & Mattishent, K. Propensity score methods in real-world epidemiology: A practical guide for first-time users. Diabetes, Obes. Metab. 22, 13–20 (2020). https://doi.org/1111/dom.13926.
  3. Provenzano, F., Versace, M. C., Tripepi, R., Zoccali, C. & Tripepi, G. [Confounding in epidemiology]. | Il confondimento negli studi epidemiologici. Ital. Nefrol. 27, 664–667 (2010).
  4. Torres, F., Ríos, J., Saez-Peñataro, J. & Pontes, C. Is Propensity Score Analysis a Valid Surrogate of Randomization for the Avoidance of Allocation Bias? Semin. Liver Dis. 37, 275–286 (2017). https://doi.org/1055/s-0037-1606213.
  5. Tripepi G, Jager KJ, Dekker FW, Zoccali C. Linear and logistic regression analysis. Kidney Int. 2008 Apr;73(7):806-10. https://doi.org/10.1038/sj.ki.5002787.
  6. Martinussen T, Vansteelandt S. Instrumental variables estimation with competing risk data. Biostatistics. 2020 Jan 1;21(1):158-171. https://doi.org/10.1093/biostatistics/kxy039.
  7. Austin PC, Stuart EA. Estimating the effect of treatment on binary outcomes using full matching on the propensity score. Stat Methods Med Res. 2017 Dec;26(6):2505-2525. https://doi.org/10.1177/0962280215601134.
  8. Kim, H. Propensity Score Analysis in Non-Randomized Experimental Designs: An Overview and a Tutorial Using R Software. New Dir. Child Adolesc. Dev. 2019, 65–89 (2019). https://doi.org/1002/cad.20309.
  9. Sebastião, Y. V. & St. Peter, S. D. An overview of commonly used statistical methods in clinical research. Semin. Pediatr. Surg. 27, 367–374 (2018). https://doi.org/1053/j.sempedsurg.2018.10.008
  10. Reiffel, J. A. Propensity Score Matching: The ‘Devil is in the Details’ Where More May Be Hidden than You Know. Am. J. Med. 133, 178–181 (2020). https://doi.org/10.1016/j.amjmed.2019.08.055.
  11. Benedetto, U., Head, S. J., Angelini, G. D. & Blackstone, E. H. Statistical primer: Propensity score matching and its alternatives. Eur. J. Cardio-thoracic Surg. 53, 1112–1117 (2018). https://doi.org/10.1093/ejcts/ezy167.
  12. Stuart EA. Matching methods for causal inference: A review and a look forward. Stat Sci. 2010 Feb 1;25(1):1-21. https://doi.org/10.1214/09-STS313.
  13. Adelson, J. L., McCoach, D. B., Rogers, H. J., Adelson, J. A. & Sauer, T. M. Developing and applying the propensity score to make causal inferences: Variable selection and stratification. Front. Psychol. 8, 1–10 (2017). https://doi.org/3389/fpsyg.2017.01413.
  14. Brown, D. W. et al. A novel approach for propensity score matching and stratification for multiple treatments: Application to an electronic health record–derived study. Stat. Med. 39, 2308–2323 (2020). https://doi.org/1002/sim.8540.
  15. Neuhäuser, M., Thielmann, M. & Ruxton, G. D. The number of strata in propensity score stratification for a binary outcome. Arch. Med. Sci. 14, 695–700 (2018). https://doi.org/5114/aoms.2016.61813.
  16. Cernaro V. et al. Convective Dialysis Reduces Mortality Risk: Results From a Large Observational, Population-Based Analysis. Ther. Apher. Dial. 22, 457–468 (2018). https://doi.org/10.1111/1744-9987.12684
  17. Rosenbaum, Paul R., and Donald B. Rubin. “Reducing Bias in Observational Studies Using Subclassification on the Propensity Score.” Journal of the American Statistical Association, vol. 79, no. 387, 1984, pp. 516–24. JSTOR, https://doi.org/10.2307/2288398.
  18. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015 Dec 10;34(28):3661-79. https://doi.org/10.1002/sim.6607.
  19. Kuss, O., Blettner, M. & Börgermann, J. Propensity Score – eine alternative Methode zur Analyse von Therapieeffekten – Teil 23 der Serie zur Bewertung wissenschaftlicher Publikationen. Dtsch. Arztebl. Int. 113, 597–603 (2016). https://doi.org/3238/arztebl.2016.0597.
  20. Almasi-Hashiani A, Mansournia MA, Rezaeifard A, Mohammad K. Causal Effect of Donor Source on Survival of Renal Transplantation Using Marginal Structural Models. Iran J Public Health. 2018 May;47(5):706-712.
  21. Elze, M. C. et al. Comparison of Propensity Score Methods and Covariate Adjustment. J. Am. Coll. Cardiol. 69, 345–357 (2017). https://doi.org/1016/j.jacc.2016.10.060.
  22. Moulis G, Lapeyre-Mestre M. Score de propension: intérêts, utilisation et limites. Un guide pratique pour le clinicien [Propensity score: Interests], [use and limitations. A practical guide for clinicians]. Rev Med Interne. 2018 Oct;39(10):805-812. French. https://doi.org/10.1016/j.revmed.2018.02.012.
  23. Stürmer, T. et al. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. Clin. Epidemiol. 59, 437.e1-437.e24 (2006). https://doi.org/10.1016/j.jclinepi.2005.07.004.
  24. Leisman, D. E. Ten Pearls and Pitfalls of Propensity Scores in Critical Care Research: A Guide for Clinicians and Researchers. Crit. Care Med. 47, 176–185 (2019). https://doi.org/1097/CCM.0000000000003567.
  25. Liu SY, Liu C, Nehus E, Macaluso M, Lu B, Kim MO. Propensity score analysis for correlated subgroup effects. Stat Methods Med Res. 2020 Apr;29(4):1067-1080. https://doi.org/10.1177/0962280219850595.
  26. Kelly JT, Su G, Zhang L, Qin X, Marshall S, González-Ortiz A, Clase CM, Campbell KL, Xu H, Carrero JJ. Modifiable Lifestyle Factors for Primary Prevention of CKD: A Systematic Review and Meta-Analysis. J Am Soc Nephrol. 2021 Jan;32(1):239-253. https://doi.org/10.1681/ASN.2020030384.
  27. Calabrese V, Cernaro V, Battaglia V, Gembillo G, Longhitano E, Siligato R, Sposito G, Ferlazzo G, Santoro D. Correlation between Hyperkalemia and the Duration of Several Hospitalizations in Patients with Chronic Kidney Disease. J Clin Med. 2022 Jan 4;11(1):244. https://doi.org/10.3390/jcm11010244.
  28. Sprague SM, Martin KJ, Coyne DW. Phosphate Balance and CKD-Mineral Bone Disease. Kidney Int Rep. 2021 May 17;6(8):2049-2058. https://doi.org/10.1016/j.ekir.2021.05.012.
  29. Gembillo G, Cernaro V, Salvo A, Siligato R, Laudani A, Buemi M, Santoro D. Role of Vitamin D Status in Diabetic Patients with Renal Disease. Medicina (Kaunas). 2019 Jun 13;55(6):273. https://doi.org/10.3390/medicina55060273.
  30. Angeloco LRN, Arces de Souza GC, Romão EA, Frassetto L, Chiarello PG. Association of dietary acid load with serum bicarbonate in chronic kidney disease (CKD) patients. Eur J Clin Nutr. 2020 Aug;74(Suppl 1):69-75. https://doi.org/10.1038/s41430-020-0689-1.
  31. Yen CL, Fan PC, Kuo G, Chen CY, Cheng YL, Hsu HH, Tian YC, Chatrenet A, Piccoli GB, Chang CH. Supplemented Low-Protein Diet May Delay the Need for Preemptive Kidney Transplantation: A Nationwide Population-Based Cohort Study. Nutrients. 2021 Aug 28;13(9):3002. https://doi.org/10.3390/nu13093002.
  32. Hahn D, Hodson EM, Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane DaTablease Syst Rev. 2020 Oct 29;10(10):CD001892. https://doi.org/10.1002/14651858.CD001892.pub5.
  33. Rhee CM, Ahmadi SF, Kovesdy CP, Kalantar-Zadeh K. Low-protein diet for conservative management of chronic kidney disease: a systematic review and meta-analysis of controlled trials. J Cachexia Sarcopenia Muscle. 2018 Apr;9(2):235-245. https://doi.org/10.1002/jcsm.12264.
  34. Piccoli GB, Di Iorio BR, Chatrenet A, D’Alessandro C, Nazha M, Capizzi I, Vigotti FN, Fois A, Maxia S, Saulnier P, Cabiddu G, Cupisti A. Dietary satisfaction and quality of life in chronic kidney disease patients on low-protein diets: a multicentre study with long-term outcome data (TOrino-Pisa study). Nephrol Dial Transplant. 2020 May 1;35(5):790-802. https://doi.org/10.1093/ndt/gfz147. PMID: 31435654
  35. Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol. 2004 Jul 7;44(1):152-8. https://doi.org/10.1016/j.jacc.2004.03.039.
  36. Kelly JT, Palmer SC, Wai SN, Ruospo M, Carrero JJ, Campbell KL, Strippoli GF. Healthy Dietary Patterns and Risk of Mortality and ESRD in CKD: A Meta-Analysis of Cohort Studies. Clin J Am Soc Nephrol. 2017 Feb 7;12(2):272-279. https://doi.org/10.2215/CJN.06190616.
  37. Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, van Staveren WA. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA. 2004 Sep 22;292(12):1433-9. https://doi.org/10.1001/jama.292.12.1433.
  38. Huang X, Jiménez-Moleón JJ, Lindholm B, Cederholm T, Arnlöv J, Risérus U, Sjögren P, Carrero JJ. Mediterranean diet, kidney function, and mortality in men with CKD. Clin J Am Soc Nephrol. 2013 Sep;8(9):1548-55. https://doi.org/10.2215/CJN.01780213.
  39. Hu EA, Steffen LM, Grams ME, Crews DC, Coresh J, Appel LJ, Rebholz CM. Dietary patterns and risk of incident chronic kidney disease: the Atherosclerosis Risk in Communities study. Am J Clin Nutr. 2019 Sep 1;110(3):713-721. https://doi.org/10.1093/ajcn/nqz146.
  40. Salas-Salvadó, J., Guasch-Ferré, M., Lee, C. H., Estruch, R., Clish, C. B., & Ros, E. (2015). Protective Effects of the Mediterranean Diet on Type 2 Diabetes and Metabolic Syndrome. The Journal of nutrition, 146(4), 920S–927S. https://doi.org/10.3945/jn.115.218487.
  41. Renaud S, de Lorgeril M, Delaye J, Guidollet J, Jacquard F, Mamelle N, Martin JL, Monjaud I, Salen P, Toubol P. Cretan Mediterranean diet for prevention of coronary heart disease. Am J Clin Nutr. 1995 Jun;61(6 Suppl):1360S-1367S. https://doi.org/10.1093/ajcn/61.6.1360S.
  42. Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM, Grams ME, Coresh J, Rebholz CM. Plant-Based Diets and Incident CKD and Kidney Function. Clin J Am Soc Nephrol. 2019 May 7;14(5):682-691. https://doi.org/10.2215/CJN.12391018
  43. Asghari G., Farhadnejad H., Mirmiran P., Dizavi A., Yuzbashian E., Azizi F. Adherence to the Mediterranean diet is associated with reduced risk of incident chronic kidney diseases among Tehranian adults. Hypertens. Res. 2017;40:96–102. https://doi.org/10.1038/hr.2016.98.
  44. Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean Diet; a Literature Review. Nutrients. 2015 Nov 5;7(11):9139-53. https://doi.org/10.3390/nu7115459.
  45. Sofi F, Abbate R, Gensini GF, Casini A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr. 2010 Nov;92(5):1189-96. https://doi.org/10.3945/ajcn.2010.29673.
  46. Hu EA, Coresh J, Anderson CAM, Appel LJ, Grams ME, Crews DC, Mills KT, He J, Scialla J, Rahman M, Navaneethan SD, Lash JP, Ricardo AC, Feldman HI, Weir MR, Shou H, Rebholz CM; CRIC Study Investigators. Adherence to Healthy Dietary Patterns and Risk of CKD Progression and All-Cause Mortality: Findings From the CRIC (Chronic Renal Insufficiency Cohort) Study. Am J Kidney Dis. 2021 Feb;77(2):235-244. https://doi.org/10.1053/j.ajkd.2020.04.019.
  47. Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients. 2017 Feb 27;9(3):208. https://doi.org/10.3390/nu9030208.

Nutritional therapy in chronic proteinuric nephropathy

Abstract

Proteinuria is a well-known marker of renal damage and, at the same time, an important factor in the progression of chronic kidney disease itself. The scientific community has always sought to investigate and provide answers on how nutritional therapy can influence and modify proteinuria and therefore limit its impact on progression to end-stage renal disease. However, despite the importance of the topic, the studies rarely take the form of randomized and controlled trials; in any case, they are often limited to protein intake only, conducted on very heterogeneous populations and, finally, they rarely indicate the precise values of proteinuria. The aim of this work is to explore the different nutritional approaches and their implications in the pathological conditions associated with proteinuria.

Keywords: proteinuria, end stage renal disease, diet, low protein, chronic renal failure

Sorry, this entry is only available in Italian.

Introduzione

La proteinuria è un noto fattore di rischio indipendente per la progressione ad end-stage renal disease. È un fattore di rischio spesso modificabile e la riduzione della proteinuria è una importante strategia nell’ottica di ritardare e prevenire la perdita della funzione renale stessa [1]. Le cause fisiopatologiche che correlano la proteinuria alla progressione del danno renale sono molteplici e riguardano diversi meccanismi di azione, che spesso rimangono ancora sconosciuti. Tra questi meccanismi, uno dei più importanti è rappresentato dall’alterazione della permeabilità della barriera glomerulare, derivata dall’attività delle proteasi e dalla riduzione della sintesi di proteoglicani, necessarie per il corretto mantenimento e funzionamento della barriera [2]. Nell’ambito del sovvertimento della struttura glomerulare, anche il transforming growth factor-beta (TGF-b) svolge un ruolo fondamentale nel processo di fibrosi e sclerosi glomerulare, incrementando la sintesi di matrice extracellulare [3]. Altri meccanismi che svolgono un ruolo fondamentale nella patogenesi della proteinuria sono rappresentati dai radicali liberi e dalle specie reattive dell’ossigeno [4].

In questo variegato scenario eziopatogenetico, la comunità scientifica ha cercato ormai da molti anni di indagare e fornire risposte su come la terapia nutrizionale possa influenzare, modificare e bloccare questi processi patologici. Questi studi non risultavano esclusivamente orientati alla riduzione del processo patologico che porta alla comparsa ed all’aumento della proteinuria, ma anche alla preservazione della funzione renale, in quanto, nel corso degli anni, l’influenza della proteinuria nella velocità di progressione dell’insufficienza renale appariva sempre più netta. Alla luce di ciò, la terapia nutrizionale, che spesso si limitava alla progressione dell’insufficienza renale, si è ampliata verso approcci riguardanti l’insorgenza e la riduzione della proteinuria.

Nonostante l’importanza dell’argomento, però, gli studi sono stati spesso limitati all’apporto proteico; spesso sono stati valutati su popolazioni troppo eterogenee; raramente indicavano con precisione i valori di proteinuria; avevano spesso follow-up limitati; raramente riguardavano trials randomizzati. L’obiettivo di questo lavoro è quello di esplorare i differenti approcci nutrizionali e la loro influenza sui vari meccanismi eziopatogenetici conosciuti. Si andrà ad esplorare l’efficacia clinica di alcuni approcci dietetici, segnalandone i possibili effetti collaterali.

 

La low protein diet e very low protein diet

La riduzione dell’apporto proteico è l’approccio terapeutico-nutrizionale più utilizzato ed esaminato. Questa strategia è nota sin dagli anni ‘80, da quando i gruppi di Brenner ed El-Nahas mostrarono come la low protein diet (LPD) riducesse l’iperfiltrazione e la sclerosi glomerulare nei ratti [5,6]. Sfortunatamente, da allora, la maggior parte degli studi ha studiato popolazioni che già presentavano una insufficienza renale cronica e raramente pazienti che avevano una funzione renale normale.

 

LPD e VLPD nella patologia renale cronica

Gli studi riguardanti questo argomento sono diminuiti negli ultimi anni e spesso ci dobbiamo riferire ad analisi compiute più di 10 anni fa. Più recentemente, sono state presentate alcune metanalisi che, pur non rappresentando studi originali, hanno comunque cercato di compiere una revisione analitica e fare maggiore chiarezza sui benefici di queste terapie nelle diverse popolazioni studiate (Tabella I).

Chaveau et al. nel 2007 analizzarono le modifiche della proteinuria come risposta ad una “very low protein diet” (VLPD) con supplementazioni amminoacidiche o di ketoanaloghi (sVLPD) in 220 pazienti consecutivi con Chronic Kidney Disease (CKD). Il protocollo dietetico prevedeva una dieta con: 0.3 g/Kg peso ideale/die di proteine di origine vegetale più un 1 g di proteine per ogni grammo di proteinuria eccedente i 3 g/die. La supplementazione era rappresentata da 1 compressa di ketoanaloghi misti ed aminoacidi essenziali ogni 5 Kg di peso corporeo. Il fosforo inorganico era circa 5-7 mg/kg/die. L’energia totale era di 35 Kcal/Kg/die. Per esempio, un paziente di 70 Kg con 6 g/die di proteinuria riceveva 21 +3 g di proteine di origine vegetale e 14 compresse di ketoanaloghi. L’ammontare di fosforo inorganico era di circa 420 mg/die, con un apporto calorico medico di circa 2450 Kcal/die. La popolazione veniva divisa in 2 gruppi, a seconda della proteinuria basale: 1-3 g/die e >3 g/die. Entrambi i gruppi mostrarono una riduzione della proteinuria di circa il 50%, ma in misura maggiore quelli con proteinuria basale maggiore. La massima efficacia fu raggiunta ai 3 mesi di terapia. I pazienti con una maggiore riduzione della proteinuria evidenziavano anche una minore progressione del declino dell’eGFR. Inoltre, la riduzione delle proteine urinarie influenzava positivamente anche i valori di albumina plasmatica e l’assetto lipidico generale. Gli autori supposero che, probabilmente, i pazienti “responder” nel breve periodo erano quelli che avevano migliori outcome, nel lungo periodo, rispetto al declino dell’eGFR. Questa supposizione faceva propendere verso una continuazione, nel lungo periodo, della terapia nutrizionale nei pazienti “responder” [7]. Le limitazioni più importanti di questo studio erano il piccolo sample size e l’arruolamento dei soli pazienti in uno stadio avanzato della patologia renale, ossia con stadio CKD IV e V.

Un recente studio cross-sectional realizzato a Taipei valutava l’associazione tra la dieta vegetariana e la prevalenza di CKD in un sample di 55113 pazienti. La dieta vegetariana era significativamente associata ad una minore prevalenza di CKD. La popolazione analizzata era eterogenea, con una prevalenza di CKD del 16.8% ed un eGFR medio di 84 ml/min per 1.73 m2. Veniva inoltre segnalata una ridotta prevalenza di proteinuria nel gruppo “vegano”. Le limitazioni di questo studio erano riconducibili ad un possibile bias di selezione ed una mancanza delle informazioni riguardanti l’apporto energetico e la composizione nutrizionale delle diete [8].

 

LPD, VLPD e ketoanaloghi

Nel 2013 veniva condotto un interessante e peculiare piccolo trial monocentrico, open-label, randomizzato e controllato, riguardante 17 pazienti con virus da Epatite B e glomerulonefrite cronica. Veniva valutato in questi pazienti l’effetto di una dieta ipoproteica in termini di outcomes e di asset nutrizionale. Tutti i pazienti avevano uno stadio I e II CKD e una proteinuria >1 g/die. Nove pazienti ricevevano una dieta ipoproteica a 0.6-0.8 g/kg/die di peso corporeo ideale, senza supplementazione; 8 pazienti ricevevano la stessa dieta ipoproteica con supplementazione di ketoanaloghi, al dosaggio di 0.1 g/kg/die. Il dato significativo è rappresentato dal fatto che il gruppo con supplementazione aveva una riduzione significativa della proteinuria delle 24 ore, sia a 6 mesi che a 12 mesi. Inoltre, il valore assoluto di proteinuria era significativamente minore nel gruppo con ketoanaloghi rispetto al gruppo in sola LPD (2.0 ± 1.8 vs 4.4 ± 2.7 g/24h). Infine, nel gruppo con supplementazione, l’aspetto nutrizionale rimaneva invariato durante tutta la durata del follow-up [9]. Questo studio dimostra come la dieta a ridotto apporto proteico supplementata con ketoanaloghi possa migliorare la proteinuria ed evitare la malnutrizione, rispetto alla dieta non-supplementata. Supporta inoltre la teoria che i ketoanaloghi possano ridurre i valori dei fattori pro-fibrotici come il TGF-β che, come visto in precedenza, è fortemente implicato nel sovvertimento della struttura glomerulare renale. Ovviamente lo studio, seppur innovative e caratteristico, è limitato dal basso numero di pazienti e dalla specificità della loro patologia di base.

La più recente metanalisi di trial clinici randomizzati controllati veniva pubblicata da Yue et al. nel 2019 e analizzava gli effetti della dieta a basso apporto proteico sulla funzione renale. Questa metanalisi, rispetto a precedenti studi, evidenziava come il principale effetto della dieta ipoproteica non fosse il miglioramento dell’eGFR, ma la riduzione della proteinuria. Nel dettaglio della metanalisi, 19 studi confermavano la non influenza della LPD sull’eGFR. Per quanto riguarda la proteinuria, invece, la riduzione di 0,1 g/Kg/die die proteine era associata ad una riduzione della proteinuria di 0,0031 g/die. Effettivamente questa riduzione non appariva clinicamente significativa, ma quando la terapia era più lunga di 1 anno, la riduzione diventava più evidente, con una riduzione di 0.673 g/die. La riduzione era leggermente inferiore quando l’età dei soggetti era maggiore di 60 anni (-0.526 g/die). Nei pazienti in LPD si segnalava anche la riduzione del peso corporeo, del BMI, dell’urea e del BUN [10].

Oltre a diversi studi che analizzano l’efficacia della restrizione proteica nella riduzione della progressione dell’insufficienza renale e nella riduzione o comparsa della proteinuria, sono presenti anche diversi lavori che analizzano la sicurezza clinica e gli effetti collaterali delle diete ad apporto proteico basso e molto basso. In questo contesto, l’effetto collaterale più pericoloso, e di conseguenza più indagato, è rappresentato dall’insorgenza della malnutrizione proteico-calorica. Una metanalisi condotta nel 2018 evidenziava come la LPD non causasse malnutrizione [11] e permettesse di garantire un bilancio azotato anche nella sindrome nefrosica. Questo bilancio sembrava essere garantito anche dal fatto che, come conseguenza della perdita urinaria di proteine, si instaurava un meccanismo di “salvataggio aminoacidico” [12]. Diversi studi, però, rimarcano l’importanza di un corretto apporto energetico nei pazienti sottoposti a dieta ipocalorica. In particolare, un apporto calorico di 30-35 kcal/kg/die può permettere di prevenire stati di malnutrizione [13]. In molti studi, infatti, la “protein energy wasting” viene rilevata, nelle diete a bassissimo contenuto di proteine, solo se l’apporto calorico risulta insufficiente [14].

Nella metanalisi di studi clinici randomizzati controllati avviata da Yue nel 2019, precedentemente analizzata, veniva eseguita una buona analisi della sicurezza a lungo termine della restrizione proteica, esaminando le implicazioni della LPD quando la durata del trattamento era superiore ai 12 mesi. La restrizione proteica influenzava significativamente il BMI, con una riduzione di 0.907 kg/m2 (CI: -1.491 to -0.322 kg/m2) e dell’albumina (-1.586 g/l; CI: -5.258 to 2.086 g/l), evidenziando come un lungo periodo di restrizione potesse essere un fattore di rischio per la comparsa di malnutrizione. Inoltre, la riduzione dell’apporto proteico ridurrebbe la secrezione dell’ormone della crescita e del glucagone.

Per quanto riguarda la VLPD, nell’analisi post hoc dello studio Modification of Diet in Renal Disease (MDRD) si evidenziava quanto la prescrizione di una VLPD potesse aumentare il rischio di mortalità nei pazienti con insufficienza renale cronica [15]. D’altra parte, ci sono numerosi studi che al contrario non evidenziavano la comparsa di deficit nutrizionali [16] e che non confermavano l’aumento del rischio di malnutrizione in questi contesti [17]. A tal riguardo, l’utilizzo di ketoanaloghi potrebbe avere un impatto nella riduzione del rischio di insorgenza di malnutrizione. Tale supplementazione migliora il bilancio azotato e migliora l’asset proteico [18]. Nell’ambito dello stato nutrizionale complessivo, non è da sottovalutare l’influenza che ha la riduzione della proteinuria nell’aumento dei livelli di albumina sierici. Questo aumento, oltre ad essere associato alla riduzione della perdita urinaria, potrebbe essere associato anche ad ulteriori adattamenti fisiologici del metabolismo proteico, in una condizione di ridotto apporto ed aumentata perdita. In particolare, tra i meccanismi attivati si segnalano: la riduzione dei processi di proteolisi, la riduzione dell’ossidazione amminoacidica e la stimolazione di sintesi proteica post-prandiale [19].

In definitiva, non è possibile fornire una univoca conclusione sulla sicurezza della LPD e VLPD, in quanto gli studi presenti in letteratura forniscono dati discordanti e spesso presentano nelle loro analisi fattori confondenti, bias di selezione e dati non completi sulla quantità di apporto proteico e calorico.

 

Nefropatia diabetica

In letteratura sono presenti numerosi studi riguardanti la nutrizione nella nefropatia diabetica. Nell’ambito di competenza di questo lavoro, uno degli studi più rappresentativi risulta una metanalisi pubblicata nel 2019, dove veniva valutato l’impatto della LPD in questa tipologia di pazienti (Tabella I). I risultati, forse non scontati, evidenziavano una similitudine con quelli riguardanti i soggetti non-diabetici. Infatti, non si riscontravano significative differenze nei valori di creatinina sierica, di filtrato glomerulare ed emoglobina glicosilata, nel gruppo in trattamento. Di contro, i valori di albuminuria e proteinuria risultavano significativamente inferiori nel gruppo in LPD rispetto al gruppo di controllo (standard mean difference: 0.62, 95% CI: 0.06-1.19; 0.69, 95% CI: 0.22-1.16 rispettivamente) [20].

Un’altra review sistematica di Zhu et al. confermava questi risultati, riscontrando una significativa riduzione della proteinuria nel gruppo dei pazienti in LPD, nella sottopopolazione con Diabete Mellito tipo II (1.32, 95% CI: 0.17-2.47, p=0.02) [21]. Gli autori hanno provato a dare delle spiegazioni patogenetiche alla nefroprotezione dalla dieta a ridotto apporto proteico. Per prima cosa questa tipologia di dieta riduce il carico glomerulare proteico e questo determina: una inibizione del sistema renina-angiotensina renale; una riduzione della secrezione di glucagone con una minore dilatazione dell’arteriola afferente; una riduzione dell’insulin-like growth factor-1, con una conseguente potente azione vasodilatatoria [22]. Inoltre, la LPD attivava, nei modelli animali con Diabete di tipo II, i processi autofagici attraverso la soppressione di meccanismi che hanno come target la via del complesso 1 della Rapamicina [23]. In generale però, anche questi due studi riportavano una maggiore efficacia nella riduzione della proteinuria, ma una modesta efficacia a livello di nefroprotezione nei pazienti con nefropatia diabetica in restrizione proteica.

In un innovativo trial controllato crossover, eseguito in 17 pazienti con diabete mellito di tipo II, gli autori analizzavano la differenza di outcomes tra: una dieta libera, una dieta a base di pollo (senza altra tipologia di carne) e una dieta latto-ovo-vegetariana a ridotto contenuto proteico rispettivamente. Il tasso di escrezione urinaria di albumina risultava significativamente ridotto nei gruppi in “chicken-diet” e nei latto-ovo-vegetariani, comparati con quelli in dieta libera (20.6%, 95% CI: 4.8-36.4%; 31.4%, 95% CI: 12.7-50% rispettivamente). La riduzione dell’albuminuria tra la dieta a base di carne di pollo e quella latto-ovo-vegetariana non era statisticamente significativa (p=0.249) [24]. Probabilmente entrambe queste diete garantivano un alto contenuto sierico di acidi grassi polinsaturi (PUFAs), i quali influenzavano la riduzione della proteinuria [25]. Alti livelli di PUFAs potrebbero avere, inoltre, un effetto protettivo sulla funzione endoteliale e potrebbero migliorare l’insulino-resistenza, con un effetto sulla riduzione della proteinuria. Bisogna ovviamente tenere in conto che lo studio aveva un numero esiguo di partecipanti.

 

Nefropatia proteinurica in gravidanza

Un aspetto da non sottovalutare, poiché riguarda una popolazione molto particolare, è quello delle donne in gravidanza. In queste pazienti andrebbe evitata quanto più possibile l’insorgenza di proteinuria oppure la progressione di una proteinuria o una insufficienza renale cronica già esistenti. Questo per evitare l’insorgenza di gravi e note complicanze, che risultano pericolose ed a volte infauste e che riguardano sia la salute della madre, sia quella del nascituro. La terapia nutrizionale nelle donne in gravidanza è quindi un aspetto importante ed al tempo stesso complesso.

Gli studi presenti in letteratura non sono numerosi, ma i gruppi italiani di Torino e Cagliari hanno investigato, da diversi anni, la problematica. Il loro focus si concentrava sulla valutazione della efficacia e della sicurezza della LPD, basata su una dieta vegana-vegetariana, nel ridurre la proteinuria ed evitare la progressione dell’insufficienza renale. Il loro protocollo prevedeva la prescrizione di una dieta con un apporto proteico di 0.6 g/kg/die, supplementato da alfa-ketoanaloghi e amminoacidi (1 compressa ogni 10 kg di peso corporeo ideale) nei primi due trimestri. L’apporto proteico aumentava nel terzo trimestre, con 0.8 g/Kg/die di proteine + 1 compressa di ketoanaloghi ogni 8 Kg di peso corporeo ideale. La dieta era sostanzialmente vegana, con occasionale presenza di latte e yoghurt. Non vi era una restrizione di sale, ma venivano strettamente controllati, ed eventualmente supplementati, la Vitamina B12, il ferro e la 25-OH-Vitamina D. I risultati evidenziavano un incremento della proteinuria sia nel gruppo in LPD, sia nel gruppo di controllo, salvo poi ridursi a 3 e mesi dal parto, in seguito alla scomparsa della “fase iperfiltrativa”. La dieta non risultava efficace neanche sulla progressione dell’insufficienza renale. Nonostante questi dati, è importante sottolineare come l’incidenza di una età gestionale minore del decimo percentile, o la frequenza di neonati marcatamente prematuri, fosse significativamente inferiore nel gruppo vegetariano-vegano, rispetto alla popolazione di controllo. Le madri lamentavano però un significativo impatto della terapia nutrizionale nello stile di vita quotidiano [26] (Tabella I).

In un altro studio sperimentale veniva invece analizzato l’utilizzo di proteine derivate dalla soia durante la gravidanza e l’allattamento in ratti con patologie renali ereditarie. L’utilizzo esclusivo di proteine derivate dalla soia, comparate con una dieta contenente proteine derivate dal latte, determinava una riduzione della proteinuria del 33% (p=0.0013). Inoltre, la dieta a base di proteine della soia durante la gravidanza e l’allattamento riduceva lo stato infiammatorio (-24% di infiltrato macrofagico durante la gravidanza e -32% durante l’allattamento) e lo stress ossidativo (-28% e -56% di LDL-ossidate rispettivamente) [27]. Secondo gli autori, queste riduzioni potevano essere ricondotte ad un minor livello plasmatico di Valina e Lisina, che parrebbero ridurre la frazione di filtrazione glomerulare [28].

Una review di 22 lavori dimostra come la dieta vegana-vegetariana sia sicura in gravidanza. Nessuno degli studi analizzati riportava, infatti, aumento dei rischi correlati alla gravidanza o aumento di eventi legati alla nascita o alla salute del nascituro [29]; questo eccetto per un singolo studio, che riportava un aumento dell’incidenza di ipospadia nei bambini di madri vegetariane [30]. Ovviamente, tutti gli studi rimarcavano l’importanza di poter sviluppare carenze di Vitamina B12, ferro o Zinco, raccomandandone l’eventuale supplementazione [31].

Per concludere, la dieta vegetariana non fornisce significativi vantaggi nel preservare la funzione renale o nel ridurre la proteinuria ma sembrerebbe non avere effetti collaterali severi e potrebbe ridurre alcune complicanze gestazionali. Si potrebbe per esempio prescrivere una dieta vegetariana nelle pazienti che hanno già una sindrome nefrosica in corso, o una storia di proteinuria significativa; nelle pazienti che hanno una progressione della proteinuria durante la gravidanza; in quelle con uno stato di insufficienza renale già avanzato. Queste pazienti potrebbero beneficiare di questo approccio dietetico, soprattutto per ridurre le complicanze gestionali.

Studi Pazienti Funzione Renale Intake Proteico (g/kg/d) Info cliniche Risultati
Chaveau (2007)

[7]
220 CKD IV-V 0.3 (vegetariana) + 1 g per grammo di proteine >3 g/d + supplementazione nd Riduzione della proteinuria del 50%. Max efficacia dopo 3 mesi. Maggiore riduzione proteinuria = minore declino dell’eGFR
Mou (2013)

[9]
17 CKD I-II e proteinuria >1g/d

 

0.6-0.8 g/Kg/d su peso ideale con Ketoanaloghi (0.1 g/Kg/d) o senza HBV+ La proteinuria era significativamente minore nel gruppo con Ketoanaloghi rispetto al gruppo senza supplementazione (2.0 ±1.8 vs 4.4 ±2.7 g/24h)
Yue (2019) (metanalisi)

[10]
3566 nd 0.28-0.8 g/Kg/d nd Quando la dieta >12 mesi, ogni riduzione di 0.1 g/Kg/d di intake proteico era associato ad una riduzione di -0.673 g/24h di proteinuria
Li (2019) (metanalisi)

[20]
690 nd 0.6-1.0 g/Kg/d Diabetici La proteinuria diminuiva nel gruppo in LPD vs gruppo controllo (SMD rispettivamente: 0.62, CI: 0.06-1.19 e 0.69, CI: 0.22-1.16)
Attini (2019)

[26]
36 CKD III-V o proteinuria >1g/d 0.6 g/Kg/d + supplemento (0.8 g/Kg/d + supplemento III trimestre) Gravide La proteinuria aumentava nel gruppo LPD e nel gruppo controllo. L’incidenza di basso peso per età gestionale era significativamente inferiore nel gruppo LPD
Tabella I: Principali studi sull’intake proteico nella proteinuria

 

Altri aspetti nutrizionali e proteinuria

Sebbene la maggior parte degli studi in letteratura riguardanti la riduzione della proteinuria e la preservazione della funzione renale siano riconducibili alla restrizione proteica, e sebbene l’argomento di questa review sia diretto in questo ambito, non possiamo non trattare brevemente alcuni differenti aspetti nutrizionali fortemente implicati in questo ambito patologico/terapeutico e che possono interferire con l’efficacia delle diete a ridotto apporto proteico.

 

Fibre, alcali e Vitamina K

La proteinuria può essere gestita con diversi alimenti, tra cui la curcumina, oltre che con la restrizione proteica (Tabella II). Altri nutrienti che potrebbero essere utilizzati in questo ambito sono le fibre, gli alcali e la Vitamina K. Nella dieta Vegana e nella VLPD le fibre e la Vitamina K1 sono molto più presenti rispetto ad altre diete [32]; inoltre, vi sono alimenti che hanno un alto potere alcalinizzante e potrebbero migliorare l’efficienza delle varie diete e dei benefici derivanti dalla riduzione dell’apporto proteico. In alcuni studi la Vitamina K è stata associata ad una riduzione della mortalità in pazienti con malattia renale cronica [33]. L’intake di fibre diminuisce il pH intestinale e modula favorevolmente il microbiota. Inoltre, anche la riduzione dell’apporto di acidi con la dieta potrebbe ridurre la mortalità nei pazienti con insufficienza renale cronica e sicuramente favorisce l’omeostasi dell’equilibrio acido-base e migliora il controllo dell’iperkaliemia, specialmente quando è in corso un trattamento con ACE-inibitori o Sartanici [34].

 

Fosforo

Un ruolo importante nel management della proteinuria è svolto dal fosforo sierico e dall’intake di fosforo. Lee H et al. hanno dimostrato come un valore elevato di fosforo ematico, anche in range non patologico, era indipendentemente e positivamente correlato con albuminuria, seppur di basso grado, ed era un potente fattore predittore di aumento del rapporto albumina/creatinina (coefficiente di regressione = 0,610, p <0.001). Questo studio non includeva pazienti con eGFR <60 ml/min e con proteinuria e microematuria già presente [35]. L’intake dietetico di fosforo, in particolare derivante da proteine animali, aumentava i livelli di fosforo e diminuiva la dilatazione flusso-mediata, un marker sostitutivo della funzione endoteliale [36]. Un altro studio in pazienti con malattia renale cronica confermava inoltre che il fosforo attenua l’effetto anti-proteinurico della VLPD [37]. Infine, alti livelli di fosforo attenuano anche l’effetto nefroprotettore degli ACE-inibitori in pazienti con proteinuria e malattia renale cronica [38].

 

Intake di sodio

L’intake di sodio è un punto cruciale nell’approccio nutrizionale della proteinuria. Un interessante trial randomizzato evidenziava come l’aggiunta di una restrizione sodiemica in aggiunta alla terapia con ACE-inibitori fosse più effettiva nella riduzione della proteinuria rispetto al “doppio blocco”, consistente nell’aggiunta del Sartanico all’ACE-inibitore. Al basale, i pazienti in terapia con ACE-inibitori in dieta libera avevano una proteinuria di 1.68 g/d (1.31-2.14). Se si aggiungeva in terapia il Sartanico, la proteinuria scendeva a 1.44 g/d (1.07-1.93; p = 0.003). Molto più efficace risultava l’introduzione di una dieta a basso contenuto di sodio, che portava i valori di proteinuria a 0.85 g/d (0.66-1.10; p <0.001). Va segnalato che nessuno dei pazienti nello studio aveva una nefropatia diabetica [39].

Questo effetto cumulativo della restrizione sodiemica è stato riscontrato in altri studi. Diversi lavori riportano inoltre lo stesso effetto cumulativo della restrizione sodiemica in pazienti in terapia con ACE-inibitori e LPD o VLPD. L’effetto cumulativo sembrerebbe riconducibile a due differenti meccanismi: la riduzione del “precarico” e del “postcarico” glomerulare [40]. In generale, la LPD ha un basso apporto di sodio, tuttavia una indicazione di una dieta iposodiemica ed ipoproteica in pazienti in terapia con inibitori del RAS può essere una strategia efficace nella riduzione della proteinuria.

Alimenti Meccanismo di azione Risultati
Curcumina (animali) Nrf2-attivatore; previene apoptosi della β-cell; attenua l’insulino-resistenza; riduce l’infiammazione Attenua l’escrezione urinaria di albumina nei pazienti con diabete mellito di tipo II
Lactobacillus (ratti) Rigenera l’espressione delle proteine della barriera intestinale; riduce l’infiammazione sistemica Diminuisce la proteinuria in ratti con CKD
Fibre, Alkali and Vitamina K Diminuisce il pH intestinale e modula favorevolmente il microbiota Riduce l’apporto dietetico di acidi; riduce la mortalità in persone con CKD; migliora l’equilibrio acido-base; migliora il controllo dell’iperkaliemia
Fosforo Diminuisce la dilatazione endoteliale flusso-mediata; attenua l’effetto antiproteinurico della VLPD e degli ACE-inibitori indipendentemente e positivamente correlata con la presenza di albuminuria; aumenta il rapporto urinario albuminuria/creatininuria
Riduzione intake di Sodio Riduce il precarico glomerulare; inibisce il sistema renina-angiotensina Riduzione della proteinuria; effetto cumulativo quando associato agli ACE-inibitori o ai Sartanici
Tabella II: Meccanismo di azione e risultati di differenti alimenti nel management della proteinuria

 

Conclusioni

La proteinuria ha un ruolo fondamentale nella diagnosi, nella gestione e nel trattamento dell’insufficienza renale cronica ma non esistono numerosi studi focalizzati sugli effetti della dieta sulla proteinuria. La restrizione proteica è l’approccio dietetico più studiato nella gestione della proteinuria e dell’insufficienza renale. Tale dieta non sembra agire direttamente sui valori del GFR, ma è spesso efficace nel ridurre la proteinuria, considerata come il principale fattore di rischio di progressione dell’insufficienza renale. Questo dato rimarca come i benefici della terapia nutrizionale sulle perdite urinarie di proteine possano influenzare la progressione della patologia renale, soprattutto a lungo termine, determinando un forte impatto sui fattori di rischio cardiovascolari e sulla mortalità in generale.

Una sana alimentazione, inoltre, tende al miglioramento del microbiota intestinale, che sembrerebbe uno meccanismo fisiopatologico di rilievo nella riduzione della proteinuria. Nei soggetti con proteinuria è fondamentale un continuo monitoraggio dello status nutrizionale, specialmente nei soggetti in dieta ipoproteica, per evitare l’insorgenza di malnutrizione.

Non esistono protocolli dietetici universali nel management della proteinuria. Ogni paziente dovrebbe avere una terapia nutrizionale personalizzata, basata sulle cause eziopatogenetiche e sui valori della proteinuria, sulle comorbidità esistenti e sulla valutazione nutrizionale di base.

Ulteriori trials clinici randomizzati focalizzati sulla proteinuria, possibilmente divisi per cause eziopatogenetiche e livelli di proteinuria, sono necessari e andrebbero incentivati.

 

Bibliografia

  1. Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med 1998; 339:1448-56.
  2. Palmieri B, Sblendorio V. Oxidative stress detection: what for? Eur Rev Med Pharmacol Sci 2007; 11:27-54.
  3. Eddy AA. Protein restriction reduces transforming growth factor-beta and interstitial fibrosis in nephrotic syndrome. AM J PHysiol 1994; 266(6Pt2):F884-93.
  4. Ghodake S, Suryakar A, Ankush, et al. Role of free radicals and antioxidant status in childhood nephrotic syndrome. Indian J Nephrol 2011; 21:37-40.
  5. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodinamically mediated glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Eng J Med 1982; 307:652-9.
  6. El-Nahas AM, Paraskevakou H, Zoob S, et al. Effect of dietary protein restriction on the development of renal failure after subtotal nephrectomy in rats. Clin Sci (Lond) 1983; 65:399-406.
  7. Chauveau P, Combe C, Rigalleau V, et al. Restricted protein diet is associated with decrease in proteinuria: consequences on the progression of renal failure. J Ren Nutr 2007; 17(4):250-7.
  8. Liu HW, Tsai WH, Liu JS, Kuo KL. Association of vegetarian diet with chronic kidney disease. Nutrients 2019; 11:279.
  9. Mou S, Li J, Yu Z, et al. Keto acid-supplemented low-protein diet for treatment of adult patients with hepatitis B virus infection and chronic glomerulonephritis. J Int Med Res 2013; 41(1):129-37.
  10. Yue H, Zhou P, Xu Z, et al. Effect of low-protein diet on kidney function and nutrition in nephropathy: A systematic review and meta-analysis of randomized controlled trials. Clinical Nutrition 2019; 39(9):2675-85.
  11. Rhee CM, Ahmadi S-F, Kovesdy CP, et al. Low protein diet for conservative management of chronic kidney disease: a systematic review and metanalysis of controller trials. J Cachexia Sarcopenia Muscle 2018; 9:235-45.
  12. Maroni BJ, Staffeld C, Young VR, et al. Mechanism permitting nephrotic patients to achieve nitrose equilibrium with a protein-restricted diet. J Clin Invest 1997; 99:2479-87.
  13. Zoccali C, Mallamaci F. Moderator’s view: Low-protein diet in chronic kidney disease: effectiveness, efficacy and precision nutritional treatment in nephrology. Nephrol Dial Transplant 2018; 33:387-91.
  14. Di Micco L, Di Lullo L, Bellasi A, Di Iorio BR. Very low protein diet for patients with chronic kidney disease: recent insights. J Clin Medicine 2019; 8:718.
  15. Menon V, Kopple JD, Wang X, et al. Effect of a very low-protein diet on outcomes: long-term follow-up of the modification of diet in renal disease (MDRD) study. Am J Kidney Disease 2009; 53:208-17.
  16. Bellizzi V, De Nicola L, Di Iorio BR. Restriction of dietary protein and long-term outcomes in patients with CKD. Am J Kidney Disease 2009; 53:208-17.
  17. Bellizzi V, Chiodini P, Cupisti A, et al. Very low-protein plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: a historical cohort-controlled study. Nephrol Dial Transplant 2015; 30:71-7.
  18. Li H, Long Q, Shao C, et al. Effect of short-term low-protein diet supplemented with keto acids on hyperphosphatemia in maintenance hemodialysis patients. Blood Purif 2011; 31:33-40.
  19. Giordano M, De Feo P, Lucidi P, et al. Effects of dietary protein restriction on fibrinogen and albumin metabolism in nephrotic patients. Kidney Int 2001; 60(1):235-42.
  20. Li XF, Xu J, Liu LJ, et al. Efficacy of low-protein diet in diabetic nephropathy: a meta-analysis of randomized controlled trials. Lipids Health Dis 2019; 18(1):82.
  21. Zhu HG, Jiang ZS, Gong PY, et al. Efficacy of low-protein diet for diabetic nephropathy: a systematic review of randomized controlled trials. Lipids Health Dis 2018; 17:141.
  22. Fontana L, Weiss EP, Villareal DT, et al. Long-term effects of calorie and protein restriction on serum IGF-1 and IGFBP-3 concentration in humans. Aging Cell 2008; 7:681-7.
  23. Kitada M, Ogura Y, Suzuki T, et al. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia 2016; 1307-17.
  24. De Mello VDF, Zelmanovitz T, Perassolo MS, et al. Withdrawal of red meat from the usual diet reduces albuminuria and improves serum fatty acid profile in type-2 diabetes patients with macroalbuminuria. Am J Clin Nutr 2006; 83:1032-8.
  25. Perassolo MS, Almeida JC, Prà RL, et al. Fatty acid composition of serum lipid fractions in type 2 diabetic patients with microalbuminuria. Diabetes Care 2002; 26:613-8.
  26. Attini R, Leone F, Parisi S, et al. Vegan-vegetarian low-protein supplemented diets in pregnant CKD patients: fifteen years of experience. BMC Nephrology 2019; 17:132.
  27. Cahill LE, Peng CYC, Bankovic-Calic N, et al. Dietary soya protein during pregnancy and lactation in rats with hereditary kidney disease attenuates disease progression in offspring. British J Nutr 2007; 97:77-84.
  28. Regnault TR, Friedman JE, Wilkening RB. Fetoplacental transport and utilization of amino acids in IUGR- a review. Placenta 2005; 19:S52-S62.
  29. Piccoli GB, Clari R, Vigotti FN, et al. Vegan-vegetarian diets in pregnancy: danger or panacea? A systematic narrative review. BJOG 2015; 122:623-33.
  30. North K, Golding J, The Alspac study team. A maternal vegetarian diet in pregnancy is associated with hypospadias. BJU Int 2000; 85:107-13.
  31. King JC, Stein T, Doyle M. Effect of vegetarianism on the zinc status of pregnant women. Am J Clin Nutr 1981; 34:1049-55.
  32. Cupisti A, D’Alessandro C, Gesualdo L, et al. Non-traditional aspects of renal diets: focus on fiber, Alkali and Vitamin K1 Intake. Nutrients 2017; 9:444.
  33. Cheung CL, Sahni S, Cheung BM, et al. Vitamin K intake is inversely associated with mortality risk. J Nutr 2014; 144:743-50.
  34. Goraya N, Simoni J, Jo CH, et al. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int 2014; 86(5):1031-8.
  35. Lee H, Oh SW, Heo NJ, et al. Serum phoshorus as a predictor of low-grade albuminuria in a general population without evidence of chronic kidney disease. Nephrol Dial Transplant 2012; 27:2799-806.
  36. Shuto E, Taketani Y, Tanaka R, et al. Dietary phosphorus acutely impairs endothelian function. J Am Soc Nephrol 2009; 20:1504-12.
  37. Di Iorio BR, Bellizzi V, Bellasi A, et al. Phosphate attenuates the anti-proteinuric effect of very low-protein diet in CKD patients. Nephrol Dial Transplant 2013; 28:632-40.
  38. Zoccali C, Ruggenenti P, Perna A, et al. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol 2011; 22:1923-30.
  39. Slagman MCJ, Waanders F, Hemmelder MH, et al. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ 2011; 343:d4366.
  40. Jafar TH, Stark PC, Schmid CH, et al. Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int 2001; 60(3):1131-40.

Nutritional diet therapy in the management of the patient with Chronic Kidney Disease in advanced phase to delay the beginning and reduce the frequency of dialysis. An option also in the pre-emptive transplant program

Abstract

The Italian nephrology has a long tradition and experience in the field of dietetic-nutritional therapy (DNT), which is an important component in the conservative management of the patient suffering from a chronic kidney disease, which precedes and integrates the pharmacological therapies. The objectives of DNT include the maintenance of an optimal nutritional status, the prevention and / or correction of signs, symptoms and complications of chronic renal failure and, possibly, the delay in starting of dialysis.

The DNT includes modulation of protein intake, adequacy of caloric intake, control of sodium and potassium intake, and reduction of phosphorus intake. For all dietary-nutritional therapies, and in particular those aimed at the patient with chronic renal failure, the problem of patient adherence to the dietetic-nutritional scheme is a key element for the success and safety of the DNT and it can be favored by an interdisciplinary and multi-professional approach of information, education, dietary prescription and follow-up. This consensus document, which defines twenty (20) essential points of the nutritional approach to patients with advanced chronic renal failure, has been written, discussed and shared by the Italian nephrologists together with representatives of dietitians (ANDID) and patients (ANED).

Keywords: CKD, Nutritional treatment, diet, dialysis, kidney transplant, chronic renal failure.

Sorry, this entry is only available in Italian.

Abbreviazioni

BMI              indice di massa corporea (Body Mass Index)
CDDP          programma combinato dietetico dialitico
DASH          dietary approaches to stop hypertension
DP               dialisi peritoneale
DPi              dialisi peritoneale incrementale
EAA             aminoacidi essenziali
EPO             eritropoietina
ESA             agenti stimolanti l’eritropoiesi
FRR             funzione renale residua
GFR             velocità di filtrazione glomerulare
IBW             ideal body weight
IDDP           programma integrato dietetico dialitico
KAA             chetoacidi
LEA              livelli essenziali di assistenza
MIS              malnutrition inflammation score
MRC            malattia renale cronica
NNT            numbers needed to treat
PDTA          percorsi di diagnosi, terapia e assistenza
PEW            deplezione proteico-energetica
PTH             paratormone
pmp            pazienti per milione di popolazione
QALY           quality-adjusted life-year
RAPA           rapid assessment of physical activity
SCFA           short-chain fatty acids
SGA             subjective global assessment
SRAA           sistema renina angiotensina aldosterone
sVLPD         supplemented very low protein diet
TDN             terapia dietetico nutrizionale
THD             emodialisi temporanea
VLPD            very low-protein diet

 

Introduzione

La terapia dietetico-nutrizionale (TDN) è una componente importante della gestione conservativa del paziente affetto da malattia renale cronica (MCR) che deve anticipare ed integrarsi con le terapie farmacologiche. Gli obiettivi della TDN comprendono il mantenimento di uno stato nutrizionale ottimale, la prevenzione e/o correzione di segni, sintomi e complicanze dell’insufficienza renale cronica e l’allontanamento nel tempo dell’inizio della dialisi o anche integrandosi con essa permettendo una riduzione della dose dialitica settimanale. I programmi di terapia conservativa e di dialisi incrementale, possono migliorare la qualità della vita e ridurre i costi di assistenza sanitaria. Recentemente è stato anche riportato che corretti stili di vita, che comprendono la DASH (Dietary Approaches to Stop Hypertension) o la nostra “dieta mediterranea”, sono in grado di ridurre l’incidenza di malattia renale cronica ed il rischio cardio-vascolare.

I nefrologi italiani hanno una lunga tradizione ed esperienza della TDN, che ha il suo cardine nella riduzione dell’apporto proteico ma non si limita a questo. Infatti, il concetto di TDN comprende anche un adeguato apporto calorico, il controllo dell’apporto di sodio e di potassio e la riduzione dell’apporto di fosforo. Oltre agli aspetti quantitativi, il supporto dietetico prevede anche la modifica della qualità degli alimenti, in particolare favorendo cibi di origine vegetale che inducono effetti favorevoli sul metabolismo del fosforo e sull’equilibrio acido-base con miglior controllo della pressione arteriosa e dell’emodinamica renale.

Per tutte le terapie nutrizionali, ed in particolare quelle mirate al paziente con insufficienza renale cronica, l’aderenza del paziente allo schema dietetico è un elemento fondamentale per il successo e la sicurezza della TDN. L’implementazione di un approccio interdisciplinare e multi-professionale di informazione, educazione, prescrizione dietetica e follow-up rappresenta un elemento chiave per una maggiore diffusione e successo della TDN in ambito nefrologico.

Questo consensus è un esempio di come sia difficile dimostrare quanto è clinicamente ovvio (l’impiego di tutti i mezzi possibili per ritardare la necessità di dialisi in pazienti che hanno verosimilmente un vantaggio aggiunto, in quanto idonei o in lista d’attesa per un trapianto) e di come vi sia una grande necessità di studi ulteriori per affinare le nostre conoscenze.

La Società Italiana di Nefrologia, attraverso il Gruppo di Studio Trattamento Conservativo della Malattia Renale Cronica, ha inteso definire alcuni punti essenziali riguardanti l’approccio nutrizionale al paziente con insufficienza renale cronica avanzata. È stato preparato un documento di consenso composto da 20 punti, discusso e condiviso anche dai dietisti e pazienti, tramite l’Associazione Nazionale Dietisti (ANDID) e l’Associazione nazionale Pazienti Emodializzati Dialisi e Trapianto (ANED) (Tabella 1). Questo è il primo documento che ha la condivisione della società scientifica nefrologica, dei dietisti e dei pazienti, su alcuni punti essenziali riguardanti l’approccio nutrizionale alla fase avanzata dell’insufficienza renale cronica.

  1. Nel paziente con MRC 4-5, una dieta non controllata nell’apporto di calorie, proteine, sale e fosforo anticipa e aggrava le alterazioni clinico metaboliche proprie dell’insufficienza renale cronica avanzata

Con il progredire della MRC, specialmente negli stadi più avanzati, svariate funzioni del rene tendono progressivamente a divenire sempre più deficitarie ed inefficienti. Infatti, si osserva una progressiva incapacità di eliminare carichi elevati di sodio, acqua, potassio, fosforo e ioni idrogeno (1) con tendenza alla loro ritenzione. Un apporto libero e non controllato di nutrienti e di proteine favorisce la comparsa delle alterazioni metaboliche e cliniche proprie dello stato uremico. In particolare, l’eccesso di sodio e acqua è responsabile della comparsa di ipertensione arteriosa, edemi e scompenso cardiaco, oltre ad incrementare lo stress ossidativo (2). Un bilancio positivo del fosforo causa iperparatiroidismo secondario e calcificazioni arteriose e delle valvole cardiache, con incremento della mortalità cardiovascolare (3). La ridotta capacità di eliminare un carico di acidi fissi, derivati dal catabolismo delle proteine, determina un accumulo di acidi con conseguente acidosi metabolica (4). L’acidosi metabolica è un forte stimolo al catabolismo proteico e muscolare, alla demineralizzazione ossea, all’insulino-resistenza, all’iperpotassiemia, ecc (5). Viene anche meno la funzione di eliminazione delle scorie azotate provenienti dal catabolismo delle proteine con conseguente loro ritenzione insieme a quello di “tossine uremiche”, tra cui urea, composti indolici, cresoli e guanidine (6). L’accumulo di queste sostanze contribuisce alla comparsa di anoressia, nausea e vomito, con conseguente riduzione dell’apporto di calorie, proteine e altri nutrienti (7). L’insieme di questi eventi determina la riduzione delle riserve proteiche ed energetiche dell’organismo, configurando il quadro di protein-energy wasting (PEW) e della cachessia, a loro volta causa di aumentata ospedalizzazione e mortalità (8). Contribuiscono alla deplezione proteico-energetica, la progressiva riduzione dell’attività fisica e uno stato microinfiammatorio, che sono più frequenti nella MRC in fase avanzata (9, 10)

 

  1. Nel paziente con MRC 4-5, una dieta non controllata nell’apporto di calorie, proteine, sale e fosforo può ridurre l’efficacia della terapia farmacologica o richiederne l’aumento di posologia

Un eccessivo apporto calorico può contribuire all’obesità e alla dislipidemia e aggrava la resistenza all’insulina; limita l’efficacia delle terapie antidiabetiche ed ipolipidemizzanti e ne richiede l’aumento della posologia.

Un elevato apporto di sale riduce l’efficacia delle terapie anti-ipertensive e anti-proteinuriche in particolare degli inibitori del sistema renina angiotensina aldosterone (SRAA) con aumento del rischio di progressione della MRC e del consumo di farmaci, in particolare dei diuretici. (11-14).

Un elevato carico dietetico di fosforo riduce l’efficacia dei chelanti intestinali del fosfato e/o ne richiede un aumento di posologia. Contribuisce ad un cattivo controllo dell’iperparatiroidismo secondario riducendo la sicurezza terapeutica dell’uso dei preparati di vitamina D attiva. Un peggior controllo della fosforemia e del paratormone (PTH) si associa ad una ridotta risposta terapeutica ad agenti stimolanti l’eritropoiesi (ESA) e agli ACE-inibitori (15-17).

Un elevato apporto di acidi fissi, associato al consumo di proteine animali, rende arduo prevenire l’acidosi metabolica e obbliga all’uso di maggiori quantità di sodio bicarbonato per la sua correzione (18, 19).

 

  1. Il mancato compenso metabolico con comparsa di segni e sintomi uremici rappresenta un’indicazione all’inizio del trattamento dialitico, a parità e indipendentemente dal livello di funzione renale residua

La dialisi viene intrapresa anche a valori relativamente elevati di GFR in presenza di sintomatologia uremica o per la convinzione che la dialisi dia benefici clinici, migliore qualità di vita e minore morbilità e mortalità (20).

La relazione tra il livello di GFR a inizio dialisi e gli effetti clinici, tuttavia, è controversa. Il trial randomizzato IDEAL ha valutato la sopravvivenza associata a inizio precoce (10-14 ml/min) o tardivo (5-7 ml/min) e non ha mostrato alcun vantaggio o svantaggio associato al livello di GFR di inizio dialisi. Iniziare la dialisi ad un valore di GFR più basso non comporta dunque un rischio maggiore per il paziente (21). La dialisi ha un impatto drammatico sullo stato funzionale del paziente, specialmente se anziano, e dopo un anno solo un paziente su otto conserva la sua capacità funzionale (22). La dialisi, pur migliorando molti sintomi uremici non è in grado di garantire una qualità di vita accettabile in molti pazienti.

L’ottimizzazione del trattamento conservativo della MRC è un’alternativa razionale alla dialisi precoce e la dialisi dovrebbe essere iniziata solo se i sintomi uremici non sono più controllabili, indipendentemente dal grado di funzione renale (23). Infatti, le linee guida indicano che in un range ampio di GFR (6-12 ml/min) sono le caratteristiche del quadro clinico (segni e sintomi uremici ed eventuali comorbidità) che impongono l’inizio della terapia sostitutiva. Il quadro clinico dell’uremia non trattata (anoressia, iperazotemia, iperfosforemia, acidosi metabolica, ritenzione idrosalina, malnutrizione, ecc.) può essere controllato con la TDN (24). Quindi, la TDN è in grado di posticipare l’inizio della dialisi anche in presenza di un GFR molto ridotto, grazie al miglior controllo di segni e sintomi uremici. Quando ben condotta e con apporto calorico adeguato, non ha effetti negativi sullo stato di nutrizione e sulla sopravvivenza, sia durante la fase di MRC sia dopo l’inizio della dialisi (25, 26). Il raggiungimento di un buon compenso metabolico grazie al trattamento nutrizionale permette di posticipare l’inizio del trattamento sostitutivo renale ad una fase più avanzata della malattia, senza rischi per il paziente (27, 28).

 

  1. L’insufficienza renale cronica non trattata conduce alla iponutrizione per la comparsa di inappetenza, nausea e anoressia.

La storia naturale dell’insufficienza renale cronica porta il paziente a ridurre l’apporto dietetico di calorie e proteine con la progressiva riduzione della funzione renale residua (29, 30). Le alterazioni proprie dell’insufficienza renale compromettono l’appetito e lo stato nutrizionale conducendo alla cachessia e alla malnutrizione (31).

Perdita di appetito, anoressia, nausea o vomito possono essere causati dalla tossicità uremica e dallo stato di acidosi metabolica scompensata che sono indicatori per l’inizio del trattamento sostitutivo dialitico.

L’anoressia associata alla MRC era stata attribuita, in passato, alla ritenzione di “medie molecole” (32, 33). Più recentemente, modelli sperimentali di uremia cronica suggeriscono che alla base dell’anoressia ci possano essere alterazioni a carico dei complessi percorsi neuroendocrini che operano principalmente a livello ipotalamico. Infatti, sostanze che si accumulano in corso di MRC avanzata quali ormoni (l’insulina, la leptina, il PYY3-36 prodotto dal colon, grielina) e tossine uremiche (cresoli, indoli, fenoli) potrebbero essere responsabili dell’anoressia attraverso meccanismi neuroendocrini (34) che vedono coinvolto il recettore 4 della melacortina (MC4-R). Un’aumentata stimolazione di questo recettore, sopprimendo l’attività della AMPK (AMP-activated protein kinase), determina una riduzione dell’assunzione di cibo.

Altre condizioni che causano anoressia sono il ritardato svuotamento gastrico (come nella gastroparesi diabetica), le alterazioni del gusto, l’alitosi uremica, la gastrite uremica e l’elevato numero di compresse che i pazienti assumono. L’infiammazione cronica, le comorbidità e la depressione o situazioni socioeconomiche difficili possono contribuire alla malnutrizione.

L’adeguato intervento dietetico-nutrizionale, con l’indicazione alla corretta quantità e qualità dell’apporto proteico accoppiata ad un adeguato apporto energetico ed eventuale aggiunta di supplementi di bicarbonato di sodio (migliorando l’acidosi metabolica e riducendo l’intossicazione uremica) è un presidio terapeutico in grado di ridurre l’anoressia e la deplezione proteico-energetica nei pazienti con insufficienza renale cronica avanzata (35).

 

  1. In considerazione della fisiopatologia della insufficienza renale cronica avanzata, una terapia dietetica nutrizionale corretta prevede:
  • riduzione dell’apporto di proteine
  • riduzione dell’apporto di fosforo
  • riduzione/controllo dell’apporto di sodio
  • controllo dell’apporto di potassio
  • limitazione del carico di acidi fissi

La TDN della MRC avanzata non può che essere basata sulla limitazione dell’introito di proteine in particolare di origine animale, fosforo e sodio, sul controllo del potassio e sul soddisfacimento della richiesta calorica. Tale approccio ha un razionale preciso nella fisiologia umana: se la funzione renale diminuisce deve ridursi conseguenzialmente il carico per permettere ai nefroni residui un controllo ancora adeguato dell’escrezione delle tossine uremiche e degli acidi fissi (24).

Una corretta gestione della TDN per la MRC in fase avanzata prevede una riduzione dell’apporto proteico al di sotto di 0,8 g/kg/die, che corrisponde all’introito raccomandato per la popolazione generale sana (36).

Non vi è alcun razionale scientifico per una dieta iperproteica anche in caso di proteinuria elevata (24). Anzi, esistono evidenze che la riduzione di proteine alimentari abbia effetti anti-proteinurici (37, 17).

Il controllo dell’introito di fosforo dovrebbe iniziare negli stadi iniziali di MRC. Infatti, fisiologicamente il rene sano ha la capacità di regolare l’escrezione urinaria di fosforo all’introito alimentare, ma la perdita progressiva del filtrato glomerulare, conseguenziale alla progressione della MRC, rende razionale una riduzione dell’apporto alimentare di fosforo al di sotto di 700 mg/die, livello raccomandato nella popolazione generale adulta (36). Sicuramente, educare i pazienti ad evitare di assumere il fosforo “nascosto” degli additivi presenti nei cibi conservati è sicuramente utile (38, 39). La selezione di alimenti a minor contenuto di fosforo o l’utilizzo di alimenti di origine vegetale è utile per limitare il carico netto di fosforo (40). Infine, sono importanti anche i consigli circa i metodi di cottura dei cibi (41); è infatti ben noto che la bollitura causa una demineralizzazione dell’alimento.

Il controllo dell’introito di sodio è indispensabile per una popolazione in cui l’ipertensione è pressoché sempre presente. La limitazione dell’apporto alimentare di sodio può migliorare gli effetti protettivi dell’inibizione del SRAA e potenziare la loro azione anti-proteinurica (42). I pazienti con ipertensione e MRC fin dagli stadi iniziali dovrebbero limitare l’introito alimentare di sale a 5-6 g/die (corrispondenti ad una sodiuria delle 24 ore di 90-100 mmol/die) (43, 44). La dieta iposodica deve essere evitata in tutte le condizioni di nefropatie sodio-disperdenti per evitare la deplezione di sodio, l’ipotensione e il peggioramento della funzione renale. Inoltre, la riduzione combinata dell’introito alimentare di sodio-cloruro e del fosforo può avere un effetto sinergico anti-proteinurico nei pazienti in terapia con ACE-inibitori o sartani (17).

Negli stadi avanzati (MRC 4-5) l’introito di potassio dovrebbe essere modulato sulla base dei livelli ematici e dovrebbe essere ridotto se la kaliemia è > 5.5 mmol/l. In questi casi deve essere valutata la possibilità di sospensione o riduzione della posologia dei farmaci che provocano iperpotassiemia (es. ACE inibitori o sartanici, anti-aldosteronici) – dopo aver corretto l’acidosi metabolica – o l’uso di resine intestinali chelanti il potassio.

Un ridotto carico di acidi (derivanti soprattutto dalle proteine di origine animale) è indispensabile per ridurne l’accumulo e quindi per prevenire o correggere l’acidosi metabolica (19). L’alimentazione ricca di vegetali è la via più naturale per fornire basi senza ricorrere a supplementi (18). La riduzione del carico netto di acidi ottenuta con diete vegetariane ha permesso di ridurre del 50% la prescrizione di bicarbonato (19) e di migliorare la resistenza insulinica nei diabetici (45). Altro dato importante è che la correzione dell’acidosi metabolica (ottenuta con la somministrazione di bicarbonato di sodio o con frutta e verdura) può ridurre la velocità di perdita del filtrato glomerulare nei pazienti con MRC (18). Diviene per questo importante l’integrazione di bicarbonato per os e l’assunzione di frutta e verdura, pur mantenendo attenzione ai livelli di potassiemia. Il rischio di iperpotassiemia è soprattutto associato all’assunzione di anti-aldosteronici e/o ACE inibitori.

 

  1. Per assicurare l’adeguatezza della terapia dietetica nutrizionale dell’insufficienza renale cronica è necessario verificare il rispetto delle seguenti condizioni:
  • soddisfacimento del fabbisogno calorico
  • adeguato apporto di amino acidi essenziali
  • correzione dell’acidosi metabolica
  • buon controllo glicometabolico

L’equilibrio del bilancio azotato è elemento essenziale per mantenere un buono stato di nutrizione e di composizione corporea. Nel paziente nefropatico stabile, al di fuori di condizioni acute come febbre, sepsi, ustioni, interventi chirurgici o terapia steroidea, anche a fronte di un ridotto apporto proteico, il bilancio azotato si mantiene grazie ad un meccanismo di adattamento metabolico, che consiste nella capacità dell’organismo di ridurre il catabolismo proteico (46-49). Questo adattamento alla dieta ipoproteica è ostacolato da tutte quelle condizioni che aumentano la richiesta azotata, come quelle analizzate di seguito.

Un apporto calorico inferiore alla richiesta comporta un utilizzo delle proteine a scopo energetico: questa quota sarà tanto maggiore quanto maggiore è la negatività del bilancio energetico. Un elevato apporto calorico permette un risparmio delle proteine e consente una riduzione del loro apporto in sicurezza (50).

Un inadeguato apporto esogeno di aminoacidi essenziali aumenta il catabolismo azotato endogeno. Benché ridotto in quantità, l’apporto proteico deve garantire il fabbisogno di aminoacidi essenziali sotto forma di cibi naturali o di supplementazione farmacologica.

L’acidosi metabolica accelera il catabolismo proteico e aminoacidico muscolare, in particolare stimolando il sistema ubiquitina-proteasoma, che impedisce l’adattamento alla dieta ipoproteica. La correzione dell’acidosi metabolica è quindi un prerequisito essenziale per la sicurezza nutrizionale di un regime normo/ipoproteico (51-53).

L’insulina è un ormone anabolico che stimola l’ingresso di aminoacidi nella cellula, aumenta la sintesi e riduce il catabolismo proteico: ne consegue che in condizioni di insulino-resistenza o di scarso controllo glicometabolico nel paziente diabetico, aumenta la richiesta proteica per mantenere il bilancio azotato (54). Nei nefropatici diabetici, oltre alle tre condizioni sopracitate, è richiesto un ottimale controllo glicometabolico per poter ottenere gli obiettivi terapeutici di una restrizione proteica mantenendo il bilancio azotato e la sicurezza nutrizionale.

 

  1. I prodotti aproteici sono costituiti da carboidrati e pressoché privi di proteine, fosforo, sodio e potassio. Essi consentono di elevare l’apporto energetico lasciando più spazio ad alimenti ricchi in proteine ad alto valore biologico per garantire l’apporto di amino acidi essenziali. Si otterrà così migliore efficacia terapeutica con minor rischio di inadeguatezza nutrizionale

I prodotti aproteici rappresentano un presidio fondamentale per la corretta elaborazione e attuazione di una dieta ipoproteica nell’insufficienza renale cronica. L’uso di prodotti aproteici permette di mantenere un apporto energetico adeguato escludendo/riducendo cereali e derivati che contengono proteine a basso valore biologico e di mantenere il consumo di alimenti animali contenenti proteine ad alto valore biologico. Rappresentano quindi una fonte di energia “pulita”, senza prodotti di scarto azotati e con un contenuto trascurabile di potassio, sodio e fosforo.

Le principali barriere all’ampio utilizzo di questi prodotti sono la scarsa palatabilità e consistenza (55, 56), il costo elevato e una disomogeneità inter-regionale nelle modalità di erogazione. Recentemente, il Ministero della Salute ha revisionato i livelli essenziali di assistenza (LEA) inserendo le malattie renali croniche nell’elenco delle patologie croniche esentate dalla partecipazione al costo. Quindi si attende una omogeneizzazione sul territorio nazionale delle modalità di erogazione (57).

Le differenze organolettiche tra prodotti aproteici e i corrispondenti prodotti comuni sono legate principalmente all’assenza di glutine, proteina che, nonostante il suo basso valore biologico, presenta straordinarie proprietà tecnologiche che costituiscono la base dei processi di produzione e cottura della pasta e dei processi di panificazione (58, 59). L’assenza di glutine limita la consistenza, l’aroma, la fragranza e l’aspetto di questi prodotti ma negli ultimi anni l’industria alimentare ha sviluppato percorsi di produzione alternativi, ottenendo buoni risultati grazie a nuove tecnologie di produzione e aggiunta di ingredienti sostitutivi, quali le fibre (55, 60, 61).

 

  1. Le compresse di aminoacidi essenziali e chetoanaloghi costituiscono una fonte di integrazione aminoacidica nella MRC 4-5 e sono la necessaria supplementazione nella dieta fortemente ipoproteica

Tra i regimi dietetici proposti ai pazienti con MRC 4-5, hanno un ruolo significativo le terapie nutrizionali a ridotto apporto proteico (0.3-0.6 g di proteine/kg di peso corporeo) integrate dall’utilizzo di miscele contenenti aminoacidi essenziali (EAA) e chetoacidi (KAA) (41, 24). Tali trattamenti nutrizionali sono da impiegare in pazienti motivati, che hanno una buona aderenza alla terapia e che non presentano comorbidità severe (62, 26). Per convenzione, una terapia nutrizionale ipoproteica standard è basata su un apporto di 0.6 g di proteine/kg di peso corporeo; una terapia nutrizionale fortemente ipoproteica è caratterizzata da un apporto di 0.3-0.4 g di proteine/kg di peso corporeo e di natura vegetale (63). Una dieta fortemente ipoproteica e vegetariana è di per se stessa inadeguata per l’apporto di aminoacidi e necessita della supplementazione di KAA e EAA (64, 65). L’utilizzo di queste miscele può rendersi utile anche in tutti i casi di insufficiente apporto spontaneo di amminoacidi essenziali.

Nelle supplemented very low protein diet (sVLPD) si utilizza una compressa di KAA e EAA ogni 5 chilogrammi di peso corporeo ideale. Una compressa di KAA e EAA contiene circa 500 mg di miscela e fornisce un apporto di 45 mg di calcio elemento (66).

Infine, la miscela di KAA e EAA ha anche un effetto farmacologico in quanto contiene una significativa quantità di cheto-leucina, che ha un’azione inibitoria sulla degradazione proteica, mentre la leucina è in grado di promuovere la sintesi proteica a livello muscolare (67).

Quindi le compresse di amino e chetoacidi utilizzate nelle terapie nutrizionali a basso o bassissimo apporto proteico soddisfano il fabbisogno di EAA consentendo di limitare al massimo l’apporto di azoto, fosforo e acidi fissi (68, 69).

 

  1. La terapia dietetica nutrizionale nella MRC 4-5 deve essere gestita con le fasi ed i criteri di una qualsiasi altra terapia farmacologica:
  • indicazioni
  • controindicazioni
  • effetti collaterali
  • modifiche della posologia
  • verifica dei risultati
  • follow-up

Indicazioni sono rappresentate dall’esistenza di alterazioni metaboliche e idroelettrolitiche o acidosi metabolica, deplezione proteico-energetica od obesità, segni e sintomi di intossicazione uremica, volontà o necessità di allontanare nel tempo l’inizio della terapia sostitutiva (dialisi o trapianto) (24, 70, 28).

Controindicazioni sono rappresentate dal rifiuto o dalla incapacità del paziente a seguire norme dietetiche per indigenza socio-economica, disagio psicologico, disturbo di masticazione, assenza di motivazione, peggioramento della qualità di vita, ecc.

Effetti collaterali che limitano la durata e l’aderenza del trattamento nutrizionale sono rappresentati dalla perdita di peso legata a riduzione dell’apporto energetico per la scarsa palatabilità e gusto dei cibi, monotonia della dieta o difficoltà nel praticarla, depressione, problemi relazionali (71, 56). Questi, se non risolti, possono e devono portare alla revisione e/o sospensione della TDN.

Modifiche della posologia: le modifiche dell’apporto proteico, energetico o di altri nutrienti come fosforo, sodio e potassio, devono essere adattate secondo le necessità cliniche nello stesso paziente e non aprioristicamente determinate dal livello di funzione renale residua (FRR) (72, 73).

Verifica dei risultati: utilizzando indicatori come urea, fosforemia, PTH, emoglobina, bicarbonatemia, albuminemia, peso corporeo, pressione arteriosa, necessità di dialisi, qualità di vita, ecc. (74).

Follow-up: programmazione dei controlli clinici, biochimici e nutrizionali, sulla base del livello di funzione renale residua, tipologia di TDN e quadro clinico. Interventi educativi interattivi fra le diverse figure professionali coinvolte nella gestione clinica della MRC al fine di migliorare la conoscenza, l’autogestione e i risultati della terapia conservativa dei pazienti con insufficienza renale cronica e di un coinvolgimento diretto del paziente nei processi decisionali diagnostici e terapeutici (75, 76).

 

  1. La regolare valutazione dello stato nutrizionale e funzionale all’inizio e durante il follow-up del paziente con MRC 4-5 è essenziale per la gestione dietetica

La malattia renale cronica in fase avanzata può essere aggravata da malnutrizione, meglio definita come PEW: questa condizione rappresenta un elemento prognostico negativo.

È importante predire, diagnosticare e caratterizzare la malnutrizione e monitorare la risposta alla terapia nutrizionale. Per la valutazione dello stato nutrizionale devono essere utilizzati più parametri compresi in 4 grandi categorie: 1) massa corporea; 2) massa muscolare; 3) dati biochimici; 4) apporti dietetici. Secondo un recente report (8) la diagnosi di PEW viene fatta quando sono presenti 3 segni/sintomi rilevati nelle diverse categorie e documentati per 3 volte in 2-4 settimane consecutive.

Massa corporea: fanno parte di questa categoria il peso corporeo e le sue variazioni, l’indice di massa corporea. Il peso è il più semplice ed efficace indicatore dell’adeguatezza dell’apporto energetico e deve essere rilevato dal paziente a casa ogni giorno e ad ogni visita. Sia il peso che l’indice di massa corporea (BMI) sono influenzati dallo stato di idratazione e non danno informazioni sulla composizione corporea.

Massa muscolare e massa grassa: possono essere stimati attraverso la misurazione di circonferenze e pliche sottocutanee. I limiti della plicometria sono la formazione del rilevatore e la presenza di edemi importanti o anasarca (77). Per la valutazione della composizione corporea può essere utilizzata la bioimpedenziometria. A fronte di un’agevole e ripetibile applicazione clinica, la stima dei compartimenti corporei deriva da algoritmi matematici che limitano la precisione e l’affidabilità del metodo (78).

Dati biochimici: comprendono il monitoraggio dell’albumina, della prealbumina, del colesterolo e della transferrina. Condizioni come l’infiammazione, il livello di funzione renale o l’assetto marziale ne limitano però sensibilità e specificità.

Apporti dietetici: sono monitorati mediante la ripetizione della storia dietetica, il 24 ore recall e i diari alimentari (79). La determinazione dell’urea, sodio e fosforo sulle urine delle 24 ore è di ausilio per la valutazione oggettiva degli apporti dietetici (80) in condizioni cliniche stabili.

Ulteriori metodi di valutazione dello stato nutrizionale comprendono il Subjective Global Assessment (SGA) (81) ed il Malnutrition Inflammation Score (MIS) (82).

Recentemente sono raccomandate, anche valutazioni funzionali e di performance. I test proposti comprendono l’indice di Bartel, la scala di Karnowsky, l’handgrip, il Sit-To-Stand test, il test del cammino di 6-minuti, il Rapid Assessment of Physical Activity (RAPA), contapassi, etc. (83).

La regolare valutazione dello stato nutrizionale e funzionale del paziente permette di intervenire tempestivamente e concordare modifiche della dieta prescritta. Il dietista renale è il professionista sanitario che deve collaborare con il nefrologo di riferimento del paziente per realizzare gli interventi nutrizionali più efficaci e sicuri nel paziente con MRC (84).

 

  1. Una corretta terapia nutrizionale ipoproteica non determina malnutrizione a breve e lungo termine

Nella MRC la quantità minima di proteine alimentari per mantenere il bilancio dell’azoto è circa 0,55 g/kg di peso corporeo (50). Il metabolismo proteico è strettamente legato all’apporto energetico e la richiesta azotata correlata inversamente con quella calorica. La maggior parte dei pazienti con MRC avanzata riesce a mantenere un bilancio dell’azoto neutro o positivo con 0,55 g/kg/die di proteine solo se ha un introito di energia superiore a 30 kcal/kg/die (50). In corso di dieta ipoproteica, se il paziente non soddisfa il fabbisogno energetico, il bilancio dell’azoto diventa negativo con degradazione proteica e perdita di massa magra corporea.

La maggior parte dei pazienti con MRC a cui viene prescritta una dieta ipoproteica ha un effettivo introito di proteine superiore alla prescrizione, mentre l’introito energetico è molto spesso ridotto al di sotto della soglia di sicurezza (85, 86). Questa incapacità di mantenere un apporto energetico sufficiente è dovuta a molti fattori in gran parte legati alla tossicità uremica (es. anoressia, nausea, astenia, depressione, anomalie del gusto e dell’olfatto).

L’aderenza rigorosa alla prescrizione di energia (35 kcal/kg/die nei soggetti di età < 60 anni e 30 kcal/kg/die nei soggetti > 60 anni) è essenziale per mantenere l’equilibrio del bilancio azotato durante una dieta ipoproteica; la prescrizione di una terapia nutrizionale personalizzata, con counseling e stretto monitoraggio nutrizionale da parte di dietisti esperti, consente di individuare tempestivamente anomalie ed errori alimentari e ridurre così il rischio di malnutrizione (24).

In uno studio randomizzato comprendente più di 400 pazienti con MRC stadio 3-5 seguiti per oltre 30 mesi, solo 3 soggetti hanno sviluppato malnutrizione (87), anche con diete a bassissimo contenuto proteico, sia durante la fase pre-dialitica che dopo l’inizio della dialisi (88, 89). Inoltre, una dieta ipoproteica molto rigorosa protratta fino all’inizio della dialisi non aumenta il rischio di morte nel successivo periodo di dialisi (26). Al contrario, circa la metà dei pazienti con MRC avanzata lasciati a dieta libera riduce spontaneamente l’assunzione di proteine ed energia, e per questo ha un rischio elevato di malnutrizione (86, 30).

Una TDN correttamente prescritta e con un attento monitoraggio clinico previene la malnutrizione ed è sicura nel breve e lungo periodo (90).

 

  1. Una corretta terapia dietetica nutrizionale nella MRC avanzata può permettere di ritardare la necessità di terapia sostitutiva. Per questo il suo impiego è particolarmente indicato nel paziente in lista di trapianto pre-emptive, aumentando le possibilità di successo di questo programma

La deplezione proteico-energetica rappresenta uno dei principali determinanti, insieme alla comorbidità cardiovascolare, dell’elevata mortalità dei pazienti in dialisi. È provato che i risultati del trapianto renale sono inversamente proporzionali alla durata del periodo di dialisi pretrapianto (il cosiddetto “dialysis vintage”) e sono migliori nei soggetti con trapianto pre-emptive (91-94).

Lo stato nutrizionale condiziona anche i risultati del trapianto renale, ma i dati sono meno numerosi ed esaustivi (95-97).

In questo contesto, mancano dati in letteratura che combinino le diete ipoproteiche, il trattamento nutrizionale e il trapianto pre-emptive. L’unica eccezione è rappresentata da un lavoro del 2004, su 9 pazienti diabetici in attesa di trapianto rene e pancreas, in 6 dei quali una dieta vegana supplementata con EAA e KAA ha costituito un periodo ponte verso un trapianto combinato (98).

In assenza di dati oggettivi, sono considerazioni generali quelle che portano a cercare di dilazionare l’inizio della dialisi, mediante un approccio nutrizionale integrato, in attesa di un trapianto renale o combinato.

L’approccio seguito dalla scuola italiana consiste, in generale, in una dieta normocalorica, ridotta in proteine e fosforo, associata ad un controllo dell’acidosi, con un apporto sodico limitato e sotto stretto controllo clinico. L’esperienza italiana dimostra, in linea con le differenti esperienze raccolte nel resto del mondo, le potenzialità di una dieta ipoproteica standard, e in casi selezionati fortemente ipoproteica supplementata con EAA e KAA, in differenti popolazioni di pazienti con malattia renale cronica avanzata. Tale approccio non comporta un’aumentata mortalità dopo l’avvio della dialisi (26, 99).

A favore dell’impiego sistematico di un regime adattato a stabilizzare la funzione renale in attesa di un trapianto pre-emptive pesano specificamente due elementi: il primo è il vantaggio di evitare la dialisi (va sottolineato come i dati favorevoli al trapianto pre-emptive siano stati raccolti in dialisi tri settimanali “standard”); il secondo è rappresentato dalla compliance terapeutica che è superiore in pazienti motivati, con una prospettiva “in positivo”. In tal senso, ci si può attendere che una dieta sia seguita con particolare attenzione, in fase pre-trapianto, in linea con esperienze differenti, quali l’attesa della maturazione di un accesso vascolare o una gravidanza (100, 62).

Può essere quindi opportuno offrire una TDN ai pazienti che possono beneficiare di un trapianto in fase predialitica. La carenza di dati rende comunque necessario investire in studi per meglio definire l’efficacia dell’approccio nutrizionale nel trapianto pre emptive.

 

  1. Una corretta terapia dietetica nutrizionale può permettere un programma integrato, dietetico e dialitico, della MRC stadio 5, con riduzione della frequenza delle sedute di emodialisi (una alla settimana)

Negli anni ‘80 e ’90, Giovannetti e Locatelli realizzarono il Programma Integrato Dietetico Dialitico (IDDP) in pazienti con VFG anche < 3 ml/min/1,73 m2, costituito da un’emodialisi mono settimanale integrata da una prescrizione dietetica fortemente ipoproteica pari a 0,3-0,4 g/Kg/die (Very Low-Protein Diet – VLPD) supplementata da aminoacidi essenziali e loro chetoanaloghi, normocalorica, iposodica (101, 102). Già allora si consolidava la percezione che la TDN costituisse un importante mezzo terapeutico per ritardare l’inizio della dialisi (103-105). Numerose segnalazioni dimostrano che durata e/o frequenza del ritmo dialitico producono uno stress citochinico pro-infiammatorio e pro-ossidativo che conduce alla riduzione della FRR (106). Nel 1998, Locatelli et al. sospesero l’IDDP per rischio di malnutrizione e scarsa compliance dei pazienti, riportando un drop-out del 66,6% (107). Un approccio simile, denominato Programma Combinato Dietetico Dialitico (CDDP) (108), ha trattato sino ad oggi oltre 126 pazienti. Il CDDP modificava alcuni aspetti dell’IDDP: apporto proteico 0,6 g/Kg/die con dieta libera il giorno della dialisi, filtrato glomerulare tra i 5-8 ml/min/1,73 m2, comunque ben superiore alle esperienze precedenti. Il calcolo della compliance dietetica veniva effettuato con la formula dell’Urea Nitrogen Appearance e la FRR con la media di tre raccolte settimanali utilizzando la media delle clearance dell’urea e della creatinina. In uno studio controllato, non randomizzato sono stati dimostrati sensibili vantaggi della CDDP rispetto ai pazienti in emodialisi tri settimanale, sul controllo della β2-microglobulina e della fosfatemia e mantenimento della funzione renale e diuresi residua (108). A 24 mesi la sopravvivenza cumulativa tra i 38 pazienti in CDDP ed i 30 in emodialisi temporanea (THD) era identica. Successivamente, i pazienti ancora presenti a 96 mesi di follow-up dimostravano una sopravvivenza cumulativa superiore nella CDDP (p < 0,05) evidenziando anche un notevole risparmio sui costi indiretti (ospedalizzazioni) e costi diretti ridotti del 75% (109, 110). Quindi, benché i dati derivino da uno studio non randomizzato, la CDDP in pazienti selezionati collaboranti potrebbe essere la migliore scelta “bridge” onde iniziare un programma di emodialisi incrementale.

 

  1. Una corretta terapia dietetica nutrizionale può permettere un programma integrato di dialisi peritoneale incrementale

L’utilizzo della dialisi peritoneale incrementale (DPi) è giustificato dalle linee guida vigenti che, stabilendo target minimi depurativi da raggiungere sommando la depurazione peritoneale e la FRR, permettono di iniziare con una dose dialitica ridotta (111).

La DPi non è ad oggi definita in modo conclusivo. La definizione prevalente è di 1-2 stasi giornaliere in dialisi peritoneale (DP) ambulatoriale continua e di un massimo di 4 sedute settimanali in DP automatizzata. Deve essere sottolineato che la DPi non è una dialisi precoce e richiede il controllo mensile della FRR per adeguare tempestivamente la dose dialitica.

A fronte di scarse evidenze in letteratura, la DPi è largamente utilizzata, soprattutto in Italia (112).

La DPi è risultata sicura per il paziente e ha mostrato vantaggi in termini di minore ospedalizzazione, incidenza di peritonite e di velocità di decremento della FRR (113), oltre ad un minore impatto sulla qualità di vita del paziente.

Le indicazioni per la TDN sono ben definite per la MRC 5 (43) e per la DP standard (114). E sono disponibili esperienze di associazione fra TDN ed emodialisi incrementale (109). In merito alla DPi non vi sono, ad oggi, indicazioni specifiche. La TDN in DPi potrebbe ridurre la possibilità di insorgenza di sintomatologia uremica, migliorare il controllo metabolico e contribuire a ritardare il declino della FRR. I principali problemi potrebbero derivare da scarsa tolleranza o aderenza alla TDN o dal rischio di peggioramento dello stato nutrizionale, con necessità quindi di un periodico monitoraggio metabolico e antropometrico (28).

Nel centro di Brescia, l’esperienza in DPi è partita nel 2002. Ad oggi più del 50% dei pazienti inizia in DPi e in prevalenza con metodica manuale. In tutti i casi viene intrapresa o proseguita una TDN con apporti giornalieri di 0,6-0,8 g proteine per kg peso corporeo, 30-35 Kcal/kg peso corporeo e 5 g/die di NaCl.

Al di là della nostra esperienza, studi controllati saranno necessari per confermare che una corretta TDN, associata al monitoraggio dello stato nutrizionale e della FRR, permettono di ottimizzare un programma di DPi. Del resto, è ben nota l’importanza della clearance renale rispetto a quella peritoneale.

 

  1. La malattia renale cronica avanzata è caratterizzata da una disbiosi del microbiota intestinale, che contribuisce all’intossicazione uremica e al danno cardiovascolare. Una terapia nutrizionale ipoproteica, associata a un adeguato introito di fibre può contrastare la disbiosi e ridurre la produzione di tossine uremiche.

Nella fase avanzata della MRC è presente uno stato di disbiosi del microbiota intestinale, con alterazione della permeabilità intestinale e della composizione batterica, sbilanciamento del metabolismo microbico in senso proteolitico, aumentata produzione di tossine uremiche, quali p-cresolo ed indossile solfato (115). Tali tossine, normalmente escrete per via renale, si accumulano nel paziente in relazione allo stadio della malattia e contribuiscono all’accelerata progressione verso la morte renale e alle complicanze infiammatorie e cardiovascolari (116).

La disbiosi è peggiorata nei casi di restrizione dietetica di vegetali e fibre, nel tentativo di controllare i livelli di potassio (117).

Pertanto, la TDN ideale per il paziente con MRC avanzata dovrebbe prevedere una restrizione proteica e un apporto di 20-30 g/die di fibra alimentare, orientando la scelta verso alimenti contenenti meno fosforo e potassio, a parità di contenuto in fibra (117). Le auspicabili ricadute benefiche di tale TDN nella MRC avanzata potrebbero essere:

  1. riduzione della disbiosi intestinale (118, 119 – (dimostrato in soggetti sani/contesti clinici diversi dalla MRC);
  2. riduzione delle tossine uremiche circolanti (118-121);
  3. riduzione di azotemia e creatininemia (122-124);
  4. aumento della fermentazione saccarolitica e di short-chain fatty acids (SCFA) a livello del colon ascendente (dimostrato in soggetti sani/contesti clinici diversi dalla MRC) (119);
  5. aumento del transito intestinale (125) e della massa fecale con aumentata escrezione di composti azotati (122);
  6. riduzione dell’infiammazione (126);
  7. potenziale riduzione della permeabilità intestinale (dimostrato in soggetti sani/contesti clinici diversi dalla MRC) (127);
  8. potenziale rallentamento della progressione della MRC.

 

Tali effetti potrebbero essere potenziati da una periodica somministrazione di integratori probiotici o simbiotici (118).

 

  1. In termini di farmaco-economia, una corretta terapia dietetica nutrizionale permette il risparmio di costi e di risorse nella gestione dei pazienti con insufficienza renale cronica avanzata.

La MRC è un problema sociale (7-8% della popolazione) (128), che deve essere precocemente individuata e trattata in maniera congrua impedendone la progressione verso la dialisi al fine di ridurre morbilità, mortalità e costi individuali e sociali.

Indagini di screening nella popolazione generale non sono state ritenute costo-efficaci (129).

I pazienti con insufficienza renale progressiva che iniziano la terapia sostitutiva renale entro 4 mesi dalla prima visita del nefrologo presentano un aumento dei costi rispetto ai riferimenti precoci (early referral) (130).

La dialisi ha costi molto elevati se comparati alla predialisi (131, 132). Dati del CENSIS 2008 (133) evidenziano che un paziente in dialisi costa circa 50.000 € / anno (35.000 in dialisi peritoneale) compresi i costi sociali.

I dati del Registro Italiano Dialisi e Trapianto riportano un’incidenza di circa 160 pazienti per milione di popolazione (pmp) con stima di circa 9600 pazienti che ogni anno entrano in dialisi e con 40.000 dializzati prevalenti. Se la spesa è di circa 50.000 € per paziente/anno, possiamo stimare che la spesa totale per la dialisi arrivi in Italia a circa 2.000.000.000 € all’anno.

Ritardare di un solo anno l’ingresso in dialisi comporta risparmi notevolissimi: molti pazienti, soprattutto i più anziani, con alta probabilità di decesso entro il primo anno di dialisi, potrebbero arrivare a fine vita senza essere mai sottoposti alla dialisi evitando sofferenze per i pazienti e le loro famiglie e contribuendo alla sostenibilità del SSN.

Il trapianto di rene è la terapia d’elezione per l’insufficienza renale cronica e il trattamento più economico nel lungo periodo. Il costo, in un periodo di osservazione di tre anni, ammonta a 95.247 €; di questi, 52.543 € sono relativi al trapianto stesso, corrispondenti all’intervento chirurgico e alla degenza presso il centro trapianti (134).

Per tutti questi motivi, ritardare l’inizio della dialisi potrebbe comportare un significativo risparmio economico. Una metanalisi della Cochrane ha evidenziato che la riduzione dell’apporto proteico riduce del 31% il rischio di iniziare la dialisi, con un valore NNT (Numbers Needed to Treat) pari a 17. L’uso della TDN, attraverso un’analisi costo efficacia, ha dimostrato un notevole risparmio (135) considerando i QALY (quality-adjusted life-year) guadagnati in successione. Un trattamento conservativo efficace in grado di posporre la dialisi, riduce i costi fino a circa 21.180 € a paziente nel primo anno, 6.500 nel secondo anno e 682 nel terzo anno di trattamento con un significativo beneficio in favore della dieta supplementata con chetoanaloghi anche nei casi peggiori (136).

La VLPD consente un risparmio di circa 20 mila € / anno quale consumo di risorse per eritropoietina (EPO) (137).

Dobbiamo anche considerare i costi dell’intervento nutrizionale che migliorando la qualità assistenziale comporta una riduzione dei costi da ospedalizzazione prima dell’inizio della dialisi e dalla preparazione tempestiva dell’accesso vascolare con risparmio sui cateteri venosi centrali..

 

  1. È necessario implementare modelli organizzativi per una più efficace e più agevole gestione clinica della malattia renale cronica avanzata: integrare diverse figure professionali

La MRC rappresenta un problema di sanità pubblica per l’elevata prevalenza e l’elevato impatto sulla morbilità e mortalità della popolazione (138, 139).

È necessario sviluppare interventi mirati all’inquadramento diagnostico precoce, al rallentamento della progressione del danno e alla prevenzione delle complicanze. Queste attività devono essere coordinate dal nefrologo che si avvale di altre figure professionali (infermiere, psicologo, dietista, ecc.). Lo strumento più efficace a questi fini è rappresentato dalla creazione di percorsi di diagnosi, terapia e assistenza (PDTA) in accordo con gli assessorati alla Sanità delle Regioni.

Percorsi di questo tipo sono stati attivati in alcune Regioni: il progetto PIRP (Prevenzione insufficienza renale progressiva) della Regione Emilia Romagna (140), è attivo dal 2004. Nei centri nefrologici di questa Regione sono stati strutturati ambulatori specifici e un percorso di collaborazione con la medicina del territorio; i dati raccolti rappresentano un importante patrimonio per l’analisi della progressione della malattia renale e si è ottenuta una riduzione dell’incidenza di casi di uremia terminale. La Rete Nefrologica lombarda (141) ha sviluppato programmi di coinvolgimento dei medici di medicina generale. Analoghe esperienze sono presenti in altre aree del Paese.

In Piemonte la rete nefrologica ha strutturato un modello di intervento relativo alla malattia renale avanzata, recepito in un Decreto di Giunta (142). Questo progetto ha contribuito alla creazione, presso tutti i centri di nefrologia, dell’Ambulatorio per la Malattia Renale Avanzata (MaReA). Il nefrologo, referente regionale, coordina un team di cura (infermiere, psicologo, dietista) e stabilisce i tempi, i modi di accesso e i controlli pianificando il processo di avvio del trattamento sostitutivo. I dati dei pazienti trattati sono registrati su un database regionale, collegato al Registro Dialisi e Trapianto. A 4 anni dall’avvio, sono stati evidenziati molti aspetti positivi ma anche alcune problematiche.

È stata data maggior attenzione ai diversi aspetti legati all’avvio del trattamento sostitutivo, si è stimolata una immissione più precoce in lista trapianto anche pre-emptive, si è ridestato un certo interesse verso il trattamento domiciliare (dialisi peritoneale ed emodialisi); sono stati attivati processi di collaborazione con i servizi di dietetica. Questi ultimi sono risultati problematici in alcune realtà, anche per la contemporanea riorganizzazione sanitaria regionale. Una soluzione al problema verrà ricercata in una più stretta collaborazione con la rete regionale della nutrizione clinica.

Per meglio governare il corso della MRC e razionalizzare l’intervento in tutti i suoi aspetti sarà necessario estendere il campo di azione a stadi più precoci di danno renale con necessità di coinvolgimento di figure operanti sul territorio (medici di medicina generale, distretti sanitari).

È necessario cogliere l’occasione offerta dal Piano Nazionale Cronicità (143) che le Regioni devono recepire, sviluppando processi e percorsi che consentano al nefrologo di poter disporre dei corretti strumenti per coordinare l’attività clinica rivolta al paziente con MRC.

 

  1. Livelli di supporto dietetico-nutrizionale:
  • dietista dedicata alla nefrologia a tempo pieno/parziale
  • dietista ospedaliera
  • materiale informativo
  • supporti informatici (internet)

Il dietista impegnato nel trattamento nutrizionale della MRC partecipa, in collaborazione con il nefrologo, al programma dietetico-nutrizionale mediante la valutazione dello stato nutrizionale del paziente e l’elaborazione di un piano dietetico personalizzato. Inoltre, interagisce con gli altri membri del team (psicologo, fisioterapista, ecc.) per identificare e promuovere i fattori individuali che possono favorire l’adesione al piano terapeutico complessivo (144).

La TDN fornita da un dietista è raccomandata per le persone con MRC dallo stadio 1 fino allo stadio 5, inclusi dialisi e trapianto (145). Il dietista, in collaborazione con il nefrologo, coinvolge il paziente e il caregiver, in tutte le fasi del trattamento nutrizionale, dalla storia dietetica alla formulazione, realizzazione e implementazione del piano dietetico. L’attività del dietista prevede un adeguato percorso informativo ed educazionale finalizzato all’autogestione dell’alimentazione secondo obiettivi specifici condivisi.

L’ANDID supporta le raccomandazioni della National Kidney Foundation (NKF) cioè che sia disponibile un dietista esperto ogni 150 pazienti nefropatici (84). La durata degli incontri è un fattore che condiziona la qualità della TDN (144). L’evidenza disponibile riporta che sono necessari 60-90 minuti per il primo incontro e 45-60 minuti per gli incontri successivi (146). Le Linee Guida Europee per l’Assistenza Nutrizionale dei pazienti adulti con MRC evidenziano che non viene prescritto un apporto proteico < 0,8 g/kg di ideal body weight (IBW)/die se non è regolarmente disponibile un dietista renale (147).

Il dietista ospedaliero, full time o part time con la Nefrologia, svolge la propria attività in collaborazione con i professionisti coinvolti nell’assistenza, adeguando la TDN ai differenti stadi della MRC. Svolge attività didattico-educativa e di informazione rivolta rispettivamente al personale di assistenza sanitaria e al personale dei servizi di ristorazione collettiva. Elabora tabelle dietetiche per i differenti stadi della MRC, pianificando capitolati per l’acquisto dei prodotti dietetici aproteici e menu per pazienti di qualsiasi età e cultura. Organizza e coordina i diversi attori coinvolti nei servizi di alimentazione per garantire il rispetto dei protocolli dietetici ipoproteici. Assicura la continuità assistenziale attraverso l’elaborazione di un piano dietetico personalizzato da attuare dopo la dimissione.

La capacità di coniugare nella giusta misura gli aspetti biologici e psico-sociali della storia dietetica costituisce l’abilità centrale del dietista esperto nel trattamento nutrizionale della MRC. Tale abilità consente l’elaborazione di piani dietetici personalizzati che incontrino sia i gusti sia le necessità del paziente (148). Nel caso di pazienti anziani i supporti cartacei vengono illustrati con il coinvolgimento dei familiari o caregivers a garanzia della migliore applicazione pratica possibile. Liste di scambio, brochure informative e indicazioni basate sulle abitudini alimentari tradizionali sono elaborate anche con la collaborazione del team e devono garantire ai pazienti un’ampia varietà di scelta, limitando la monotonia e la sensazione di divieto associata agli approcci tradizionali (149); porre l’accento su quello che si può e si deve consumare piuttosto che su quanto è “proibito”. Un servizio di consulenza telefonica/piattaforma web può costituire un supporto nelle realtà assistenziali in cui non è disponibile un dietista dedicato all’ambito nefrologico. L’istituzione di questo servizio dovrebbe prevedere la prescrizione del piano terapeutico da parte del nefrologo, l’elaborazione del piano TDN da parte del dietista e la successiva validazione da parte del nefrologo che ha in cura il paziente.

Vari sono stati i tentativi di produrre programmi computerizzati per l’elaborazione di piani dietetici ma ciò non garantisce la personalizzazione dei protocolli e ne limita la sicurezza e l’efficacia.

 

  1. L’aderenza alle prescrizioni dietetiche è una criticità così come nelle terapie farmacologiche. La condivisione del programma dietetico mediante una corretta informazione ed educazione rimane alla base di una corretta gestione della cronicità da parte del paziente

Nel documento di indirizzo per la malattia renale cronica emerge l’insoddisfazione dei pazienti per essere scarsamente informati e coinvolti nella propria cura (150). Il decreto sulla cronicità pone come punto fondamentale la presa in carico del paziente. C’è quindi molto da fare per coinvolgere il paziente nefropatico all’aderenza alla cura, che è indispensabile per migliorare i risultati e ridurre i costi in sanità (151-153).

Il termine “compliance” definisce il grado in cui la consapevolezza del paziente coincide con le raccomandazioni fornite dai sanitari (80), ed è spesso usato come sinonimo di “aderenza”. In generale, l’aderenza del paziente a una terapia dietetica nutrizionale è circa del 31%. Il coinvolgimento di un paziente è un percorso sistematico che identifica e qualifica le possibili modalità di relazione della persona, la famiglia, il caregiver con gli operatori sanitari. Il coinvolgimento è funzione di una capacità di scelta graduale delle persone di assumere un ruolo attivo nella gestione della propria salute. Questo processo è influenzato da fattori individuali, sociali, ambientali e socioeconomici.

È molto difficile agire sui processi correlati alla malattia del singolo paziente, più facile è agire sui processi di consapevolezza, informazione, presa in carico e preparazione del team. Il coinvolgimento del paziente e del team di cura deve divenire la regola all’interno della pratica clinica, essere misurato con adeguate scale validate (154) poiché fa parte dei criteri di valutazione e di accreditamento nazionale e certificazione Joint Commission International (JCI) ai punti in cui si richiamano gli aspetti di comunicazione al paziente e di sostegno all’autogestione.

Fondamentale per la riuscita di qualunque tipo di trattamento è la presa in cura (155, 156) che può avvenire solo se si è attuato un corretto coinvolgimento del paziente, della sua famiglia, dei caregiver e dei professionisti sanitari (empowerment). La formazione è fondamentale per lo sviluppo di competenze (157) e deve essere valutata e misurata se si vuole veramente aumentare l’efficacia e l’efficienza degli interventi clinico-assistenziali. L’acquisizione di tecniche di comunicazione è fondamentale e di supporto per una migliore informazione e coinvolgimento del paziente e dei familiari. I sistemi audiovisivi, applicazioni e social favoriscono il processo di engagement (158). I video possono essere strumenti potenti come fonti di medicina narrativa, catturando più facilmente l’attenzione dei pazienti.

 

  1. Gli operatori sanitari coinvolti nella gestione del paziente con MRC 4-5 devono promuovere la regolare attività fisica come parte integrante della terapia dietetica nutrizionale.

L’attività fisica rappresenta uno degli elementi chiave per la prevenzione delle patologie croniche dato che migliora molti aspetti tra i quali il controllo della pressione arteriosa, il metabolismo glicidico e lipidico, lo stato di nutrizione e la funzione endoteliale (159). Al contrario, la letteratura è concorde nell’indicare come la sedentarietà sia associata all’aumento del rischio di morbilità e mortalità (160-162).

Ci sono ormai dati forti a supporto degli effetti favorevoli dell’attività fisica nel paziente affetto da MRC e in dieta ipoproteica (163) inclusi i pazienti anziani (164). In questi pazienti l’attività fisica può rappresentare un importante stimolo anabolico che favorisce l’utilizzazione dei nutrienti e contrasta la perdita di massa magra (163). Nonostante questo, programmi di attività e/o di esercizio fisico sono raramente raccomandati ai pazienti con MRC (165).

Uno dei compiti del nefrologo è quello di superare le barriere che frequentemente si oppongono all’attuazione di programmi “riabilitativi” (166). La scarsa conoscenza e consapevolezza dell’importanza dell’attività fisica nella MRC richiede la necessità di creare gruppi multidisciplinari per implementare programmi di attività fisica adeguati al paziente nefropatico (167).

Gli operatori sanitari coinvolti nella gestione del paziente con MRC dovrebbero promuovere la regolare attività fisica come parte integrante della TDN, soprattutto nelle fasi avanzate della malattia.

Tabella 2 mostra un summary dei 20 punti analizzati in questo Consensus Document.

 

Bibliografia

  1. Moranne O, Froissart M, Rossert J et al. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol 2009;20:164-71.
  2. Bradbury BD, Fissell RB, Albert JM et al. Predictors of early mortality among incident US hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Clin J Am Soc Nephrol 2007;2:89–99.
  3. Adeney KL, Siscovick DS, Ix JH at al. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol 2009;20:381–7.
  4. Reaich D, Channon SM, Scrimgeour CM et al. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation. Am J Physiol 1993;265(2 Pt 1):E230-5.
  5. Einhorn LM, Zhan M, Hsu VD et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med 2009;169:1156–62.
  6. Duranton F, Cohen G, De Smet R et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol 2012;23(7):1258-70.
  7. Zha Y, Qian Q. Protein Nutrition and Malnutrition in CKD and ESRD. Nutrients 2017;9(3). pii: E208. doi: 10.3390/nu9030208.
  8. Fouque D, Kalantar-Zadeh K, Kopple J et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73(4):391-8.
  9. Eustace JA, Astor B, Muntner PM et al. Prevalence of acidosis and inflammation and their association with low serum albumin in chronic kidney disease. Kidney Int 2004;65:1031–40.
  10. Kittiskulnam P, Chertow GM, Carrero JJ et al. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis. Kidney Int 2017;92(1):238-247.
  11. De Borst MH, Navis G. Sodium intake, RAAS-blockade and progressive renal disease. Pharmacol Res 2016;107:344-351.
  12. Zoccali C, Mallamaci F. Salt, cardiovascular risk, observational research and recommendations for clinical practice. Nephrol Dial Transplant 2016;31(9):1405-8.
  13. Humalda JK, Lambers Heerspink HJ, Kwakernaak AJ et al. Fibroblast growth factor 23 and the antiproteinuric response to dietary sodium restriction during renin-angiotensin-aldosterone system blockade. Am J Kidney Dis 2015;65(2):259-66.
  14. Humalda JK, Navis G. Dietary sodium restriction: a neglected therapeutic opportunity in chronic kidney disease. Curr Opin Nephrol Hypertens 2014;23(6):533-40.
  15. Zoccali C, Ruggenenti P, Perna A et al. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol 2011;22(10):1923-30.
  16. Khairallah P, Isakova T, Asplin J et al. Acid Load and Phosphorus Homeostasis in CKD. Am J Kidney Dis 2017;70:541-550.
  17. Di Iorio BR, Bellizzi V, Bellasi A et al. Phosphate attenuates the anti-proteinuric effect of very low-protein diet in CKD patients. Nephrol Dial Transplant. 2013;28(3):632-40.
  18. Goraya N, Simoni J, Jo CH et al. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int 2014;86(5):1031–8. doi: 10.1038/ki.2014.83.
  19. Di Iorio BR, Di Micco L, Marzocco S et al. Very Low-Protein Diet (VLPD) Reduces Metabolic Acidosis in Subjects with Chronic Kidney Disease: The “Nutritional Light Signal” of the Renal Acid Load. Nutrients 2017;9(1). pii: E69. doi: 10.3390/nu9010069.
  20. Rosansky S, Glassock RJ, Clark WF. Early Start of Dialysis: A Critical Review. Clin J Am Soc Nephrol 2011;6:1222-8.
  21. Cooper BA, Branley P, Bulfone L et al. A randomized controlled trial of early versus late initiation of dialysis. N Engl J Med 2010 12;363(7):609-19.
  22. Kurella Tamura M. Recognition for Conservative Care in Kidney Failure. Am J Kidney Dis 2016;68(5):671-673.
  23. Davison SN, Levin A, Moss AH et al. Executive summary of the KDIGO Controversies Conference on Supportive Care in Chronic Kidney Disease: developing a roadmap to improving quality care. Kidney Int 2015;88(3):447-59.
  24. Bellizzi V, Cupisti A, Locatelli F et al. Low-protein diets for chronic kidney disease patients: the Italian experience. BMC Nephrol 2016;17(1):77.
  25. Walser M, Hill S. Can renal replacement be deferred by a supplemented very low protein diet? J Am Soc Nephrol 1999;10(1):110-6.
  26. Bellizzi V, Chiodini P, Cupisti A et al. Very low-protein diet plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: a historical cohort controlled study. Nephrol Dial Transplant 2015;30(1):71-7.
  27. Bellizzi V, Carrero JJ, Chauveau P et al. Retarding chronic kidney disease (CKD) progression: a practical nutritional approach for non-dialysis CKD. Nephrology @ Point of Care 2016;2(1):e56-67. doi: 10.5301/pocj.5000207
  28. Hanafusa N, Lodebo BY, Kopple JD. Current Uses of Dietary Therapy for Patients with Far-Advanced CKD. Clin J Am Soc Nephrol 2017;12:1190-1195.
  29. Kopple JD, Greene T, Chumlea WC et al. Relationship between nutritional status and the glomerular filtration rate: results from the MDRD Study. Kidney Int 2000;57:1688–703.
  30. Ikizler TA, Greene JH, Wingard RL et al. Spontaneous dietary protein intake during progression of chronic renal failure. J Am Soc Nephrol 1995;6:1386–91.
  31. Mitch WE. Malnutrition: a frequent misdiagnosis for hemodialysis patients. J Clin Invest 2002;110:437–9.
  32. Anderstam B, Mamoun AH, Södersten P et al. Middlesized molecule fractions isolated from uremic ultrafiltrate and normal urine inhibit ingestive behavior in the rat. J Am Soc Nephrol 1996;7:2453–60.
  33. Mamoun AH, Södersten P, Anderstam B et al. Evidence of splanchnic-brain signalling in inhibition of ingestive behaviour by middle molecules. J Am Soc Nephrol 1999;10:309–14.
  34. Mitch WE. Cachexia in chronic kidney disease: a link to defective central nervous system control of appetite. J Clin Invest 2005;115:1476-8.
  35. Kovesdy CP, Kopple JD, Kalantar-Zadeh K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr 2013;97:1163–77.
  36. Nutrients and energy reference intake for Italian Population. 4th Rev. SINU (Italian Society of Human Nutrition), 2012.
  37. Aparicio M, Bellizzi V, Chauveau P et al. Protein-restricted diets plus keto/amino acids–a valid therapeutic approach for chronic kidney disease patients. J Ren Nutr 2012;22(2 Suppl):S1-21.
  38. Chang AR, Miller ER 3rd, Anderson CA et al. Phosphorus Additives and Albuminuria in Early Stages of CKD: A Randomized Controlled Trial. Am J Kidney Dis 2017;69:200-209.
  39. Sullivan C, Sayre SS, Leon JB et al. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. JAMA 2009;301(6):629-35.
  40. D’Alessandro C, Piccoli GB, Cupisti A. The “phosphorus pyramid”: a visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol 2015;16:9.
  41. D’Alessandro C, Piccoli GB, Calella P et al. “Dietaly”: practical issues for the nutritional management of CKD patients in Italy. BMC Nephr 2016;17(1):102.
  42. Asghari G, Yuzbashian E, Mirmiran P et al. The association between Dietary Approaches to Stop Hypertension and incidence of chronic kidney disease in adults: the Tehran Lipid and Glucose Study. Nephrol Dial Transplant 2017;32(suppl_2):ii224-ii230.
  43. Bellizzi V, Bianchi S, Bolasco P et al. A Delphi consensus panel on nutritional therapy in chronic kidney disease. J Nephrol 2016;29(5):593-602.
  44. Kuwabara M, Hisatome I, Roncal-Jimenez CA et al. Increased Serum Sodium and Serum Osmolarity Are Independent Risk Factors for Developing Chronic Kidney Disease; 5 Year Cohort Study. PLoS One 2017;12(1):e0169137.
  45. Bellasi A, Di Micco L, Santoro D et al. Correction of metabolic acidosis improves insulin resistance in chronic kidney disease. BMC Nephrol 2016;17(1):158.
  46. Tom K, Young VR, Chapman T et al. Long-term adaptive responses to dietary protein restriction in chronic renal failure. Am J Physiol Endocrinol Metab 1995;268:E668–77.
  47. Bernhard J, Beaufrère B, Laville M et al. Adaptive response to a low-protein diet in predialysis chronic renal failure patients. J Am Soc Nephrol 2001;12:1249–54.
  48. Masud T, Young VR, Chapman T et al. Adaptive responses to very low protein diets: the first comparison of ketoacids to essential amino acids. Kidney Int 1994;45:1182–92.
  49. Goodship THJ, Mitch WE, Hoerr RA et al. Adaptation to low-protein diets in renal failure: leucine turnover and nitrogen balance. J Am Soc Nephrol 1990;1:66–75.
  50. Kopple JD, Monteon FJ, Shaib JK. Effect of energy intake on nitrogen metabolism in non-dialyzed patients with chronic renal failure. Kidney Int 1986;29:734–42.
  51. Williams B, Hattersley J, Layward E et al. Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia. Kidney Int 1991;40:779–86.
  52. Franch HA, Mitch WE. Catabolism in uremia: the impact of metabolic acidosis. J Am Soc Nephrol 1998;9(12 Suppl):S78-81.
  53. Bailey JL, Mitch WE. Metabolic acidosis as a uremic toxin. Semin Nephrol 1996;16(3):160-6.
  54. Rigalleau V, Combe C, Blanchetier V et al. Low protein diet in uremia: effects on glucose metabolism and energy production rate. Kidney Int 1997;51:1222–7.
  55. Fantuzzi AL, Lugli F, Giannini R. The opinion of patients with chronic renal disease on low-protein foods. G Tec Nefrol Dial 2014;26(4):361-367.
  56. D’Alessandro C, Rossi A, Innocenti M et al. Dietary protein restriction for renal patients: don’t forget protein-free foods. J Ren Nutr 2013;23:367–71.
  57. Decreto del Presidente del Consiglio dei Ministri 12 gennaio 2017. Definizione e aggiornamento dei livelli essenziali di assistenza, di cui all’articolo 1, comma 7, del decreto legislativo 30 dicembre 1992, n. 502. GU n.65 del 18/3/2017 – Suppl. Ordinario n.15.
  58. Wagner M, Morel MH, Bonicel J et al. Mechanisms of heat-mediated aggregation of wheat gluten protein upon pasta processing. J Agric Food Chem 2011;13;59(7):3146-54.
  59. Delcour JA, Joye IJ, Pareyt B et al. Wheat gluten functionality as a quality determinant in cereal-based food products. Annu Rev Food Sci Technol 2012;3:469-92.
  60. Sabanis D, Lebesi D, Tzia C. Development of fibre-enriched gluten-free bread: a response surface methodology study. Int J Food Sci Nutr 2009;60:174-90.
  61. Alvarez-Jubete L, Arendt EK, Gallagher E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Int J Food Sci Nutr 2009;60:240-257.
  62. Fouque D, Chen J, Chen W et al. Adherence to ketoacids/essential amino acids-suppleented low protein diets and new indications for patients with chronic kidney disease. BMC Nephrol 2016;17:63.
  63. Goraya N, Wesson, DE. Dietary interventions to improve outcomes in chronic kidney disease. Curr Opin Nephrol Hypertens 2015;24:505–10.
  64. Garneata L, Stancu A, Dragomir D et al. Ketoanalogue-Supplemented Vegetarian Very Low-Protein Diet and CKD Progression. J Am Soc Nephrol 2016;27:2164–76.
  65. Aparicio M, Bellizzi V, Chauveau P et al. Do ketoanalogues still have a role in delaying dialysis initiation in CKD predialysis patients? Semin Dial 2013;26:714–9.
  66. Di Iorio BR, Minutolo R, De Nicola L. et al. Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int 2003;64:1822–8.
  67. Mitch WE, Walser M, Sapir DG. Nitrogen sparing induced by leucine compared with that induced by its keto analogue, alpha-ketoisocaproato, in fasting obese man. J Clin Invest 1981;67(2):553-62.
  68. Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int 2010;78:1128–35.
  69. Brunori G, Viola BF, Parrinello G et al. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: A prospective randomized multicenter controlled study. Am J Kidney Dis 2007;49:569–80.
  70. Mitch, WE, Remuzzi G. Diets for patients with chronic kidney disease, should we reconsider? BMC Nephrol 2016;17:80.
  71. Piccoli GB, Deagostini MC, Vigotti FN, et al. Which low-protein diet for which CKD patient? An observational, personalized approach. Nutrition 2014;30:992–9.
  72. Aparicio M, Bellizzi V, Chauveau P et al. Keto acid therapy in predialysis chronic kidney disease patients: Final consensus. J Ren Nutr 2012;22:S22-4.
  73. Cupisti A, D’Alessandro C, Di Iorio B et al. Nutritional support in the tertiary care of patients affected by chronic renal insufficiency: report of a step-wise, personalized, pragmatic approach. BMC Nephrol 2016;17(1):124.
  74. Kovesdy CP, Kalantar-Zadeh K. Back to the future: Restricted protein intake for conservative management of CKD, triple goals of renoprotection, uremia mitigation, and nutritional health. Int Urol Nephrol 2016;48:725–9.
  75. Coyne T, Olson M, Bradham K et al. Dietary satisfaction correlated with adherence in the Modification of Diet in Renal Disease Study. J Am Diet Assoc 1995;95(11):1301–6.
  76. Lopez-Vargas PA, Tong A, Howell M et al. Educational Interventions for Patients With CKD: A Systematic Review. Am J Kidney Dis 2016;68(3):353-70.
  77. Pasticci F, Fantuzzi AL, Pegoraro M et al. Nutritional management of stage 5 chronic kidney disease. J Ren Care 2012;38(1):50-8.
  78. Pupim LB, Ikizler TA. Assessment and Monitoring of Uremic Malnutrition. J Renal Nutrition 2004;14:6-19.
  79. Fantuzzi AL, Gennari A., Pasticci F.et al. Ruolo del dietista nella gestione nutrizionale del paziente con malattia renale cronica. Posizione ANDID 2002.
  80. Bellizzi V, Bedogni G, Quintaliani G. Compliance with low protein diet in patients with chronic kidney disease. G Ital Nefrol 2008;25(Suppl 42):S45-9.
  81. Steiber AL, Kalantar-Zadeh K, Secker D et al. Subjective Global Assessment in Chronic Kidney Disease: A Review. J Renal Nutrition 2004;4:191-200.
  82. Kalantar-Zadeh K, Kopple JD, Block G et al. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am J Kidney Dis 2001;38(6):1251-63.
  83. Cupisti A, D’Alessandro C, Caselli GM. Nutritional and Functional assessment of peritoneal dialysis patients in the clinical practice: Report from MITO-DP Group. G Ital Nefrol 2016;33(4). pii: gin/33.4.6.
  84. Clinical practice guidelines for nutrition in chronic renal failure. K/DOQI, National Kidney Foundation. Am Journal Kidney Disease 2000;35(6)(Suppl 2):S1-S140.
  85. Cianciaruso B, Capuano A, D’Amaro E et al. Dietary compliance to a low protein and phosphate diet in patients with chronic renal failure. Kidney Int 1989;27:S173-6.
  86. Kopple JD, Levey AS, Greene T et al. Effect of dietary protein restriction on nutritional status in the Modification of Diet in Renal Disease Study. Kidney Int 1997;52:778-791.
  87. Cianciaruso B, Pota A, Bellizzi V et al. Effect of a low- versus moderate-protein diet on progression of CKD: follow-up of a randomized controlled trial. Am J Kidney Dis 2009;54(6):1052-61.
  88. Chauveau P, Barthe N, Rigalleau V et al. Outcome of nutritional status and body composition of uremic patients on a very low protein diet. Am J Kidney Dis 1999;34(3):500-507.
  89. Vendrely B, Chauveau P, Barthe N et al. Nutrition in hemodialysis patients previously on a supplemented very low protein diet. Kidney Int 2003;63(4):1491-8.
  90. Dukkipati R, Noori N, Feroze U et al. Dietary Protein Intake in Patients with Advanced Chronic Kidney Disease and on Dialysis. Seminars in Dialysis 2010;23(4):365-372.
  91. Meier-Kriesche HU, Schold JD, Srinivas TR et al. Kidney transplantation halts cardiovascular disease progression in patients with end-stage renal disease. Am J Transplant 2004;4(10):1662-8.
  92. Augustine JJ, Poggio ED, Clemente M et al. Hemodialysis vintage, black ethnicity, and pretransplantation antidonor cellular immunity in kidney transplant recipients. J Am Soc Nephrol 2007;18(5):1602-6.
  93. Haller MC, Kainz A, Baer H et al. Dialysis Vintage and Outcomes after Kidney Transplantation: A Retrospective Cohort Study. Clin J Am Soc Nephrol 2017;12(1):122-130.
  94. Papalois VE, Moss A, Gillingham KJ et al. Pre-emptive transplants for patients with renal failure: an argument against waiting until dialysis. Transplantation 2000;70(4):625-31.
  95. Streja E, Molnar MZ, Kovesdy CP et al. Associations of pretransplant weight and muscle mass with mortality in renal transplant recipients. Clin J Am Soc Nephrol 2011;6(6):1463-73.
  96. Molnar MZ, Nguyen DV, Chen Y et al. Predictive Score for Posttransplantation Outcomes. Transplantation 2017;101(6):1353-64.
  97. Piccoli GB, Moio MR, Fois Aet al. The Diet and Haemodialysis Dyad: Three Eras, Four Open Questions and Four Paradoxes. A Narrative Review, Towards a Personalized, Patient-Centered Approach. Nutrients 2017;9(4). pii: E372. doi: 10.3390/nu9040372.
  98. Piccoli GB, Motta D, Martina G et al. Low-protein vegetarian diet with alpha-chetoanalogues prior to pre-emptive pancreas-kidney transplantation. Rev Diabet Stud 2004;1:95-102.
  99. Chauveau P, Couzi L, Vendrely B et al. Long-term outcome on renal replacement therapy in patients who previously received a keto acid-supplemented very-low-protein diet. Am J Clin Nutr 2009;90(4):969-74.
  100. Attini R, Leone F, Parisi S et al. Vegan-vegetarian low-protein supplemented diets in pregnant CKD patients: fifteen years of experience. BMC Nephrol 2016;17(1):132.
  101. Locatelli FAndrulli SPontoriero G at al. Supplemented low-protein diet and once-weekly hemodialysis. Am J Kidney Dis1994;24(2):192-204.
  102. Morelli E, Baldi R, Barsotti G et al. Combined therapy for selected chronic uremic patients: infrequent hemodialysis and nutritional management. Nephron 1987;47(3):161-6.
  103. Levey AS, Adler S, Caggiula AW et al. Effects of dietary protein restriction on the progression of advanced renal disease in the Modification of Diet in Renal Disease Study. Am J Kidney Dis 1996;27(5):652-63.
  104. Fouque D, Laville M, Boissel JP. Low protein diets for chronic kidney disease in non diabetic adults. Cochrane Database Syst Rev 2006;(2):CD001892.
  105. Zemchenkov A, Konakova IN. Efficacy of the Essential Amino Acids and Keto-Analogues on the CKD progression rate in real practice in Russia – city nephrology registry data for outpatient clinic. BMC Nephrology 2016;17:62.
  106. Daugirdas JT, Greene T, Rocco MV et al. Effect of frequent hemodialysis on residual kidney function. Kidney Int 2013;83(5):949-58.
  107. Locatelli F, Andrulli S, Pontoriero G et al. Integrated diet and dialysis programme. Nephrol Dial Transplant 1998;13(Suppl 6):132–138.
  108. Caria S, Cupisti A, Bolasco P. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrology 2014;15:172.
  109. Bolasco P, Cupisti A, Locatelli F et al. Dietary Management of Incremental Transition to Dialysis Therapy: Once-Weekly Hemodialysis Combined with Low-Protein Diet. J of Renal Nutr 2016;26(6):352-359.
  110. Bolasco P. Nutritional hypoproteic approach and phosphate control allows the incremental hemodialysis. 11th European Nutrition and Dietetics Conference 2017.
  111. Lo WK, Bargman JM, Burkart J et al. Guideline on targets for solute and fluid removal in adult patients on chronic peritoneal dialysis. Perit Dial Int. 2006;26(5):520-2.
  112. Neri L, Viglino G, Marinangeli G et al. Incremental start to PD as experienced in Italy: results of census carried out from 2005 to 2014. J Nephrol 2017;30(4):593-599.
  113. Sandrini M, Vizzardi V, Valerio F et al. Incremental peritoneal dialysis: a 10 year single-centre experience. J Nephrol 2016;29(6):871-879.
  114. Tennankore KK, Bargman JM. Nutrition and the Kidney: Recommendations for Peritoneal Dialysis. Adv Chronic Kidney Dis 2013;20(2):190-201.
  115. Montemurno E, Cosola C, Dalfino G et al. What would you like to eat, Mr CKD Microbiota? A Mediterranean Diet, please! Kidney Blood Press Res 2014;39(2-3):114-23.
  116. Vanholder R, Schepers E, Pletinck A et al. The Uremic Toxicity of Indoxyl Sulfate and p-Cresyl Sulfate: A Systematic Review. J Am Soc Nephrol 2014;25(9):1897-907.
  117. Cupisti A, D’Alessandro C, Gesualdo L et al. Non-Traditional Aspects of Renal Diets: Focus on Fiber, Alkali and Vitamin K1 Intake. Nutrients 2017;9(5). pii: E444. doi: 10.3390/nu9050444.
  118. Sabatino A, Regolisti G, Cosola C et al. Intestinal Microbiota in Type 2 Diabetes and Chronic Kidney Disease. Curr Diab Rep 2017;17(3):16.
  119. De Angelis M, Montemurno E, Vannini L et al. Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol 2015;81:7945–56.
  120. Cosola C, De Angelis M, Rocchetti MT et al. Beta-Glucans Supplementation Associates with Reduction in P-Cresyl Sulfate Levels and Improved Endothelial Vascular Reactivity in Healthy Individuals. PLoS One 2017;12(1):e0169635.
  121. Rossi M, Johnson DW, Xu H et al. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr Metab Cardiovasc Dis 2015;25(9):860-5.
  122. Bliss DZ, Stein TP, Schleifer CR et al. Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am J Clin Nutr 1996;63(3):392-8.
  123. Chiavaroli L, Mirrahimi A, Sievenpiper JL et al. Dietary fiber effects in chronic kidney disease: a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 2015;69(7):761-8.
  124. Di Iorio BR, Marzocco S, Bellasi A et al. Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease. Nephrol Dial Transplant 2017 11. doi: 10.1093/ndt/gfx203
  125. Salmean YA, Zello GA, Dahl WJ. Foods with added fiber improve stool frequency in individuals with chronic kidney disease with no impact on appetite or overall quality of life. BMC Res Notes 2013;6:510.
  126. Krishnamurthy VM, Wei G, Baird BC et al. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int 2012;81(3):300–6.
  127. Russo F, Linsalata M, Clemente C et al. Inulin-enriched pasta improves intestinal permeability and modifies the circulating levels of zonulin and glucagon-like peptide 2 in healthy young volunteers. Nutr Res 2012;32(12):940-6.
  128. Documento di indirizzo per la malattia renale cronica http://www.salute.gov.it/portale/documentazione/p6_2_2_1.jsp?lingua=italiano&id=2244
  129. Vekemana F, Yameogo ND, Lefebvreb P et al. Healthcare costs associated with nephrology care in pre-dialysis chronic kidney disease patients. J Medical Economics 2010;13(4):673-80.
  130. McLaughlin K, Manns B, Culleton B et al. An economic evaluation of early versus late referral of patients with progressive renal insufficiency. Am J Kidney Dis 2001;38:1122-8.
  131. Roggeri DP, Roggeri A, Salomone M. Chronic Kidney Disease: Evolution of Healthcare Costs and Resource Consumption from Predialysis to Dialysis in Piedmont Region, Italy. Advances in Nephrology 2014; Article ID 680737, 6 pages. http://dx.doi.org/10.1155/2014/680737.
  132. Turchetti G, Bellelli S, Amato M et al. The social cost of chronic kidney disease in Italy. Eur J Health Econ 2017;18:847-858.
  133. Censis, I trattamenti sostituitivi della funzione renale in Italia: aspetti clinici, economici e sociali, Roma, 2008.
  134. Censis, Concetta M. Vaccaro Il valore del trapianto. I consumi sanitari ed i costi dei trapiantati di rene in Italia, Carocci ed. Roma, 2013.
  135. Mennini FS, Russo S, Marcellusi A et al. Economic effects of treatment of chronic kidney disease with low-protein diet. J Ren Nutr 2014;24(5):313-21.
  136. Scalone L, Borghetti F, Brunori G et al. Cost-benefit analysis of supplemented very low-protein diet versus dialysis in elderly CKD5 patients. Nephrol Dial Transplant 2010;25:907-13.
  137. Di Iorio BR, Bellizzi V, Minutolo R et al. Supplemented Very Low Protein Diet in advanced CRF: is it money saving? Kidney Int 2004;65:742.
  138. Radhakrishnan J, Remuzzi G, Saran R et al. Taming the chronic kidney disease epidemic: a global view of surveillance efforts. Kidney International 2014;86(2):246-50.
  139. Stenvinkel P. Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease. J Intern Med 2010;268(5):456-67.
  140. REGIONE EMILIA ROMAGNA:

http://salute.regione.emilia-romagna.it/campagne/campagne-informative-scadute/insufficienza-renale

  1. REGIONE LOMBARDIA Decreto n, 1074 -12.02.2013 – identificativo atto n. 61: http://www.regione.lombardia.it/wps/wcm/connect/cd3119a5-db9e-4f7c-a0a3-21ef51fa6eab/Decreto+approvazione+documenti+sottogruppi.pdf?MOD=AJPERES&CACHEID=cd3119a5-db9e-4f7c-a0a3-21ef51fa6eab
  2. REGIONE PIEMONTE BU36 05/09/2013: http://www.regione.piemonte.it/governo/bollettino/abbonati/2013/36/attach/dgr_06290_830_02082013.pdf
  3. Ministero Salute 2016- PNC Piano Nazionale delle Criticità: http://www.trovanorme.salute.gov.it/norme/renderNormsanPdf?anno=2016&codLeg=56361&parte=1%20&serie=null
  4. Fantuzzi AL, Gennari AL, Pasticci F et al. Posizione ANDID: Ruolo del Dietista nella gesione nutrizionale del paziente con malattia renale cronica. ANDID notizie, speciale 2005;5:23-4.
  5. Academy of Nutrition and Dietetics Chronic Kidney Disease (CKD) Evidence-Based Nutrition Practice Guideline: Evidence Analysis Library 2012:

http://andevidencelibrary.com/topic.cfm?format_tables=0&cat=3929.

  1. American Dietetic Association. Medical Nutrition Therapy: Chronic Kidney disease (non-dialysis). Chicago (CD-ROM), 2002.
  2. EDTNA/ERCA Dietitians Special Interest Group. European Guidelines for Nutritional care of Adult Renal Patients, 2002.
  3. Kopple JD. Nutrition, diet and the kidney. In “Modern nutrition in health and disease”, Shils ME, Olson JA, Shike M. Lea and Febiger, Philadelphia, 1994, 1102-1134.
  4. Fantuzzi AL, Bedogni G: Dieta ipoproteica e insufficienza renale cronica. Milano, UTET S.p.A. Divisione periodici scientifici, 2001;50-53.
  5. Documento di indirizzo per la malattia renale cronica e decreto cronicità https://renalgate.wordpress.com/malattia-renale-cronica/
  6. Graffigna G, Barello S, Riva G et al. Patient engagement: the key to redesign the exchange between the demand and supply for healthcare in the era of active ageing. Stud Health Technol Inform 2014;203:85-95.
  7. Oshima Lee E, Emanuel EJ. Shared decision making to improve care and reduce costs. N Engl J Med 2013;368(1):6-8.
  8. Goovaerts T, Jadoul M, Goffin E. Influence of a pre-dialysis education programme (PDEP) on the mode of renal replacement therapy. Nephrol Dial Transplant 2005;20:1842-1847.
  9. Barello S, Graffigna G, Pitacco G et al. An educational intervention to train professional nurses in promoting patient engagement: a pilot feasibility study. Front Psychol 2016;7:2020. doi: 10.3389/fpsyg.2016.02020
  10. Laurance J, Henderson S, Howitt PJ et al. Patient Engagement: four case studies that highlight the potential for improved health outcomes and reduced costs. Health Affairs 2014;33(9):1627-34.
  11. Stewart M. Towards a global definition of patient centred care. BMJ 2001;322:444-445.
  12. Charles C, Gafni A, Whelan T. How to improve communication between doctors and patients: Learning more about the decision making context is important. BMJ 2000;320(7244):1220-1.
  13. Solomon M, Wagner SL, Goes J. Effects of a Web-based intervention for adults with chronic conditions on patient activation: online randomized controlled trial. J Med Internet Res 2012;14:14(1):e32.
  14. Barcellos FC, Santos IS, Umpierre D et al. Effects of exercise in the whole spectrum of chronic kidney disease: a sistematic review. Clin Kidney J 2015;8:753-65.
  15. Lee IM, Shiroma EJ, Lobelo F et al. Effect of physical inactivity on major non-communicable disease worldwide: an analysis of burden of disease and life expectancy. Lancet 2012;380:219-29.
  16. O’Hare AM, Tawney K, Bacchetti P et al. Decreased survival among sedentary patients undergoing dialysis: results from the Dialysis Morbidity and Mortality Study Wave 2. Am J Kidney Dis 2003;41:447-54.
  17. Sietsema KE, Amato A, Adler SG et al. Exercise capacity as a predictor of survival among ambulatory patients with end-stage renal disease. Kidney Int 2004;65(2):719-724.
  18. Painter P, Roshanvaran B. The association of physical activity and physical function with clinical outcomes in adults with chronic kidney disease. Curr Op Nephrol Hypert 2013;22:615-623.
  19. Heiwe S, Jacobson SH. Exercise training for adults with chronic kidney disease. Cochrane Database Syst Rev 2011;10:CD003236. doi: 10.1002/14651858.CD003236.pub2.
  20. Heiwe S, Tollbäck A, Clyne N. Twelve weeks of exercise training increases muscle function and walking capacity in elderly predialysis patients and healthy subjects. Nephron.2001;88:48–56
  21. Fiaccadori E, Sabatino A, Schito F, et al. Barriers to Physical Activity in Chronic Hemodialysis Patients: A Single-Center Pilot Study in an Italian Dialysis Facility. Kidney Blood Press Res 2014;39:169-175
  22. Capitanini A, Lange S, D’Alessandro C et al. Dialysis Exercise Team: The Way to Sustain Exercise Programs in Hemodialysis Patients. Kidney Blood Press Res 2014;39:129-133
  23. Cupisti A, Brunori G, Di Iorio BR, D’Alessandro C, Pasticci F, Cosola C, Bellizzi V, Bolasco P, Capitanini A, Fantuzzi AL, Gennari A, Piccoli GB, Quintaliani G, Salomone M, Sandrini M, Santoro D, Babini P, Fiaccadori E, Gambaro G, Garibotto G, Gregorini M, Mandreoli M, Minutolo R, Cancarini G, Conte G, Locatelli F, Gesualdo L. Nutritional treatment of advanced CKD: twenty consensus statements. J Nephrol. 2018 Aug;31(4):457-473.