New Perspectives in Post-Surgical Acute Kidney Injury During Sepsis

Abstract

Postoperative acute kidney injury (PO-AKI) is a common complication of major surgery that is strongly associated with short-term surgical complications and long-term adverse outcomes. Risk factors for PO-AKI include older age and comorbid diseases such as chronic kidney disease and diabetes mellitus.  Sepsis is a common complication in patients undergoing surgery and is a major risk factor for the development of acute kidney injury (SA-AKI). Prevention of AKI in surgery patients is largely based on identification of high baseline risk, monitoring, and reduction of nephrotoxic insults. Early identification of patients at risk of AKI, or at risk of progressing to severe and/or persistent AKI, is crucial to the timely initiation of adequate supportive measures, including limiting further insults to the kidney. Although specific therapeutic options are limited, several clinical trials have evaluated the use of care bundles and extracorporeal techniques as potential therapeutic approaches.

Keywords: AKI, PO-AKI, sepsis, biomarkers, extracorporeal treatment

 

Sorry, this entry is only available in Italian.

Introduzione

Il danno renale acuto post-chirurgico (PO-AKI) è associato ad un rischio elevato di mortalità e di sviluppo di altre complicanze post-operatorie [1].

La definizione adottata è sostanzialmente quella di danno renale acuto secondo le linee guida KDIGO 2012 (aumento della creatinina sierica di 0,3 mg/dl in 48 ore oppure di 1,5 volte rispetto al basale, oppure output urinario < 0,5 ml/kg/h per almeno sei ore), che si manifesta entro 7 giorni dall’intervento chirurgico [1].

L’obiettivo di questa revisione è quello di sintetizzare i dati presenti in letteratura e fornire una visione complessiva riguardo al danno renale acuto che si manifesta nel periodo post-chirurgico, soprattutto nei casi complicati da un evento infettivo, co-fattore nello sviluppo e nel mantenimento del danno renale.

STADIO Misure del danno renale acuto
Aumento della creatinina sierica Riduzione della diuresi
1 ≥ 0,3 mg/dl (26,52 micromol/l) o 1,5-1,9 volte il basale < 0,5 ml/kg/h per 6-12 h
2 2-2,9 volte il valore basale < 0,5 ml/kg/ora per ≥ 12 h
3 ≥ 4,0 mg/dl (353,60 micromol/l) o ≥ 3 volte il basale < 0,3 ml/kg/h per ≥ 24 h o anuria per ≥ 12 h
Tabella 1: Criteri di stadiazione del danno renale acuto (KDIGO, Kidney Disease Improving Global Outcomes 2012 [2]).

 

Epidemiologia

Va segnalato, però, che nell’immediato periodo post-chirurgico si può assistere ad una riduzione dell’output urinario, sebbene transitoria, come adattamento fisiologico allo stato di ipovolemia relativa, alla vasodilatazione o al rilascio di arginina-vasopressina in risposta all’insulto tissutale [3].

L’incidenza di AKI post-chirurgica varia dal 25% nella chirurgia traumatologica al 50% nella chirurgia dell’aorta o nel trapianto di fegato [4]. I pazienti più a rischio sono quelli con malattia renale cronica (proteinuria o alterazione della funzione renale), di sesso maschile, età > 50 anni, diabete, comorbidità cardiovascolari, elevato BMI [1].

 

Fisiopatologia

Danno renale acuto post-chirurgico
I meccanismi fisiopatologici alla base del PO-AKI non sono stati ancora del tutto chiariti; sicuramente l’eziologia del danno renale è complessa e multifattoriale.

Figura 1: L’eziologia del PO-AKI è multi-fattoriale – il danno renale è spesso dato dalla combinazione dei fattori pre-operatori e degli eventi intra- e post-operatori [1] (reprinted with permission).
Figura 1: L’eziologia del PO-AKI è multi-fattoriale – il danno renale è spesso dato dalla combinazione dei fattori pre-operatori e degli eventi intra- e post-operatori [1] (reprinted with permission).
Tra i principali fattori implicati vi sono l’insulto ischemia-riperfusione, nefrotossine endogene o esogene, fattori infiammatori, vasocostrizione e stress-ossidativo. Anche le tecniche anestesiologiche possono avere un ruolo, in quanto possono determinare vasodilatazione e ipotensione. Anche le tempistiche e il distretto coinvolto possono influire sul rischio, maggiore per gli interventi eseguiti in regime d’urgenza e per quelli eseguiti sul distretto cardiovascolare e intraperitoneale [1].

Nel 2019 ha avuto luogo una Consensus Conference con il fine di analizzare e valutare le evidenze scientifiche presenti riguardo il danno renale acuto in seguito ad interventi chirurgici (escludendo l’ambito cardiochirurgico). Di seguito sono riportati i punti salienti in merito ai meccanismi fisiopatologici ed epidemiologici.

EPIDEMIOLOGIA E PATOFISIOLOGIA DEL PO-AKI SECONDO IL “The Acute Disease Quality Initiative (ADQI)-24 and the PeriOperative Quality Initiative (POQI)-7 Conference”
Consensus Statement 1a: Il PO-AKI è una sindrome piuttosto che una singola patologia. Nella maggior parte dei casi l’eziologia è multifattoriale (ungraded).
Consensus Statement 1b: L’incidenza del PO-AKI (definita sulla base dell’aumento della creatinina) varia in base alle caratteristiche e al timing dell’intervento chiurgico.  L’incidenza del danno renale acuto in seguito ad interventi in regime ambulatoriale è incerta (ungraded).
Consensus Statement 1c: Il danno renale acuto definito da una condizione transitoria di oliguria è più comune nel periodo intra- e post-operatorio rispetto al danno renale acuto definito dall’aumento della creatinina sierica. L’oliguria severa e l’anuria, anche in assenza di un aumento della creatinina sierica si associano ad un rischio aumentato di morbidità e mortalità (ungraded).
Consensus Statement 1d: La maggioranza degli studi osservazionali si focalizzano sul danno renale acuto nell’immediato periodo post-operatorio. Minori sono le evidenze disponibili riguardo all’epidemiologia del danno renale acuto trascorsi i 7 giorni dall’intervento chiurgico (AKD) (ungraded).
Consensus Statement 1e: I fattori di rischio per il PO-AKI includono un’età > 50 anni, sesso maschile, tasso di filtrazione glomerulare < 60 ml/min/1,73 m2, diabete mellito, scompenso cardiaco, ascite, impertensione, interventi chirurgici in regime di emergenza, interventi intraperitoneali, numero di farmaci, utilizzo di ACEi o ARBs, high American Society of Anesthesiology Physical Status classification score e albuminuria. I pazienti con malattia renale cronica e/o diabete sono da considerarsi particolarmente a rischio di danno renale acuto (ungraded).
Tabella 2: Epidemiologia e patofisiologia del PO-AKI [1] (reprinted with permission).

Se in questo setting delicato si aggiungono il ricovero in terapia intensiva (dai dati presenti in letteratura, il danno renale acuto è presente in oltre il 50% dei pazienti ricoverati in terapia intensiva nel post-operatorio [5]), l’utilizzo di farmaci nefrotossici/mezzo di contrasto, sepsi e shock, il rischio di danno renale incrementa notevolmente [6].

Tra tutti questi fattori, quello più rilevante è la sepsi, intesa come una disfunzione d’organo dovuta a una risposta disregolata dell’ospite rispetto ad un evento infettivo [7], che rappresenta il 45-70% di tutte le cause di AKI nei pazienti critici [8].

Danno renale acuto associato alla sepsi

La sepsis-associated-AKI (SA-AKI) viene definita come una sindrome eterogenea che si instaura come conseguenza di meccanismi direttamente legati all’infezione o alla risposta messa in atto dall’ospite, oppure di meccanismi indiretti che sono conseguiti alla sepsi (es. antibiotici nefrotossici o la “abdominal compartment syndrome”) [8]. Il rischio è maggiore in presenza di shock settico che si esprime come quadro di sepsi severa che si associa a ipotensione refrattaria al riempimento volemico, con necessità di impiego di amine vasoattive per mantenere la pressione arteriosa media sopra i 65 mmHg e una concentrazione di lattati < 2 mmol/l [7], utilizzo di vasopressori o ventilazione meccanica, batteriemia sostenuta da germi gram-negativi [8].

I meccanismi che contribuiscono allo sviluppo di danno renale associato a sepsi sono molteplici, tra questi l’infiammazione sistemica e renale, l’attivazione del complemento, la disregolazione del sistema RAAS, la disfunzione mitocondriale e del microcircolo [8]. Anche per quanto riguarda la SA-AKI, vi è stata di recente una Consensus Conference con l’obiettivo di identificare i gap conoscitivi nella popolazione adulta, fornire raccomandazioni per la pratica clinica e sviluppare una struttura comune per la ricerca futura. Riassumiamo di seguito le principali dichiarazioni per quanto riguarda i meccanismi patofisiologici.

PATOFISIOLOGIA DEL SA-AKI SECONDO IL “Conference Chairs of the 28th ADQI consensus committee (L.G.F., A.Z., M.K.N. and C.R.)”
Consensus statement 2°: Il SA-AKI è una sindrome eterogenea in quanto molteplici meccanismi contribuiscono al danno renale con varia intensità nei pazienti in corso di sepsi (not graded).
Consensus statement 2b: Il contributo relativo di uno o più meccanismi specifici che determinano il danno renale definiscono distinti endotipi di danno renale acuto associato a sepsi (not graded).
Consensus statement 2c: Fattori modificabili e non conferiscono suscettibilità allo sviluppo di SA-AKI e determinano la severità del quadro e le possibilità di recupero (not graded).
Consensus statement 2d: L’integrazione di biomarcatori specifici con la clinica permetterà l’identificazione degli endotipi specifici di SA-AKI (not graded).
Consensus statement 2e: L’identificazione dei distinti endotipi di SA-AKI potrebbe fornire informazioni prognostiche cruciali, aiutare a definire la risposta al trattameto e arricchire la popolazione dei trial clinici (not graded).
Tabella 3: Patofisiologia del SA-AKI [8] (reprinted with permission).

Sebbene la sepsi si accompagni a uno stato di instabilità emodinamica e di bassa portata, in recenti studi su modelli animali e umani, in particolare nei pazienti con batteriemia da GRAM-, si è osservato, nella fase iniziale della sepsi, un incremento del flusso plasmatico renale rispetto ai controlli (fase iperdinamica, legata alla vasodilatazione sistemica), diversamente da quanto tradizionalmente concepito. Il declino del GFR in questi pazienti sarebbe quindi disgiunto dalle modifiche del flusso plasmatico renale e attribuibile invece ad altri fattori, quali la disfunzione endoteliale, le alterazioni del microcircolo e delle cellule epiteliali tubulari indotte dall’attivazione della cascata citochinica e coagulativa [9].

Figura 2: Alterazione del microcircolo e delle cellule epitaliali tubulare indotte dall’infiammazione [10] (reprinted with permission).
Figura 2: Alterazione del microcircolo e delle cellule epitaliali tubulare indotte dall’infiammazione [10] (reprinted with permission).
Gli antigeni esposti dal patogeno (PAMPs) e dalle cellule danneggiate dell’ospite (DAMPs) nel corso di un evento infettivo si legano ai recettori per l’antigene (TLRs o NODs) delle cellule circolanti del sistema immunitario e delle cellule epiteliali tubulari (TEC). Tale legame favorisce la produzione di citochine (mediatori infiammatori di peso molecolare < 40 kDa quali IL1-IL6-IL17-TNFalfa), radicali liberi (ROS), stress ossidativo e attivazione endoteliale. L’attivazione endoteliale promuove il rolling e l’adesione dei leucociti e piastrine, con aumentato rischio di formazione di microtrombi capillari [10].

Come già accennato, anche la nefrotossicità da antibiotici (in primis glicopeptidi e aminoglicosidi, con meccanismo dose-dipendente) svolge un ruolo fondamentale nell’eziopatogenesi dell’AKI nei pazienti settici. Vancomicina e gentamicina, impiegate rispettivamente nelle infezioni da batteri GRAM+ e GRAM-, agiscono sulle TEC attivando la produzione di ROS e di specifiche caspasi pro-apoptotiche; la vancomicina è associata anche alla formazione di cilindri tubulari ostruenti (tubular casts) e a un danno da ipersensibilità ritardata [11].

 

Fattori di rischio: il danno renale acuto nel post-operatorio degli interventi di artroprotesi d’anca

Nella nostra pratica clinica, abbiamo osservato come il danno renale acuto sia stato una complicanza relativamente frequente degli interventi di artroprotesi d’anca nei pazienti con sepsi/infezioni protesiche.

Oltre ai noti e già citati fattori di rischio di danno renale acuto post-operatorio, sono implicati nell’incidenza di AKI le procedure bilaterali, specie se sincrone (rispetto a quelle ravvicinate < 7gg o differite) [12], le revisioni di protesi, l’uso di ACE-inibitori, bassi valori di ematocrito e di albumina pre-operatori; i pazienti con albuminemia ridotta, rispetto ai controlli, sono infatti a maggior rischio di sviluppo di complicanze (infezioni, polmoniti, sepsi, infarto miocardico) a 30 giorni dall’intervento [1214].

I foci infettivi più frequenti sono rappresentati dalle infezioni delle vie urinarie (1/3 dei casi probabilmente legati alle manovre di cateterismo vescicale), infezioni del sito chirurgico (1/4), le polmoniti nosocomiali (1/7) [15], ma anche le infezioni periprotesiche (periprosthetic joint infection, PJI) di anca e ginocchio, la cui incidenza è in progressivo aumento (attualmente circa il 2%).

Oltre all’impatto clinico sul paziente (in termini di quantità e qualità della vita), le complicanze infettive determinano un significativo incremento dei costi della sanità: sulla base dei dati dei ricoveri ospedalieri nei primi 5 anni da una sostituzione totale di anca il costo di una revisione della protesi per infezione è 5 volte più alto di quello richiesto da una revisione per altre cause. Si stima che negli USA il costo delle cure ospedaliere per artroprotesi infette (anca e ginocchio) raggiungerà gli 1.85 miliardi entro il 2030.

I batteri aerobi GRAM+ (S. aureus, stafilococchi coagulasi negativi, Streptococchi ed Enterococchi) sono stati identificati quali principali agenti microbici nelle infezioni periprotesiche (82% dei casi); i batteri GRAM- contribuiscono per l’11% mentre i funghi per il 3%.

 

Early-onset

(< 3 mesi)

Delayed-onset

(3-12 mesi)

Late-onset

(> 12 mesi)

Sintomi locali e sistemici

Necrosi della ferita chirurgica, segni di flogosi locali (dolore, calore, eritema, tumefazione), deiscenza.

Febbre

Dolore persistente

Fistola cutanea

Mobilizzazione protesi

Segni di flogosi locali

Febbre

Patogeni S. aureus, GRAM-, polimicrobica Stafilococchi coagulasi-negativi (Staphylococcus lugdunensis), enterococchi, Propionibacterium S. aureus, GRAM-, streptococchi beta-emolitici
Tabella 4: Clinica e principali microrganismi coinvolti nelle infezioni periprotesiche, raggruppati in base al tempo di insorgenza.

 

Strategie terapeutiche

Tecniche di prevenzione e nuovi scenari farmacologici

La gestione e la terapia dei pazienti sottoposti a intervento chirurgico con sepsi che hanno sviluppato danno renale acuto non sono del tutto state definite in quanto, in letteratura, mancano precise linee guida o trial clinici randomizzati.

Sicuramente le prime misure da adottare sono la sospensione di tutti gli agenti nefrotossici e l’ottimizzazione del profilo emodinamico [1], in associazione alla somministrazione di una terapia antibiotica adeguata per risolvere l’infezione. Nel caso specifico dell’infezione periprotesica è raccomandata la rimozione della stessa. Di seguito è riportato un esempio di protocollo che può essere adottato nelle fasi peri-operatorie dell’intervento di artroprotesi d’anca per ridurre lo sviluppo di danno renale acuto [16], che può essere applicato anche per le altre tipologie di interventi chirurgici in elezione.

Figura 3: Protocollo peri-operatorio per la prevenzione del danno renale acuto [16] (reprinted with permission).
Figura 3: Protocollo peri-operatorio per la prevenzione del danno renale acuto [16] (reprinted with permission).
Per quanto riguarda terapie specifiche nel trattamento del danno renale acuto, sono in corso degli studi che prevedono l’impiego di agenti farmacologici che agiscono sui meccanismi implicati nella sepsi: ad esempio l’utilizzo di desametasone è stato associato a una minore necessità di intraprendere la terapia sostitutiva nei pazienti sottoposti ad intervento cardiochirurgico [17]; un trial di fase 2 ha dimostrato i benefici a lungo termine sulla funzione renale e la minore mortalità nei pazienti trattati con la fosfatasi alcalina ricombinante umana nei pazienti con sepsi [18]; anche il levosimendan potrebbe avere un ruolo di protezione sulla funzione renale nei pazienti con AKI sottoposti ad intervento cardiochirurgico [19].

In considerazione del fatto che le strategie terapeutiche a disposizione restano limitate, è fondamentale identificare i pazienti a rischio prima dell’intervento e mettere in atto strategie preventive: è ragionevole sospendere ace-inibitori e sartani almeno 24 ore prima dell’intervento [1], ridurre l’utilizzo dei FANS e in generale di evitare farmaci nefrotossici (es. la gentamicina utilizzata in profilassi in caso di interventi ortopedici si associa ad aumento rischio di PO-AKI [20]).

Occorre però precisare che ad oggi non vi sono dati significativi a supporto di queste teorie [23], né è stato stabilito il timing per la ripresa di ace-inibitori e sartani nel post-operatorio.

Un altro aspetto importante è assicurare al paziente uno stato euvolemico, evitare l’iperglicemia e correggere i valori di emoglobina/ematocrito e albumina sia prima dell’intervento che nell’immediato post-operatorio [1].

Tecniche sostitutive dialitiche

Nel caso in cui l’adozione delle misure sopracitate non abbiano apportato un beneficio in termini di recupero della funzione renale, le tecniche di dialisi extracorporee (possibilmente in ambiente intensivo) rimangono l’opzione migliore non solo per contrastare il sovraccarico idrico e mantenere un buon controllo dell’equilibrio acido-base e degli elettroliti, ma anche per offrire un’ulteriore strategia di trattamento in corso di sepsi grazie alla rimozione di endotossine, citochine, patogeni e altri fattori pro-infiammatori circolanti [8].

Tra le tecniche più utilizzate vi sono l’emofiltrazione e l’emoadsorbimento; quest’ultima si basa sull’ipotesi del picco di concentrazione, cioè il meccanismo d’azione è quello di rimozione dei soluti con più alta concentrazione nel sangue. Per un funzionamento ottimale, è necessario l’utilizzo di membrane specifiche: nuove resine di polimeri sintetici dotate di elevata biocompatibilità sono state messe a punto per favorire l’emoadsorbimento di DAMPS e altri mediatori, la cui concentrazione è appunto elevata in corso di sepsi [8]. Di seguito sono rappresentate le caratteristiche dei trattamenti extracorporei utilizzati in corso di SA-AKI [8].

Figura 4: Caratteristiche dei trattamenti extracorporei disponibili per pazienti con sepsi e SA-AKI [8] (printed with permission).
Figura 4: Caratteristiche dei trattamenti extracorporei disponibili per pazienti con sepsi e SA-AKI [8] (printed with permission).
I trattamenti utilizzati sono l’emodialisi in continuo (CVVHD) con membrane ad alto cut-off efficaci nella rimozione dei mediatori pro-infiammatori (EMIC2 Fresenius Medical Care, cut-off 40 kDa, dimensione pori 10 millimicron, durata filtro 72h) ed emodialfiltrazione continua (CVVHDF) con l’aggiunta della cartuccia sorbente Cytosorb (AFERETICA – max 24 ore di utilizzo), che agisce su sostanze prevalentemente idrofobe, a basso e medio peso molecolare, in funzione della concentrazione plasmatica.

Si consideri inoltre l’utilizzo di filtri attivi verso batteri, virus e funghi quali Seraph 100 Microbind Affinity adsorber (Exthera Medical, CA, USA), (durata trattamento 4±1 ore) in grado di legare i patogeni circolanti nel circolo ematico, mimando la naturale superficie delle cellule endoteliali mediante la presenza di un glicocalice contenente eparan solfato [21].

Figura 5: Caratteristiche della superficie del filtro Seraph 100 confrontata con una cellula epiteliale con in superficie il glicocalice contenente eparan solfato (da scheda tecnica SERAPH 100, EXTERA MEDICAL).
Figura 5: Caratteristiche della superficie del filtro Seraph 100 confrontata con una cellula epiteliale con in superficie il glicocalice contenente eparan solfato (da scheda tecnica SERAPH 100, EXTERA MEDICAL).

Il timing con cui va iniziato il trattamento dialitico rimane tutt’ora controverso; sicuramente un aspetto importante da considerare sono le condizioni cliniche generali e la prognosi dei pazienti.

In un trial randomizzato controllato su coorte francese con shock settico e AKI severa (Failure sec-RIFLE, AKI stadio III sec-KDIGO), non è stato riscontrato beneficio in termini di mortalità nell’inizio precoce (entro 12h dall’esordio) del trattamento sostitutivo emodialitico rispetto al braccio di pazienti sottoposti a dialisi dopo 48h [22]. Nessun vantaggio sulla sopravvivenza del paziente è stato inoltre dimostrato con l’incremento della dose dialitica > 20/25 ml/kg/h raccomandata nel paziente critico [23].

Di seguito sono sintetizzate le informazioni emerse dalla recentissima Consensus Conference sulla SA-AKI per quanto riguarda le tecniche di trattamento extracoporeo.

Terapie extracorporee e nuove strategie nella SA-AKI
Consensus statement 5a: Tecniche extracorporee di purificazione del sangue (EBP) possono essere utilizzate per la rimozione di patogeni, tossine microbiche, mediatori infiammatori e metaboliti tossici (grade 1A). Consensus statement 5d: L’inizio di EBP in corso di sepsi può essere considerato a scopo di supporto immuno-modulatorio nei pazienti che rispettano i criteri clinici e/o biologici, come la concentrazione di DAMPS e PAMPS, o di altri componenti dell’infiammazione sistemica (not graded).
Consensus statement 5b: Le terpapie sostitutive della funzione renale supportano la funzione dell’organo mediante il controllo dei soluti, la rimozione delle tossine ematiche e il bilancio dei fludi tramite i meccanismi di diffusione, convezione e adsorbimento. La dialisi peritoneale potrebbe essere utilizzata quando le tecniche extracorporee non sono disponibili (grade 1A). Consensus statement 5e: L’ottimizzazione del trattamento extracorporeo è determinata da fattori quali l’inizo tempestivo e in sicurezza, la durata del trattamento, l’utilizzo di un accesso vascolare appropriato, la dose dialitica personalizzata per il singolo paziente, la corretta strategia di anticoagulazione, il corretto utilizzo di farmaci concomitanti (antibiotici, vasopressori, …) e nutrienti, una giusta prescrizione del trattamento e della quota di ultrafiltrazione (not graded).
Consensus statement 5c: Le indicazioni sull’inizio del trattamento sostitutivo nel corso di SA-AKI non differiscono rispetto a quelle per il trattamento del danno renale acuto in generale (grade 1A). Consensus statement 5f: Trattamenti sicuri ed efficacy richiedono marcatori oggettivi di risposta al trattamento, che possono essere valutati durante il corso del trattamento, con focus sugli obiettivi di cura “patient-centred” (grade 1B).
Tabella 5: Terapie extracorporee e nuove strategie nella SA-AKI [8].

 

Utilizzo di nuovi marcatori

Negli anni si è tentato di mettere a punto una serie di score in associazione all’uso di marcatori per stimare il rischio di sviluppo di danno renale acuto nei pazienti da sottoporre ad intervento chirurgico.

Ad esempio, è raccomandato l’utilizzo del risk-based kidney health assessment (KHA) nel periodo pre- e post-operatorio: si tratta di una valutazione che include la storia nefrologica del paziente, la terapia, le comorbidità cardiovascolari, lo stato emodinamico e i marcatori di danno renale (es. creatininemia, proteinuria) [1].

Altri studi hanno validato score prognostici che possono essere presi in considerazione per stratificare il rischio di danno renale acuto post-TJA secondo un sistema di calcolo; il “web-based risk assessment system” si basa ad esempio sulla classe ASA, sesso del paziente, valori di creatininemia pre-operatori, tipo di anestesia, uso di RAASi e di acido tranexamico peri-operatorio [24]; un Norton scale score basso (ampiamente utilizzato in ortopedia per la stratificazione del rischio di sviluppo di ulcere da pressione, che tiene in considerazione fattori fisici, mentali, il grado di attività, mobilità e incontinenza) è risultato un fattore predittivo di AKI post-artroplastica totale di anca (THA) [25].

In tale ambito il riconoscimento precoce dell’AKI è fondamentale per fornire un trattamento ottimale ed evitare ulteriori lesioni renali.

Allo stesso modo, il rilevamento di AKI nel contesto dell’infezione è fondamentale perché può definire la sepsi in un determinato paziente [26].

Figura 6: Decorso clinico e prognosi nei pazienti con SA-AKI [10] (printed with permission).
Figura 6: Decorso clinico e prognosi nei pazienti con SA-AKI [10] (printed with permission).
Biomarker Sede di ricerca Sede di rilascio tubulare Funzione fisiologica Utilizzo
NGAL Plasma e urine Tratto spesso ansa di Henle e dotto collettore Proteina antinfiammatoria e antiapoptotica che è coinvolta nella sintesi e nel trasporto del ferro nell’epitelio tubulare renale. NGAL conferisce un effetto batteriostatico limitando l’assorbimento batterico del ferro. L’NGAL urinario è più specifico dell’NGAL plasmatico. Tuttavia, è stato dimostrato che l’NGAL plasmatico predice il recupero di S-AKI
KIM-1

 

Plasma e urine Tubulo prossimale Glicoproteina transmembrana di tipo 1 che ha un effetto antinfiammatorio sul rene. Partecipa al recupero renale e alla rigenerazione tubulare KIM-1 nelle prime 24 ore dopo il ricovero presenta una AUC di 0,91 per la diagnosi di S-AKI.
L-FABP

 

Urine Tubulo prossimale Della famiglia delle lipocaline, coinvolte nel legame e nel trasporto degli acidi grassi a catena lunga ai perossisomi e ai mitocondri da metabolizzare. Svolge un ruolo antiossidante riducendo lo stress ossidativo cellulare dovuto al legame dei prodotti di ossidazione degli acidi grassi i livelli urinari di L-FABP al momento del ricovero sono solitamente più alti nei non sopravvissuti con S-AKI e avevano un punteggio AUC più alto rispetto al punteggio APACHE II e SOFA.93 Ha anche dimostrato di essere un predittore di mortalità nei bambini settici.
TIMP 2- IGFBP7

 

Urine Tubulo prossimale Entrambe le proteine regolano la crescita cellulare e l’apoptosi. In presenza di danno cellulare, TIMP 2 e IGFBP7 sono sovraregolati e possono portare all’arresto del ciclo cellulare G1 attraverso l’induzione di p27 e p21, rispettivamente.

Biomarcatore approvato dalla FDA per lo strumento di valutazione del rischio di AKI nella sepsi. L’urina TIMP2/IGFBP7 ha la più alta specificità per il danno renale, in quanto vi è un’elevazione minima in presenza di altre lesioni d’organo. Alti livelli di TIMP2 e IGFBP7 nella fase iniziale dello shock settico sono fattori di rischio indipendenti per la progressione verso l’AKI grave nelle successive 24 ore.

Angiopoietina

 

Plasma Fattori angiogenici per lo sviluppo vascolare; Ang-1 è stato trovato per essere protettivo stabilizzando l’endotelio, mentre Ang-2 promuove la perdita vascolare, che può peggiorare la sepsi Nei pazienti con S-AKI, l’Ang-1 plasmatico è significativamente inferiore rispetto ai pazienti con sepsi ma senza AKI. Livelli più elevati di Ang-1 sono associati a un minor rischio di AKI e livelli più elevati di Ang-2 erano associati a un rischio più elevato di AKI e sono un predittore indipendente di mortalità a 28 giorni nei pazienti in terapia intensiva con AKI che richiedevano RRT
VE-cadherin

 

Plasma Una glicoproteina transmembrana endoteliale che forma giunzioni aderenti Il livello plasmatico di VE-caderina al momento dell’arruolamento è stato associato a AKI grave che richiede RRT (OR: 6,44 per log di aumento del VE-cadhe plasmatico)
Soluble
thrombomodulin
 
Plasma La trombomodulina è un recettore della trombina che viene espresso sulla superficie delle cellule endoteliali e viene rilasciato nel flusso sanguigno quando vengono attivate le cellule endoteliali. La trombomodulina PSoluble in un paziente con sepsi al ricovero in terapia intensiva è un predittore indipendente per S-AKI con AUC di 0,758
Interleukina-6 Plasma Una citochina con una vasta

gamma di attività biologiche; aiuta a controllare l’induzione della risposta di fase acuta; un mediatore per il cambio di classe delle immunoglobuline

 

L’interleuchina-6 al basale al momento del ricovero ha previsto l’AKI nei pazienti con sepsi grave
sTREM-1

 

Urine/

plasma

TREM-1 è un recettore attivante espresso selettivamente sulla superficie dei neutrofili e dei monociti e associato alla risposta infiammatoria innescata dall’infezione batterica. (È quasi non rilevabile nell’infiammazione non infettiva). sTREM-1 può essere prodotto localmente dalle cellule endoteliali, dalle cellule epiteliali tubulari o dalle cellule infiammatorie infiltranti durante la necrosi tubulare acuta.105,106 Nei pazienti con sepsi, sTREM-1 nelle urine al ricovero in terapia intensiva ha previsto AKI a 48 h con AUC di 0,922,107 Valore diagnostico per S-AKI: AUC di 0,794 per il plasma e 0,707 per le urine; valore predittivo 24 ore prima della diagnosi di S-AKI: AUC di 0,746 per il plasma e 0,778 per l’urina
 Tabella 6: Biomarcatori studiati in S-AKI [10].

A tal riguardo l’uso di marcatori e del loro andamento nel contesto della AKI può fornire ulteriori fondamentali informazioni utili a una diagnosi precoce di danno renale.

In futuro, il dosaggio dei nuovi biomarcatori di danno renale, ad oggi non ancora routinario, potrebbe essere utilizzato per stimare la progressione del danno renale; tra questi si citano il tissue inhibitor of metalloproteinases 2 (TIMP2) e l’insulin-like growth factor binding protein 7 (IGFBP7) urinari, dei quali è stato studiato il rapporto maggiore di 2 [26].

Figura 7: Andamento nel tempo dei biomarkers rispetto all’evento acuto. Clin J Am Soc Nephrol 10: 147–155, 2015 [28].
Figura 7: Andamento nel tempo dei biomarkers rispetto all’evento acuto. Clin J Am Soc Nephrol 10: 147–155, 2015 [28].
Figura 8: Sede di produzione di biomarkers in vari setting di danno tubulare [27].
Figura 8: Sede di produzione di biomarkers in vari setting di danno tubulare [27].
 

Conclusioni

In conclusione, il PO-AKI è una complicanza comune degli interventi di chirurgia maggiore che si associa ad una prognosi peggiore nel lungo termine, per la maggiore insorgenza di malattia renale cronica, eventi cardiovascolari e morte. Se nel post-operatorio il paziente va incontro a sepsi, il rischio di danno renale acuto incrementa notevolmente (SA-AKI). La prevenzione del danno renale acuto nel contesto peri-operatorio si basa sull’identificazione dei pazienti a rischio di AKI, nella riduzione degli agenti nefrotossici e nel trattamento delle cause sottostanti. Nel contesto del SA-AKI vi è la possibilità di utilizzare trattamenti extracorporei, che oltre ad una funzione di supporto della funzione renale facilitano la risoluzione del quadro.

Le prospettive prognostiche del paziente che nel post-operatorio sviluppa sepsi con danno renale acuto dipendono dalla tempestiva messa in atto di misure terapeutiche e dalla personalizzazione del trattamento.

 

Bibliografia

  1. Prowle, J. R. et al. Postoperative acute kidney injury in adult non-cardiac surgery: joint consensus report of the Acute Disease Quality Initiative and PeriOperative Quality Initiative. Nature Reviews Nephrology (2021) https://doi.org/10.1038/s41581-021-00418-2.
  2. Kidney disease: Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury – Fingerprint — Experts@Minnesota.
  3. Zarbock, A., Koyner, J. L., Hoste, E. A. J. & Kellum, J. A. Update on perioperative acute kidney injury. Anesthesia and Analgesia (2018) https://doi.org/10.1213/ANE.0000000000003741.
  4. Hobson, C., Singhania, G. & Bihorac, A. Acute Kidney Injury in the Surgical Patient. Critical Care Clinics (2015) https://doi.org/10.1016/j.ccc.2015.06.007.
  5. Liu, K. D. & Palevsky, P. M. Introduction to Critical Care Nephrology and Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 17, 570–571 (2022). https://doi.org/10.2215/CJN.01400222.
  6. Li, S., Wang, S., Priyanka, P. & Kellum, J. A. Acute kidney injury in critically ill patients after noncardiac major surgery: Early versus late onset. Crit. Care Med. (2019) https://doi.org/10.1097/CCM.0000000000003710.
  7. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA – Journal of the American Medical Association (2016) https://doi.org/10.1001/jama.2016.0287.
  8. Alexander Zarbock, Mitra K. Nadim, Peter Pickkers, Hernando Gomez, et al. Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. (2023) https://doi.org/10.1038/s41581-023-00683-3.
  9. Bellomo, R. et al. Acute kidney injury in sepsis. Intensive Care Medicine (2017) https://doi.org/10.1007/s00134-017-4755-7.
  10. Peerapornratana, S., Manrique-Caballero, C. L., Gómez, H. & Kellum, J. A. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney International (2019) https://doi.org/10.1016/j.kint.2019.05.026.
  11. Petejova, N. et al. Acute kidney injury in septic patients treated by selected nephrotoxic antibiotic agents— pathophysiology and biomarkers—a review. International Journal of Molecular Sciences (2020) https://doi.org/10.3390/ijms21197115.
  12. Koh, W. U. et al. Staggered rather than staged or simultaneous surgical strategy may reduce the risk of acute kidney injury in patients undergoing bilateral TKA. J. Bone Jt. Surg. – Am. Vol. (2018) https://doi.org/10.2106/JBJS.18.00032.
  13. Kishawi, D., Schwarzman, G., Mejia, A., Hussain, A. K. & Gonzalez, M. H. Low Preoperative Albumin Levels Predict Adverse Outcomes After Total Joint Arthroplasty. J. Bone Joint Surg. Am. (2020) https://doi.org/10.2106/JBJS.19.00511.
  14. Rao, P., Singh, N. & Tripathy, S. Risk Factors for the Development of Postoperative Acute Kidney Injury in Patients Undergoing Joint Replacement Surgery: A Meta-Analysis. Saudi Journal of Kidney Diseases and Transplantation (2020) https://doi.org/10.4103/1319-2442.292304.
  15. Bohl, D. D., Sershon, R. A., Fillingham, Y. A. & Della Valle, C. J. Incidence, Risk Factors, and Sources of Sepsis Following Total Joint Arthroplasty. J. Arthroplasty (2016) https://doi.org/10.1016/j.arth.2016.05.031.
  16. Angerett, N. R. et al. Improving Postoperative Acute Kidney Injury Rates Following Primary Total Joint Arthroplasty. J. Arthroplasty (2022) https://doi.org/10.1016/j.arth.2021.12.019.
  17. Jacob, K. A. et al. Intraoperative high-dose dexamethasone and severe AKI after cardiac surgery. J. Am. Soc. Nephrol. (2015) https://doi.org/10.1681/ASN.2014080840.
  18. Pickkers, P. et al. Effect of human recombinant alkaline phosphatase on 7-day creatinine clearance in patients with sepsis-associated acute kidney injury a randomized clinical trial. JAMA – J. Am. Med. Assoc. (2018) https://doi.org/10.1001/jama.2018.14283.
  19. Tholén, M., Ricksten, S. E. & Lannemyr, L. Effects of levosimendan on renal blood flow and glomerular filtration in patients with acute kidney injury after cardiac surgery: a double blind, randomized placebo-controlled study. Crit. Care (2021) https://doi.org/10.1186/s13054-021-03628-z.
  20. Bell, S. et al. Risk of AKI with gentamicin as surgical prophylaxis. J. Am. Soc. Nephrol. (2014) https://doi.org/10.1681/ASN.2014010035.
  21. Eden, G. et al. Safety and efficacy of the Seraph® 100 Microbind® Affinity Blood Filter to remove bacteria from the blood stream: results of the first in human study. Crit. Care (2022) https://doi.org/10.1186/s13054-022-04044-7.
  22. Poston, J. T. & Koyner, J. L. Sepsis associated acute kidney injury. BMJ (Online) (2019) https://doi.org/10.1136/bmj.k4891.
  23. Joannes-Boyau, O. et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): A multicentre randomized controlled trial. in Intensive Care Medicine (2013). https://doi.org/10.1007/s00134-013-2967-z.
  24. Ko, S. et al. A web-based machine-learning algorithm predicting postoperative acute kidney injury after total knee arthroplasty. Knee Surgery, Sport. Traumatol. Arthrosc. (2022) https://doi.org/10.1007/s00167-020-06258-0.
  25. K., A. et al. Association between low admission norton scale scores and postoperative complications after elective THA in elderly patients. Orthopedics (2012). https://doi.org/10.3928/01477447-20120822-13.
  26. Joannidis, M. et al. Use of Cell Cycle Arrest Biomarkers in Conjunction With Classical Markers of Acute Kidney Injury. Crit. Care Med. (2019) https://doi.org/10.1097/CCM.0000000000003907.
  27. Yumeng Wen. Current concepts and advances in biomarkers of acute kidney injury. CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES. https://doi.org/10.1080/10408363.2021.1879000.
  28. Joseph L. Alge. Biomarkers of AKI: A Review of Mechanistic Relevance and Potential Therapeutic Implications, CJASN (2015). https://doi.org/2215/CJN.12191213.

Acute kidney injury and single-dose administration of aminoglycoside in the Emergency Department: a comparison through propensity score matching

Abstract

Purpose: According to the Surviving Sepsis Campaign, aminoglycosides (AG) can be administered together with a β-lactam in patients with septic shock. Some authors propose administering a single dose of an AG combined with a β-lactam antibiotic in septic patients to extend the spectrum of antibiotic therapy. The aim of this study has been to investigate whether a single shot of AG when septic patients present at the Emergency Department (ED) is associated with acute kidney injury (AKI).

Methods: We retrospectively enrolled patients based on a 3-year internal registry of septic patients visited in the Emergency Department (ED) of Pordenone Hospital. We compared the patients treated with a single dose of gentamicin (in addition to the β-lactam) and those who had not been treated to verify AKI incidence.

Results: 355 patients were enrolled. The median age was 71 years (IQR 60-78). Less than 1% of the patients had a chronic renal disease. The most frequent infection source was the urinary tract (31%), followed by intra-abdominal and lower respiratory tract infections (15% for both). 131 patients received gentamicin. Unmatched data showed a significant difference between the two groups in AKI (79/131, 60.3% versus 102/224, 45.5%; p=0.010) and in infectious disease specialist’s consultation (77/131, 59% versus 93/224, 41.5%; p=0.002). However, after propensity score matching, no significant difference was found.

Conclusion: Our experience shows that a single-shot administration of gentamicin upon admission to the ED does not determine an increased incidence of AKI in septic patients.

Keywords: aminoglycosides, acute kidney injury, gentamicin, safety, sepsis

Introduction

Historically, sepsis has a high mortality, up to 50-75% [1]. The development of new antibiotic molecules has led to a significant reduction, but it still ranges from 30-50% even if treated according to recent guidelines [2]. Furthermore, pathogenic microorganisms have continued to develop resistance under selective antibiotic pressure, making the therapies increasingly complex, particularly in empirical approaches.

The choice of appropriate antibiotic treatment can reduce mortality [3]. For this reason, the real benefit of empirical combination therapy was assessed, particularly in critically ill patients. According to the Surviving Sepsis campaign [4], aminoglycosides (AG) can be administered together with a β-lactam in patients with septic shock (defined by the Sepsis-3 criteria). The spectrum of antibiotics is broadened in particular towards Enterobacteriaceae ESBL and Pseudomonas aeruginosa; the bacteria are attacked in two different ways, thus accelerating the elimination of pathogens [4, 5] in a possible synergistic effect. For patients presenting symptoms compatible with sepsis, some authors propose a single dose or short course (48-72 hours) of an AG in combination with a β-lactam antibiotic (that instead is taken for several days) on admission to the Emergency Department (ED), immediately after blood cultures are taken [6]. The AG dosage is based on body weight (5 to 7 mg/kg for gentamicin), and it is administered together with the first dose of β-lactam, regardless of renal function.

A study by David et al. showed that the risk of AKI following a single dose or a short course of AG in the empirical treatment of bacteremia increases compared to a regimen without AG [7]. The aim of this study has been to investigate whether a single shot of AG in the ED is associated with AKI in sepsis patients.

 

Materials and methods

Population and data collection

Septic patients were retrospectively enrolled at the ED of the Hospital of Pordenone by consecutive sampling, from 1st January 2017 to 31st December 2019, based on an internal registry of all patients admitted to the ED. Each patient gave informed consent for data acquisition, and the European Privacy Regulation 2016/679 for General Data Protection Regulation (GDPR) was respected. Patients were eligible if they met the third international consensus definition of sepsis. Exclusion criteria were age below 18, pregnancy, major trauma, cardiac arrest.

The primary aim was to determine whether a single initial dose of aminoglycoside (gentamicin) could lead to acute renal injury in a group of septic patients. Furthermore, we investigated which variables were correlated to the development of AKI.

We looked at demographic characteristics (age and sex), source of infection, immunodepression condition, the presence of a chronic kidney disease (defined as a decreased glomerular filtration rate of less than 60 mL/min/1.73 m2 for at least 3 months, according to the definition by KIDGO CKD Work Group [8]) or acute kidney injury (defined as an increase in serum creatinine by ≥0.3 mg/dL within 48 hours or an increase in serum creatinine to ≥1.5 times the baseline or a urine volume <0.5 mL/Kg/hour for six hours, according to the KDIGO definition), collection of at least one blood culture sample, length of stay in the hospital, the outcome of hospitalization (recovery, death, admission in ICU or a non-intensive care ward). It was also recorded whether a single dose of gentamicin was administered at the time of hospital admission, at the usual doses reported in the literature (5-7 mg/kg/dose IV).

Figure 1: Flowchart of the cohort-registry enrollment.
Figure 1: Flowchart of the cohort-registry enrollment. Septic patients were retrospectively enrolled at the ED of the Hospital of Pordenone by consecutive sampling, from 1st January 2017 to 31st December 2019, based on an internal registry of all patients admitted to the ED

Statistical analysis

Discrete variables were expressed as absolute value and percentage (%), while continuous variables were expressed as the median and interquartile range (IQR) for a non-parametric distribution. In the comparison between the groups, the distribution of the variables was verified using the Shapiro-Wilks test. The groups’ differences were calculated through the Kruskal-Wallis test for continuous variables if not normally distributed (or Student’s T-test if normally distributed); chi-square or exact Fisher’s test was used for discrete variables. A p-value ≤of 0.05 was considered statistically significant. Corrections for pairwise comparisons were applied using the Benjamini and Hochberg method. A propensity score match based on the “nearest neighbor match” method was applied to compare the two study groups for baseline characteristics. A general linear multivariate regression was performed to verify the correlation between predictive variables and AKI using propensity score weighting.

The statistical analysis was performed using the R environment (version 4.0.3, R Foundation for Statistical Computing. Vienna, Austria) with the following packages: “mice”, “MatchIt”, “compareGroups”.

 

Results

During the 3 years, 355 patients were enrolled (Figure 1). The median age was 71 years (IQR 60-78), 56% was male, 1% had chronic kidney disease, 5% was considered immunosuppressed (a transplant patient, a patient on immunosuppressive therapy, a neoplastic patient in non-palliative treatment, a patient with rheumatological disorders). In 48% of cases, an infectious diseases consultant was involved. The most frequent infection source was the urinary tract (31%), followed by intra-abdominal and lower respiratory tract infections (15% for both). In 17% of cases, the source of the infection was not determined. The median length of stay was 4 days; 69% was in a low-intensity care ward. In-hospital mortality was around 5%. 131 patients were treated with a single dose of gentamicin. Acute renal injury occurred in 51% of cases (Table 1).

Unmatched data showed a significant difference between the treated and non-treated groups as far as AKI (79/131, 60.3% versus 102/224, 45.5%; p=0.010) and the consultation of infectious disease specialists (77/131, 59% versus 93/224, 41.5%; p=0.002) were concerned. However, after propensity score matching, no significant difference was found.

No variables were significantly correlated with AKI in a general linear regression model.

 

ALL

Unmatched Matched
Control Group Gentamicine Group P-value Control Group Gentamicine Group P-value
N = 355 N = 224 N = 131 N = 131 N = 131
Age (Years)   71
(60-78)
71
(61-78)
70
(59-78)
.536 71
(61-77)
70
(59-78)
.671
Sex (male)   199
(56.1%)
129
(57.6%)
70
(53.4%)
.516 71
(54.2%)
70
(53.4%)
1
Blood cultures taken   334
(94.1%)
207
(92.4%)
127
(96.9%)
.130 127
(96.9%)
127
(96.9%)
1
Source of infection   . .
  Abdominal 52
(14.6%)
37
(16.5%)
15
(11.5%)
23
(17.6%)
15
(11.5%)
  Bone 12
(3.4%)
6
(2.7%)
6
(4.6%)
5
(3.8%)
6
(4.6%)
  Device 7
(2.0%)
4
(1.8%)
3
(2.3%)
3
(2.3%)
3
(2.3%)
  Endocarditis 11
(3.1%)
8
(3.6%)
3
(2.3%)
5
(3.8%)
3
(2.3%)
  Lung 53
(14.9%)
51
(22.8%)
2
(1.5%)
23
(17.6%)
2
(1.5%)
  Neurological 7
(2.0%)
6
(2.7%)
1
(0.8%)
4
(3.1%)
1
(0.8%)
  Skin 43
(12.1%)
32
(14.3%)
11
(8.4%)
19
(14.5%)
11
(8.4%)
  UTI 109
(30.7%)
49
(31.9%)
60
(45.8%)
27
(20.6%)
60
(45.8%)
  n.d. 61
(17.2%)
31
(13.8%)
30
(22.9%)
22
(16.8%)
30
(22.9%)
Immunocompromised   18
(5.1%)
10
(4.5%)
8
(6.1%)
.667 6
(4.6%)
8
(6.1%)
.784
ID consultation   170
(47.9%)
93
(41.5%)
77
(58.8%)
.002 74
(56.5%)
77
(58.8%)
.803
CKD   3
(0.9%)
3
(1.3%)
0 .299 . . .
AKI   181
(51.0%)
102
(45.5%)
79
(60.3%)
.010 78
(59.5%)
79
(60.3%)
1
LOS (days)   4
(3-6)
5
(3-7)
4
(2-6)
.100 4
(3-6)
4
(2-6)
.384
Outcome   .597 .816
  Discharge 59
(16.6%)
37
(16.5%)
22
(16.8%)
25
(19.1%)
22
(16.8%)
  Ward 245
(69.0%)
159
(71.0%)
86
(65.6%)
88
(67.2%)
86
(65.6%)
  ICU 31
(9.0%)
18
(8.0%)
14
(10.7%)
10
(7.6%)
14
(10.7%)
  Decease 19
(5.4%)
10
(4.5%)
9
(6.9%)
8
(6.1%)
9
(6.9%)
Table I: Characteristics of the general population and crude and matched comparison by propensity score matching between groups of patients treated with aminoglycoside and not treated. ID = infectious diseases; CKD = chronic kidney disease; AKI = acute kidney injury; LOS = length of stay; ICU = intensive care unit

 

Discussion

Antibiotic therapy is the cornerstone of the treatment of critically ill patients with sepsis in ED. Combination therapy is widely used in the empirical approach to broaden the spectrum, particularly in the first few days, to increase the probability of appropriate initial treatment [9]. Although this is debated, AG in this setting seems to help broaden the gram-negative and gram-positive spectrum of coverage of empirical antimicrobial therapy. Furthermore, this therapy should provide rapid clearance of pathogens, especially from blood and urine.

Combined antibiotic therapy should be based on local resistance epidemiology and individual risk factors for resistance, including recent antibiotic use, length of hospitalization, and previously known colonization. In our Hospital, ESBL-producing Enterobacteriaceae are 11% of total isolates, much lower than the Italian and European average [10, 11].

In our study, presenting a 3-year series of consecutive septic patients enrolled in the context of an ED, we found an increase in AKI cases in subjects treated with AG in the raw comparison between the two groups. However, this difference was not replicated after applying a propensity score match analysis. This result leads to a multifactorial explanation of the development of AKI in septic patients, not related to AG exposure.

This result confirms what has been reported in the literature [1215]. A short course or a single dose of AG does not seem to be associated with AKI, even in high-risk septic patients. Although older studies have obtained different results, they were likely influenced by a different pharmacokinetic pattern (longer cycles of multiple doses of AG per day) or by different bacterial strains, including nosocomial infections, being responsible for the sepsis. In 2015, Cobussen et al. found results similar to ours in patients developing AKI with or without AG administration, but an excess in mortality in the AG group was registered [12]. The mortality excess could be related to the worse presentation of patients treated with AG, and this can be deducted directly from the comparison between the SOFA scores, which is higher in the AG group. Moreover, patients in this group were more frequently in septic shock. The increased request for advice from the infectious disease specialist in our study indirectly reveals that patients in the AG group were more severe than the control group. Cobussen et al. obtained the same results in a large retrospective multicenter study [13], finding a similar pattern in both previously nephropathic and not nephropathic patients who had taken AG or just β-lactam. Regardless of the presence of AKI at hospital admission, AG did not worsen the renal function, and there was no delay in recovering a normal renal function (two weeks). In this study, patients in the AG group were more severely ill than the group that did not receive AG, as illustrated by the higher incidence of AKI at admission, qSOFA score, shock, ICU admissions, and 30-day mortality. Despite the difference in disease severity at admission, no significant differences were seen in AKI incidence during the first week of admission between groups.

Liljedahl Prytz et al. came to the same conclusions as us, hypothesizing that a single dose of AG is safer in avoiding chemical stress on an already saturated renal tubule [14]. Previous work by Carlsen et al. [15] showed no significant increase in AKI even using, as we did, a very sensitive staging method (KDIGO) to assess mild renal insufficiency and found an annual trend of AKI in a comparable percentage (80%) in both the AG and the monotherapy groups [15].

Our series notes that patients in the AG group more frequently presented abdominal or urinary infections rather than pulmonary infections. In these patients, septic syndrome likely evolved from complicated gram-negative bacterial infections. In 23% of cases, the infectious source was not detected.

Consultation with an infectious disease specialist most often suggests combination therapy with AG. This consultation has been associated with improved quality of care and better outcomes for several infectious diseases, including S. aureus bacteremia and invasive candidiasis [16]. Many studies argue that specialist consultation is associated with lower mortality in patients with bloodstream infections due to the standardization of the sepsis approach with effective timing and tailored therapy [1719]. Otherwise, the creation of a “ready-to-use” therapeutic protocol that takes into account the suspected site of infection, the patient’s previous colonization, and risk factors for exposure (such as hemodialysis for S. aureus) could be a reasonable alternative in a context of resource optimization and good therapeutic management even in “hub-and-spoke” hospital organization [20].

Our study demonstrates the safety of a class of drugs that is too often seen as a “kidney killer” and therefore avoided or underdosed in patients considered at risk (severe septic patients for whom intense antibiotic therapy could be a lifesaver in the early hours). At the same time, there is no reason to administer a low dose when given as a loading dose. Cobussen et al. found that 20% of septic patients in a Dutch ED received an aminoglycoside underdose (equivalent to <5 mg/kg) [21]. These patients required intensive care admission more frequently. Interestingly, patients who received the smaller AG dose also had higher creatinine levels. Therefore, the single-dose AG not only does not cause an excess of AKI cases compared to controls but could also have a nephroprotective effect by counteracting the haemodynamic and direct mechanisms induced by the bacterial spread in the organism.

On the other hand, the high potential benefit of the β-lactam/AG combination is relevant in carbapenem sparing strategies when considering the increasing carbapenem resistance of gram-negative species even outside the hospital.

Our study, being retrospective, is subject to some limitations. For example, data on the microorganisms that supported infections were not reported, in particular, whether sensitive or resistant to AGs. Moreover, the β-lactam therapy was not standardized in both groups (mono and combination). Furthermore, we could not stratify the patients’ initial conditions, for example, using the Charlson Score Index, due to the lack of the necessary variables. In any case, for the primary outcome we evaluated, the use of a propensity score match allowed us to eliminate the most relevant confounding factors associated with the development of AKI in septic patients in the ED.

 

Conclusion

According to the data we obtained, a single administration of gentamicin at the arrival time in the ED does not lead to an increased risk of AKI in septic patients.

 

Acknowledgements

The authors wish to thank all the Emergency Department staff and the Infectious Diseases Department of the ASFO hospital of Pordenone for their active collaboration in collecting the data.

 

Declarations

  1. Funding: No funds were provided to conduct this study.
  2. Conflicts of interest/Competing interests: No conflict of interest for any author.
  3. Availability of data and material: Data available by reasoned request.
  4. Code availability: Not applicable.
  5. Ethics approval: Retrospective cohort register exempted from ethics committee approval.
  6. Consent to participate: Each patient gave informed consent for data acquisition, and the European Privacy Regulation 2016/679 for General Data Protection Regulation (GDPR) was respected.
  7. Consent for publication: Each patient gave informed consent for data acquisition, and the European Privacy Regulation 2016/679 for General Data Protection Regulation (GDPR) was respected.
  8. Authors’ contributions: SV designed the study, collected the data, drafted the first draft and supervised the final draft; FC drafted the first draft and supervised the final draft; DO drafted the first draft and supervised the final draft, performed the statistical analysis; MC designed the study, collected the data; SF collected the data; AC collected the data; EP collected the data; LDS collected the data; DA collected the data; ML, LV and TB supervised the final draft.

 

References

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315:801-10.
  2. Leone M, Bourgoin A, Cambon S, Dubuc M, Albanese J, Martin C. Empirical antimicrobial therapy of septic shock patients: adequacy and impact on the outcome. Crit Care Med 2003; 31:462-7.
  3. Finer N, Goustas P. Ceftazidime versus aminoglycoside and (ureido)penicillin combination in the empirical treatment of serious infection. J R Soc Med 1992; 85:530-3.
  4. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43:304-77.
  5. Kumar A, Safdar N, Kethireddy S, Chateau D. A survival benefit of combination antibiotic therapy for serious infections associated with sepsis and septic shock is contingent only on the risk of death: a meta-analytic/meta-regression study. Crit Care Med 2010; 38:1651-64.
  6. Hanberger H, Edlund C, Furebring M, Giske CG, Melhus A, Nilsson LE, et al. Rational use of aminoglycosides—review and recommendations by the Swedish Reference Group for Antibiotics (SRGA). Scand J Infect Dis 2013; 45:161-75.
  7. Ong DSY, Frencken JF, Klein Klouwenberg PMC, Juffermans N, van der Poll T, et al., for the MARS consortium. Short-Course Adjunctive Gentamicin as Empirical Therapy in Patients With Severe Sepsis and Septic Shock: A Prospective Observational Cohort Study. Clinical Infectious Diseases 2017; 64:1731-6.
  8. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 2013; 3:1-150.
  9. Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012; 25:450-70.
  10. Simonsen GS. Antimicrobial resistance surveillance in Europe and beyond. Euro Surveill 2018; 23:1800560.
  11. Iacchini S, Sabbatucci M, Gagliotti C, Rossolini GM, Moro ML, et al. Bloodstream infections due to carbapenemase-producing Enterobacteriaceae in Italy: results from nationwide surveillance, 2014 to 2017. Euro Surveill 2019; 24:1800159.
  12. Cobussen M, de Kort JML, Dennert RM, Lowe SH, Stassen PM. No increased risk of acute kidney injury after a single dose of gentamicin in patients with sepsis. Infect Dis 2016; 48:274-80.
  13. Cobussen M, Haeseker MB, Stoffers J, Wanrooij VHM, Savelkoul PHM, Stassen PM. Renal safety of a single dose of gentamicin in patients with sepsis in the emergency department. Clin Microbiol Infect 2021; 27(5):717-23.
  14. Liljedahl Prytz K, Prag M, Fredlund H, Magnuson A, Sundqvist M, et al. Antibiotic treatment with one single dose of gentamicin at admittance in addition to a β-lactam antibiotic in the treatment of community-acquired bloodstream infection with sepsis. PlosOne 2020; 15:e0236864.
  15. Carlsen S, Boel J, Jarløv JO, et al. The effect of short-course gentamicin therapy on kidney function in patients with bacteraemia—a retrospective cohort study. Eur J Clin Microbiol Infect Dis 2018; 37:2307-12.
  16. Jiménez-Aguilar P, López-Cortés LE, Rodríguez-Baño J. Impact of infectious diseases consultation on the outcome of patients with bacteraemia. Ther Adv Infect Dis 2019; 6:2049936119893576.
  17. Cobussen M, van Tiel FH, Oude Lashof AML. Management of S. aureus bacteraemia in the Netherlands; infectious diseases consultation improves outcome. Neth J Med 2018; 76:322-9.
  18. Pérez-Rodríguez MT, Sousa A, López-Cortés LE, Martínez-Lamas L, et al. Moving beyond unsolicited consultation: additional impact of a structured intervention on mortality in Staphylococcus aureus bacteraemia. J Antimicrob Chemother 2019; 74:1101-7.
  19. Jiménez-Aguilar P, Romero-Palacios A, De-la-Calle IJ, Martínez-Rubio MC, et al. Unsolicited consultation by infectious diseases specialist improves outcomes in patients with bloodstream infection: A prospective cohort study. J Infect 2018; 77:503-8.
  20. Andrews B, Semler MW, Muchemwa L, Kelly P, Lakhi S, Heimburger DC, et al. Effect of an Early Resuscitation Protocol on In-hospital Mortality Among Adults With Sepsis and Hypotension: A Randomized Clinical Trial. JAMA 2017; 318:1233-40.
  21. Cobussen M, Hira V, de Kort JM, Posthouwer D, Stassen PM, Haeseker MB. Gentamicin is frequently underdosed in patients with sepsis in the emergency department. Neth J Med 2015; 73:443-4.

Economic impact of kidney patients with sepsis in hospital setting

Abstract

Introduction: Over the last decades, sepsis has become a real medical emergency, with a high mortality rate and often requiring admission to an intensive care unit. An increasing number of CKD patients contracts sepsis due to several clinical risk factors (use of catheters, immunosuppressive therapy, comorbidity, etc.) and is treated in Nephrology wards, generating additional costs that are not covered by hospital Diagnosis Related Groups (DRG) reimbursement. The aim of the study is to evaluate the costs of sepsis in one Nephrology Unit and to detect the mortality rate of CKD patients with sepsis.

Methods: We conducted a retrospective study on a cohort of CKD patients admitted into one Nephrology Unit in 2017. CKD inpatients were divided in two groups: patients with sepsis (SP) and without (control group). Socio-demographic, clinical and therapeutic data, as well as routine biochemistry, were collected through a “sepsis form”. SP were identified thanks to hospital discharge records (HDR). The hospital-related costs of a SP were obtained by summing up: (1) the average cost of an inpatient day of care for the average length of stay in the Nephrology Unit; (2) the average cost of the antimicrobial therapy, as recorded on the clinical folder.

Results: Among the 408 CKD inpatients, 61 were septic. The overall average cost of a SP was 23.087,57 €; the average cost of the hospital stay and of the antimicrobial therapy was 19.364,98 € and 3.722,60 € respectively. The average length of stay in the Nephrology Unit was 16.7 days. The in-hospital mortality rate was 41.7%, with a 312% additional mortality rate.

Conclusions: SP had an overall average cost three times higher than CKD inpatients without sepsis (9.290,79 €). This additional cost was due to a longer hospital stay (8.7 days more on average) and a higher cost of antimicrobial therapy per case (€ 221,24). A national multi-centre study is needed to confirm our data and to promote an adjustment of reimbursement tariff for DRG-sepsis, which is now applicable only to an ICU setting. 

Keywords: sepsis, costs, kidney disease, hospital discharge register

Sorry, this entry is only available in Italian.

Introduzione

La sepsi rappresenta una condizione clinica frequente di difficile gestione.  È associata a una mortalità molto elevata quando si accompagna a insufficienza d’organo (20-25%) o a uno stato di shock settico (40-70%), ed è pertanto definita un’emergenza medica [1].

La Consensus Conference della Society of Critical Care Medicine (SCCM) nel 2003, ha elaborato le definizioni di sepsi, sepsi grave e shock settico con lo scopo di rendere omogenea la terminologia utilizzata in questo ambito [2,3]. Recentemente, nuove definizioni sono state messe a punto nella Terza Consensus Conference della SCCM nel 2016 [4], che non hanno modificato nessun aspetto nell’identificazione e nel trattamento di questa patologia, ma hanno reso ridondante il termine “sepsi grave” che è stato sostituito da “sepsi” (Fig.1).

Gli studi epidemiologici riguardo la sepsi, attualmente disponibili, sono estremamente eterogenei e comprendono valutazioni retrospettive, incentrate sulle diagnosi di dimissione ospedaliera, e valutazioni prospettiche, basate su indagini osservazionali [5,6].

 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.