High-flow fistula: a problem not easy to handle

Abstract

High-output cardiac failure is a well-known phenomenon of high-flow fistula in hemodialysis patients. The definition of “high flow” is varied and almost always connected to proximal arteriovenous fistulas (AVF).
High flow access is a condition in which hemodynamics is affected by a greater rate of blood flow required for hemodialysis and this can compromise circulatory dynamics, particularly in the elderly in the context of pre-existing heart disease.
High access flow is associated with complications like high output heart failure, pulmonary hypertension, massively dilated fistula, central vein stenosis, dialysis associated steal syndrome or distal hypoperfusion ischemic syndrome.
Although there is no single agreement about the values of AVF flow volume, nor about the definition of high‐flow AVF, there is no doubt that AVF flow should be considered too high if signs of cardiac failure develop.
The exact threshold for defining high flow access has not been validated or universally accepted by the guidelines, although a vascular access flow rate of 1 to 1.5 l/min has been suggested.
Moreover, even lower values may be indicative of relatively excessive blood flow, depending on the patient’s condition.
The pathophysiology contributing to this disease process is the shunting of blood from the high-resistance arterial system into the lower resistance venous system, increasing the venous return up to cardiac failure.
Accurate and well-timed diagnosis of high flow arteriovenous hemodynamics by monitoring of blood flow of fistula and cardiac function is required in order to stop this process prior to cardiac failure.
We present two cases of patients with high flow arteriovenous fistula with a review of the literature.

Keywords: Blood flow, cardiac failure, vascular access, hemodialysis

Sorry, this entry is only available in Italian.

Introduzione

Una insufficienza cardiaca ad alta gittata può essere la conseguenza di svariate condizioni patologiche quali anemia, sepsi, ipertiroidismo, beri beri. Un’altra causa nota, in alcuni pazienti emodializzati, può essere la presenza di una fistola arterovenosa (FAV) in relazione al notevole aumento del flusso dell’accesso vascolare con conseguente eccessivo carico di lavoro cardiaco, insufficienza cardiaca congestizia ed ipertensione polmonare [13].

Come è ben noto, la sindrome uremica è associata ad un aumento della morbilità e mortalità cardiovascolare; il rischio di morte in un paziente emodializzato con insufficienza cardiaca è del 33%, 46% e 57% rispettivamente a 12, 24 e 36 mesi dopo l’inizio della terapia dialitica secondo i dati del Renal Data System statunitense [4]. Un’insufficienza cardiaca congestizia può manifestarsi nel 25-50% dei pazienti emodializzati, in particolare nei pazienti con “fistola artero-venosa ad alto flusso”.

La definizione di “FAV ad alto flusso” è, però, varia e, quasi sempre, collegata a FAV prossimali, nelle quali l’emodinamica è influenzata da un flusso sanguigno che supera di gran lunga quello richiesto per l’emodialisi, compromettendo tutta la dinamica circolatoria, in particolare nei soggetti anziani [5]. Sebbene una velocità di flusso eccessivamente alta sia associata a conseguenze avverse, la capacità di tollerare un flusso elevato è variabile.

Infatti, nei soggetti giovani può essere tollerato un flusso della fistola a riposo fino a 4 l/min senza alcun effetto negativo sull’emodinamica; anche se va considerato che, durante l’esercizio fisico, la gittata cardiaca può raddoppiare o triplicare e quindi il flusso può raggiungere anche 12 l/min con conseguente sovraccarico cardiaco ed ipertensione polmonare [1, 6].

Il termine di “FAV ad alto flusso” non è utilizzato in modo uniforme per i pazienti con i segni di insufficienza cardiaca (edemi periferici, ascite e ipotensione) o per quelli con un flusso ematico della FAV (Qa) >1500-2000 ml/min o quando il rapporto Qa e gittata cardiaca (GC = CO) è > 30% [7].

La Vascular Access Society definisce come FAV ad alta portata un accesso vascolare con valori di 1000-1500 ml/min ed affianca a tale definizione un ulteriore dato, il “ricircolo cardiopolmonare” (RCP), ossia il rapporto tra il flusso della FAV e la portata cardiaca al fine di valutarne l’impatto emodinamico. Quando tale indice è > 20% si può verificare una condizione di rischio di scompenso ad alto output. La prevalenza di questa condizione non è però ben stabilita, poiché molti casi non vengono segnalati e rimangono misconosciuti [1].

Le linee guida KDOQI [8] sottolineano l’importanza di uno stretto monitoraggio (attento esame fisico e determinazione di RCP) ogni 6-12 mesi (o, più frequentemente, in caso di necessità) per gestire precocemente la FAV con alto flusso, evitando complicazioni gravi o irreversibili, quali insufficienza cardiaca ad alta gittata, ipertensione polmonare, stenosi delle vene centrali, ipertensione venosa, degenerazione aneurismatica della FAV e ischemia della mano. Sebbene la soglia per definire l’accesso ad alto flusso non sia stata rigorosamente convalidata né universalmente accettata, è stata indicato dalle linee guida KDOQI un Qa compreso tra 1 e 1,5 l/min o un Qa > 20% della gittata cardiaca. Le linee guida riservano, inoltre, il termine di “insufficienza cardiaca” solo ai pazienti sintomatici e considerano “precursori dello scompenso cardiaco” alcune alterazioni ecocardiografiche quali la disfunzione diastolica, la dilatazione delle cavità cardiache e lo sviluppo di rigurgito valvolare. Inoltre le linee guida non sono d’accordo riguardo all’indicazione chirurgica della riduzione del flusso nei pazienti asintomatici [911].

Va sottolineato, tuttavia, che c’è un elemento di individualità intrinseco alla definizione di flusso elevato della FAV. Infatti, sintomi legati all’ insufficienza cardiaca congestizia si possono sviluppare a valori di Qa anche inferiori; in particolare nei pazienti con cardiopatia sottostante o comorbilità correlate; pertanto secondo le linee guida potrebbe essere di aiuto l’esecuzione di un ecocardiogramma bidimensionale ogni 6-12 mesi.

Le linee guida spagnole suggeriscono nei casi di Qa > 2000 ml/min e/o nei pazienti con ricircolo cardiopolmonare > 30% la riduzione del flusso della FAV (mediante banding o procedure di rivascolarizzazione come la revisione dell’afflusso distale o RUDI) al fine di ridurre il rischio di insufficienza cardiaca ad alta gittata [12].

Le linee guida della Società Europea di Chirurgia Vascolare raccomandano per i pazienti emodializzati con un Qa > di 1500 ml/min un regolare monitoraggio mediante misurazioni del flusso, ecocardiografia e valutazione dei segni clinici di insufficienza cardiaca [13].

È un aspetto di cruciale importanza dell’assistenza al paziente emodializzato fare una diagnosi accurata e precoce della FAV ad alto flusso ed, inoltre, selezionare le procedure più idonee per trattare questa condizione patologica e le sue complicanze; infatti l’insufficienza cardiaca, come evidenziato in letteratura, è potenzialmente reversibile con la riduzione della portata e/o con la chiusura della FAV, sia spontanea per trombosi, che chirurgica dopo trapianto di rene [14, 15].

Nel presente lavoro descriviamo la storia di due pazienti portatori di FAV ad alta portata con revisione della letteratura.

 

Caso clinico 1

Uomo di 45 anni sottoposto a trapianto di rene da donatore cadavere. Dopo rigetto cronico, all’età di 55 anni riprendeva il trattamento emodialitico, utilizzando come accesso vascolare una FAV radio-cefalica sx prossimalizzata, mantenuta pervia, contro il parere dei sanitari, durante tutta la durata (10 anni) di funzionalità del graft.

Alla presa in carico presso il nostro centro, il paziente si presentava asintomatico e con valori di pressione arteriosa nella norma, l’esame obiettivo metteva in evidenza una FAV molto sviluppata con un enorme aneurisma. L’indagine con ecocolordoppler mostrava una dilatazione aneurismatica post-anastomotica a pareti indenni da lesioni; il calcolo della portata risultava di 10 l/min (eseguito in modo automatico dall’ecografo attraverso l’impostazione di 2 parametri: diametro dell’arteria omerale in B-Mode e velocità media calcolata sempre sullo stesso vaso a circa 2 cm dalla piega del gomito secondo le indicazioni delle linee guida) (Fig. 1).

FAV con portata di 10 l/min. 
Figura 1: FAV con portata di 10 l/min.  I parametri necessari per il calcolo della portata della FAV sono: diametro del vaso (arteria omerale) e velocità media del sangue.  Flusso (ml/min) = Area × Velocità media × 60, dove per area si intende l’area di sezione del vaso (cm²) e la velocità media è quella dei globuli rossi (cm/sec) ricavata dal tracciato Doppler nella sede in cui viene misurata l’area del vaso.

L’ecocardiogramma evidenziava ipertrofia concentrica del ventricolo sinistro, dilatazione biatriale, FE pari al 50% e assenza di ipertensione polmonare. Il paziente, dopo un breve periodo in cui è stato sottoposto a stretto monitoraggio, ha finalmente dato il suo consenso al trattamento chirurgico di riduzione dell’aneurisma e della portata della FAV, come concordato dal nefrologo e dal chirurgo vascolare.

Dopo anestesia plessica con carbocaina, è stata eseguita una flebografia dell’arto, tramite venopuntura della vena cefalica arterializzata, per valutare l’eventuale presenza di una stenosi dei vasi venosi centrali, non evidenziabile all’indagine ecocolordoppler. L’esame risultava negativo per stenosi. Pertanto, si procedeva con incisione longitudinale al terzo prossimale-medio dell’avambraccio, veniva isolata l’anastomosi ed il primo tratto del versante venoso dove era presente l’aneurisma (Fig. 2).

Aneurisma in FAV ad alta portata
Figura 2: Aneurisma in FAV ad alta portata. Dopo incisura al terzo prossimale-medio dell’avambraccio è ben visibile l’aneurisma a livello del primo tratto del versante venoso.

Dopo clampaggio dei vasi, è stata eseguita una venotomia longitudinale di circa 8 cm fino all’anastomosi (Fig. 3).

FAV prossimale ad alta portata.
Figura 3: FAV prossimale ad alta portata. Apertura della sacca aneurismatica.

La parete in eccesso della sacca aneurismatica veniva rimossa (Fig. 4), si procedeva a chiusura della parete con sutura continua e riduzione dell’anastomosi stessa (Fig. 5).

FAV prossimale ad alta portata.
Figura 4: FAV prossimale ad alta portata. Resezione con riduzione dell’aneurisma.
Termine intervento dopo aneurismectomia e riduzione del diametro dell’anastomosi.
Figura 5: Termine intervento dopo aneurismectomia e riduzione del diametro dell’anastomosi. Portata FAV attuale circa 2,0 l/min.

Al termine, la portata della FAV, intraoperatoria, si attestava a circa 2,0 l/min. A distanza di circa 8 mesi, il follow-up ecografico confermava la stabilità della portata della FAV (Fig. 6).

Portata FAV post-intervento: 1900 ml/min.
Figura 6: Portata FAV post-intervento: 1900 ml/min. Ecocolordoppler: curva spettrale a bassa resistenza con elevata componente diastolica.

 

Caso clinico 2

Uomo di 60 anni. In anamnesi ipertensione arteriosa, ipotiroidismo, nefrectomia renale sinistra per carcinoma a cellule renali nel 2005. Nel maggio 2017 si evidenziava comparsa di malattia nel rene destro per cui veniva sottoposto ad intervento di nefrectomia. Iniziava trattamento emodialitico con catetere venoso centrale e, successivamente, a giugno 2018, veniva allestito un accesso vascolare prossimale tra l’arteria omerale e la vena cefalica del braccio. La FAV, dopo adeguata maturazione, è stata punta regolarmente e sono stati eseguiti controlli periodici con ecocolordoppler in relazione ad alta portata (circa 4 l/min, con una bocca anastomotica di 5 mm). Nell’aprile 2019, per il riscontro all’ecocolordoppler di una stenosi al terzo medio della vena cefalica arterializzata, eseguiva una angioplastica (PTA).

Ad inizio 2020 il follow-up con ecocolordoppler mostrava un netto incremento della portata (8 l/min) ed un progressivo incremento delle dimensioni di una dilatazione aneurismatica post-anastomosi (Fig. 7).

Immagine B-mode: si apprezza l’anastomosi e l’aneurisma post anastomosi, il diametro dell’arteria omerale è di 9,2 mm.
Figura 7: Immagine B-mode: si apprezza l’anastomosi e l’aneurisma post anastomosi, il diametro dell’arteria omerale è di 9,2 mm.

Si proponeva al paziente la riduzione dell’anastomosi. L’intervento veniva, però, posticipato per oltre un anno per il sopraggiungere dell’emergenza Covid. In seguito ad un controllo ecocardiografico veniva effettuato un ricovero in Cardiologia e sottoposto ad angioplastica (PTCA) + stent medicati (DES) su IVA per riscontro di necrosi settale e severa disfunzione di pompa, in nota insufficienza mitralica e dilatazione biatriale, insufficienza tricuspidale con ipertensione polmonare (PAPS stimata > 65 mmHg).

La situazione clinica del paziente si complicava per una grave emorragia addominale causata dalla ripresa della malattia oncologica con metastasi addominali. Il paziente presentava episodi di flutter/fibrillazione atriale trattati con betabloccante e digitale endovena ed era ipoteso (PA 110/60 mmHg). A settembre 2021 ricovero per l’intervento di riduzione della FAV. Eseguito un esame fisico ed ecocolordoppler prima dell’intervento che metteva in evidenza la presenza di un collaterale a partenza dalla vena cefalica arterializzata di buon calibro (>3 mm) (Fig. 8), si decideva di utilizzare tale collaterale in sede di intervento.

Figura 8: Mega fistola con portata preintervento di 8 l/min.
Figura 8: Mega fistola con portata preintervento di 8 l/min.

In anestesia plessica con carbocaina, veniva eseguita incisione longitudinale in corrispondenza dell’aneurisma che veniva isolato. Si identificava il vaso collaterale da usare per nuovo allestimento di FAV, lo si mobilizzava e si chiudevano dei piccoli rami collaterali. Si lavava con fisiologia eparinata. L’aneurisma era chiuso, a livello prossimale e distale, e resecato. Veniva riconfezionato un nuovo accesso vascolare poco più prossimalmente rispetto al precedente (Fig. 9). L’intervento permetteva una riduzione della portata a meno di 2 l/min. Dopo la riduzione della portata, si assisteva ad un miglioramento del quadro clinico con buon compenso emodinamico, risalita dei valori pressori e riduzione della frequenza cardiaca. A distanza di pochi mesi però, si assisteva al decesso del paziente a causa di una sepsi a partenza da un’ulcera dell’arto inferiore destro.

Figura 9: Rappresentazione schematica di fistola pre- e post-intervento.
Figura 9: Rappresentazione schematica di fistola pre- e post-intervento.

 

Discussione

I casi clinici riportati riassumono le caratteristiche e le complicanze cliniche relative ad una FAV ad alta portata; tale condizione si associa, spesso, a dilatazioni aneurismatiche della vena arterializzata.

Sebbene non ci sia un rapporto causa-effetto chiaramente definito, alta portata e dilatazioni aneurismatiche sono meritevoli di particolare attenzione al fine di evitare quadri clinici più complessi come l’insufficienza cardiaca ad alta gittata con l’aumento del volume telediastolico ventricolare sinistro, l’ipertensione polmonare, le stenosi delle vene centrali e la sindrome ischemica da ipoperfusione distale, ulcerazioni cutanee e rottura. La dilatazione aneurismatica si verifica a causa di una complessa interazione tra fattori biologici che inducono il rimodellamento della parete e fattori fisici come la tensione della parete, in aggiunta all’indebolimento della parete da ripetute venopunture (lesioni tissutali e successiva guarigione) e all’aumento della pressione dell’accesso a causa di una stenosi relativa o assoluta [16]. Le manifestazioni cliniche associate ad un accesso ad alto flusso possono variare da un reperto accidentale asintomatico ad una situazione grave e pericolosa per la vita. Il sospetto di una alta portata della FAV va considerato in ogni paziente con caratteristiche cliniche riassunte nella Tabella 1.

Ipertrofia ventricolare sinistra eccentrica Rimodellamento del muscolo cardiaco con dilatazione delle quattro camere proporzionale al Qa
Insufficienza cardiaca ad alta gittata

Indice cardiaco superiore alla norma o gittata cardiaca elevata.

Sintomi: dispnea a riposo o con vari gradi di sforzo, ortopnea, dispnea parossistica notturna, edema polmonare e/o periferico

Ischemia miocardica Squilibrio avverso tra l’apporto di ossigeno subendocardico e l’aumento della richiesta di ossigeno dovuta all’aumento della gittata cardiaca
Ipertensione polmonare

Aumento della gittata cardiaca dopo creazione di FAV associato ad aumento della pressione arteriosa polmonare che è correlata al Qa.

Sintomi: dispnea progressiva, astenia, sincope e insufficienza cardiaca dx

Ischemia distale

indotta dall’accesso dell’emodialisi

Diminuzione della pressione di perfusione distalmente all’anastomosi FAV

Ischemia sino alla gangrena

Qa spesso elevato, in alcuni casi normale o basso

Diminuzione della clearance della dialisi Elevato ricircolo cardiopolmonare con ridotta efficienza dialitica
Stenosi venosa periferica e centrale

La stenosi del deflusso venoso è il risultato dell’iperplasia neointimale dovuta alla risposta dell’endotelio vasale all’alterazione del flusso sanguigno. Ciò avviene in siti specifici (biforcazione dei vasi, valvole venose, zone curve fortemente angolate all’interno del vaso) la cui anatomia favorisce un flusso sanguigno turbolento con conseguente squilibrio nello shear stress di parete.

Qa eccessivamente alto favorisce lo sviluppo di stenosi centrali

Allargamento aneurismatico dell’accesso (megafistola) Progressivo aumento dei vasi rendendo la FAV diffusamente tortuosa ed ectasica
Tabella 1: Manifestazioni cliniche legate ad una FAV ad alta portata.

La sintomatologia dell’insufficienza cardiaca ad alta gittata dovuta ad una FAV ad alto flusso è varia e caratterizzata da difficoltà respiratoria, palpitazioni, edema agli arti inferiori, inappetenza, ortopnea, dispnea anche per piccoli sforzi e/o dispnea parossistica notturna. La FAV ad alto flusso è una causa frequente di ipertensione polmonare quando la pressione arteriosa polmonare media supera i 25 mmHg a riposo o durante l’esercizio; in genere è asintomatica nei pazienti emodializzati, ma possono essere presenti sintomi come respiro corto, vertigini, svenimento, segni di insufficienza cardiaca destra ed edemi agli arti inferiori. Tale situazione può regredire con la riduzione del flusso e conseguente notevole abbassamento della pressione dell’arteria polmonare; incerto è, invece, un miglioramento della prognosi di vita di questi pazienti.

Nella pratica clinica quotidiana, spesso, non si riesce a trovare una correlazione univoca tra la sintomatologia e l’alto flusso di una FAV e non sono chiare le cause alla base dell’evoluzione di un sovraccarico di volume verso una insufficienza cardiaca conclamata. Le motivazioni sono svariate e legate sia alla tipologia del paziente (sovraccarico di volume, alterato metabolismo calcio-fosforo con calcificazioni arteriose, ipertensione arteriosa ed un aumento del cardiac output secondario all’anemia cronica, oltre alla coesistente presenza di malattie organiche come diabete, aritmie, cardiopatia ischemica o valvulopatie [17]), sia al fatto che la portata ematica di una FAV è legata soprattutto alla sede dell’anastomosi, più alta quanto più prossimale, alle dimensioni della breccia anastomotica (per esempio in una FAV prossimale > 4-6 mm), all’angolazione e al calibro del primo tratto venoso.

Diversi studi hanno dimostrato che, subito dopo la creazione di una FAV, si verifica una istantanea diminuzione delle resistenze vascolari periferiche e, per i successivi sette giorni, un progressivo compensatorio aumento, pari al 10-20% della gittata cardiaca e del 12,7% [18, 19] della massa ventricolare sinistra [20]. Lo sviluppo di una FAV è, quindi, un complesso rimodellamento vascolare venoso, arterioso e della circolazione sistemica con modificazioni dello shear stress di parete, dilatazione delle arterie e delle vene con cambiamenti strutturali della parete vasale [21]. Seppur raramente, sono descritti in letteratura casi di insufficienza cardiaca ad alta gittata “iperacuta” con quadri drammatici, già in sala operatoria, subito dopo l’allestimento di una FAV, tanto da rendere necessaria la legatura dell’accesso per ripristinare la stabilità emodinamica [22].

Basile e colleghi, in uno studio prospettico di riferimento, nel 2008, analizzando nelle FAV distali e prossimali la correlazione tra portata della FAV e cardiac output, hanno dimostrato un elevato valore predittivo dell’alta portata della FAV nel determinare una insufficienza cardiaca ad alta gittata soprattutto nelle FAV prossimali e/o nelle FAV con flussi maggiori o uguali a 2000 ml/min.

In particolare, i casi di scompenso ad alta portata sono osservati per il 70% tra i pazienti portatori di FAV prossimale e la soglia di rischio indicata riguarda un flusso maggiore di 2,2 l/min [23].

Molti autori hanno studiato gli effetti emodinamici di una FAV e l’impatto sugli indici ecocardiografici della funzione cardiaca (aumento dei volumi diastolici, gittata sistolica, ricircolo cardiopolmonare) già poco dopo la creazione della FAV ed, in particolare, nelle FAV prossimali rispetto a quelle distali [2426].

Quarello e colleghi, analizzando alcuni case report presenti in letteratura, suggeriscono che i pazienti in emodialisi dovrebbero essere valutati per scompenso cardiocircolatorio ad alta portata utilizzando il dato del RCP. Se RCP è > 30% l’ecocardiogramma di controllo deve essere eseguito con cadenza semestrale. Nei pazienti con RCP > 40%, in presenza di sintomatologia, si impone la chiusura della FAV al fine di ottenere il massimo recupero cardiaco. Miglioramenti della funzione cardiaca riducendo la portata sono stati segnalati da vari autori con riduzione dell’ipertrofia sia eccentrica che concentrica oltre che della gittata cardiaca e dell’ipertensione polmonare [27].

Se, da un lato, in letteratura, non vi è accordo sulla definizione di FAV ad alta portata, arbitrariamente possiamo considerare basso un flusso < a 600 ml/min, normale da 600 a 1500 ml/min, alto > 1500 ml/min.

Il test di Nicoladoni-Branham può aiutarci a capire se una fistola ad alto flusso è un fattore di stress per il cuore con un sovraccarico di volume cardiaco. È un test semplice, che si può utilizzare nella pratica clinica quotidiana e può essere effettuato al letto del paziente. Si esegue una pressione a livello dell’anastomosi arteriosa per 30-60 secondi al fine di occludere il flusso sanguigno alla fistola. La risposta a questa manovra è la diminuzione della frequenza cardiaca e l’aumento della pressione sanguigna, dovuto alla normalizzazione del flusso sanguigno circolante occludendo la fistola [28].

La diagnosi di una FAV ad alto flusso è, comunque, complicata [5]. Nella quotidianità un attento esame fisico può aiutare a confermare un sospetto di un elevato flusso, avvalorato dalla determinazione della portata della FAV sull’arteria brachiale con l’ecocolordoppler (Tabella 2); occorre poi eseguire una valutazione ecocardiografica e determinare la gittata cardiaca. L’insufficienza cardiaca può essere diagnosticata con un’ecografia transtoracica, ma, talora, può richiedere un cateterismo cardiaco destro per la diagnosi definitiva [29].

SEDE Qa elevato nelle FAV prossimali rispetto alle distali
DIMENSIONE

Grandi dimensioni, soprattutto se presente un’ostruzione a valle,

FAV diffusamente tortuosa ed ectasica

PALPAZIONE

Rilevazione del fremito (thrill) in corrispondenza dell’anastomosi.

Il thrill è continuo: indicatore di flusso.

Più forte (prominente) nell’accesso AV ad alto flusso rispetto ad un accesso con flusso normale o basso

AUSCULTAZIONE

Soffio vascolare continuo: indicatore di flusso.

La pulsazione o un soffio intermittente, invece, sono indicatori di elevata resistenza o iniziale occlusione.

Normalmente, man mano che si avanza lungo la vena, l’importanza del thrill e del soffio di sottofondo diminuisce leggermente; ciò non succede con un accesso con Qa ad alto flusso.

ECOCOLORDOPPLER

La diagnosi di un Qa elevato dipende dalla sua misurazione, che deve essere effettuata a livello dell’arteria brachiale almeno 5 cm prossimalmente all’anastomosi indipendentemente dal fatto che si tratti di una fistola AV radiale o dell’arteria brachiale.

Per l’elevata portata e l’alternarsi di tratti successivi di calibro diverso, è frequente riscontrare nella vena efferente, soprattutto nel suo tratto più vicino all’anastomosi, zone a flusso vorticoso, che conferiscono alternata codifica di colore (aliasing) nel lume vasale con un caratteristico andamento spiroidale

Tabella 2: FAV Alta Portata: caratteristiche Ecocolordoppler e correlati clinici.

In alcuni casi la FAV ad alto flusso, in presenza di stenosi dell’arco cefalico o della vena di deflusso (Fig. 10) e di dilatazioni aneurismatiche della vena arterializzata (Fig. 11), può evolvere verso la megafistola. Alcuni autori hanno stabilito i criteri per la definizione di megafistola: 1) Portata della FAV > 2,2 l/min, 2) Vena arterializzata ipertrofica, 3) Ricircolo cardiopolmonare > 20%, 4) Insufficienza cardiaca con gittata cardiaca > 4-8 l/min, 5) Indice cardiaco (rapporto tra gittata cardiaca e superficie corporea) > 3. Un’altra definizione proposta è la presenza di svariati segmenti della FAV molto dilatati (più del doppio del diametro della vena normale adiacente), portata maggiore di 2000 ml/min e pressioni intra-accesso elevate [11, 30, 31].

Stenosi sulla vena di deflusso.
Figura 10: Stenosi sulla vena di deflusso. Ben visibile il fenomeno dell’aliasing. All’analisi spettrale elevate velocità sisto-diastoliche.
Sezione trasversa e longitudinale in B-mode e color di tratti aneurismatici di FAV.
Figura 11: Sezione trasversa e longitudinale in B-mode e color di tratti aneurismatici di FAV.

Gardezi e colleghi, in un recente lavoro, valutando 10 pazienti con megafistola sottolineano quanto sia importante riconoscere e trattare le stenosi dell’outflow oltre alla sorveglianza continua dell’accesso, soprattutto nei pazienti che non sono in dialisi, come i portatori di trapianto, al fine di non avere quadri complicati con alta portata fino alla megafistola. Una volta che si sviluppa una megafistola, non ci sono molte opzioni di trattamento oltre alla legatura con conseguente perdita di un accesso che potrebbe ancora essere necessario in futuro [32].

In uno studio prospettico osservazionale, Stoumpos e colleghi hanno studiato, con l’utilizzo della risonanza magnetica nucleare (RMN), sia gli effetti della creazione della FAV che la funzione cardiaca nei pazienti con malattia renale cronica avanzata. In particolare, hanno messo in relazione le misurazioni ecografiche del Qa a 6 settimane con gli effetti dell’allestimento della FAV sulla massa ventricolare sinistra al basale e dopo un tempo medio di 6,3 settimane.

Gli autori hanno osservato un aumento sostanziale della massa ventricolare sinistra e della gittata cardiaca (p = 0,02) dopo 6,3 settimane, proporzionale alla portata misurata sull’arteria brachiale (p = 0,04). L’incremento della massa ventricolare sinistra era pari al 10,2% quando il Qa era superiore a 600 ml/min. Secondo gli autori tale aumento non era dovuto al peggioramento dell’uremia, al sovraccarico di volume plasmatico o alle variazioni dell’ematocrito poiché tali parametri non erano cambiati significativamente nell’intervallo di tempo osservato (mediana 8,3 settimane). Inoltre, gli autori hanno confermato che le fistole del braccio hanno flussi sanguigni più elevati rispetto alle fistole dell’avambraccio e, di conseguenza, hanno dimostrato che l’incidenza di insufficienza cardiaca è molto più alta nei pazienti con FAV prossimali rispetto alle distali. Questo è il primo studio che dimostra tali cambiamenti precoci nella massa del ventricolo sinistro e collega il flusso iniziale della FAV al cambiamento della massa del ventricolo sinistro [33].

Altri autori hanno valutato il Qa (mediante una tecnica di diluizione a due aghi) e la sopravvivenza in una popolazione in emodialisi per un periodo di 9 anni, considerando la mortalità cardiovascolare secondo la classificazione della European Renal Association-European Dialysis and Transplant Association.

Gli autori hanno studiato sia il Qa iniziale (definito come il primo valore di Qa ottenuto in una FAV ben funzionante) sia il ruolo del Qa effettivo (definito come il volume di flusso di accesso ottenuto di routine una volta ogni 1-2 mesi per la sorveglianza della FAV) e i cambiamenti periodici nel Qa effettivo. I risultati mostravano, in periodi di 3 mesi, un’associazione tra l’aumento del Qa effettivo e la mortalità (p = 0,010) indicando che solo i pazienti con un Qa crescente avevano maggiore probabilità di morire, sebbene il Qa effettivo non era correlato alla sopravvivenza. Inoltre, gli autori, pur riconoscendo i limiti dello studio (limitato numero di pazienti, dati ematochimici ed ecocardiogramma seriali non disponibili per tutti i pazienti), concludevano che la conoscenza di queste nuove caratteristiche del Qa può contribuire a comprendere l’elevata mortalità cardiovascolare nei pazienti emodializzati, e, pertanto, potranno essere di aiuto studi futuri combinati e seriali di cardiofisiologia e di imaging con il monitoraggio di marcatori biochimici [34].

Inoltre, piccoli studi osservazionali suggeriscono che la massa del ventricolo sinistro potrebbe migliorare dopo la legatura della FAV dopo trapianto di rene [3537].

Più recentemente, utilizzando la risonanza magnetica, è stato eseguito in Australia uno studio randomizzato in 63 pazienti adulti con trapianto di rene. La legatura della FAV in pazienti trapiantati stabili migliora il rimodellamento ventricolare sinistro con riduzione significativa dopo 6 mesi della massa ventricolare sinistra, dei volumi telediastolici, dei volumi atriali, della gittata cardiaca (da 6,8 l/min al basale a 4,8 l/min a 6 mesi p < 0,05) e del pro-BNP [38].

Inoltre, lo scompenso cardiaco si manifesta, anche, in presenza di un flusso non elevato della FAV per una riduzione della riserva cardiaca poiché un valore di Qa nel range di normalità (600-1200 ml/min) può essere eccessivo a causa di una bassa riserva coronarica (ridotta contrattilità miocardica con bassa gittata cardiaca), in quanto il cuore non riesce a soddisfare l’aumento della gittata cardiaca dovuta alla creazione della FAV [39, 40].

Recentemente, Malik e colleghi focalizzano l’attenzione sull’emodinamica cardiovascolare nei pazienti emodializzati portatori di FAV e suggeriscono alcuni elementi per la scelta dell’accesso vascolare più idoneo per ogni paziente considerando che la funzione cardiaca con o senza scompenso cardiaco dovrebbe essere uno dei criteri principali per selezionare il tipo di accesso appropriato utilizzando, in base alla gravità dei sintomi, la classificazione della New York Heart Association (4 classi) e dell’American Heart Association (stadio da A a D). Gli autori concludono proponendo l’utilizzo di modelli predittivi validati per stimare la portata che avrà la fistola dopo il suo allestimento ed i suoi effetti cardiaci [41].

Sono ben documentati i criteri terapeutici per la riduzione del flusso della FAV nelle condizioni quali malattie cardiopolmonari (insufficienza cardiaca, ipertensione polmonare, ischemia distale indotta dall’accesso all’emodialisi) associate a un Qa eccessivamente elevato. Al di là di queste condizioni, i criteri per il trattamento non sono ben definiti. Nei casi di stenosi venosa il Qa può essere normale, basso o elevato. Se il Qa è alto, dovrebbe essere eseguita una riduzione del flusso piuttosto che un’angioplastica, poichè ci si può aspettare che il Qa aumenti (ad eccezione di una stenosi venosa centrale) [42]. Questo aumento di flusso dopo angioplastica può peggiorare (come nel nostro caso clinico n°2) o slatentizzare problematiche quali l’insufficienza cardiaca, l’edema polmonare o l’ischemia della mano [43].

A tutt’oggi non esiste un valore target generalmente accettato per la riduzione del flusso; sono fondamentali il giudizio clinico e la considerazione della gravità della condizione individuale del paziente. L’obiettivo ideale del trattamento di una FAV ad alta portata è alleviare gli effetti avversi riducendo il Qa senza rischiare la perdita della pervietà dell’accesso vascolare.

Sono disponibili vari approcci per la riduzione del flusso quali la legatura degli affluenti venosi, il banding (chirurgico o endovascolare) e le procedure di rivascolarizzazione come la revisione dell’afflusso distale o RUDI [44].

 

Conclusioni

Il monitoraggio e la sorveglianza degli Accessi Vascolari sono essenziali al fine di migliorare la gestione e la cura del paziente in emodialisi e, per questo, si fa sempre più strada una stretta collaborazione tra nefrologo e altre professionalità con l’uso di protocolli e procedure basati su evidenze scientifiche uniformando gli interventi e i comportamenti. Dobbiamo definire e quindi ottimizzare il flusso sanguigno della FAV per prevenire le complicazioni a lungo termine, considerando che l’accesso vascolare può influenzare la funzione cardiaca e, in alcuni pazienti, potrebbe peggiorare lo stato clinico. Il trattamento deve essere individualizzato in base alla presentazione clinica, alla sintomatologia ed alle comorbilità del paziente.

Varie tecniche chirurgiche ed endovascolari sono state utilizzate per trattare l’alta portata. Il trattamento chirurgico, come nel nostro caso, consente di preservare la FAV autologa.

 

Bibliografia

  1. Bailey WB, Talley JD. High-output cardiac failure related to hemodialysis arteriovenous fistula. J Ark Med Soc 2000 96: 340-341.
  2. Alkhouli Mohamad, Sandhu Paul, Boobes Khlaed, Hatahet Kamel, Razae Farhan, Boobes Yousef. Cardiac complications of arteriovenous fistulas in patients with end-stage renal disease. Nefrologia. 2015;35(3):234–245. https://doi.org/1016/j.nefro.2015.03.001.
  3. Rao Nitesh N, Dundon Benjamin K, Worthley Matthew I, Faull Randall J. The Impact of Arteriovenous Fistulae for Hemodialysis on the Cardiovascular System Semin Dial 2016 May;29(3):214-21 3. https://doi.org/1111/sdi.12459.
  4. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2016 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis 2017; 69: A7–A8. https://doi.org/10.1053/j.ajkd.2016.12.004.
  5. Floccari F, Di Lullo L, Rivera R, Malaguti M, Santoboni A, Granata A, Timio M La fistola arterovenosa e lo scompenso ad alta gittata: un tema di grande… portata TN&D Anno XXIV n. 3.
  6. Iwashima Y, Horio T, Takami Y, Inenaga T, Nishikimi T, et al. (2002) Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am J Kidney Dis 40: 974-982. https://doi.org/10.1053/ajkd.2002.36329.
  7. Malik J, Valerianova A, Tuka V, Trachta P, Bednarova V, Hruskova Z, Slavikova M, Rosner MH, Tesar V. The effect of high-flow arteriovenous fistulas on systemic haemodynamics and brain oxygenation. ESC Hear. Fail. 2021, 8, 2165–2171. https://doi.org/1002/ehf2.13305.
  8. Lock E, Huber T, Lee T, Shenoy S, Yevzlin A et al. KDOQI Clinical Practice Guideline For Vascular Access AJKD Vol 75, Iss 4, Suppl 2, April 2020. https://doi.org/10.1053/j.ajkd.2019.12.001.
  9. Sequeira A, Tan TW. Complications of a High-flow Access and Its Management. Semin Dial 2015; 28:533. https://doi.org/10.1111/sdi.12366.
  10. Management of high flow in A/V fistula and graft. Available at www.vascularaccesssociety.org.
  11. Miller GA, Hwang WW. Challenges and management of high-flow arteriovenous fistulae. Semin Nephrol 2012; 32:545. https://doi.org/10.1016/j.semnephrol.2012.10.005.
  12. Ibeas J, Roca-Tey R, Vallespin J, et al. Spanish clinical guidelines on vascular access for haemodialysis (vol 37, pg 1, 2017). Nefrologia 2019; 39: 1–2. https://doi.org/10.1016/j.nefro.2017.11.004.
  13. Schmidli J, Widmer M.K., Basile C., de Donato G. et al. Editor’s Choice – Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J.Vasc. Endovasc. Surg. 2018, 55, 757–818. https://doi.org/10.1016/j.ejvs.2018.02.001.
  14. Unger Philippe, Velez-Roa S, Wissing KM. Regression of left ventricular hypertrophy after arteriovenous fistula closure in renal transplant recipients: a long-term follow-up. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2004 4(12): 2038-44. https://doi.org/10.1046/j.1600-6143.2004.00608.x.
  15. Movilli E, Viola BF, Brunori G, et al. Long-term effects of arteriovenous fistula closure on echocardiographic functional and structural findings in hemodialysis patients: a prospective study. Am J Kidney Dis 2010; 55: 682. https://doi.org/10.1053/j.ajkd.2009.11.008.
  16. Mudoni A, Cornacchiari M, Gallieni M, Guastoni C, McGrogan D, Logias F, Ferramosca E, Mereghetti M, Inston N. Aneurysms and pseudoaneurysms in dialysis access. Clin Kidney J. 2015 Aug;8(4):363-7. https://doi.org/10.1093/ckj/sfv042.
  17. Kanno T., Kamijo Y., Hashimoto K., Kanno Y. Outcomes of blood flow suppression methods of treating high flow access in hemodialysis patients with arteriovenous fistula. J. Vasc. Access 2015, 16 (Suppl. S1), S28–S33. https://doi.org/10.5301/jva.5000415.
  18. Korsheed S., Eldehni M.T., John S.G., Fluck, R.J., McIntyre C.W. Effects of arteriovenous fistula formation on arterial stiffness and cardiovascular performance and function. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. 2011,26, 3296–3302. https://doi.org/10.1093/ndt/gfq851.
  19. Ori, Y.; Korzets, A.; Katz, M.; Erman, A.; Weinstein, T.; Malachi, T.; Gafter, U. The contribution of an arteriovenous access for hemodialysis to left ventricular hypertrophy. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 40, 745–752. https://doi.org/10.1053/ajkd.2002.35685.
  20. Dundon, B.K.; Torpey, K.; Nelson, A.J.; Wong, D.T.; Duncan, R.F.; Meredith, I.T.; Faull, R.J.; Worthley, S.G.; Worthley, M.I. The deleterious effects of arteriovenous fistula-creation on the cardiovascular system: A longitudinal magnetic resonance imaging study. Int. J. Nephrol. Renovasc. Dis. 2014, 7, 337–345. https://doi.org/10.2147/IJNRD.S66390.
  21. Jie, K.; Feng, W.; Boxiang, Z.; Maofeng, G.; Jianbin, Z. et al. Identification of Pathways and Key Genes in Venous Remodeling After Arteriovenous Fistula by Bioinformatics Analysis. Front . Physiol. 2020, 11, 565240. https://doi.org/10.3389/fphys.2020.565240.
  22. Bornstein Yadin, Weaver M. Libby, Holscher Courtenay M., Reifsnyder Thomas. Development of Hyperacute High-Output Heart Failure at the Time of Access Creation February J of Vascular Surgery Cases and Innovative Techniques Volume 7, Issue 3, September 2021, Pages 529-531. https://doi.org/10.1016/j.jvscit.2021.02.006.
  23. Basile C, Lomonte C, Vernaglione L, Casucci F, Antonelli M, Losurdo N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant 2008; 23(1): 282-7. https://doi.org/10.1093/ndt/gfm549.
  24. Zamboli P., Lucà S., Borrelli S., Garofalo C., Liberti M.E., Pacilio M. High-flow arteriovenous fistula and heart failure: could the indexation of blood flow rate and echocardiography have a role in the identification of patients at higher risk? J Nephrol, 31 (2018), pp. 975-983 https://doi.org/10.1007/s40620-018-0472-8.
  25. Movilli E, Viola BF, Brunori G, et al. Long-term effects of arteriovenous fistula closure on echocardiographic fun ctional and structural findings in hemodialysis patients: a prospective study. Am J Kidney Dis 2010; 55: 682. https://doi.org/10.1053/j.ajkd.2009.11.008.
  26. Saleh Mohamed Ayman, Kilany Wael Mahmoud El, Keddis Viola William, Tamer Wahid El Said. Effect of high flow arteriovenous fistula on cardiac function in hemodialysis patients Egypt Heart J 2018 Dec;70(4):337-341. https://doi.org/10.1016/j.ehj.2018.10.007.
  27. Quarello Francesco, Forneris Giacomo, Borca Marco Pozzato Marco Do central venous catheters have advantages over arteriovenous fistulas or grafts? J Nephrol May-Jun 2006;19(3):265-79. https://pubmed.ncbi.nlm.nih.gov/16874685/
  28. Burchell H. B, “Observations on bradycardia produced by occlusion of an artery proximal to an arteriovenous fistula (Nicoladoni-Branham sign),” Medical Clinics of North America, vol. 42, no. 4, pp. 1029–1035, 1958. https://doi.org/10.1016/s0025-7125(16)34255-9.
  29. Stern B. and Klemmer P. J. High-output heart failure secondary to arteriovenous fistula. Hemodialysis International, 2011. vol. 15, no. 1, pp. 104–107, https://doi.org/10.1111/j.1542-4758.2010.00518.x.
  30. Lam W, Betal D, Morsy M, et al. Enormous brachio cephalic arteriovenous fistula aneurysm after renal transplantation: case report and review of the literature. Nephrol Dial Transplant 2009; 24(11): 3542–3544. https://doi.org/10.1093/ndt/GFP337.
  31. Sangeetha B., Chaitanya V., Reddy M. H., Kumar A. C. V., Ram R., Sivakumar V. Mega‑ 2016, vol. 26, issue 5, 385-386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015523/.
  32. Gardezi Ali I, Mawih Mustafa, Alrawi Ezzideen B, Karim Muhammad S, Aziz Fahad, Chan Micah R. Mega Fistulae! A case series J Vasc Access. 2021 Nov;22(6):1026-1029. https://doi.org/10.1177/1129729820968425.
  33. Stoumpos, Rankin A, Barrientos P, Mangion K, McGregor E et al. Interrogating the haemodynamic effects of haemodialysis arteriovenous fistula on cardiac structure and function Scientific Reports (2021) 11:18102. https://doi.org/10.1038/s41598-021-97625-5.
  34. Yadav R., Gerrickens M.W.M., van Kuijk S M.J., Vaes R H. D., Snoeijs M G. J., Scheltinga M.R.M. Access flow volume (Qa) and survival in a haemodialysis population: an analysis of 5208 Qa measurements over a 9-year period Nephrol Dial Transplant (2021) 1–7. https://doi.org/10.1093/ndt/gfab242.
  35. Peteiro J, Alvarez N, Calvino R, et al. Changes in leftventricular mass and filling after renal-transplantation are related to changes in blood-pressure – an echocardiographic and pulsed Doppler study. Cardiology 1994; 85: 273–283. https://doi.org/10.1159/000176695.
  36. Ferreira SRC, Moises VA, Tavares A, et al. Cardiovascular effects of successful renal transplantation: a 1-year sequential study of left ventricular morphology and function, and 24-hour blood pressure profile. Transplantation 2002; 74: 1580–1587). https://doi.org/10.1097/00007890-200212150-00016.
  37. Rao NN, Stokes MB, Rajwani A, Ullah S, Williams K, King D, et al. Effects of arteriovenous fistula ligation on cardiac structure and function in kidney transplant recipients. Circulation 2019; 139: 2809–2818. https://doi.org/10.1161/CIRCULATIONAHA.118.038505.
  38. Van Duijnhoven, E.C.; Cheriex, E.C.; Tordoir, J.H.; Kooman, J.P.; van Hooff, J.P. Effect of closure of the arteriovenous fistula on left ventricular dimensions in renal transplant patients. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. 2001, 16, 368–372. https://doi.org/10.1093/ndt/16.2.368.
  39. Malik J. Heart disease in chronic kidney disease – review of the mechanisms and the role of dialysis access. J Vasc Access 2018; 19: 3–11. https://doi.org/10.5301/jva.5000815.
  40. Konner K, Nonnast-Daniel B and Ritz E. The arteriovenous fistula. J Am Soc Nephrol 2003; 14: 1669–1680. https://doi.org/10.1097/01.ASN.0000069219.88168.39.
  41. Malik J., Lomonte C., Rotmans J., Chytilova E., Roca-Tey R., Kusztal M., Grus T., Gallieni M. Hemodialysis vascular access affects heart function and outcomes: Tips for choosing the right access for the individual patient. Vasc. Access 2020, 22, 32–41. https://doi.org/10.1177/1129729820969314.
  42. Cornacchiari M, Mudoni A, Di Nicolò P, Mereghetti M, Gidaro B, Stasi A, Neri AL, Guastoni C Sindrome da ipoperfusione periferica e sindrome monomielica: dalla diagnosi al trattamento. Descrizione di un caso clinico con revisione della letteratura G Ital Nefrol. 2019 Luglio 24;36(4). https://giornaleitalianodinefrologia.it/tag/accesso-vascolare/.
  43. Yan Y, Sudheendra D, Dagli MS, William Stavropoulos S, Clark TW, Soulen MC, Mondschein JI, Shlansky-Goldberg RD, Trerotola SO. Effect of central venous angioplasty on hemodialysis access circuit flow: prospective study of 25 symptomatic patients.J Vasc Interv Radiol. 2015;26(7):984. https://doi.org/10.1016/j.jvir.2015.03.005.
  44. Vélez-Martínez M, Weinberg BD, Mishkin JD. Flash pulmonary oedema after relief of haemodialysis graft stenosis. Heart Lung Circ. 2013;22(8):672. https://doi.org/10.1016/j.hlc.2012.11.009.