Alström syndrome, a rare cause of renal failure: case report and review of the literature

Abstract

We describe the case of a 26-year-old male patient with a previous diagnosis of Alström Syndrome who presented drowsiness, dyspnea, tremors, and a dull abdominal pain, without signs of peritoneal irritation. The patient also presented sensorineural hearing loss, decreased vision, due to chorioretinal dystrophy, difficulty walking with back-lumbar double curve scoliosis, impaired glycemic homeostasis, and a significant deterioration of renal function.

Alström syndrome is a multisystem disease characterized by rod-cone dystrophy, hearing loss, obesity, insulin resistance and hyperinsulinemia, type 2 diabetes mellitus, dilated cardiomyopathy, and progressive renal and hepatic dysfunction. Around 450 cases have been identified worldwide. Clinical signs, age of onset and severity can vary significantly between different families and within the same family.

Careful nephrological follow-up is necessary in patients with syndromic ciliopathies, since long-term kidney problems can have an impact on other diseases, eg. cardiovascular disease.

Keywords: rare diseases, ciliopathies, chronic kidney failure

Sorry, this entry is only available in Italian.

Introduzione

La sindrome di Alström, descritta per la prima volta nel 1959, è una malattia multisistemica caratterizzata da distrofia dei coni-bastoncelli, perdita dell’udito, obesità, resistenza all’insulina e iperinsulinemia, diabete mellito tipo 2, cardiomiopatia dilatativa (CMD), disfunzione renale ed epatica progressiva. A livello mondiale sono stati diagnosticati circa 450 casi. I segni clinici, l’età di esordio e la gravità possono variare significativamente tra le diverse famiglie e all’interno della stessa famiglia.

 

Descrizione del caso clinico

Il paziente è un maschio di 26 anni affetto Sindrome di Alström esordita in età neonatale. Il paziente è primogenito, nato a termine da parto spontaneo dopo una gravidanza normocondotta. Dall’età di 2 mesi il bambino presentava sonnolenza in ambiente luminoso. All’età di 4 mesi praticava una visita ambulatoriale presso l’Ospedale Pediatrico Regionale dove veniva riscontrato un accorciamento del muscolo sternocleidomastoideo destro, per cui veniva prescritta immobilizzazione del rachide cervicale in flessione per 1 mese; una visita oculistica riscontrava refrazione ipermetropica e nistagmo bilaterale. Effettuava poi una visita neurologica per approfondimento diagnostico, con PEV e EEG nella norma. A 20 mesi, insorgeva fotofobia e si effettuava una PEV di controllo che evidenziava un ritardo di conduzione troncoencefalica. Successivamente, a 8 anni, venivano diagnosticate l’insufficienza renale, il diabete iperinsulinemico e la sordità neurosensoriale. All’età di 10 anni la diagnosi di Sindrome di Alström veniva confermata dall’analisi molecolare del gene ALMS1 (omozigosi per la mutazione C11460G nell’esone 16).

I suoi genitori sono sani ed ha un fratello affetto anch’egli da Sindrome di Alström. Nel corso degli anni il paziente, seguito presso il centro di riferimento regionale per le malattie rare, ha effettuato regolari visite di controllo (visita oculistica, cardiologica, endocrinologica, dermatologica, neuropsichiatrica e nefrologica) e controlli strumentali (ecografia addome ed ecocardiogramma). Tale monitoraggio era finalizzato al controllo delle varie manifestazioni della Sindrome. Infatti, il paziente presentava ipoacusia neurosensoriale, diminuzione del visus da distrofia corioretinica, difficoltà di deambulazione con scoliosi a doppia curva dorso-lombare ed alterazione dell’omeostasi glicemica.

Giungeva alla nostra osservazione per comparsa di stato soporoso, dispnea, tremori e dolore addominale sordo senza segni di irritazione peritoneale. Da due giorni era in trattamento con ceftriaxone 1 gr/die per riferita bronchite con febbre. All’ingresso in ospedale i suoi parametri erano: SpO2 97%, P.A. 130/70 mmHg, polsi isosfigmici. L’esame obiettivo evidenziava addome poco trattabile e, al torace, mv aspro con crepitii consensuali. Gli esami di laboratorio erano: Azotemia 309 mg/dl; Creatininemia 22,8 mg/dl; Glicemia 184 mg/dl; Sodio 132 mEq/l; Potassio 5.0 mEq/L; Calcemia 8,6 mg/dl; Fosforemia 11.0 mg/dl; Amilasi 927 UI/L; Lipasi 4306 UI/L; CK-MB(massa) 6,2 ng/ml; Troponina I 0,10 ng/ml; Colesterolo totale 122 mg/dl; Trigliceridi 210 mg/dl; G.B. 27400/mmc; G.R. 4210000/mmc; HGB 11,1 gr/dl; HCT 34,3 %; PLT 207000/mmc. L’emogasanalisi arteriosa mostrava acidosi metabolica con eccesso di basi -19,8 mmol/L.

Il nefrologo chiamato in consulenza urgente dava indicazione al trattamento dialitico immediato tramite incannulamento ecoguidato della vena femorale sinistra con catetere bilume 11.5 Fr/Ch (3.8 mm) x 19.5 cm. Durante il ricovero venivano praticati ulteriori esami ematochimici, ecografia addominale, emogasanalisi, TC encefalo, TC torace e addome, e colangio- RM. L’ecografia renale evidenziava: reni bilateralmente ai limiti bassi per volumetria (D.L. dx 7,5 cm, D.L. sin 8 cm), ridotto spessore parenchimale ed iperecogenicità corticale. Inoltre, è stato effettuato l’ecocardiogramma per valutare la possibilità di una cardiomiopatia dilatativa e tale esame ha dato esito negativo. Tali ulteriori indagini e l’anamnesi patologica remota ci hanno orientato per una cronicità della insufficienza renale; pertanto il paziente è stato immesso in un programma di dialisi cronica. I trattamenti emodialitici sono stati effettuati con dializzatore in polietersulfone Revaclear 300 avente superficie di 1,4 mq. Dopo il secondo trattamento emodialitico si assisteva ad un drastico miglioramento del sensorio. Come riportato in letteratura anche il caso osservato presentava inoltre pancreatite acuta associata, con riscontro di alterazioni della crasi lipidica (ipertrigliceridemia) e con aspetto TAC caratteristico (Fig. 1).

Figura 1: Aspetto tumefatto della coda del pancreas ed imbibizione della fascia pararenale anteriore di sinistra
Figura 1: Aspetto tumefatto della coda del pancreas ed imbibizione della fascia pararenale anteriore di sinistra

Le pancreatiti in questi pazienti possono essere pericolose per la vita. È stato inoltre esclusa una genesi litiasica. Gli esami colturali e di laboratorio hanno escluso una sepsi con disfunzione multi organo. Il trattamento della pancreatite, con digiuno ed idratazione, nonché il trattamento sostitutivo della funzione renale, hanno permesso la risoluzione della pancreatite ed un sostanziale miglioramento dell’outcome del paziente.

 

Discussione

La sindrome di Alström è una rara sindrome autosomica recessiva ereditaria causata da una mutazione in entrambe le copie del gene ALMS1 localizzato sul cromosoma 2 (regione 2p13.1) e comprendente 23 esoni [2]. La proteina ALMS1 è un componente del centrosoma alla base delle ciglia;risulta formata da 4169 Aa e partecipa all’assemblaggio del materiale pericentriorale (Fig. 2). Sebbene l’esatta funzione biologica di ALMS1 rimanga oscura, l’evidenza attuale suggerisce che le funzioni includono il mantenimento della funzione ciliare, la modulazione del trasporto intracellulare e la differenziazione degli adipociti. Nel modello murino della sindrome, con proteina ALMS1 anomala, si evidenzia una perdita di ciglia nelle cellule tubulari prossimali mentre nei fotorecettori si ha accumulo di vescicole intracellulari [3].

Le mutazioni di geni che codificano per proteine del Ciglio Primario sono alla base di patologie definite ciliopatie. Le ciglia primarie sono organelli sensoriali che si trovano su molte cellule dell’uomo e svolgono ruoli critici nella comunicazione cellulare relativamente alla proliferazione e differenziazione, motilità e polarità cellulare [4]. Trattasi di un eterogeneo gruppo di disordini che interessano molteplici organi, compreso il rene. La malattia del rene policistico autosomico dominante (ADPKD) “rappresenta la ciliopatia più comune, e si presenta con caratteristiche cliniche uniche, specifiche. Ad essa si aggiungono la malattia del rene policistico autosomica recessiva (ARPKD), la nefronoftisi (NPHP), ed un gruppo di ciliopatie sindromiche caratterizzate da difetti renali ed extra-renali, come la distrofia retinica, il situs inversus, disturbi cognitivi e obesità. Tra queste ultime si annoverano la sindrome di Bardet-Biedl (BBS), la sindrome di Senior-Löken (SNLS), la sindrome di Meckel (MKS), la sindrome di Joubert (JBTS), la sindrome oro-facio-digitale di tipo 1 (OFD1), la distrofia toracica asfissiante di Jeune (JATD) e la sindrome di Alström (ALMS)” [5].

Struttura del cilio primario
Figura 2: Struttura del cilio primario. L’assonema è composto da nove paia di microtubuli ed è ancorato alla cellula mediante il corpo basale che è un centriolo modificato, costituito da nove triplette di microtubuli. Il centriolo madre gioca un ruolo chiave nella ciliogenesi, reclutando le molecole necessarie per l’allungamento degli assonemi. Il centriolo figlio risulta dalla duplicazione del centriolo madre durante la fase S della mitosi. Le frecce indicano gli elementi chiave del ciglio strutturale (l’assonema, la zona di transizione e corpo basale) e le proteine coinvolte nelle ciliopatie renali e nel carcinoma a cellule renali (RCC) (tradotto da Adamiok-Ostrowska) [3]
La sindrome è caratterizzata dall’insorgenza di obesità nell’infanzia o nell’adolescenza, diabete di tipo 2, spesso con grave insulino-resistenza, dislipidemia, ipertensione e grave fibrosi multiorgano che coinvolge fegato, reni e cuore. La sindrome di Alström è anche caratterizzata da una progressiva perdita della vista e dell’udito, una forma di malattia cardiaca che indebolisce il muscolo cardiaco (cardiomiopatia dilatativa) e bassa statura. Questo disturbo può anche causare problemi medici gravi o potenzialmente letali che coinvolgono fegato, reni, vescica e polmoni. Le manifestazioni cliniche della sindrome di Alström variano in gravità e non tutti gli individui affetti hanno tutte le caratteristiche associate al disturbo [1].

Le manifestazioni di danno renale si rendono evidenti soprattutto dopo la seconda-terza decade di vita e comprendono: diminuzione della capacità di concentrazione delle urine, ipertensione, acidosi tubulare renale, nefrocalcinosi disfunzione del tratto urinario inferiore, infezioni intercorrenti, reflusso vescico-ureterale e instabilità del detrusore [6]. Insufficienza renale terminale si verifica nel 50% dei pazienti Le cause dell’insufficienza Renale sono la fibrosi e l’’atrofia tubulare. Le  infiltrazioni fibrotiche sono alla base degli altri fenotipi clinici, in particolare cardiaco, polmonare ed epatico suggerendo meccanismi patogeni comuni [7]. Non c’è correlazione con il diabete o con la pielonefrite [8] in quanto sono assenti le caratteristiche istopatologiche della nefropatia diabetica e/o da reflusso suggerendo che la malattia renale possa essere la manifestazione primaria della sindrome anche se non si può escludere un effetto additivo sulla progressione del danno renale da parte del diabete e dell’ipertensione [9].

Prima della scoperta delle mutazioni ALMS1, la diagnosi di Sindrome di Alström era basata unicamente sul fenotipo, ma esso è molto variabile anche all’interno dei nuclei familiari. Pertanto, sono stati proposti criteri diagnostici specifici per età riportati in Tabella I [1012].

Criteri diagnostici di sindrome di Almstrom tradotto da Jan D Marshall 2007
Tabella I: Criteri diagnostici di sindrome di Almstrom tradotto da Jan D Marshall 2007 [10]
Tali criteri sono fondamentali per la diagnosi di sindrome di Almstrom, la cui diagnosi differenziale con altre patologie può essere complessa. Citiamo in particolare la Sindrome di Bartdet-Bieldl, che presenta molte analogie cliniche con la sindrome di Almstrom, dalla quale tuttavia si differenzia per la polidattilia e per la più bassa prevalenza di cardiomiopatia dilatativa nella BBS rispetto alla AS. oltre che per una diversa diagnosi molecolare [13].

 

Conclusioni

La sindrome di Alström è una rarissima malattia causa di insufficienza renale terminale necessitante di terapia dialitica. I pazienti raramente sopravvivono oltre i 40 anni. Al momento non c’è alcun trattamento specifico, ma diagnosi e interventi precoci possono rallentare la progressione delle espressioni fenotipiche migliorando il periodo di sopravvivenza e la qualità della vita dei pazienti.

 

Bibliografia

  1. Wu WC, Chen SC, Dia CY, Yu ML, Hsieh MY, Lin ZY, Wang LY, Tsai JF, Chang WY, Chuang WL. Alström syndrome with acute pancreatitis: a case report. Kaohsiung J Med Sci. 2003; 19(7):358-61. https://doi.org/10.1016/S1607-551X(09)70438-3
  2. Tahani N, Maffei P, Dollfus H, Paisey R, Valverde D, Milan G, et al. Consensus clinical management guidelines for Alström syndrome. Orphanet J Rare Dis 2020; 15(1):253. https://doi.org/10.1186/s13023-020-01468-8
  3. Adamiok-Ostrowska A, Piekiełko-Witkowska A. Ciliary Genes in Renal Cystic Diseases Cells 2020; 9(4):907. https://doi.org/10.3390/cells9040907
  4. Dillman JR, Trout AT, Smith EA, Towbin AJ. Hereditary Renal Cystic Disorders: Imaging of the Kidneys and Beyond. Radiographics 2017; 37:924-46. https://doi.org/10.1148/rg.2017160148
  5. Cervesato A, Raucci R, Buononato D, Marchese E, Capolongo G, et al. La proteomica e la metabolomica nello studio delle malattie genetiche del rene: dai big data alla medicina di precisione. G Ital Nefrol 2020; 37(6):n5. https://giornaleitalianodinefrologia.it/2020/11/37-06-2020-05/
  6. Marshall JD, Maffei P, Collin GB, Naggert JK. Alström Syndrome: Genetics and Clinical Overview. Curr Genomics 2011; 12:225-35. https://doi.org/10.2174/138920211795677912
  7. Izzi C, Maffei P, Milan G, Tardanico R, Foini P, Marshall J, Marega A, Scolari F. The Case ∣ Familial occurrence of retinitis pigmentosa, deafness, and nephropathy. Kidney Int 2011; 79(6):691-2. https://doi.org/10.1038/ki.2010.514
  8. Medical Handbook. https://www.Alström.org.uk
  9. Baig S, Paisey R, Dawson C, Barrett T, Maffei P, Hodson J, Rambhatla SB, Chauhan P, Bolton S, Dassie F, Francomano C, Marshall RP, Belal M, Skordilis K, Hayer M, Price AM, Cramb R, Edwards N, Steeds RP, Geberhiwot T. Defining renal phenotype in Alström syndrome. Nephrol Dial Transplant 2020; 35(6):994-1001. https://doi.org/10.1093/ndt/gfy293
  10. Marshall JD, Beck S, Maffei P, Naggert JK. Alström syndrome. Eur J Hum Genet 2007; 15(12):1193-202. https://doi.org/10.1038/sj.ejhg.5201933
  11. Hearn T. ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits. J Mol Med (Berl) 2019; 97(1):1-17. https://doi.org/10.1007/s00109-018-1714-x
  12. Jaykumar AB, Caceres PS, King-Medina KN, Liao TD, Datta I, Maskey D, Naggert JK, Mendez M, Beierwaltes WH, Ortiz PA. Role of Alström syndrome 1 in the regulation of blood pressure and renal function. JCI Insight 2018; 3(21):e95076. https://doi.org/10.1172/jci.insight.95076
  13. Brühl P, Schwanitz G, Mallmann R, Müller SC, Raff R. Bardet-Biedl-Syndrom: nephrourologische und humangenetische Aspekte [Bardet-Biedl syndrome: aspects of nephro-urology and human genetics]. Klin Padiatr 2001; 213(1):8-12. German. https://doi.org/10.1055/s-2001-1126

Survey on the Prevalence of Rare Kidney Diseases in Sicily

Abstract

Renal Diseases represent almost 6% of all Rare Diseases but are often misdiagnosed. In a survey made in Sicily in 2016, based on cases reported from all public hospitals according to a list of rare kidney diseases, we were able to collect 337 cases (199 males and 138 females). The highest prevalence was detected in children: 13.9 cases in 100.000 children; the mean age was 10, and the median 5 years, at the time of the diagnosis. Comparing our data with those available in the Sicilian Register of Rare Diseases we found that only 141 cases (54%) were present in the register. Promoting regional registries of rare kidney diseases in Italy may be useful for epidemiologic studies.

Keywords: renal disease, rare diseases, rare renal diseases

Sorry, this entry is only available in Italian.

INTRODUZIONE

Le malattie renali rare rappresentano il 6% delle malattie “rare” che, per definizione, sono quelle che colpiscono meno di cinque persone ogni 10.000. Le malattie renali rare includono più di cento patologie, spesso a patogenesi genetica ed ereditaria ed esordio in età pediatrica (1).  

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Bartter syndrome, severe rare orphan kidney disease: a step towards therapy through pharmacogenetic and epidemiological studies

Abstract

Bartter syndromes (BS) types 1-5 are rare salt-losing tubulopathies presenting with overlapping clinical phenotypes including marked salt wasting and hypokalemia leading to polyuria, polydipsia, volume contraction, muscle weakness and growth retardation. These diseases are due to an impairment of sodium, potassium, chloride reabsorption caused by mutations in genes encoding for ion channel or transporters expressed in specific nephron tubule segments. Particularly, BS type 3 is a clinically heterogeneous form caused by mutations in CLCNKB gene which encodes the ClC-Kb chloride channel involved in NaCl reabsorption in the renal tubule. Specific therapy for BS is lacking and the only pharmacotherapy up today available is purely symptomatic and characterized by limiting side effects. The improvement of our understanding of the phenotype/genotype correlation and of the precise pathogenic mechanisms associated with BS type 3 as well as the pharmacological characterization of ClC-K chloride channels are fundamental to design therapies tailored upon patients’ mutation. This mini review focused on recent studies representing relevant forward steps in the field as well as noteworthy examples of how basic and clinical research can cooperate to gain insight into the pathophysiology of this renal channelopathy, paving the way for a personalized therapy.

 

Key words: Bartter syndrome, CLC-K chloride channels, pharmacogenetics, rare diseases

Sorry, this entry is only available in Italian.

Le sindromi di Bartter (BS tipo 1-5) rappresentano un gruppo di tubulopatie renali rare a carattere autosomico recessivo che si manifestano con fenotipi clinici parzialmente sovrapponibili caratterizzati da perdita di sali, alcalosi metabolica, ipokaliemica, poliuria, polidipsia, debolezza muscolare e ritardo della crescita. La qualità di vita dei pazienti affetti è compromessa e il tasso di ospedalizzazione è elevato. Nelle forme più severe l’aspettativa di vita è ridotta. Tali patologie sono dovute a un difetto nel riassorbimento dello ione sodio, potassio e cloro a causa di mutazioni in geni che codificano per proteine canale o trasportatori presenti in diversi tratti nel nefrone (1, 2). In particolare, la BS di tipo 3 è una canalopatia clinicamente eterogenea causata da mutazioni con perdita di funzione nel gene CLCNKB che codifica per il canale al cloro ClC-Kb coinvolto nel riassorbimento di NaCl (3). Mutazioni con perdita di funzione nel gene BSND che codifica per la subunità accessoria barttina sono responsabili della più severa forma di BS, definita di tipo 4 (4, 5). Il canale ClC-Kb è espresso con la barttina nel tratto ascendente spesso dell’ansa di Henle (TAL), nel tubulo contorto distale e nel dotto collettore, dove contribuisce al riassorbimento di ioni cloro verso il lato basolaterale delle cellule tubulari. La barttina è necessaria per la corretta espressione ed attivazione dei canali CLC-K. La perdita di funzione di ClC-Kb/barttina nel TAL, a causa di difetti di espressione o biofisici della proteina, si traduce in una minore estrusione di cloro, ridotto riassorbimento di NaCl attraverso il cotrasportatore Na-K-2Cl e ridotto riassorbimento di cationi bivalenti, tutti eventi cellulari responsabili del fenotipo Bartter (6). La BS di tipo 3 è caratterizzata da ipocloremia, segno diagnostico distintivo di tale forma di BS rispetto alle altre varianti. Il trattamento della BS è puramente sintomatico, rivolto alla correzione della disidratazione e dei disordini elettrolitici e alla riduzione dei livelli di renina e prostaglandine, e pertanto basato su supplementi di potassio e magnesio, diuretici risparmiatori di potassio, antiinfiammatori non steroidei, ACE inibitori e sartani con effetti collaterali che limitano la compliance del paziente soprattutto nel lungo periodo (2, 7)

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Fabry Disease in Southern Sardinia: epidemiological results from screening in an extensive area

Abstract

Introduction: Epidemiological data relating to the prevalence and incidence of Fabry disease (FD) and other Lysosomal Storage diseases (LSDs) are largely underestimated and not yet well known. Distribution of the disease varies according to geographical area and to ethnic origin. Heterozygous females are also at risk of contracting severe and multi-symptomatic forms of FD.
Aim: To demonstrate the results obtained in outpatient surgeries situated in an area comprising 319,340 inhabitants.
Methods: Out of a total of 2710 nephrologist visits, 150 patients with suspected FD (73 undergoing dialysis and 77 conservative management) were selected. The relatives of one female patient on dialysis who had tested positive were investigated and a further 11 patients thus identified (total: 4 males and 7 females) within a micro-area of 21,822 inhabitants, i.e. a prevalence rate of one positive case every 1,818 inhabitants. These data relate to the first 18 months of screening.
Conclusions: In the field of nephrology, patients with high levels of proteinuria or microalbuminuria (150-200 mg/day) should be screened for FD, particularly in areas with a high incidence and/or prevalence of kidney disease. Once positive patients of both sexes have been identified, they should immediately be referred for cardiologic and neurological assessment.

Key words: Fabry, familiar heritage, rare disease

Introduction

Epidemiological data reporting the prevalence and incidence of Fabry disease and other LSDs are largely lacking due to a marked diversity in geographic regions and ethnic populations. Accordingly, as the available data are likely underestimated due to missed diagnoses of these rare disorders, the actual diffusion of FD remains to be clarified [1]. In recent years, following numerous reports of a late onset FD, the main focus has been extended to a series of medical specialities, and to investigating prevalence of the disease in heterozygous individuals. Indeed, a significant number of female carriers may develop Fabry disease–related symptoms. The worldwide prevalence of FD is hard to ascertain, although estimates range from one patient per 40,000 to 60,000 individuals [2], to the one every 200,000 inhabitants reported in a Japanese survey. Calculations however are complicated due to the different phenotypes observed in males and females, including classic type 1, type 2 with later onset and atypical mutations [3]. Fabry disease is an X-linked lysosomal storage disease caused by a deficit of lysosomal enzyme α -galactosidase A (α -Gal A). The majority of males lacking α -Gal A activity develop the classic phenotype of Fabry disease, which affects multiple organ systems. Glycosphingolipids, predominantly globotriaosylceramide (GL-3) and galabiosylceramide, accumulate in the lysosomes of various cells (eg, in the vascular endothelium of multiple organs) owing to α -Gal A deficiency. Accumulation of GL-3 in the lysosomes causes lysosomal and cellular dysfunction, which, in turn, triggers a cascade of cells and tissue ischemia and fibrosis [4]. A recent consensus conference on the KDIGO guidelines to be adhered to in the treatment and prevention of FD has identified the major affected organs and relative symptoms. Currently, the main aim is to implement early treatment, particularly in view of the wide variability of asymptomatic patients and patients affected by severe kidney, heart or neurological conditions [5]. Genetic variants of the disease are becoming increasingly numerous. Indeed, although the majority of patients with Fabry disease are white, the disorder has been described in patients from a series of ethnic groups, including those with Hispanic, African, Asian, and Middle Eastern ancestry [6]. In northern Sardinia, out of a total of 178 individuals with suspected FD, genomic alterations have already been identified in nine patients from two family clusters characterized by severe neurological manifestations (D313Y) and renal and cardiovascular impairment (R227Q) [7]. Routine screening for FD in the general population should be implemented; the test is extremely simple and would greatly benefit FD patients, as early detection of the disease may prevent progressive renal impairment [8]. Reports of isolated family groups affected by FD have also been published [9], thus supporting recommendations that genetic research should be undertaken on even distant relatives of the patient, as suggested by the National Society of Genetic Counsellors [10]. The aim of the present study was to implement routine screening of the patient population attending specialist nephrology clinics.

Materials and methods

In March 2014 our Nephrologic Unit commenced screening for Fabry disease in an extensive area covered by the Cagliari (Italy) Primary Care Trust. The results obtained relate to the first 18 months of screening. The area comprises 319,340 inhabitants and 22 regular Nephrology out-clinics for the treatment and prevention of chronic kidney disease. In the period 2015-2016, approximately 10,803 nephrologist visits were scheduled in both patients who periodically attended the clinic and new patients. Of the original 10,803 patients, 2,712 were identified: 156 patients were subsequently screened, 73 of which on dialysis and 77 outpatients. The main selection criteria for molecular genetic screening were as follows: male and female patients, even in the absence of typical skin alterations [11]; additional criteria included the finding of past or current microalbuminuria at levels of 100- 200 mg/day. All extra-renal symptoms should be carefully investigated, particularly those of a neurological nature [12], including previous transient ischaemic attacks and/or stroke, hypertrophic cardiomyopathy with or without arterial hypertension, arrhythmias, valve disease, acroparesthesia, family history for undetermined kidney disease; patients with type 1 and 2 diabetes should not be excluded from screening.

Exclusion criteria: only patients with a confirmed diagnosis (glomerulonephritis, even when identified by means of electron microscopy, Adult Polycystic Kidney Disease, and other well-known genetic diseases).

The screening program was carried out on whole blood samples as follows: a 1mL blood sample by means of EDTA to test at least 2 μg DNA. Blood samples collected via DBS were extracted for analysis using TripleQuad mass spectrometry. The levels of α-galactosidase were assessed in plasma by spectrofluorometry (normal plasma range A> 2.6 nmol/L; lyso-GB3 concentrations were measured in patients with evocative FD DNA mutation and/or single polymorphism in the GLA gene by Tandem mass-spectrometry (MRM-MS) (CentoFabry, Centogene ®); lyso-GB3 normal range < 1.8 ng/mL [13]. Genetic analysis on α-GAL A or GLA (Centogene ®) was performed by means of high-throughput automated Sanger sequencing enabling a large amount of sequencing data to be generated at the same time. This technique enables genetic analysis of 48 Fabry disease patients in parallel overnight. The Centogene© AG methodology utilizes sequencing platforms from Illumina; before checking GLA full gene sequencing covers the entire coding region, exon/intron boundaries and 200 bp of the gene promoter and after Deletion/duplication analysis/mutational scanning of GLA.

Results of screening

Negative findings were reported for all outpatients and dialysis patients who underwent genetic testing, with the exception of an apparently asymptomatic 65-year old haemodialysis patient with a previous history of no longer identifiable proteinuric kidney disease. The patient tested positive at enzyme and genetic assay. As the patient belonged to a very large family, the screening program was extended to all her known relatives, resulting in the detection of an additional 11 carriers of Fabry disease (4 hemizygous males and 7 heterozygous females) (Figure 1). The mean age of the 12 screened patients was: 37.0 + 21.2 years (1-65 years); mean age of the four males 26.2 + 20.2 years (9-54); and mean age of the eight females 42.4 + 20.8 (1- 65). Figure 2 illustrates the family pedigree.

Epidemiological findings and frequencey

Throughout the extensive screening area comprising 319,340 inhabitants, the above family cluster was identified from the much smaller coastal-mountainous region of Sarrabus-Gerrei, accounting for 21,822 inhabitants (Figure 3).

Based on the initial extended screening area the rate of prevalence was 1 case per 26,612 inhabitants; however, when related to the more confined area of the Sarrabus-Gerrei region, prevalence was calculated as 1 case per 1,818 inhabitants.

This area was already renowned for its high prevalence of terminal chronic kidney disease compared to the rest of the island and the rest of Italy: respectively, Sarrabus-Gerrei: 872 cases per one million inhabitants, Sardinia 810, Italy 580 (2012 Census of the Sardinian Section of the Italian Society of Nephrology).

A unique genetic mutation was detected in all these subjects: c.159C>A (p.Asn53Lys). This mutation has not been described previously in literature either as an atypical mutation, or in view of the correlated symptoms of Fabry disease.

 

Results of blood chemistry tests:

Alpha-galactosidase levels determined in all 12 patients corresponded to 0.62 + 0.38 (min-max: < 0.2 – 1.2 µmol/L); in males 0.30 + 0.10 ( min-max< 0.2 – 0.4 µmol/L); in females 0.78 + 0.36 ( min-max: 0.2 – 1.2 µmol/L). The 0.2 µmol/L α-galactosidase levels refer to the female patient undergoing haemodialysis – this sample was collected pre-dialysis during the longer interdialytic interval to avoid dialysis-correlated interferences.

LysoGb3 levels in all patients corresponded to 1.6 + 0.6 ng/mL (max-min: 3.2 – 0.9), in females 0.78 + 0.36 ng/mL (max-min: 1.6 – 1.4) and in males 1.9 + 1.04 ng/mL (max-min: 3.2 – 0.9). Table 1 illustrates the entire case history with a brief description of renal and some extrarenal symptoms and enzymatic levels. Study continuation: patients underwent thorough kidney screening and were subsequently referred for cardiologic, neurological and ophthalmic assessment. The female patient (n. 9) will need to be re-assessed to examine the possibility of an incorrect diagnosis of multiple sclerosis and/or a correlation between the two diseases. An estimated rate of prevalence for Fabry disease in the area concerned corresponds to approximately one affected subject per 1,818 inhabitants.

 

DISCUSSION

Fabry disease is viewed as an obsolete, although still largely underestimated, disease, and is rarely taken into consideration as a causal factor in illnesses of unconfirmed origin in the fields of nephrology, neurology and ophthalmology. In nephrology clinics greater attention should be focused on microalbuminuria; the finding of levels below 200 mg/day may be the sole indication of the presence of renal FD [14].

In the present case, the finding of a family cluster in a geographically isolated and scarcely populated micro-area with a high prevalence of uremia, stemmed from the results of genetic testing of a patient undergoing dialysis. Linthorst et al. [15] estimated the prevalence of Fabry disease in patients on dialysis at 0.22%. Consequently, screening for Fabry disease in large renal dialysis clinics has been suggested. In France, 106 patients on haemodialysis were screened for α-galactosidase activity: one patient with Fabry disease was identified and a further seven family members of this index case carried the same mutation [8]. A study in Japan reported that 1.2% of males receiving renal dialysis were affected by Fabry disease [16]. Conversely, a recent study by Saito et al. reported a 0.02% prevalence of FD in 5,408 male patients and 3,139 female dialysis patients (0.04% in males, 0.0% in females) [17], thus confirming the wide variability of phenotypic penetrance of the disease. Hereditary transmission of FD in the geographically isolated Sarrabus-Gerrei region in Sardinia is likely due to the marriage to healthy carriers of the disease or to people with compromised organs and/or apparatus dating back previous generations. Indeed, up until one hundred years ago this region was even more isolated and cultural tradition encouraged marriages between close family members. Age at onset and at diagnosis of FD is characterised by a wide variability. Mean ages at onset of symptoms and diagnosis of FD were 9 and 23 years (males) and 13 and 32 years (females), respectively, indicating misleading diagnosis or delays in both sexes [18]. In these patients FD was detected during investigation of concurrent involvement of other major organ systems. Closer monitoring and vigilance may contribute towards reducing or postponing progression of the disease and the need for dialysis or transplantation in patients with FD. Delayed onset forms of FD with initial cardiologic manifestations beyond the age of 40 have been reported [19]. Likewise, delayed onset forms of renal FD have been observed; Wilcox et al. reported alterations in renal function in heterozygous females with a mean age of 46 years [20].

In view of the presence in our family cluster of asymptomatic and/or scarcely symptomatic patients, as well as a patient on dialysis, it has not been possible to establish the clinical outcome and phenotypic expression of the newly detected mutation c.159C>A p.Asn53Lys. Ongoing neurological, cardiologic and ophthalmic studies may help to clarify this issue, although an additional practical problem is represented by the poor collaboration of patients and parents of minors. As FD has produced no discernible symptoms in these subjects, they are rather reluctant, with some (see patient n. 10 in Table 1) even refusing to undergo diagnostic tests or commence replacement enzymatic therapy when needed. Other studies have also reported a lack of symptoms, which may explain diagnostic and therapeutic delays, at times resulting in irreversible kidney damage [21, 22]. Missed diagnoses often occur in childhood, as many of these cases may be clinically silent [23]. The present study also included three children, thus underlining the need to raise awareness amongst paediatricians and parents, with the latter proving particularly reluctant to subject their currently asymptomatic children to a series of diagnostic tests.

 

CONCLUSIONS

Numerous reports published in the literature tend to suggest the absence of a significantly overt correlation between screened enzymatic levels and total accumulation; nevertheless, Consultants in a range of fields should continue to screen all individuals, particularly females, in whom a diagnosis of FD may be suspected [24]. In view of the wide range of classic and atypical variants of FD worldwide, estimation of reliable rates of incidence and prevalence of the disease is virtually impossible. The prevalence of FD may at times be characterized by a somewhat random form of distribution, or affect a series of family groups, thus giving rise to the hypothesis of a genetic recycling between distant relatives in geographically and culturally isolated regions. The imprint is that the mutation c.159C>A (p.Asn53Lys) could have a phenotypic mild and/or belated negative effects on renal function. The currently available innovative screening tools are rapid and easy to use and should be adopted in routine diagnostics in Nephrology. A correct use of these tools will facilitate investigations in subjects attending nephrology clinics, particularly in areas characterized by a high incidence of chronic kidney disease.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Acknowledgment

We are grateful to Genzyme® and Shire® for their kind contributions. 

Bibliography

  1. Fuller M, Meikle PJ, Hopwood JJ. Epidemiology of lysosomal storage diseases: an overview. Fabry Disease: Perspectives from 5 Years of FOS. Mehta A, Beck M, Sunder-Plassmann G, editors. Oxford: Oxford PharmaGenesis; 2006. Chapter 2.
  2. Owada M, Kitigawa T. Lysosomal storage diseases. Nippon Rinsho. 2001;8:317–27.
  3. Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, Sims K, Waldek S, Pastores GM, Lee P, Eng CM, Marodi L, Stanford KE, Breunig F, Wanner C, Warnock DG, Lemay RM, Germain DP: Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 2008, 93:112
  4. Desnick R, Ioannou Y, Eng C. Alpha-Galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease.8th ed. New York, NY: McGraw-Hill; 2001:3733-3774.
  5. Schiffmann R, Hughes DA, Linthorst GE, Ortiz A, Svarstad E, Warnock DG, West ML, Wanner C; Conference Participants. Screening, diagnosis, and management of patients with Fabry disease: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2016 Dec 17. pii: S0085-2538(16)30603-2.
  6. Eng CM, Fletcher J, Wilcox WR, Waldek S, Scott CR, Sillence DO, Breunig F, Charrow J, Germain DP, Nicholls K, Banikazemi M. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis. 2007. Apr;30(2):184-92.
  7. Fancellu L, Borsini W, Romani I, Pirisi A, Deiana GA, Sechi E, Doneddu PE, Rassu AL, Demurtas R, Scarabotto A, Cassini P, Arbustini E, Sechi G. Exploratory screening for Fabry’s disease in young adults with cerebrovascular disorders in northern Sardinia. BMC Neurol. 2015 Dec 12;15:256.
  8. Bekri S, Enica A, Ghafari T, Plaza G, Champenois I, Choukroun G, Unwin R, Jaeger P. Fabry disease in patients with end-stage renal failure: the potential benefits of screening. Nephron Clin Pract. 2005;101(1):c33-8.
  9. Michael Beck, and Gere Sunder-Plassmann. Volume Fabry Disease Perspectives from 5 Years of FOS. Editors: Atul Mehta, Oxford: Oxford PharmaGenesis; 2006.
  10. Bennett RL, Hart KA, O’Rourke E, Barranger JA, Johnson J, MacDermot KD, Pastores GM, Steiner RD, Thadhani R. Fabry disease in genetic counseling practice: recommendations of the National Society of Genetic Counselors. J Genet Couns. 2002 Apr;11(2):121-46.
  11. Linthorst GE, De Rie MA, Tjiam KH. Misdiagnosis of Fabry disease: importance of biochemical confirmation of clinical or pathological suspicion. Br J Dermatol. 2004 Mar. 150(3):575-7.
  12. The neurological complications of Anderson-Fabry disease (alpha-galactosidase A deficiency)-investigation of symptomatic and presymptomatic patients. Q J Med. 1990 May. 75(277):491-507.
  13. Wang D, Eadala B, Sadilek M, Chamoles NA, Turecek F, Scott CR. et al. Tandem mass spectrometric analysis of dried blood spots for screening of mucopolysaccharidosis I in newborns. Clin Chem. 2005;51:898–900.
  14. Mignani R, Preda P, Granata A, Maldini L, De Giovanni P, Montevecchi M, Rigotti A, Cagnoli L.Isolated microalbuminuria as the first clinical presentation of Fabry disease in an adult heterozygous female. NDT Plus. 2009 Dec;2(6):455-7.
  15. Linthorst GE, Hollak CE, Korevaar JC, Van Manen JG, Aerts JM, Boeschoten EW. α-Galactosidase A deficiency in Dutch patients on dialysis: a critical appraisal of screening for Fabry disease. Nephrol Dial Transplant. 2003;18:1581–4.
  16. Nakao S, Kodama C, Takenaka T, Tanaka A, Yasumoto Y, Yoshida A. et al. Fabry disease: detection of undiagnosed hemodialysis patients and identification of a “renal variant” phenotype. Kidney Int. 2003;64:801–7.
  17. Hsu TR, Hung SC, Chang FP, Yu WC, Sung SH, Hsu CL, Dzhagalov I et Al. Later Onset Fabry Disease, Cardiac Damage Progress in Silence: Experience With a Highly Prevalent Mutation. J Am Coll Cardiol.2016 Dec 13;68(23):2554-2563.
  18. Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, Sims K, Waldek S, Pastores GM, Lee P, Eng CM, Marodi L, Stanford KE, Breunig F, Wanner C, Warnock DG, Lemay RM, Germain DP; Fabry Registry. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008 Feb;93(2):112-28.
  19. Eng CM, Fletcher J, Wilcox WR, Waldek S, Scott CR, Sillence DO, Breunig F, Charrow J, Germain DP, Nicholls K, Banikazemi M. Fabry disease: baseline medical characteristics of a cohort of 1765 males and females in the Fabry Registry. J Inherit Metab Dis. 2007. Apr;30(2):184-92.
  20. Wilcox WR, Oliveira JP, Hopkin RJ, Ortiz A, Banikazemi M, Feldt-Rasmussen U, Sims K, Waldek S, Pastores GM, Lee P, Eng CM, Marodi L, Stanford KE, Breunig F, Wanner C, Warnock DG, Lemay RM, Germain DP; Fabry Registry. Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab. 2008 Feb;93(2):112-28a.
  21. Branton MH, Schiffmann R, Sabnis SG, Murray GJ, Quirk JM, Altarescu G. et al. Natural history of Fabry renal disease: influence of α-galactosidase A activity and genetic mutations on clinical course. Medicine (Baltimore) 2002;81:122–38.
  22. West M, Nicholls K, Mehta A, et al. Agalsidase alfa and kidney dysfunction in Fabry disease. J Am Soc Nephrol. 2009 May. 20(5):1132-9.
  23. Ries M, Ramaswami U, Parini R, Lindblad B, Whybra C, Willers I. et al. The early clinical phenotype of Fabry disease: a study on 35 European children and adolescents. Eur J Pediatr. 2003;162:767–72.
  24. Ashton-Prolla P, Tong B, Shabbeer J, et al. Fabry disease: twenty-two novel mutations in the alpha-galactosidase A gene and genotype/phenotype correlations in severely and mildly affected hemizygotes and heterozygotes. J Investig Med. 2000 Jul. 48(4):227-35.