Atheroembolic renal disease: risk factors, diagnostics, histology, and therapeutic approaches

Abstract

The increase in patients’ average age, the enhancement of anticoagulation therapy and the growth of vascular interventions represent the perfect conditions for the onset of atheroembolic renal disease. AERD is observed in patients with diffuse atherosclerosis, generally after a triggering event such as surgery on the aorta, invasive procedures (angiography, catheterization of the left ventricle, coronary angioplasty) and anticoagulant or fibrinolytic therapy. The clinical signs are heterogeneous, a consequence of the occlusion of downstream small arterial vessels by cholesterol emboli coming from atheromatous plaques of the aorta, or one of its main branches. The proximity of the kidneys to the abdominal aorta, and the high flow of blood they receive, make them a major target organ. For this reason, AERD represents a pathological condition that always needs to be taken into account in the nephropathic patient, although its systemic nature makes the diagnosis difficult.

This manuscript presents a review of the existing literature on this pathology, to provide an updated summary of the state of the art: risk factors, diagnostics, histology and therapeutic approaches.

Keywords: atherosclerosis, cholesterol crystal embolism, contrast media, acute kidney injury, chronic kidney disease

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Introduzione

L’Atheroembolic Renal Disease (AERD) rappresenta una condizione patologica multisistemica, definita da un quadro di insufficienza renale secondaria all’occlusione dell’arteria renale, delle arteriole o dei capillari glomerulari per rottura di una placca aterosclerotica e sua successiva embolizzazione [1].

Storicamente la AERD è una entità mal definita, assimilata da alcuni autori alla “Cinderella” della Nefrologia [2], spesso trascurata, dall’incidenza imprecisa e frequentemente sottostimata [3].

L’obiettivo di questo studio è quello di dar luogo ad una revisione della letteratura sulla AERD, seguendo le linee Guida Internazionali PRISMA [4], finalizzata ad una più permeante inclusione della malattia come entità nosologica nella diagnostica differenziale e ad una maggiore sensibilità verso la diagnostica pre-mortem della malattia, valutandone la possibilità di una maggiore diffusione capillare tra le società scientifiche di nefrologia, cardiologia e radiologia interventistica. Inoltre, si ambisce a segnalare la necessità di un programma inter-societario (società scientifiche di radiologia, di cardiologia, di cardiochirurgia, di nefrologia), volto ad una informazione capillare di interesse bivalente (medico e paziente) e all’attiva sorveglianza delle possibili complicanze ateroemboliche nel corso delle procedure interventistiche.

 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Immunotherapy in kidney cancer: how it has changed and what are the challenges for the nephrologist – focus on pembrolizumab

Abstract

Kidney cancer accounts for about 3.5% of all malignant neoplasms; in 85% of cases the tumor arises from cells of the renal parenchyma, with an incidence of 70% of the clear cells subtype.

Surgery, at present, is the treatment of choice for most renal cancers; medical therapy, on the other hand, has only palliative purposes and is used only in the relapsed or metastatic patients.

The therapeutic toolbox available in the fight against renal cancer is continuously renewed due to the approval of new drugs. In particular, in the 2000s, antiangiogenic drugs were introduced and showed good efficacy in terms of increased survival in patients with advanced renal carcinoma.

Immunotherapy was a treatment strategy for renal cancer in the 1980s, when cytokines such as Interleukin-2 and Interferon were administered. The advent of antiangiogenic drugs had bound immunotherapy to a secondary role until the discovery of immune check-point inhibitors (ICIs), which have been approved in the various lines of treatment, in monotherapy or in combination with other drugs, as they have shown to increase the oncological outcome.

In this review we analyze the evolution of immunotherapy for the treatment of kidney tumor from the viewpoint of nephrologists, with a special focus on renal adverse events, pembrolizumab and its recent approval as first line therapy in association with axitinib.

Keywords: immunotherapy, kidney cancer, interstitial nephritis, acute kidney injury, molecularly targeted agents.

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Epidemiologia del carcinoma renale

Il tumore del rene rappresenta circa il 3.5% di tutte le neoplasie maligne (4.6% tra gli uomini e 3% tra le donne) e, in Italia, si colloca al decimo posto come frequenza. Nell’85% delle diagnosi di tumore del rene la neoplasia è a partenza da cellule del parenchima renale e tra queste si riscontra un sottotipo a cellule chiare nel 70% dei casi [1,2].

Il tumore del rene è tipicamente una neoplasia delle nazioni industrializzate dell’emisfero nord; per quanto riguarda l’Italia, la sua incidenza è maggiore nelle regioni del nord e del centro, minore al sud e nelle isole [3].

L’incidenza è nettamente superiore nel sesso maschile rispetto a quello femminile: 1 su 38 uomini e 1 su 90 donne hanno una probabilità teorica di sviluppare questo tumore nel corso della loro vita. L’incidenza aumenta parallelamente all’età con un picco nella sesta decade e circa l’80% delle diagnosi avviene in pazienti con età compresa tra i 40 e i 69 anni [1].

 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Relevance of an accurate microscopic examination of urinary sediment in a patient after mitral valve surgery

Abstract

Hemoglobinuria, clinically revealing as gross hematuria associated with anemia, increased hemolysis indices, acute kidney injury (AKI), can all be caused by mechanical intravascular hemolysis following mitral valve surgery. It can result from factors related to the surgical procedure or acquired later, such as paravalvular leak (PL), whose definite diagnosis is based on transesophageal echocardiography. 

We report the case of a patient who experienced macrohematuria and AKI, initially attributed to acute glomerulonephritis, two months after mitral valve surgery. Careful microscopic examination of the urinary sediment was a diriment diagnostic tool to differentiate acute renal failure caused by hemoglobinuria from hematuria in the course of acute glomerulonephritis, directing clinicians to investigate post-operative valvular dysfunction. From the literature review we can deduce that, notwithstanding new technologies in cardiac surgery, this rare form of AKI from intravascular hemolysis requires immediate nephrological attention and that the use of microscopic urinary sediment is decisive.

Keywords: hemoglobinuria, urinary sediment, gross hematuria, acute kidney injury (AKI), mitral valve surgery, hemolytic anemia

Sorry, this entry is only available in Italian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Introduzione

L’emoglobinuria erroneamente acquisita come macroematuria, associata ad anemia emolitica, può essere causata da emolisi meccanica dopo chirurgia valvolare [1,2,3]. Vari fattori correlati alla procedura chirurgica o acquisiti successivamente, possono determinare emolisi quali il traumatismo meccanico subito dai globuli rossi per un’aumentata turbolenza di flusso attraverso una protesi cardiaca (shear stress forces), la deiscenza della sutura, esitante in paravalvular leak (PL), per endocarditi, difficoltà tecniche chirurgiche o il malfunzionamento del dispositivo valvolare. L’anemia emolitica intravascolare che ne consegue può essere clinicamente subacuta o manifestarsi, in un tempo variabile dall’intervento, con sintomi quali dispnea, ortopnea, cardiopalmo, astenia, urine ipercromiche e danno renale acuto (AKI) definito secondo le linee guida di Kidney Disease Improving Global Outcome KDIGO (incremento della creatinina sierica ≥0.3mg/dl in 48 o un incremento della creatinina sierica ≥1.5 volte il valore basale nei precedenti 7 giorni o un volume urinario <0.5ml/kg/h in 6 ore). Questa situazione, seppure rara [4,5,6,7], richiede rapida diagnosi differenziale onde orientare i clinici alla identificazione e risoluzione della causa eziologica.

Un attento esame delle urine rappresenta uno strumento diagnostico utile nel differenziare una macroematuria con AKI, causata da emoglobinuria, da un’ematuria a diversa eziologia [8,9,10,11], indirizzando il clinico verso il sospetto di una disfunzione valvolare post-operatoria.

Noi riportiamo il caso occorso alla nostra attenzione di un paziente affetto da macroematuria e AKI, insorta a due mesi da un intervento di riparazione valvolare mitralica complicato da insufficienza recidiva severa e anemia emolitica, analizzando l’importanza dello studio microscopico del sedimento urinario e del monitoraggio nefrologico anche alla luce della revisione della letteratura e delle nuove tecniche cardiochirurgiche.

 

Caso clinico

Un uomo di 55 anni giunge presso il reparto di Nefrologia, trasferito da una Divisione di Medicina, per macroematuria e astenia persistenti, anemia severa, AKI (stadio 1 sec. Acute Kidney Injury Network AKIN), incremento delle transaminasi, latticodeidrogenasi e bilirubina. L’anamnesi è negativa per malattie dell’apparato urinario, tabagismo e malattie ematologiche. Due mesi prima del ricovero, il paziente veniva sottoposto a intervento cardiochirurgico per insufficienza mitralica severa da prolasso del lembo anteriore mitralico (LAM). L’intervento consisteva in riparazione valvolare con anello protesico Sovering 32 e applicazione di due corde tendinee in ePTFE sul lembo anteriore in circolazione extracorporea. In decima giornata post-operatoria si presentava rialzo termico >38°C con associato versamento pericardico posteriore fino all’apice cardiaco, anemia (Hb 8,5 g/dl). Dopo esami colturali su sangue negativi, il versamento era quindi interpretato come infiammatorio-reattivo, veniva intrapresa terapia antibiotica empirica con cefazolina ed eseguite due emotrasfusioni in assenza di fonti di sanguinamento gastro-intestinale. Durante la degenza non veniva osservata contrazione della diuresi, la creatinina sierica si manteneva stabile con un incremento massimo fino a 1.17 mg/dl. Il paziente veniva dimesso dalla Divisione Cardiochirurgica con parziale correzione dell’anemia, funzione renale nella norma, microematuria (Tab. I) e avvio di terapia con warfarin con INR target di 3.0 per i primi tre mesi. Dopo due mesi, il paziente veniva nuovamente ospedalizzato presso una Divisione di Medicina per macroematuria, anemia severa (Hb 7,7 g/dl), leucocitosi (leucociti 19.220x µl) in assenza di significative alterazioni della formula e dello striscio periferico, aumento della velocità di eritrosedimentazione (48 1^ ora) e della proteina C reattiva (2,20 mg/dl) associate a incremento sierico di creatinina (1,60 mg/dl, eVFG 47,8 ml/min per 1.73m2), azotemia (84 mg/dl), lattato deidrogenasi (LDH) 2800 U/l, bilirubina totale (1,60 mg/dl), aspartato aminotransferasi (AST 229 UI/l), alanine aminotransferasi (ALT 127 UI/l). L’esame urine mostrava al dipstick albumina >300mg/dl, positività per sangue +++ (Hb >1mg/dl) con numerose emazie e cilindri granulari al sedimento. Nel sospetto di anemia autoimmune associata ad AKI, veniva eseguito Test di Coombs diretto e indiretto (negativo), TAOS (negativo), esame colturale su sangue e urine (negativi), dosaggio delle frazioni del complemento (nella norma), ricerca autoanticorpi (ANA, Ab anti DNA negativi).

L’ecografia renale mostrava reni di dimensioni normali (diametro longitudinale cm 11.3), lieve incremento dello spessore della corticale (12 mm) con normale ecogenicità. L’elettrocardiogramma (ECG) mostrava ritmo sinusale, all’ecocardiografia transtoracica (TTE) si documentava assenza di versamento pericardico e, all’ecocolor-doppler, presenza di un’insufficienza mitralica lieve che veniva ritenuta compatibile con gli esiti cardiochirurgici, anche in considerazione dell’assenza di sintomatologia cardiologica. Sulla base della presenza di ematuria, proteinuria e AKI e dell’esclusione di anemia autoimmune, veniva posta una diagnosi di “glomerulonefrite acuta”. Il paziente, dopo essere stato sottoposto a emotrasfusioni, veniva dimesso con terapia steroidea empirica. Dopo due giorni, per il persistere di macroematuria e comparsa di astenia, il paziente ritornava all’osservazione in urgenza e veniva inviato alla Divisione di Nefrologia per il riscontro di peggioramento funzionale renale.

All’ingresso il paziente risulta apiretico (TC 36°C), eupnoico (Sat. O2 in aria ambiente 99%), mostra subittero sclerale, all’auscultazione cardiaca è presente un soffio sistolico 2/6 parasternale sinistro, i valori pressori risultano nella norma (PA 140/60mmHg), la FC aumentata (94 bpm), fegato e milza nei limiti di norma. Il laboratorio (Tab. I) conferma anemia severa, AKI (AKIN1), incremento di bilirubina totale e indiretta, di AST, ALT e di LDH. Nessun altro marcatore di AKI (NGAL, Adrenomedullina, L-FABP, TIMP -2) viene ricercato. In considerazione dei segni laboratoristici di emolisi, viene effettuato esame dello striscio di sangue periferico, che non mostra schistociti, e dosaggio dell’aptoglobina che risulta ridotta. L’esame urine conferma intensa positività al dipstick per sangue +++ (Hb >1mg/dl) e albumina 300 mg/dl. L’esame del sedimento urinario in microscopia a contrasto di fase rivela una massiva presenza di cilindri emoglobinici e assenza di emazie. Una colorazione di Perls conferma la presenza di emosiderina nei cilindri e in granuli liberi (Fig. 1).

Sedimento urinario.
Figura 1: Sedimento urinario. A, B: Cilindri emoglobinici di colore brunastro e aspetto granulare. Assenza di emazie (Microscopia a contrasto di fase. Ingrandimento originale 400x). C, D: Colorazione di Perls: emosiderina, di colore blu/verde nei cilindri e in granuli sparsi (Microscopia in campo chiaro. Ingrandimento originale 400x)

Il quadro laboratoristico di anemia emolitica non immunomediata, l’assenza di un’anamnesi farmacologica compatibile con emolisi farmaco-indotta, l’emoglobinuria con cilindri emoglobinici e AKI inducono il sospetto clinico di emolisi meccanica intravascolare da disfunzione protesica (anello valvolare) in soggetto recentemente sottoposto a valvuloplastica mitralica. Nonostante le remore dei colleghi Cardiologi, basate sulla scarsa significatività dei dati dell’ecocardiogramma transtoracico, e in accordo con i consulenti Cardiochirurghi, il paziente viene sottoposto a Ecocardiogramma transesofageo (TEE) che documenta una disfunzione del lembo anteriore mitralico con rilevante insufficienza mitralica (3+/4+). Sulla base di ciò il paziente viene sottoposto a reintervento cardiochirurgico durante il quale viene riscontrata la presenza di due fissurazioni del lembo valvolare mitralico anteriore, reperto verosimilmente correlato all’aumento dei flussi ad alta velocità, responsabili dell’emolisi meccanica. Si procede a sostituzione valvolare mitralica con protesi meccanica Sorin Bicarbon 31. Nei giorni successivi non si verificano ulteriori episodi di “macroematuria” e dopo una settimana la funzione renale, la bilirubina totale, le transaminasi si normalizzano e si osserva una significativa riduzione dei valori di LDH e incremento dei livelli di Hb (Tab. I). Dopo 10 mesi il paziente risulta in benessere con normali valori di laboratorio.

Dati ematochimici Range di riferimento Dimissione da Cardiochirurgia Ingresso in Nefrologia Dimissione post-reintervento
Hb (g/dl)

[12.0-16.0]

10,4 7,7

9,9

Globuli rossi (x 106)

[4,00-5,20]

3,51 2,60

3,10

MCV (fl) [82,0-97,0] 84,5 82,5 92,5
Reticolociti (x1000) [5-12] // 35 29
Globuli bianchi (x103) [3,60-9,60] 12.260 19.220 (L 38,8% -N54%) 13.200
Piastrine (x1000/µL) [140-440] 180.000 160.000 178.000
Azotemia (mg/dl) [17-43] 41 84 26
Creatinina (mg/dl) [0,55-1,12] 0,98 1,65 1,04
Bilirubina (mg/dl)

Totale

Diretta

Indiretta

 

[0,30-1,20]
 

0,80

//

//

 

1,60

0,14

1,46

 

0,32

//

//

AST (UI/L) [0-35] 78 229 16
ALT (UI/L) [0-35] 89 127 18
LDH (UI/L) [0-247] 2201 3880 858
Aptoglobina mg/dl [30-200] // 20 //
C3/C4 (mg/dl) [90-180] [10-40] // 162/25 //
Test di Coombs diretto ed indiretto [Negativo] // Negativo //
VES (1^ ora) [1-25] 110 48 //
PCR (mg/dl) [0.0-0.5] 2,80 2,20 //
Esame urine
pH [5,5-7,5] 6.5 5.5 6.0
Peso Specifico [1.005-1.025] 1015 1010 1015
Bilirubina (mg/dl) [<0.5] 0.80 0.5 <0.5
Emoglobina (mg/dl) [<0.03] >1        +++ >1        +++ <0.03
Proteine (mg/dl) [<15] >300     +++ >300     +++ 15
Sedimento Rare emazie – Numerosi cilindri granulosi (emoglobinici)

– Emazie assenti

Nulla da segnalare
Tabella I: Andamento nel tempo dei parametri ematochimici

 

Discussione

Il punto di vista cardiochirurgico

L’emolisi intravascolare severa associata a disfunzione valvolare comporta emoglobinuria ed è una possibile complicanza della chirurgia valvolare mitralica [2,3,12]. L’emolisi meccanica si verifica soprattutto con le valvole di vecchia generazione e si manifesta a partire dal periodo post-operatorio fino ad anni dopo l’intervento (range 0.17-54 mesi) ed è associata ad anemia, presenza di schistociti, incremento della conta reticolocitaria, riduzione di aptoglobina, incremento di bilirubina indiretta e LDH [3,5,12].

L’anemia emolitica complicante la chirurgia valvolare cardiaca è stata descritta fin dagli anni ’60 e attribuita all’elevata turbolenza del flusso (shear stress force) attraverso la valvola protesica, alla mancanza di endotelio ricoprente la superficie protesica ruvida, alla deiscenza di una sutura e all’instaurarsi di un rigurgito paravalvolare (PL) [13]. La prevalenza di un rigurgito paravalvolare in un follow-up superiore a 10 anni dopo la sostituzione valvolare varia, secondo le casistiche, dal 2-17% nel caso di valvole meccaniche, al 9% nel caso di valvole biologiche [14,15], con una frequenza quasi doppia nella sostituzione della valvola mitralica rispetto a quella aortica. In assenza di endocardite, il decorso dei rigurgiti paravalvolari è benigno ma essi costituiscono la causa più frequente di anemia emolitica in questi pazienti [16]. L’incidenza dell’anemia emolitica correlata agli interventi di protesi valvolare si è ridotta nel tempo, grazie al miglioramento delle tecniche e dei materiali chirurgici, ma il recente ricorso a tecniche di sostituzione valvolare transcatetere TAVI [5] e sistemi di circolazione extracorporea di supporto alla funzione cardiaca e cardiopolmonare, ripropongono la tematica con un rinnovato interesse (Tab. II).

Sostituzione valvolare chirurgica (mitralica o aortica) – Zona di distacco della protesi (paravalvular leak) con abnorme flusso sanguigno ad alta velocità tra anello valvolare protesico e quello nativo (es: per deiscenza della sutura su anello nativo molto calcifico, endocardite, tecnica chirurgica sub ottimale)

– Disfunzione/deterioramento protesico con aumento dei gradienti pressori transvalvolari (es: trombosi/blocco di emidisco meccanico, degenerazione di protesi biologica, endocardite)

– Calibro protesico sottodimensionato

Riparazione valvolare mitralica – Zona di distacco dell’anello protesico valvolare

– Abnorme rigurgito residuo

– Materiale di sutura esuberante

Sostituzione valvolare aortica transcatetere – Zona di deiscenza paravalvolare

– Calibro protesico sottodimensionato

Assistenza ventricolare sinistra chirurgica/percutanea (sistemi di circolazione extracorporea) Shear stress (sforzo di taglio del flusso) correlato alla pompa

– Malposizionamento e/o malfunzionamento del dispositivo

Tabella II: Principali cause di emolisi  dopo chirurgia cardiaca (divisa per tipologia)

La severità dell’emolisi e della conseguente anemia prescinde dalle dimensioni degli orifici centrali di rigurgito e dalla presenza di PL [17] anche a seguito di TAVI e può variare da forme “asintomatiche” fino a forme severe, che causano la re-ospedalizzazione di questi pazienti. Nelle forme più severe di anemia emolitica meccanica e refrattarie alla terapia medica (basata sulla correzione del deficit di folati, supplementi di ferro, beta-bloccanti) viene raramente segnalata l’insufficienza renale.

Una recente casistica cinese [18] riporta che l’anemia emolitica meccanica severa compare più precocemente (entro i primi 3 mesi) dopo riparazione e più tardivamente (in media 10 anni) dopo sostituzione (con prevalenza delle valvole meccaniche rispetto alle biologiche) e l’AKI si presenta con un’incidenza fino al 44% in questa categoria di pazienti cardiochirurgici con anemia emolitica intrattabile.

 

Il punto di vista nefrologico

A due mesi dall’intervento di sostituzione valvolare mitralica il nostro paziente manifesta un’anemia severa, associata ad emissione di urine ipercromiche con sangue presente al dipstick in quantità +++ (Hb >1 mg/dl), microematuria modesta, incremento di LDH, bilirubina, reticolociti. Questo deve indurre a sospettare un’anemia emolitica e a ricercarne le cause in emoglobinopatie, tossine, farmaci, processi microangiopatici o processi autoimmuni complemento-mediato, traumatismi diretti sui globuli rossi (Fig. 2). Nell’anamnesi del paziente non risulta esposizione ai farmaci frequentemente associati ad emolisi, né infezioni in atto, risultano assenti emolisine (Test di Coombs negativo) e consumo del complemento, le piastrine sono nella norma, lo striscio periferico non evidenzia ellissociti, cellule falciformi né schistociti. Una prima valutazione del quadro clinico-laboratoristico del nostro paziente ha portato erroneamente i clinici a sospettare, per la presenza di macroematuria intermittente, microematuria e proteinuria, una glomerulonefrite con anemia non autoimmune, tralasciando una causa traumatica meccanica sui globuli rossi, con conseguente emolisi intravascolare per la quale ci si sarebbe attesa la presenza di schistociti.

Il test delle urine da noi eseguito ha rilevato elevata positività al dipstick per sangue e albumina. Il sedimento urinario in microscopia a contrasto di fase ha evidenziato un’elevata quantità di cilindri emoglobinici con tipico colore brunastro e aspetto granulare e nessun eritrocita intero o frammentato è stato identificato all’interno dei cilindri (Fig. 1). Una colorazione di Perls è stata utilizzata per identificare l’emosiderina nei cilindri e in granuli diffusi; tale colorazione è specifica per il ferro trivalente dell’emosiderina, con esaltazione del colore blu scuro, confermando la natura emoglobinica dei cilindri (Fig. 1).

L’emoglobinuria associata alla riduzione dei livelli di aptoglobina, conseguente al legame con emoglobina libera che viene rilasciata in circolo in eccesso, hanno confermato, nel nostro paziente, una diagnosi di emolisi intravascolare non microangiopatica né autoimmune. L’eziologia traumatica diretta, in un soggetto recentemente sottoposto a intervento di sostituzione valvolare mitralica, ha richiesto la conferma, all’ecocardiogramma transesofageo, di disfunzione valvolare nonostante la scarsa sintomatologia cardiaca, le aspecifiche alterazioni all’ecocardiogramma transtoracico, l’assenza di schistociti. Il danno renale va riportato all’eccesso di emoglobina libera che si dissocia dall’usuale forma tetramerica alla forma dimerica con sequestro di ossido nitrico, libera filtrazione attraverso i glomeruli e, superata la capacità di riassorbimento a livello dei tubuli prossimali, precipitazione nel lume dei tubuli. Pertanto, in corso di emolisi protratta, i meccanismi coinvolti sono tre: vasocostrizione causata dal sequestro di ossido nitrico, diretta citotossicità dell’emoglobina libera sull’epitelio del tubulo prossimale, interazione dell’emoglobina intratubulare con la proteina di Tamm-Horsfall con formazione di cilindri emoglobinici [19,20,21]. L’emoglobina viene assorbita dai recettori megalina-cubilina sulla superficie apicale dell’epitelio tubulare e si deposita nei tubuli prossimali. L’emoglobina intracellulare si dissocia in eme e globina e l’eme viene degradata dall’eme ossigenasi (HO). L’isoforma inducibile HO-1 aumenta rapidamente, accompagnata da un aumento della ferritina intracellulare. Queste reazioni intracellulari portano al legame del ferro con la ferritina, con danno mitocondriale, per compromissione dell’ossigenazione mitocondriale. Seguono apoptosi delle cellule epiteliali tubulari, stress ossidativo e rilascio di citochine pro-infiammatorie [20,21].

Se l’emolisi è limitata, il danno renale acuto si risolve con normalizzazione della funzione, mentre ripetuti episodi di emolisi severa possono portare a danno tubulare con depositi intracellulari di emosiderina e danno cronico con irreversibili lesioni quali atrofia tubulare e fibrosi interstiziale [12,22,23].

La nostra esperienza ci conferma che l’esame delle urine con l’osservazione microscopica del sedimento urinario (EUM), in particolare impiegando microscopio a contrasto di fase [24,25,26], rappresenta un eccellente indicatore di danno renale, se appropriatamente utilizzato da personale sanitario esperto e preparato. Infatti, la combinazione del risultato chimico-fisico delle urine con l’identificazione e la quantificazione di cellule, cilindri, cristalli consente di formulare precise ipotesi diagnostiche [11,25,26,27].

L’analisi degli elementi del sedimento urinario, naturalmente attraverso procedure standardizzate [11, 25,26], consente di comprendere se sia il glomerulo, l’interstizio e/o i tubuli a essere interessati al danno [11, 27,28,29]. Così acantociti (o eritrociti dismorfici) e cilindri eritrocitari in presenza di albuminuria sono tipicamente indicativi di lesione glomerulare, anche se cilindri eritrocitari sono stati individuati in corso di nefrite interstiziale acuta diagnosticata con biopsia renale [30]. Anche nell’insufficienza renale acuta il sedimento urinario offre supporto diagnostico indispensabile [8,11]. Alcuni Autori suggeriscono che, nei pazienti ospedalizzati con AKI, uno score ottenuto mediante il conteggio di cilindri granulari e cellule epiteliali tubulari renali possa aiutare a discriminare il danno prerenale dalla necrosi tubulare acuta con probabile valore diagnostico e prognostico, limitato dalla difficoltà d’identificazione di elementi quali cellule epiteliali tubulari. Necessario quindi standardizzare e formare personale sanitario perché l’interpretazione del sedimento urinario possa essere di valore clinico [31,32,33].

Uno studio basata sull’interpretazione dell’EUM di 26 pazienti con insufficienza renale acuta indica che l’analisi eseguita dal nefrologo, che riconosce un numero significativamente maggiore di elementi del sedimento (cellule tubulari, cilindri con cellule tubulari, cilindri granulosi ed eritrociti dismorfici), è superiore a quella eseguita nel laboratorio clinico nell’individuare la diagnosi più corretta [34]. Nel nostro caso, un’inadeguata osservazione dell’esame urine e del sedimento urinario ha portato all’erronea iniziale diagnosi di glomerulonefrite.

Peraltro, nei vari lavori, l’interpretazione dei sedimenti urinari varia di molto in affidabilità a seconda dell’osservatore [35,36]. Recentemente Palsson ha posto a confronto nefrologi esperti nell’interpretazione dei sedimenti urinari per l’identificazione della patologia renale di pazienti con diagnosi bioptica renale e ha osservato una sostanziale variabilità interpretativa: da scarsa concordanza per cilindri cellulari misti a elevata per cilindri leucocitari, cilindri eritrocitari e cellule epiteliali tubulari renali [37].

I numerosi sistemi automatizzati impiegati nei grandi laboratori hanno ridotto l’utilizzo della microscopia manuale, producendo immagini digitalizzate del sedimento urinario per analisi computerizzate. I più comunemente usati, IRIS iQ200, Sysmex UF-1000i, Cobas u701 e SediMax, consentono una rapida analisi di campioni di urina anche patologici. Tuttavia studi comparativi con la microscopia manuale hanno rilevato che gli analizzatori automatizzati, seppure con sensibilità e specificità diverse per i vari elementi del sedimento urinario, non sono affidabili nella diagnosi delle malattie renali come necrosi tubulare acuta, glomerulonefriti, vasculiti e nelle cristallurie patologiche [11, 38,39,40].

Infine, scarsa considerazione all’esame delle urine emerge dal riesame della letteratura riguardante l’ematuria macroscopica in corso di emolisi intravascolare severa associata a disfunzione valvolare. Alcuni autori descrivono “urine scure” prevalentemente da un punto di vista chimico fisico, senza altre precisazioni [6,7]. Nel caso clinico di Curtain, la valutazione dell’esame urine non risulta efficace: ingannati dal fatto che l’emoglobinuria determinava comunque positività per sangue all’esame chimico fisico, il paziente che si presentava con macroematuria veniva indirizzato in un primo momento verso una diagnosi nefro-urologica [4]. Nella review di Alkhouli et al. l’esame delle urine non viene riportato [5].

I dati urinari riscontrati nel nostro paziente rappresentano marcatori di preciso danno renale acuto . [8,11]. Infatti, nelle urine ipercromiche associate a glomerulonefrite acuta troviamo molti eritrociti, solitamente dismorfici, diversi tipi di cilindri tra cui quelli eritrocitari, leucociti e cellule tubulari. Diversamente, l’assenza di eritrociti con eme positivo al dipstik urinario e cilindri di emoglobina suggerisce una tossina endogena, come l’emoglobina libera [8,9,10]. La diagnosi errata di “glomerulonefrite” può essere spiegata da un esame inadeguato del sedimento urinario non effettuato da personale sanitario motivato e preparato [41,42].

Percorso diagnostico-terapeutico nel soggetto portatore di protesi cardiaca
Figura 2: Percorso diagnostico-terapeutico nel soggetto portatore di protesi cardiaca con anemia inspiegata, macroematuria ed AKI. Legenda: HUS: sindrome emolitico-uremica, PTT: tempo di tromboplastina parziale

 

Conclusioni

A fronte del costante miglioramento delle tecniche cardiochirurgiche, l’AKI da emolisi dopo chirurgia valvolare mitralica è una complicanza rara ma severa. Un’attenta valutazione microscopica del sedimento urinario può riconoscere la natura emolitica di un’ematuria post-cardiochirurgica, orientare il nefrologo alla corretta diagnosi e indirizzare il paziente all’eventuale terapia chirurgica risolutiva. Il caso qui riportato ci fa riflettere su come l’occhio umano, nella valutazione del sedimento urinario, sia ancora uno strumento diagnostico insostituibile, anche nell’era dell’ipertecnologia.

 

Bibliografia

  1. Lander EB. Severe hemoglobinuria masquerading as gross hematuria following mitral valve replacement. J Urol 1995; 153:1639-40.
  2. Dilip KA, Vachaspathy P, Clarke B, Walker DM, Thomas RD, Monro JL. Haemolysis following mitral valve repair. Journal Cardiovascolar Surgery 1992; 33(5):568-9.
  3. Lam BK, Cosgrove DM, Bhudia SK, Gillinov AM. Hemolysis after mitral valve repair: mechanisms and treatment. Annals of Thoracic Surgery 2004; 77:191-5. https://doi.org/10.1016/s0003-4975(03)01455-3
  4. Curtain JP, O’Brien JW. A man with dark urine and shortness of breath: a case-based review of paravalvular leaks. BMJ Case Rep 2016; 2016:bcr2015213399. https://doi.org/1136/bcr-2015-213399
  5. Alkhouli M, Farooq A, Go RS, Balla S, Berzingi C. Cardiac prostheses-related hemolytic anemia. Clin.Cardiol 2019; 42(7):692-700. https://doi.org/1002/clc.23191
  6. Rai M, Ali MA,Geller C. Hemolytic anemia: Sneaky cause, leaky valve. Cureus 2020; 12(5):e8370. https://doi.org/10.7759/cureus.8370
  7. Malhotra R, Namasyvayam M, Ghoshhajra BB, Passeri JJ, Hoenig PA, Stone JR. Case 36-2020: a 72-years old woman with Dark urine and weakness. N Engl J Med 2020; 383(21):2066-76. https://doi.org/10.1056/NEJMcpc2027077
  8. Rabb H. Evalutation of urinary markers in acute renal failure. Current Opinion in Nephrology and Hypertension 1998; 7:681-5.
  9. Fogazzi GB, Grignani P, Colucci P. Urinary microscopy as seen by nephrologists. Clinical Chemestry Laboratory Medicine 1998; 36(12):919-24.
  10. Fogazzi GB, Garigli G. The clinical art and science of urine microscopy. Current Opinion in Nephrology and Hypertension 2003; 12(6):625-32. https://doi.org/10.1097/00041552-200311000-00009
  11. Cavanaugh C, Perazella M. Urine sedimemt examination in the diagnosis and managment of kidney disease: Core Curriculum 2019. AJKD 2019; 73(2):258-72.https://doi.org/10.1053/j.ajkd.2018.07.012
  12. Concepcion B, Korbet SM, Schwartz MM. Intravascular hemolysis and acute renal failure after mitral and aortic valve repair. Am J Kidney Dis 2008; 52:1010-5. https://doi.org/10.1053/j.ajkd.2008.03.021
  13. DeCesare W, Rath C, Hufnagel C. Hemolytic anemia of mechanical origin with aortic-valve prostesis. New Engl Journal Med 1965; 272:1045-50. https://doi.org/10.1056/NEJM196505202722003
  14. Duncan BF, McCarthy PM, Kruse J, Andrei AC, Li Z, Russell HM, et al. Paravalvular regurgitation after conventional aortic and mitral valve replacement: A benchmark for alternative approaches. J Thorac Cardiovasc Surg 2015; 150(4):860-8. https://doi.org/10.1016/j.jtcvs.2015.06.047
  15. Mele D, Agricola E, Dal Monte A, Ancona MB, Ferrari R. Valutazione e chiusura dei leak periprotesici: ruolo dell’ecocardiografia transesofagea tridimensionale in tempo reale. G Ital Cardiol 2012; 13(1):38-46. https://doi.org/10.1714/1015.11054
  16. Gursoy MO, Guner A, Kalcik M, Bayam E, Ozkan M. A comprehensive review of the diagnosis and management of mitral paravalvular leakage. Anatol J Cardiol 2020; 24:350-60. https://doi.org/10.14744/AnatolJCardiol.2020.10018
  17. Garcia MJ, Vandervoort P, Stewart WJ, Lytle BW, Cosgrove III DM, Thomas JD, Griffin BP. Mechanisms of hemolysis with mitral prosthetic regurgitation: study using transesophageal echocardiography and fluid dynamic simulation. J Am Coll Cardiol 1996; 27:399-406. https://doi.org/10.1016/0735-1097(95)00403-3
  18. Wang J, Zhang H, Fan H, Chen K, Zhang Y, Song K, Ao H, Yu C. Intractable mechanical hemolytic anemia complicating mitral valve surgery: a case series study BMC Cardiovascular Disorders 2020; 20:104. https://doi.org/10.1186/s12872-020-01382-8
  19. Dvanajscak Z, Walker PD, Cossey LN, Messias NC, Boils CL, Kuperman MB, Larsen CP. Hemolysis-associated hemoglobin cast nephropathy results from a range of clinicopathologic disorders. Kidney Int 2019; 96(6):1400-7. https://doi.org/10.1016/j.kint.2019.08.026
  20. Gembillo G, Siligato R, Cernaro V, Santoro D: Complement inhibition therapy and dialytic strategies in paroxysmal nocturnal hemoglobinuria: the Nephrologist’s Opinion. J Clin Med 2020; 9(5):1261. https://doi.org/10.3390/jcm9051261
  21. Gaut JP, Liapis H.Acute kidney injury pathology and pathophysiology: a retrospective review. Clin Kidney J 2021; 14(2):526-36. https://doi.org/10.1093/ckj/sfaa142
  22. Qian Q, Nath KA, Wu Y, Daoud TM, Sethi S. Hemolysis and acute kidney failure. Am J Kidney Dis 2010; 56(4):780-4. https://doi.org/10.1053/j.ajkd.2010.03.025
  23. Lee IL ,Kang GW, Kim C-Y, Lee S-J, Kim M-K, Ahn, DJ. Renal hemosiderosis secondary to intravascular hemolysis after mitral valve repair. Medicine 2020; 99(3):e18798. https://doi.org/10.1097/MD.0000000000018798
  24. Kouri T, Gant V, Fogazzi G, et al. European urinalysis guidelines. Clinica Chimica Acta 2000; 297(1):305-11. https://doi.org/10.1016/S0009-8981(00)00256-4
  25. Manoni F, Gessoni G, Fogazzi GB, Alessio MG, et al. Esame fisico, chimico e morfologico delle urine proposta di linee guida per la fase analitica del gruppo Intersocietario Analisi delle urine (GIAU). Riv Ital Med Lab 2016; 12:134-64. https://doi.org/10.1007/s13631-016-0127-5
  26. Manoni F, Gessoni G, Fogazzi GB, et al. Esame fisico, chimico e morfologico delle urine: raccomandazioni per la fase post analitica del Gruppo Interdisciplinare Laboratorio e Clinica Apparato Urinario (GIAU). Riv Ital Med Lab 2019; 15(1):46-59. https://doi.org/10.23736/S1825-859X.19.00008-2
  27. Becker GJ, Garigali G, Fogazzi GB. Advances in urine microscopy. Am J Kidney Dis 2016; 67(6):954-64. https://doi.org/10.1053/j.ajkd.2015.11.011
  28. Perazella MA. The urine sediment as a biomarker of kidney disease. Am J Kidney Dis 2015; 66(5):748-55. https://doi.org/10.1053/j.ajkd.2015.02.342
  29. Fogazzi GB.The urinary sediment: an integrated view, 3rd ed. Milan: Elsevier, 2010.
  30. Ferrari B, Fogazzi GB, Garigali G, Messa P. Acute interstitial nephritis after amoxicillin with hematuria, red blood cell casts and hematuria- induced acute tubular injury. Clinical Nephrology 2013; 80(2):156-60. https://doi.org/10.5414/CN107179
  31. Perazella MA, Coca SG, Kanbay M, Brewster UC, Parikh CR. Diagnostic value of urine microscopy for differential diagnosis of acute kidney injury in hospitalized patients. Clin J Am Soc Nephrol 2008; 3(6):1615-9. https://doi.org/2215/CJN.02860608
  32. Perazella MA, Coca SG, Hall IE, Iyanam U, Koraishy M, Parikh CR. Urine microscopy is associated with severity and worsening of acute kidney injury in hospitalized patients. Clin J Am Soc Nephrol 2010; 5(3):402-8. https://doi.org/10.2215/CJN.06960909
  33. Perazella MA, Coca SG. Traditional urinary biomarkers in the assesment of hospital-acquired AKI. Clin J Am Soc Nephrol 2012; 7(1):167-74. https://doi.org/2215/CJN.09490911
  34. Tsai JJ, Yeun JY, Kumar VA, Burl R.D. Comparison and interpretation of urinalysis performed by a nephrologist versus a hospital-based clinical laboratory. Am J Kidney Dis 2005; 46(5):820-9. https://doi.org/10.1053/j.ajkd.2005.07.039
  35. Fogazzi GB, Secchiero S, Garigli G, Plebani M. Evaluation of clinical cases in External Quality assessment scheme (EQAS)for the urinary sediment. Clin Chem Lab Med 2014; 52(6):845-52. https://doi.org/10.1515/cclm-2013-0785
  36. Secchiero S, Fogazzi GB, Manoni F, Epifani M, Garigali G, Plebani M. The Italian External Quality assessment (EQAS) program on urinary sediment: results of period 2010-2015. Clin Chem Lab Med 2015; 53(S2):s1495-502. https://doi.org/10.1515/cclm-2015-0794
  37. Palsson R, Colona MP, Hoening MP, Lundquist AL, Novak JE, Perazella MA, Waikar SS. Assessment of interobserver reliability of Nephrologist examination of urine sediment. JAMA Netw Open 2020; 3(8):e2013959. https://doi.org/10.1001/jamanetworkopen.2020.13959
  38. Bakan E, Ozturk N, Baygutalp NK, Polat E, Akpinar K, Dorman E, Polat H, Bakan N. Comparison of Cobas 6500 and Iris IQ200 fully-automated urine analyzers to manual urine microscopy. Biochem Med (Zagabria) 2016; 26(3):365-75. https://doi.org/10.11613/bm.2016.040
  39. Wessarachkitti B, Khejonnit V, Pratumvinit B, Reesukumal K, Meepanya S, Pattanavin C, Wongkrajang P. Performance evaluation and comparison of the fully automated urinalyusis analyzers UX-200 and Cobas 6500. Lab Med 2016; 47(2):124-33. https://doi.org/1093/labmed/lmw002
  40. Zaman Z, Fogazzi GB, Garigali G, Croci MD, Bayer G, Kranicz T. Urine sediment analysis: Analytical and diagnostic performance of sediMAX. A new automated microscopy image-based urine sediment analyser. Clinica Chimica Acta 2010; 411:147-54. https://doi.org/10.1016/j.cca.2009.10.018
  41. Fogazzi GB, Grignani S. Urine microscopy analysis. An art abandoned by nephrologists? Nephrol Dial Transplant 1998; 13:2485-7.
  42. Clinical and Laboratory Standard Institute (ex NCCLS)-GP16-A3 – Urinalysis; Approved guideline, 3rd ed. Wayne (PA): CLSI, 2009.