Protected: Platelet-To-Lymphocyte Ratio and Arteriovenous Fistula for Hemodialysis: An Early Marker to Identify AVF Dysfunction

Abstract

The KDOQI guidelines (Kidney Disease Outcomes Quality Initiative) recommend autologous arteriovenous fistula (AVF) as the primary vascular access in hemodialysis patients because of the higher quality of life and lower complication rates if compared to arteriovenous grafts (AVGs) or central venous catheter (CVC). Several studies used various inflammatory biomarkers to evaluate the association between systemic inflammation and AVF dysfunction. A novel inflammatory biomarker, the platelet–lymphocyte ratio (PLR), is a useful and easy laboratory parameter that can reveal systemic inflammation. Our study aimed to evaluate the relationship between PLR value changes over time and AVF dysfunction. The impact of PLR on our outcome showed a trend close to the significance (OR: 4,9; 95%CI: [0.84-28.5]; p = 0.08) but the slope was not linear. Therefore, we performed the same analysis splitting the patients by the median PLR value and we highlighted a significant relationship between our outcome and the PLR (log-transformed) for PLR-value under the median value (OR: 9.97; 95%CI: [2.53-39.25]; p = 0.001). Furthermore, in patients with PLR above the median value, the interaction visit-PLR showed an impact close to the statistical significance (OR: 7.7; 95%CI: [0.81-72.97]; p = 0.07). PLR (log-transformed) was positively correlated with AVF age (Rho: 0.254, p = 0.002).

Keywords: AVF, chronic kidney disease, hemodialysis, platelet-lymphocite ratio, thrombosis

This content is password protected. To view it please enter your password below:

Stenotic FAV: Success of the Collaboration Between Spoke and HUB

Abstract

The arteriovenous fistula constitutes the vascular access of first choice in hemodialysis. We present three clinical cases that highlight the resolution in interventional radiology of venous stenosis, one of the major complications.
Clinical monitoring and instrumental diagnostics with color Doppler ultrasound have prevented the failure of the AVF due to high risk of thrombosis.
The angiographic interventions, thanks to the collaboration between Spoke and Hub, were completed without complications.

Keywords: hemodialysis, stenosis, AVF, interventional radiology, color Doppler ultrasound, PTA

Sorry, this entry is only available in Italian.

Introduzione

La fistola artero-venosa (FAV) per il paziente in dialisi costituisce l’accesso vascolare di prima scelta, in quanto meno gravato da complicanze a medio-lungo termine e per la maggiore sopravvivenza rispetto alla protesi e al catetere venoso centrale permanente [1]. L’Ecocolordoppler (ECD) ormai da anni rappresenta l’esame diagnostico meno invasivo per il mapping dei vasi pre-confezionamento FAV e per il monitoraggio delle complicanze (stenosi, trombosi, ematomi, aneurismi e pseudoaneurismi) venose e arteriose [26]. Sono più frequenti le stenosi venose che le stenosi arteriose [7, 8]; si distingue poi ulteriormente tra stenosi dell’inflow (vaso afferente) e stenosi dell’outflow (vaso efferente). Tra le stenosi venose, le stenosi iuxta-anastomotiche (entro i 2 cm dall’anastomosi) sono più frequenti rispetto alle stenosi distali [7, 8].

Il primum movens della stenosi venosa è l’iperplasia neointimale. Costituiscono fattori concomitanti lo stress chirurgico, lo stato pro-infiammatorio legato alla malattia renale cronica, la predisposizione genetica, le venipunture ripetute. Il processo che si determina è un’anomala proliferazione e migrazione delle cellule muscolari lisce, con espressione di citochine, chemochine, e mediatori come l’endotelina, il TGFβ, l’ossido nitrico, l’osteopontina e l’apolipoproteina. Spiegherebbe la riduzione del lume vascolare anche la migrazione di fibroblasti dall’avventizia all’intima [911]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Triple stenosis of brachio-basilic arteriovenous fistula: percutaneous transluminal angioplasty utility, case report and literature review

Abstract

The major haemodialysis arteriovenous fistula (AVF) complication is stenotic disease. It is represented by a reduction of the arterial or venous caliper forming the AVF. Most frequently it is located in the juxta- anastomotic region of the venous segment.
There are a lot of mechanisms responsible for the stenosis formation; some are correlated by the shear stress in the wall of venous tract with a lot of biochemical mechanisms, others are associated with the repetition of venipuncture during haemodialisys treatment
It is recommended that each dialysis center activate an AVF monitoring program capable of identifying and treating stenosis.
We describe a clinical case of a young woman with a multiple stenosis disease of a brachio-basilical transposed AVF.

Keywords: AVF, haemodialysis, stenosis, PTA, ecoguided PTA

Sorry, this entry is only available in Italian.

Introduzione

Tra le complicanze della fistola arterovenosa (FAV) per emodialisi (Tabella I), vanno annoverate le stenosi; trattasi di una complicanza strutturale a cui è esposta la FAV. Le stenosi delle FAV native possono interessare sia il versante venoso che quello arterioso. L’incidenza di stenosi coinvolgenti il sistema venoso della FAV risulta essere di gran lunga maggiore rispetto a quello arterioso [15]. Le stenosi sono senza dubbio la causa più frequente di failure della fistola arterovenosa; la caduta di portata di cui sono responsabili riduce l’efficienza dialitica con calo del Kt/V, inoltre sono causa di un incremento della pressione negativa nel circuito, ostacolano il ritorno venoso, favoriscono il ricircolo [6, 7].

COMPLICANZE STRUTTURALI COMPLICANZE EMODINAMICHE
Ridotto/assente inflow (stenosi vaso afferente) Ridotta portata della FAV per perdita dell’inflow
Ridotto/assente outflow (stenosi del vaso efferente) Sindrome da furto (Steal syndrome)
Stenosi della porzione centrale del vaso efferente Presenza di collaterali venose che riducono la portata
Ematoma Scompenso cardiaco congestizio
Aneurisma Edema del braccio
Pseudoaneurisma
Calcificazioni
Tabella I: complicanze della FAV (Meola M: Ecografia clinica in nefrologia. Fistola arterovenosa, p 1308. Meola M. Eureka editore 2015).

Alcuni autori hanno classificato le stenosi del versante venoso della FAV in iuxta-anastomotiche o distali, a seconda che la sede della stenosi sia rispettivamente entro o oltre i 2 cm dall’anastomosi; anche se per Tessitore [8] vanno considerate tali anche le stenosi entro i 5 cm dall’anastomosi; questo sottotipo è responsabile dell’80 % delle stenosi.

Altra possibile classificazione riguardante la sede delle stenosi prevede la distinzione di stenosi centrali, iuxta-anastomotiche e stenosi riguardanti il tratto di vena compreso tra queste due regioni. Infine, da un punto di vista emodinamico, possiamo classificarle in stenosi dell’inflow e stenosi dell’outflow. Le prime determinano, da un punto di vista emodinamico, una riduzione della portata della fistola e riguardano le stenosi arteriose e le stenosi venose iuxta-anastomotiche; le seconde, invece, sono le stenosi venose distali che determinano un ostacolo al deflusso venoso anche in presenza di una valida portata [9].

La sede più frequente di stenosi è la porzione iuxta-anastomotica [1013], ma sono frequenti anche le stenosi della porzione centrale della vena efferente sede di venopuntura. Possiamo definire critica una stenosi quando la riduzione del diametro del lume vasale è superiore al 50 % rispetto a quello misurato nella porzione prestenotica. Ma tale definizione non può prescindere dalle alterazioni emodinamiche causate dalla stenosi: una riduzione della portata, l’aumento degli indici di resistenza, l’incremento della velocità di picco sistolico in corrispondenza della stenosi e, non ultima, l’inadeguata efficienza dialitica che accompagnano la stenosi [14].

La FAV è un “bene prezioso” per il paziente emodializzato; il patrimonio vascolare non è illimitato e il ricorso al catetere venoso centrale dovrebbe essere una seconda scelta. La stenosi deve essere considerata come l’iniziale processo di chiusura della FAV: se precocemente riconosciuta e trattata può evitare la chiusura definitiva dell’accesso vascolare.

 

Case report

Descriviamo il caso di una paziente di 54 anni, ipertesa, uremica in trattamento emodialitico da 3 anni, affetta da sindrome Nail-Patella. All’avvio al trattamento veniva confezionata una FAV radio-cefalica distale all’avambraccio sinistro previo mapping preoperatorio dell’arto che evidenziava una vena cefalica di 2 mm che incrementava il suo diametro a più del 50% dopo posizionamento del laccio emostatico; arteria radiale di 2,2 mm con portata di 15 ml/m e un test dell’iperemia reattiva che mostrava una caduta delle resistenze e incremento della portata.

Dopo 6 mesi la FAV andava incontro a failure, per cui veniva posizionato un catetere venoso centrale definitivo in vena giugulare destra. Allestita una nuova FAV distale radio-cefalica a carico dell’avambraccio di destra, quest’ultima andava incontro ad early failure nonostante il mapping preoperatorio mostrasse vasi aggredibili con buona compliance vascolare. Veniva quindi allestita una FAV prossimale brachio-basilica a carico del braccio sinistro con trasposizione della basilica. La portata della fistola, calcolata sull’arteria brachiale, dopo 7 giorni dall’allestimento era pari a 765 ml/m e incrementava a 1130 ml/m dopo 30 giorni.

Durante i trattamenti emodialitici si riscontravano pressioni venose elevate nell’accesso vascolare e pressioni arteriose eccessivamente negative. Veniva intrapreso quindi un follow-up ecografico e veniva posticipata la rimozione del CVC definitivo. Un controllo a distanza di 8 mesi mostrava una caduta della portata a 880 ml/m. L’accesso vascolare, monitorato nei mesi successivi, mostrava una progressiva riduzione di portata: 760 ml/m dopo 10 mesi dall’allestimento; 600 ml/m dopo 13 mesi. Giunge alla nostra osservazione a marzo 2022. L’esame doppler metteva in evidenza una portata pari a 465 ml/min. IR pari a 0,5 e l’evidenza di 3 stenosi lungo il decorso della vena basilica trasposta. Di queste, una si presentava in regione iuxta-anastomotica, con velocità di picco sistolico (PSV) calcolata in corrispondenza della stenosi pari a 350 cm/sec e le due restanti in regione distale con PSV rispettivamente di 617 cm/sec e 387 cm/sec. Si concludeva dunque per FAV malfunzionante con patologia stenotica multipla, con impatto emodinamico significativo. Per difficoltà operativa nel reperire un accesso unico che consentisse di trattare tutte e tre le stenosi contemporaneamente, veniva pianificato un trattamento di PTA in due tempi:

  1. PTA delle due stenosi distali con approccio anterogrado.
  2. PTA della stenosi iuxta-anastomotica con approccio retrogrado.

Veniva eseguita una prima procedura di PTA ecoguidata con balloon non compliante ad alta pressione delle dimensioni di 6 x 30 mm gonfiato fino a 24 atmosfere con completa distensione delle due lesioni stenotiche. Immediatamente dopo la procedura la portata dell’accesso vascolare risultava essere di 1100 ml/min con IR pari a 0,42 (Figure 1-5).

Figura 1: B-Mode. Scansione longitudinale su vena basilica efferente la FAV. Si nota esteso tratto stenotico.
Figura 1: B-Mode. Scansione longitudinale su vena basilica efferente la FAV. Si nota esteso tratto stenotico.
Figura 2: Color-doppler. Portata calcolata su arteria brachiale: 465ml/min; IR 0.5.
Figura 2: Color-doppler. Portata calcolata su arteria brachiale: 465ml/min; IR 0.5.
B-Mode. Gonfiaggio del pallone per angioplastica nel lume
Figura 3: B-Mode. Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico. Si notano due incisure disegnate sul profilo del pallone, sede di maggiore resistenza della stenosi, che verranno completamente sfiancate al raggiungimento di 24 atmosfere.
B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Figura 4: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura.
Figura 5: Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura. Si nota un incremento della portata a 1094 ml/min con riduzione indici di resistenza a 0,41.

A distanza di 15 giorni veniva eseguita seconda proceduta di PTA ecoguidata su stenosi iuxta-anastomotica. Veniva utilizzato balloon non compliante ad alta pressione delle dimensioni di 6 x 30 mm gonfiato fino a 24 atmosfere con completa risoluzione della stenosi (Figure 6-10).

Scansione longitudinale su vena basilica efferente la FAV in corrispondenza della regione iuxta-anastomotica stenotica.
Figura 6: B-Mode. Scansione longitudinale su vena basilica efferente la FAV in corrispondenza della regione iuxta-anastomotica stenotica.
Figura 7: Color-doppler. Portata calcolata su arteria brachiale: 920 ml/min con IR 0.49.
Figura 7: Color-doppler. Portata calcolata su arteria brachiale: 920 ml/min con IR 0.49.
Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico.
Figura 8: B-Mode. Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico. Pallone completamente disteso, gonfiato a 24 atmosfere.
Figura 9: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Figura 9: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Portata calcolata su arteria brachiale successivamente alla procedura
Figura 10: Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura. Si nota un incremento della portata a 1756 ml/min con riduzione indici di resistenza a 0,37.

La portata dell’accesso al termine della procedura risultava pari a 1600 ml/min con IR pari a 0,37. Contestualmente nella stessa seduta operatoria veniva rimosso CVC giugulare definitivo destro. In Figura 11 è riportato l’andamento della portata della FAV dal suo allestimento fino all’espletamento dell’ultima procedura descritta.

Figura 11: Il grafico, portata/tempo, mostra l’andamento del flusso prima e dopo le due procedure di angioplastica.
Figura 11: Il grafico, portata/tempo, mostra l’andamento del flusso prima e dopo le due procedure di angioplastica.

 

Discussione

Il primum movens del processo di stenosi è rappresentato dall’iperplasia neointimale, a sua volta legata ad un incremento dello shear-stress di parete per l’imponente incremento di flusso cui è sottoposto il vaso dopo la creazione dell’anastomosi. Concorrono, al processo di stenosi, anche lo stato pro infiammatorio proprio della malattia renale cronica, le venipunture ripetute, lo stress chirurgico, fattori genetici. Tutti questi elementi sono responsabili del rimodellamento della parete vascolare e di una anomala proliferazione [15] e migrazione delle cellule muscolari lisce mediata da una serie di fattori: citochine, chemochine, ossido di azoto, endotelina, osteopontina, apolipoproteina [10, 16-21].

È inoltre dimostrata una migrazione di fibroblasti dall’avventizia all’intima e la loro trasformazione in miofibroblati che contribuisce in maniera significativa alla riduzione del lume vascolare [2228]. Alcuni studi hanno incentrato l’attenzione sulla natura delle cellule che costituiscono la neointima: la loro identificazione pone infatti le basi per azioni terapeutiche volte a inibire il processo di proliferazione neointimale. In particolare la recente evidenza di fibroblasti migrati dall’avventizia all’intima e trasformati in miofibroblasti ha sottolineato il ruolo fondamentale di queste cellule nella produzione di matrice extracellulare della neointima. Tutto questo rimarca l’importanza dell’avventizia come attore in prima linea nel processo di iperplasia neointimale e la pone al centro dell’attenzione di interventi terapeutici che mirino al controllo di tutti questi elementi cellulari (fibroblasti, miofibroblasti, cellule muscolari lisce). Da ciò la proposta di alcuni autori di utilizzare farmaci antiproliferativi ad azione perivascolare [29-31]. Non ultima la necessità di una corretta manipolazione chirurgica intraoperatoria finalizzata a preservare l’avventizia e i vasa vasorum [29]; è dimostrato infatti che il ridotto traumatismo della parete vasale riduce in maniera significativa l’iperplasia neointimale [32].

Il malfunzionamento dell’accesso vascolare è una temuta complicanza del paziente in trattamento emodialitico: la sorveglianza clinica e il monitoraggio strumentale della FAV tendono a scongiurare questo pericolo. Negli anni si sono sviluppati programmi di sorveglianza clinico/strumentale spesso dissociati in quanto il nefrologo non sempre è il fulcro di questa sorveglianza, demandando al chirurgo vascolare o al radiologo la parte tecnico/strumentale. Nel nostro centro da tempo è stata posta l’attenzione a questo tipo di problematica e un team dedicato, oltre ad effettuare una sorveglianza clinica (esame ispettivo della FAV, Kt/V, ricircolo dell’accesso, monitoraggio delle pressioni venose ed arteriose intradialitiche), provvede al monitoraggio ecografico delle FAV a rischio di chiusura. L’ecocolordoppler infatti va ritenuto l’unica indagine capace di fornire informazioni strutturali e funzionali sull’accesso vascolare [33-36]; la metodica, infatti, oltre ad identificare deficit funzionali, mediante la valutazione della portata [3547], è in grado di individuare stenosi e trombosi da correggere mediante interventi di angioplastica, anch’essi ecoguidati, con i quali lo stesso nefrologo può cimentarsi.

Va comunque precisato che i programmi di sorveglianza degli accessi vascolari a tutt’oggi sono oggetto di discussione, in quanto lì dove studi osservazionali indicano che la correzione preventiva delle stenosi riduca la percentuale di fallimento dell’accesso vascolare [47] e le stesse linee guida NKF-K-DOQI [48] consigliano di sottoporre gli emodializzati portatori di FAV ad un programma di sorveglianza dell’accesso vascolare, ci sono pareri discordanti che attribuiscono una scarsa efficacia a detti programmi [4951].

I dati presenti in letteratura mostrano come vi sia una tendenza alla recidiva della stenosi dopo trattamento mediante PTA.

Le varie casistiche identificano una pervietà della FAV tra il 50-60% ad un anno dal trattamento. L’ipotesi eziopatogenetica è identificata nella iperplasia reattiva dei miociti della parete del vaso sottoposto a stretching durante la procedura con conseguente reazione sclerotico-cicatriziale e riformazione della stenosi [52]. A tal ragione vengono usati con maggiore frequenza balloon medicati (DCB), ricoperti da farmaci antiproliferativi come il Placitaxel, che rilasciati nella parete vascolare durante la dilatazione della stenosi vanno ad inibire la proliferazione reattiva. Grazie all’utilizzo di tali dispositivi si è ottenuta una pervietà primaria maggiore rispetto ai ballon convenzionali: fino all’80% a 6 mesi [53].

 

Conclusioni

La FAV va considerata l’accesso vascolare di prima scelta, la sua sopravvivenza deve essere garantita con l’utilizzo di tutti i mezzi a nostra disposizione: osservazione clinica e strumentale, monitoraggio intradialitico, accuratezza nella venopuntura. Le stenosi rappresentano la causa più frequente di malfunzionamento della FAV, se precocemente riconosciute e trattate l’accesso vascolare “sopravvive”. È nostra esperienza che la restenosi di una FAV, sottoposta ad angioplastica, è una evenienza possibile, ma proprio la sorveglianza di queste FAV a rischio ci consente di reintervenire concedendo all’accesso vascolare un ulteriore periodo di utilizzo.

 

Bibliografia

  1. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Update 2006. Am J Kidney Dis 2006; 48 (suppl 1): 5248-73. https://doi.org/10.1053/j.ajkd.2006.03.010.
  2. Beathard GA, Arnold P, Jackson J, Litchfield T; Physician Operators Forum of RMS Lifeline. Aggressive treatment of early fistula failure. Kidney Int. 2003 Oct;64(4):1487-94. https://doi.org/1046/j.1523-1755.2003.00210.x.
  3. Marcello Napoli, Raffaele Prudenzano, Francesco Russo, Assunta Lucia Antonaci, Maria Aprile, Erasmo Buongiorno. Juxta-anastomotic stenosis of native arteriovenous fistulas: surgical treatment versus percutaneous transluminal angioplasty. J Vasc Access. 2010 Oct-Dec;11(4):346-51. https://doi.org/5301/jva.2010.5968.
  4. Roy-Chaudhury P. PTA versus surgery for juxta-anastomotic stenosis. Acta of 5th Annual Controversies in Dialisys Access. Washington, DC USA October 2008.  J  Vasc Access 2008; 9: 185.
  5. Clark Timothy W I, Hirsch David A, Jindal Kailash J, Veugelers Paul J, LeBlanc John. Outcome and prognostic factors of restenosis after percutaneous treatment of native hemodialysis fistulas. J Vasc Interv Radiol. 2002 Jan;13(1):51-9. https://doi.org/1016/s1051-0443(07)60009-8.
  6. Aruny JE, Lewis CA, Cardella JF, Cole PE et al. Quality improvement guidelines for percutaneous management of the thrombosed or dysfunctional dialysis access. Standards of Practice Committee of the Society of Cardiovascular & Interventional Radiology. J Vasc Interv Radiol. 1999 Apr;10(4):491-8. https://doi.org/1016/s1051-0443(99)70071-0.
  7. National Kidney Foundation: K/DOQI Clinical practice guidelines for vascular access 2006 Am J Kidney Dis . 2006 Jul;48 Suppl 1:S176-247. https://doi.org/10.1053/j.ajkd.2006.04.029.
  8. Tessitore Nicola, Mansueto Giancarlo, et al. Endovascular versus surgical preemptive repair of forearm arteriovenous fistula juxta-anastomotic stenosis: analysis of data collected prospectively from 1999 to 2004. Clin J Am Soc Nephrol. 2006 May;1(3):448-54. https://doi.org/2215/CJN.01351005.
  9. Dacian-Călin Tirinescu et Al. Ultrasonographic diagnosis of stenosis of native arteriovenous fistulas in haemodialysis patients. Med Ultrason. 2016 Sep;18(3):332-8. https://doi.org/11152/mu.2013.2066.183.fis.
  10. Rajan DK, Bunston S, Misra S, Pinto R, Lok CE. Dysfunctional autogenous hemodialysis fistulas: outcomes after angioplasty–are there clinical predictors of patency? Radiology. 2004 Aug;232(2):508-15. https://doi.org/1148/radiol.2322030714.
  11. Clark TW, Hirsch DA, Jindal KJ, Veugelers PJ, LeBlanc J. Outcome and prognostic factors of restenosis after percutaneous treatment of native hemodialysis fistulas. J Vasc Interv Radiol. 2002 Jan;13(1):51-9. https://doi.org/10.1016/s1051-0443(07)60009-8.
  12. Giovanni Lipari1, Nicola Tessitore, Albino Poli, Valeria Bedogna, Antonella Impedovo, Antonio Lupo, Elda Baggio. Outcomes of surgical revision of stenosed and thrombosed forearm arteriovenous fistulae for haemodialysis. Nephrol Dial Transplant 2007 Sep;22(9):2605-12. https://doi.org/10.1093/ndt/gfm239.
  1. Allon M, Robbin ML. Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. Kidney Int. 2002 Oct;62(4):1109-24. https://doi.org/10.1111/j.1523-1755.2002.kid551.x.
  2. Mario Meola, Antonio Marciello, Gianfranco Di Salle , Ilaria Petrucci. Ultrasound evaluation of access complications: Thrombosis, aneurysms, pseudoaneurysms and infections. J Vasc Access. 2021 Nov;22(1_suppl):71-83. https://doi.org/10.1177/11297298211018062.
  3. Chang CJ, Ko PJ, Hsu LA, et al. Highly increased cell proliferation activity in the restenotichemodialysis vascular access after percutaneous transluminal angioplasty: implication in prevention of restenosis. Am J Kidney Dis 2004;43:74–84. https://doi.org/10.1053/j.ajkd.2003.09.015.
  4. Lawrence Vascular Access for Hemodialysis in adult. Chap 4.pp 49-78. of dialysis therapy. Nissenson AR, Fine RN Eds. 4th edition: Saunders-Elsevier Philadelphia, 2008
  5. Asif A, Roy-Chaudhury P, Beathard GA Early arteriovenous fistula failure: a logical proposal for when and how to intervene. Clin J Am Soc Nephrol. 2006 Mar;1(2):332-9. https://doi.org/10.2215/CJN.00850805.
  6. Moreno PR, Fallon JT, Murcia AM, Leon MN, Simosa H, Fuster V, Palacios. Tissue characteristics of restenosis after percutaneous transluminal coronary angioplasty in diabetic patients.J Am Coll Cardiol. 1999 Oct;34(4):1045-9. https://doi.org/10.1016/s0735-1097(99)00338-1.
  7. Megan Nguyen, Finosh G Thankam, Devendra K Agrawal. Sterile inflammation in the pathogenesis of maturation failure of arteriovenous fistula. J Mol Med (Berl). 2021 Jun;99(6):729-741. https://doi.org/10.1007/s00109-021-02056-4.
  8. Jinjing Zhao, Frances L Jourd’heuil, et al. Dual Function for Mature Vascular Smooth Muscle Cells During Arteriovenous Fistula Remodeling. J Am Heart Assoc. 2017 Mar 30;6(4):e004891. https://doi.org/10.1161/JAHA.116.004891.
  9. Chun-Yu Wong, Margreet R de Vries, Yang Wang, Joost R van der Vorst, et al. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg. 2014 Jan;59(1):192-201.e1. https://doi.org/1016/j.jvs.2013.02.242.
  10. Honda HM, T Hsiai,  Wortham C M, M Chen, H Lin, M Navab, L L Demer. A complex flow pattern of low shear stress and flow reversal promotes monocyte binding to endothelial cells. Atherosclerosis 2001 Oct;158(2):385-90. https://doi.org/10.1016/s0021-9150(01)00462-2.
  11. Dardik A, Leiling Chen, Frattini J, et al. Differential effects of orbital and laminar shear stress on endothelial cells. Comparative Study. J Vasc Surg 2005 May;41(5):869-80. https://doi.org/10.1016/j.jvs.2005.01.020.
  12. Gambillara V, Montorzi G, Christelle Haziza-Pigeon, Stergiopulos N, Silacci P. Arterial wall response to ex vivo exposure to oscillatory shear stress. J Vasc Re Nov-Dec 2005;42(6):535-44. https://doi.org/10.1159/000088343.
  13. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephro. 2006 Apr;17(4):1112-27. https://doi.org/10.1681/ASN.2005050615.
  14. Alfred K Cheung, Christi Terry, Li Li. Pathogenesis and local drug delivery for prevention of vascular access stenosisJ Ren Nutr. 2008 Jan;18(1):140-5. https://doi.org/1053/j.jrn.2007.10.028.
  15. Li G, Chen SJ, Oparil S, et al. Direct in vivo evidence demonstrating neointimal migration ofadventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 2000;101:1362–1365. https://doi.org/10.1161/01.cir.101.12.1362.
  16. Li Li 1, Christi M Terry, Donald K Blumenthal, Tadashi Kuji, Takahisa Masaki, Bonnie C H Kwan, Ilya Zhuplatov, John K Leypoldt, Alfred K CheungCellular and morphological changes during neointimal hyperplasia development in a porcine arteriovenous graft modelNephrol Dial Transplant. 2007 Nov;22(11):3139-46. https://doi.org/1093/ndt/gfm415.
  17. Napoli M. Complicanze steno-trombotiche delle AVF. Eco color doppler & accessi vascolari per emodialisi Cap 4 pp 67-84. Wichtig Editore 2010.
  18. Kim SJ, Masaki T, Leypoldt JK, et al. Arterial and venous smooth-muscle cells differ in their responsesto antiproliferative drugs. J Lab Clin Med 2004;144:156–162. https://doi.org/10.1016/j.lab.2004.06.002.
  19. Kim SJ, Masaki T, Rowley R, et al. Different responses by cultured aortic and venous smooth musclecells to gamma radiation. Kidney Int 2005;68:371–377. https://doi.org/10.1111/j.1523-1755.2005.00407.x.
  20. Shenoy S. Pro/con juxta-anastomotic stenosis… Avoidable. Selected short paper from “Controversies in dialysis access”. San Francisco USA November 2006. J Vasc Access 2006; 7:167.
  21. Meola M. Ecografia clinica in nefrologia. Fistola arterovenosa, p 1299. Meola M. Eureka editore 2015.
  22. RobbinM, Chamberlain N, et al. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology. 2002 Oct;225(1):59-64. https://doi.org/10.1148/radiol.2251011367.
  23. Lomonte C, Meola M, Petrucci I, Casucci F, Basile C. The Key Role of Color Doppler Ultrasound in the Work-up of Hemodialysis Vascular Access. Semin Dial. 2015; 28: 211-5. https://doi.org/10.1111/sdi.12312.
  24. Ferring M, Henderson J, Wilmink A, Smith S. Vascular ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence. Nephrol Dial Transplant. 2008 Jun;23(6):1809-15. https://doi.org/10.1093/ndt/gfn001.
  25. Silva Jr, Hobson MB, Pappas PJ, et al. A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation. J Vasc Surg. 1998 Feb;27(2):302-7; discussion 307-8. https://doi.org/10.1016/s0741-5214(98)70360-x.
  26. McCarley P, Wingard RL, et al. Vascular access blood flow monitoring reduces access morbidity and costs. Kidney Int . 2001 Sep;60(3):1164-72. https://doi.org/10.1046/j.1523-1755.2001.0600031164.x.
  27. Sands J, Miranda C. Prolongation of hemodialysis access survival with elective revision. J Clin Nephrol. 1995 Nov;44(5):329-33.
  28. Wiese P, Nonnast-Daniel B. Colour Doppler ultrasound in dialysis access. Nephrol Dial Transplant. 2004 Aug;19(8):1956-63. https://doi.org/1093/ndt/gfh244.
  29. Richard E. et al. Predictive measures of vascular access thrombosis: A prospective study. Kidney International Volume 52, Issue 6, December 1997, Pages 1656-1662. https://doi.org/10.1038/ki.1997.499
  30. Lauvao LS, Ihnat DM, et al. Vein diameter is the major predictor of fistula maturation. J Vasc Surg. 2009 Jun;49(6):1499-504. https://doi.org/1016/j.jvs.2009.02.018.
  31. RobbinML, Oser RF, et al. Hemodialysis access graft stenosis: US detection. Radiology. 1998 Sep;208(3):655-61. https://doi.org/10.1148/radiology.208.3.9722842.
  32. BackMR, Maynard M, Winkler A, et al. Expected flow parameters within hemodialysis access and selection for remedial intervention of nonmaturing conduits. Vasc Endovascular Surg. Apr-May 2008;42(2):150-8. https://doi.org/10.1177/1538574407312648.
  33. Dumars MC, Thompson WE, et al. Management of suspected hemodialysis graft dysfunction: usefulness of diagnostic US. Radiology. 2002 Jan;222(1):103-7. https://doi.org/10.1148/radiol.2221991095.
  34. Malovrh Native arteriovenous fistula: preoperative evaluation. Am J Kidney Dis 2002 Jun;39(6):1218-25. https://doi.org/10.1053/ajkd.2002.33394.
  35. Tordoir JH, de Bruin HG, Hoeneveld H. Duplex ultrasound scanning in the assessment of arteriovenous fistulas created for hemodialysis access: comparison with digital subtraction angiography. J Vasc Surg. 1989 Aug;10(2):122-8. https://doi.org/10.1067/mva.1989.0100122.
  36. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Update 2006. Am J Kidney Dis 2006; 48 : 1-322.
  37. TonelliM, Jindal Screening for subclinical stenosis in native vessel arteriovenous fistulae. J Am Soc Nephro. 2001 Aug;12(8):1729-1733. https://doi.org/10.1681/ASN.V1281729.
  38. Tonelli M, James M,Wiebe N. Ultrasound monitoring to detect access stenosis in hemodialysis patients: a systematic review. Am J Kidney Dis. 2008 Apr;51(4):630-40. https://doi.org/1053/j.ajkd.2007.11.025.
  39. Sands JJ, Ferrell LM, Perry MA. The role of color flow Doppler ultrasound in dialysis access. Semin Nephrol. 2002 May;22(3):195-201. https://doi.org/1053/snep.2002.31705.
  40. WouterJukema J, Verschuren JJW. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nature Reviews Cardiology volume 9, pages5362 (2012).
  41. Robert A. Lookstein et Al. Drug-Coated Balloons for Dysfunctional Dialysis ArteriovenousFistulas. NEJM 20 Aug 2020.