Effects of Finerenone on Proteinuria and Progression of Chronic Kidney Disease

Abstract

A growing body of experimental and clinical evidence confirms that aldosterone contributes, independently from its classical homeostatic effects, to the pathogenesis and progression of chronic kidney disease (CKD).

In fact, the activation of the mineralocorticoid receptor (MR) in the kidney, present at the podocyte, mesangial, endothelial as well as at the tubulointerstitial levels, has been linked to podocyte damage and consequent apoptosis, proliferation of mesangial cells, inflammation of the tubulointerstitial compartment and, more generally, to the final outcome of interstitial fibrosis and glomerular sclerosis.

Therefore, blockade of the MR may represent an effective treatment of CKD.

Today, within the class of mineralocorticoid receptor antagonists (MRA), several molecules are available, with different pharmacokinetic and pharmacodynamic characteristics. In this brief review we will focus on the characteristics of these molecules and in particular on Finerenone, a new generation, non-steroidal MRA, characterized by minimal side effects and high pharmacological efficacy.

Keywords: mineralcorticoid receptor antagonists, chronic kidney disease, hyperkalemia, cardiovascular risk, finerenone

Sorry, this entry is only available in Italian.

Introduzione

Per molto tempo l’azione dell’aldosterone è stata ritenuta essere limitata al rene al fine di garantire il mantenimento dell’omeostasi del volume extracellulare e degli elettroliti.

Recentemente, però, tale approccio è stato rivisto alla luce della definizione di molti effetti biologici pleiotropici dell’aldosterone, che si aggiungono ai classici effetti esercitati sulle cellule tubulari renali.

Nel rene il recettore mineralcorticoide (MR) è infatti espresso praticamente in tutte le linee cellulari residenti: cellule della linea monocito-macrofagica, endoteliali, muscolari liscie, mesangiali, podocitarie e tubulari. La sua attivazione è stata correlata in molti modelli sperimentali al danno podocitario, alla proliferazione mesangiale, alla sclerosi glomerulare e alla fibrosi interstiziale. Gli stessi modelli hanno dimostrato che il blocco del MR induce una remissione del danno tissutale [1].

Pertanto, il riconoscimento dei molteplici effetti dell’aldosterone nella modulazione dell’emodinamica intrarenale, dell’infiammazione, della fibrosi, della funzione endoteliale e dello stress ossidativo si pone a supporto del crescente utilizzo dei farmaci bloccanti del recettore mineralcorticoide (MRA) nella pratica clinica nefrologica [2].

L’aldosterone è divenuto un bersaglio terapeutico nella CKD dal 2001, quando Chrysostomou et al. [3] dimostrarono in una coorte di pazienti affetti da CKD proteinurica che l’aggiunta dello spironolattone alla terapia con ACE inibitori riduceva la proteinuria senza effetti negativi sulla funzione renale. Cinque anni dopo, nel 2006, Epstein et al. [4] confermarono tali risultati per un altro MRA,  Eplerenone. Complessivamente nella prima decade del 2000 stati molti gli studi che, su coorti di dimensioni ridotte, hanno dimostrato in vari studi la  efficacia efficacia dei MRA in termini di riduzione della proteinuria e di stabilizzazione del GFR [5].

Bianchi et al. [6] dimostrarono in una coorte di pazienti con CKD non diabetica che l’effetto antiproteinurico dello spironolattone, già evidente dopo due settimane, era indipendente dai livelli basali di aldosterone.

Nel 2005 Sato et al. [7] confermarono l’effetto dello spironolattone nella CKD diabetica, dimostrando che l’impatto sulla proteinuria era maggiore nei pazienti che mostravano il fenomeno dell’Aldosterone Breakthrough.

“Aldosterone Breakthrough” è un termine coniato per definire un fenomeno che avviene nel 30-40% dei pazienti che avviano un trattamento con RAS inibitori, nei quali dopo un periodo di riduzione dei livelli sierici di aldosterone, si osserva un ritorno di tali livelli ai valori pre-trattamento; fenomeno che si accompagna ad una prognosi peggiore rispetto ai pazienti che mostrano una soppressione continua di questo ormone [8]. Sulla base di tale evidenza venne quindi riconosciuto un razionale fisiopatologico che potesse spiegare i benefici del blocco del recettore mineralcorticoide [9].

Dal punto di vista fisiopatologico, l’impiego degli MRA è stato poi giustificato da una serie di osservazioni che nel tempo hanno rivelato la notevole complessità del signalling mineralcorticoide.

Studi di biologia molecolare focalizzati sul MR hanno evidenziato infatti che quest’ultimo può essere attivato con un meccanismo aldosterone indipendente mediato dal RAC1, una proteina G nota nella patologia renale per essere implicata nei meccanismi di danno podocitario in risposta a stimoli quali il sovraccarico di sodio e glucosio, l’angiotensina II e multiple citochine [10, 11].

Sulla base delle evidenze cliniche e precliniche il blocco del MR guadagnava quindi un’attenzione crescente, e non soltanto in ambito nefrologico: infatti, i primi studi clinici randomizzati sugli MRA, il RALES con lo spironolattone, l’EPHESUS e l’EMPHASIS-HF con eplerenone [12, 13], avevano dimostrato che tali farmaci conferivano una protezione dal rischio di morte nei pazienti affetti da scompenso cardiaco, rendendo quindi gli MRA una classe di farmaci di straordinaria importanza nella terapia dello scompenso cardiaco.

Tuttavia, l’uso routinario degli MRA steroidei è stato limitato da ad una serie di rilevanti effetti collaterali quali l’iperpotassiemia, la ginecomastia e l’impotenza.

Particolarmente rilevante in ambito nefrologico il rischio di iperpotassiemia associato all’uso di MRA, raddoppiato nei pazienti in CKD non in dialisi ed aumentato di ben tre volte nei pazienti in trattamento dialitico rispetto a quanto osservato nei pazienti con normale funzione renale [14].

Questo ha spinto la ricerca allo sviluppo di MRA potenti ma più selettivi. Le nuove tecnologie di biologia molecolare hanno reso possibile lo sviluppo di una nuova classe di MRA, gli antagonisti del MR non steroidei. Le due molecole appartenenti a questa nuova classe di farmaci sono l’esaxerenone, il cui commercio è limitato al Giappone per la cura dell’ipertensione arteriosa, ed il finerenone, sul quale si è concentrata la ricerca in ambito nefrologico.

 

Peculiarità del finerenone

Eplerenone e spironolattone sono  MRA steroidei. Il finerenone è un MRA non steroideo, con una breve emivita e senza metaboliti attivi, mentre lo Spironolattone è profarmaco di molti metaboliti attivi che possono essere individuati nelle urine fino a 4 settimane dopo la sospensione del trattamento ed essere attivi farmacologicamente fino a circa 2 settimane dopo la sospensione. Il  finerenone si distribuisce equamente tra cuore e rene, a differenza di eplerenone e spironolattone che hanno una maggiore concentrazione a livello del rene con un conseguente  maggiore effetto sul bilancio di sodio e potassio.

Ci sono delle differenze anche nella farmacodinamica che avvantaggiano il finerenone: la IC50, cioè la concentrazione di farmaco richiesta per inibire del 50% l’attivazione del recettore MR, è pari a 17.8 per finerenone, ed è più bassa sia rispetto a spironolattone che eplerenone . D’altra parte, lo spironolattone ha una IC50 per il legame con il recettore degli androgeni (77 vs > 10.000 di finerenone) e i glucocorticoidi (2410 vs >10.000 di finerenone). Anche la concentrazione di farmaco richiesta per attivare il 50% del recettore del progesterone è nettamente minore per lo spironolattone (740 vs >10.000 di finerenone) [15, 16].

Inoltre, il finerenone inibisce il reclutamento di cofattori ai vari domini del MR (che in genere dipende dai livelli di aldosterone) ed in questo modo riduce l’espressione di geni pro-infiammatori e pro-fibrotici. Tale effetto è assente per quanto riguarda lo spironolattone, e nettamente inferiore per quanto riguarda l’eplerenone. Pertanto, la cascata di segnali a valle del recettore evocata da MRA steroidei e non steroidei è differente e questo giustifica la presenza (o assenza per finerenone) di effetti colleterali di tipo endocrino [17].

 

Effetti su proteinuria e protezione renale

I due principali trial compiuti utilizzando finerenone sono stati entrambi condotti in pazienti affetti da Diabete Mellito di tipo 2 e CKD.

Nel trial di fase 3 FIDELIO [18] sono stati arruolati 5734 pazienti randomizzati 1:1 a finerenone o placebo, follow-up 31 mesi. I criteri di inclusione erano: la presenza di CKD con eGFR 25-60 mL/min, UACR 30-300mg/g e retinopatia diabetica; oppure CKD con eGFR 25-75 mL/min e UACR>300 mg/g.

Il trial FIGARO [19] presentava un disegno simile con follow up di 41 mesi. I criteri di inclusione erano eGFR 25-90 mL/min e UACR 30-300 mg/g, oppure eGFR>60 mL/min e UACR 300-5000 mg/g).

Entrambi gli studi avevano gli stessi endpoint: la riduzione degli eventi per un composito renale di morte per cause renali, decremento sostenuto del GFR di almeno il 40% rispetto al basale, raggiungimento dell’ESRD; la riduzione degli eventi per un composito cardiovascolare di morte cardiovascolare, infarto miocardico non fatale, stroke e ospedalizzazione per scompenso cardiaco. Nel FIDELIO l’endpoint renale era il primario ed il cardiovascolare il secondario, nel FIGARO il contrario.

Dal punto di vista dell’endpoint primario renale nel FIDELIO il Finerenone ha raggiunto l’endpoint, con un HR di 0.82 (CI 0.75-0.93); nel FIGARO si è osservata una riduzione degli eventi renali sovrapponibile, ma non statisticamente significativa, con un HR di 0.87 (CI 0.76-1.01). In entrambi gli studi è stato raggiunto l’endpoint cardiovascolare.

I dati dei due trial sono stati successivamente aggregati in una pooled analysis nell’ambito del FIDELITY Trial Programme Analysis [20] a formare una eterogenea popolazione di 13026 pazienti con diabete mellito di tipo 2 e CKD in trattamento massimale con RAS inibitori: il 40% dei pazienti era in stadio 1-2 di CKD, il 60% dei pazienti in stadio 3-4; il 67% dei pazienti aveva una UACR maggiore di 300 mg/g, il 21.3% una UACR minore 300 mg/g, l’1.7% dei pazienti aveva una UACR < 30 mg/g.

È stato definito un outcome composito di un decremento sostenuto per 4 settimane del GFR ≥ del 57%, arrivo alla insufficienza renale terminale e morte per cause renali.

I risultati hanno dimostrato che nel gruppo trattato con Finerenone l’outcome composito è stato raggiunto nel 5.5% dei casi mentre nel gruppo placebo è stato raggiunto nel 7.1% dei casi. Tale differenza corrisponde ad una riduzione dell’HR del 23% per l’outcome composito (HR 0.77, CI 0.67-0.88).

Valutando i singoli eventi, la riduzione dell’HR per il peggioramento funzionale renale è stata del 30% (HR 0.70, CI 0.60-0.83); la riduzione dell’HR per l’arrivo alla insufficienza renale terminale è stata del 20% (HR 0.80, CI 0.64-0.99); l’incidenza della morte per cause renali è stata talmente bassa in entrambi i gruppi da precludere ogni tipo di analisi (2 pazienti nel gruppo trattato, 4 pazienti nel gruppo placebo).

Da questi risultati emerge che l’NNT stimato è 20, ossia che per prevenire un evento occorre trattare 60 pazienti con DM2 e malattia renale cronica negli stadi da 1 a 4, proteinurica o non proteinurica, per 3 anni.

Analizzando l’impatto del farmaco sulla proteinuria, nel FIDELITY il Finerenone ha dimostrato un marcato effetto antiproteinurico indipendente dall’entità della proteinuria al baseline: nei microalbuminurici la riduzione dell’UACR è stata del 33% nei pazienti trattati contro un aumento del 3% nel gruppo placebo, mentre nei macroalbuminurici la riduzione della proteinuria è stata del 39% nei pazienti trattati contro una riduzione del 12% nel gruppo placebo.

Tuttavia, a fronte di un effetto antiproteinurico sovrapponibile, l’analisi per sottogruppi mostra chiaramente come i benefici del finerenone siano concentrati sulla popolazione macroalbuminurica: in questi pazienti l’HR per l’outcome composito è di 0.75 (CI 0.65-0.87), mentre nei pazienti microalbuminurici il risultato è inconsistente, con un HR di 0.94 e CI compreso tra 0.60-1.47.

Tale differenza può essere imputata ad un’incidenza dell’outcome renale notevolmente ridotta nei pazienti microalbuminurici (78 eventi su 4099 pazienti) rispetto ai pazienti macroalbuminurici (745 eventi su 8692 pazienti).

Per spiegare questa differenza si possono analizzare i dati relativi agli eventi cardiovascolari, i quali hanno mostrato una distribuzione indipendente dall’UACR. Allo stesso modo il beneficio del trattamento sull’outcome cardiovascolari si è mantenuto a prescindere dall’UACR.

Mentre nei pazienti macroalbuminurici l’incidenza degli eventi cardiovascolari e di quelli renali è nello stesso ordine di grandezza (su 8692 pazienti si sono registrati 1185 eventi cardiovascolari e 745 eventi renali), su 4099 pazienti microalbuminurici si sono registrati 552 eventi cardiovascolari ma solo 78 eventi renali.

Premesso che i trial in esame hanno dimostrato che sia la malattia cardiovascolare che la malattia renale nel paziente diabetico siano allo stesso modo sostenute dall’attivazione del recettore mineralcorticoide, il beneficio del finerenone nei pazienti microalbuminurici potrebbe essere postulato considerando la riduzione degli eventi cardiovascolari.

Si può dunque ipotizzare che nel paziente microalbuminurico, per definizione a rischio minore di progressione della malattia renale, siano necessari tempi di osservazione più lunghi per provare un beneficio renale, e quindi necessario un follow-up maggiore per osservare un effetto significativo [21].

Un’attenta analisi dei due studi si è concentrata anche sull’iperkaliemia, effetto collaterale che nella pratica clinica ha costituito da sempre de facto la principale limitazione all’uso degli MRA. Nei due trial sono stati esclusi tutti i pazienti che, sotto trattamento massimale con RAS inibitori, avevano una kaliemia pari o superiore a 4.8 mmol/L. Nel gruppo trattato l’incidenza di iperkaliemia necessitante la sospensione del trattamento è stata del 2.4% contro lo 0.8% registrato nel gruppo placebo; l’incidenza di iperkaliemia necessitante ospedalizzazione nel gruppo trattato è stata dell’1.4% contro lo 0.3% registrato nel gruppo placebo. Nessun evento fatale attribuibile ad iperkaliemia è stato osservato nei due studi.

 

Conclusioni

Dati gli ottimi risultati ottenuti nell’ambito della malattia renale diabetica, è lecito chiedersi se l’effetto nefroprotettivo possa essere ipotizzabile anche nella malattia renale non diabetica.

A questa domanda risponderà il trial FIND-CKD [22], la cui conclusione è prevista nel 2026 il quale è stato progettato incentrando il disegno sulla nefroprotezione: l’outcome primitivo è infatti costituito dalla perdita di GFR.

Nello studio sono stati arruolati 1584 pazienti affetti da malattia renale cronica non diabetica con eGFR tra 25 e 90 mL/min e UACR tra 200 e 3500 mg/g, con esclusione dei pazienti affetti da malattia renale immunomediata o che abbiano ricevuto una terapia immunosoppressiva ed i pazienti affetti da rene policistico autosomico dominante. Il follow-up è compreso tra un minimo di 32 ed un massimo di 49 mesi. Tra gli endpoint è degno di nota un composito cardiorenale di decremento sostenuto del GFR ≥ 57%, ospedalizzazione per scompenso cardiaco e morte cardiovascolare.

Nella tabella 1 sono elencati i principali trial in corso sul finerenone. I risultati di tali trial, se favorevoli, probabilmente apriranno la strada per un impiego routinario del finerenone anche nel paziente con CKD non diabetico.

TRIAL CRITERI DI INCLUSIONE ENDPOINTS OBIETTIVI
FINEROD 

Osservazionale

In reclutamento (2500 pz), 2024

Diabete mellito di tipo 2

Malattia renale cronica stadio 2-4

UACR > 30 mg/g

Già in trattamento con Finerenone

Descrittivo Osservare una coorte di pazienti in trattamento con Finerenone
CONFIDENCE

RCT multicentrico Fase 2

Attivo (807 pz) 2025

Diabete mellito di tipo 2 con Hb glicata < 11%

Malattia renale cronica con eGFR 20-90 mL/min o 30-90 mL/min

UACR tra 100 e 5000 mg/g

Primari:

Variazione dell’UACR

Secondari:

Variazione del GFR

Incidenza di danno renale acuto

Incidenza di Iperpotasiemia

Incidenza di  eventi renali avversi acuti

Valutare il profilo di rischio e di efficacia del trattamento combinato Finerenone+Empagliflozin nel diabetico tipo 2 con malattia renale cronica
EFFEKTOR

RCT multicentrico Fase 2

In reclutamento (150), 2025

Riceventi di trapianto renale

eGFR> 25mL/min

UACR > 30 mg/g

Primari:

Reclutamento di un numero adeguato di pazienti

Secondari:

Sospensione del farmaco

Incidenza di eventi avversi

Incidenza di iperpotassiemia

Incidenza di eventi renali avversi acuti

Ospedalizzazione per scompenso cardiaco

% istologica di fibrosi interstiziale ed atrofia tubulare

Variazione dei parametri valutati con risonanza magnetica funzionale renale

Valutare il profilo di rischio e di efficacia del Finerenone nel paziente trapiantato con albuminuria, valutazione istologica dell’effetto del Finerenone
REDEFINE-HF

RCT multicentrico Fase 3

In reclutamento (5200 pz), 2026

Scompenso cardiaco a frazione di eiezione lievemente ridotta o preservata

NTproBNP>1000, BNP>250; NTproBNP>2000, BNP>500 se presente fibrillazione atriale

eGFR>25 mL/min

Primari:

Composito di ospedalizzazione o visita urgente per scompenso cardiaco, morte da causa cardiovascolare

Numero di eventi avversi

Numero di eventi avversi richiedenti sospensione del trattamento

Secondari:

Tempo di insorgenza degli outcome

Numero totale di HF

Valutare il profilo di rischio e di efficacia del Finerenone nello scompenso cardiaco a frazione d’eiezione lievemente ridotta o conservata
FIND-CKD

RCT multicentrico Fase 3

Attivo (1584 pz), 2026

Malattia renale cronica stadio 2-4 non diabetica, non immunomediata

eGFR 25-90 mL/min

UACR 200-3500

Trattamento massimale con RAS inibitori

Primari:

Variazione del GFR a 32 mesi

Secondari:

Composito di arrivo all’ESRD, perdita di GFR del 57%, scompenso cardiaco e morte cardiovascolare

Valutare il profilo di rischio e di efficacia del Finerenone nella malattia renale cronica non diabetica.
FINE-REAL

Osservazionale

In reclutamento (5500 pz)

2027

Diabete mellito di tipo 2

Malattia renale cronica

Già in trattamento con Finerenone

Descrittivo Osservare una coorte di pazienti in trattamento con Finerenone
Tabella 1. Principali Ongoing Trials sul Finerenone
Figura 1. In presenza di aldosterone, il MR viene attivato e recluta dei cofattori trascrizionali che permettono l’assemblaggio del complesso trascrizionale e la trascrizione dei geni bersaglio. In presenza di Finerenone, la funzione recettoriale del MR e la capacità di reclutare cofattori sono inibite. I geni bersaglio non sono trascritti. MR, mineralcorticoid reeptor; ASC2, activating signal cointegrator 2; NCoR, nuclear receptor corepressor 1; TIF1α: transcriptional intermediary factor α; TRAP220, mediator of RNA polymerase II transcription subunit 1

 

Bibliografia

  1. Epstein M. Aldosterone and Mineralocorticoid Receptor Signaling as Determinants of Cardiovascular and Renal Injury: From Hans Selye to the Present. Am J Nephrol. 2021;52(3):209-216. doi: 10.1159/000515622. Epub 2021 Apr 15. PMID: 33857953.
  2. Epstein M, Kovesdy CP, Clase CM, Sood MM, Pecoits-Filho R. Aldosterone, Mineralocorticoid Receptor Activation, and CKD: A Review of Evolving Treatment Paradigms. Am J Kidney Dis. 2022 Nov;80(5):658-666. doi: 10.1053/j.ajkd.2022.04.016. Epub 2022 Sep 1. PMID: 36057467.
  3. Chrysostomou A, Becker G. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med. 2001 Sep 20;345(12):925-6. doi: 10.1056/NEJM200109203451215. PMID: 11565535.
  4. Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, Patni R, Beckerman B. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006 Sep;1(5):940-51. doi: 10.2215/CJN.00240106. Epub 2006 Jul 19. PMID: 17699311.
  5. Bertocchio JP, Warnock DG, Jaisser F. Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease. Kidney Int. 2011 May;79(10):1051-60. doi: 10.1038/ki.2011.48. Epub 2011 Mar 16. PMID: 21412221.
  6. Bianchi S, Bigazzi R, Campese VM. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 2006 Dec;70(12):2116-23. doi: 10.1038/sj.ki.5001854. Epub 2006 Oct 11. PMID: 17035949.
  7. Sato A, Hayashi K, Saruta T. Antiproteinuric effects of mineralocorticoid receptor blockade in patients with chronic renal disease. Am J Hypertens. 2005 Jan;18(1):44-9. doi: 10.1016/j.amjhyper.2004.06.029. PMID: 15691616.
  8. Schrier RW. Aldosterone ‘escape’ vs ‘breakthrough’. Nat Rev Nephrol. 2010 Feb;6(2):61. doi: 10.1038/nrneph.2009.228. PMID: 20111044.
  9. Jain G, Campbell RC, Warnock DG. Mineralocorticoid receptor blockers and chronic kidney disease. Clin J Am Soc Nephrol. 2009 Oct;4(10):1685-91. doi: 10.2215/CJN.01340209. Epub 2009 Sep 3. PMID: 19729430.
  10. Nagase M, Fujita T. Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease. Nat Rev Nephrol. 2013 Feb;9(2):86-98. doi: 10.1038/nrneph.2012.282. Epub 2013 Jan 8. PMID: 23296296.
  11. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y, Fujita T. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008 Dec;14(12):1370-6. doi: 10.1038/nm.1879. Epub 2008 Nov 23. PMID: 19029984.
  12. Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). Am J Cardiol. 1996 Oct 15;78(8):902-7. doi: 10.1016/s0002-9149(96)00465-1. PMID: 8888663.
  13. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M; Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003 Apr 3;348(14):1309-21. doi: 10.1056/NEJMoa030207. Epub 2003 Mar 31. Erratum in: N Engl J Med. 2003 May 29;348(22):2271. PMID: 12668699.
  14. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B; EMPHASIS-HF Study Group. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011 Jan 6;364(1):11-21. doi: 10.1056/NEJMoa1009492. Epub 2010 Nov 14. PMID: 21073363.
  15. Trevisan M, de Deco P, Xu H, Evans M, Lindholm B, Bellocco R, Barany P, Jernberg T, Lund LH, Carrero JJ. Incidence, predictors and clinical management of hyperkalaemia in new users of mineralocorticoid receptor antagonists. Eur J Heart Fail. 2018 Aug;20(8):1217-1226. doi: 10.1002/ejhf.1199. Epub 2018 Apr 18. Erratum in: Eur J Heart Fail. 2019 Apr;21(4):540. doi: 10.1002/ejhf.1367. PMID: 29667759; PMCID: PMC6607478.
  16. Agarwal R, Kolkhof P, Bakris G, Bauersachs J, Haller H, Wada T, Zannad F. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021 Jan 7;42(2):152-161. doi: 10.1093/eurheartj/ehaa736. PMID: 33099609; PMCID: PMC7813624.
  17. Grune J, Beyhoff N, Smeir E, Chudek R, Blumrich A, Ban Z, Brix S, Betz IR, Schupp M, Foryst-Ludwig A, Klopfleisch R, Stawowy P, Houtman R, Kolkhof P, Kintscher U. Selective Mineralocorticoid Receptor Cofactor Modulation as Molecular Basis for Finerenone’s Antifibrotic Activity. Hypertension. 2018 Apr;71(4):599-608. doi: 10.1161/HYPERTENSIONAHA.117.10360. Epub 2018 Feb 5. PMID: 29437893.
  18. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G; FIDELIO-DKD Investigators. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. 2020 Dec 3;383(23):2219-2229. doi: 10.1056/NEJMoa2025845. Epub 2020 Oct 23. PMID: 33264825.
  19. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, Joseph A, Kolkhof P, Nowack C, Schloemer P, Ruilope LM; FIGARO-DKD Investigators. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med. 2021 Dec 9;385(24):2252-2263. doi: 10.1056/NEJMoa2110956. Epub 2021 Aug 28. PMID: 34449181.
  20. Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, Kolkhof P, Nowack C, Gebel M, Ruilope LM, Bakris GL; FIDELIO-DKD and FIGARO-DKD investigators. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022 Feb 10;43(6):474-484. doi: 10.1093/eurheartj/ehab777. Erratum in: Eur Heart J. 2022 May 21;43(20):1989. doi: 10.1093/eurheartj/ehab886. PMID: 35023547; PMCID: PMC8830527.
  21. Bakris GL, Ruilope LM, Anker SD, Filippatos G, Pitt B, Rossing P, Fried L, Roy-Chaudhury P, Sarafidis P, Ahlers C, Brinker M, Joseph A, Lawatscheck R, Agarwal R; FIDELIO-DKD and FIGARO-DKD Investigators. A prespecified exploratory analysis from FIDELITY examined finerenone use and kidney outcomes in patients with chronic kidney disease and type 2 diabetes. Kidney Int. 2023 Jan;103(1):196-206. doi: 10.1016/j.kint.2022.08.040. Epub 2022 Oct 28. PMID: 36367466.
  22. Heerspink HJL, Agarwal R, Bakris GL, Cherney DZI, Lam CSP, Neuen BL, Sarafidis PA, Tuttle KR, Wanner C, Brinker MD, Dizayee S, Kolkhof P, Schloemer P, Vesterinen P, Perkovic V; FIND-CKD investigators. Design and baseline characteristics of the Finerenone, in addition to standard of care, on the progression of kidney disease in patients with Non-Diabetic Chronic Kidney Disease (FIND-CKD) randomized trial. Nephrol Dial Transplant. 2024 Jun 11:gfae132. doi: 10.1093/ndt/gfae132. Epub ahead of print. PMID: 38858818.