Impact of Serum Phosphorus on Hemoglobin: A Literature Review

Abstract

Phosphorus is a macroelement found in the body, mostly in the bones as crystals of hydroxyapatite. Higher levels are found in patients affected by chronic kidney disease (CKD). Since the early stage of CKD phosphorous excretion is impaired, but the increase of PTH and FGF23 maintains its level in the normal range. In the last decades, the role of FGF23 in erythropoiesis was studied, and now it is well known for its role in anemia genesis in patients affected by conservative CKD. Both Hyperphosphatemia and anemia are two manifestations of CKD, but many studies showed a direct association between serum phosphorous and anemia. Phosphorus can be considered as the common point of more pathogenetic ways, independent of renal function: the overproduction of FGF23, the worsening of vascular disease, and the toxic impairment of erythropoiesis, including the induction of hemolysis.

Keywords: Phosphorus, Hemoglobin, Anemia, Chronic Kidney Disease, FGF23

Introduction

Phosphorus is a macroelement found in the body; 85% of it is deposited in the bone as crystals of hydroxyapatite, 14% in the intracellular compartment as a component of nucleic acids, plasma membranes and involved in all cellular energetic processes, and only 1% is extracellular [1].

Of the latter, 70% is organic phosphorous and 30% is inorganic phosphorous. Inorganic phosphorous can be protein-bound, complexed with sodium, calcium, and magnesium, or circulating as mono- or di-hydrogen forms. About 800 mg of phosphorous is  introduced with the food, and the kidneys filter across the glomerulus about 90% of the daily phosphate load. The residual 10% is excreted by the gastrointestinal system.

Chronic Kidney disease (CKD) impairs phosphorus excretion due to the reduction of the skillful nephron mass. As a consequence of this, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23) are over-secreted from the early stages of CKD, to prevent an increase in serum phosphorous concentration [2].

Both PTH and FGF23 increase phosphorus urinary excretion but, conversely to FGF23, PTH is related to serum calcium due to the relative activation of calcium-sensing receptor (CaSR). Indeed, PTH limits calcium gastrointestinal absorption because it reduces 1,25-dihydroxy vitamin D levels. This negative feedback tray maintains serum calcium and phosphorus within normal ranges in individuals with normal kidney function. The progression of renal disease causes the failure of this equilibrium and hypocalcemia, hyperphosphatemia, and tertiary hyperparathyroidism may occur. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Hyperphosphatemic pseudotumoral calcinosis due to FGF23 mutation with secondary amyloidosis

Abstract

A 44 years old man was admitted for nephrotic syndrome and rapidly progressive renal failure. Two firm, tumour-like masses were localized around the left shoulder and the right hip joint. Since the age of 8 years old, the patient had a history of metastatic calcification of the soft tissues suggesting hyperphosphatemic pseudotumoral calcinosis. Despite treatment for a long time with phosphate binders the metastatic calcinosis had to be removed with several surgeries. The patient had also a history of recurrent fever associated with pain localized toward the two masses and underwent multiple antibiotic courses. Laboratory findings at admission confirmed nephrotic syndrome. S-creatinine was 2.8 mg/dl. Calcium was 8.4 mg/dl, Phosphorus 8.2 mg/dl, PTH 80 pg/ml, 25 (OH)VitD 8 ng/ml. Serum amyloid A was slightly increased. We performed renal biopsy and we found AA amyloid deposits involving the mesangium and the tubules. The bone marrow biopsy revealed the presence of AA amyloid in the vascular walls. During the next two months renal failure rapidly progressed and the patient started hemodialysis treatment. We performed genetic analysis that confirmed homozygous mutation of the FGF23 gene. After 14 months on hemodialysis, the patient’s lesions are remarkably and significantly reduced in dimension. The current phosphate binder therapy is based on sevelamer and lanthanum carbonate. Serum amyloid A is persistently slightly increased as well as C reactive protein. Proteinuria is in the nephrotic range without nephrotic syndrome.

Keywords: pseudotumoral calcinosis, tumoral calcinosis, FGF23, AA amyloid, renal failure, dialysis

Sorry, this entry is only available in Italian.

Introduzione

La calcinosi pseudotumorale iperfosfatemica è una rara condizione dovuta a deficit o resistenza all’azione del fibroblast growth factor 23 (FGF23). Dal punto di vista genetico, essa è associata a varianti patogenetiche a trasmissione autosomica recessiva, nei geni codificanti per FGF23 [21] e GALNT3. Quest’ultimo, a sua volta, codifica per una proteina responsabile della glicosilazione di FGF 23 [2123] e KL, regolatrici di KLOTHO, noto co-recettore fondamentale per la trasmissione intracellulare di FGF23 [3]. Ricordiamo che l’azione di FGF23 (Klotho-dipendente) si manifesta in modo simile a quella del paratormone (PTH) a livello del tubulo prossimale, dove inibisce i cotrasportatori sodio-fosforo IIa e IIc, con conseguente effetto fosfaturico. Sull’attivazione della Vit D3, invece, l’azione è opposta a quella del PTH, infatti FGF23 inibisce l’attività della 1-alfa idrossilasi e, quindi, causa una riduzione della 1-25 (OH) Vit D con conseguente inibizione, regolata dal cotrasportatore sodio-fosforo IIb, dell’assorbimento intestinale sia di calcio che di fosforo. In corso di calcinosi pesudotumorale iperfosfatemica, dunque, le mutazioni portano alla perdita della funzione fosfaturica dell’FGF23 con incremento del riassorbimento tubulare del fosforo e dell’1,25 diidrossi Vitamina D; il calcio di solito è normale-elevato e i livelli di PTH sono di solito normali o bassi. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Comparison between Creatinine Clearance and eGFRcyst-crea: a real-life experience

Abstract

Introduction: The evaluation of renal function is computed using the estimated glomerular filtration rate methods or the measured glomerular filtration rate. Cystatin C has been well studied as marker of renal function compared to serum creatinine, but only few studies compare Glomerular Filtration Rates estimated including both creatinine and cystatin (eGFRcyst-crea) to creatinine clearance (CrCl). This cross-sectional study compares CrCl and eGFRcyst-crea with eGFRcrea and searches for correlation with comorbidities.
Methods: This cross-sectional study consists of 78 patients hospitalized for acute and/or chronic renal disease. We performed the concordance correlation coefficient analysis between the eGFRcrea and the CrCl and eGFRcyst-crea in the whole sample and in the various subgroups.
Results: Steiger’s comparison of correlations from dependent samples showed a correlation coefficient between C-reactive protein and eGFRcyst-crea stronger than between C-reactive protein and CrCl (Z: 2.51, p=0.012). Similar results were showed with the association with procalcitonin (Z: 5.24, p<0.001), serum potassium (Z: -3.13, p=0.002), and severe CKD (Z: -2.54, p=0.011). The concordance correlation coefficient test showed major differences between diagnostic methods compared to eGFR-crea in diabetic subgroup, severe CKD, and in procalcitonin higher than 0.5ng/ml. Discussion: The demonstration of a strong concordance between the eGFRcrea and the eGFRcyst-crea allows us to diagnose and to stage CKD better than creatinine clearance in patients with high inflammatory status. Furthermore, this information opens new research scenarios, and further, larger studies are needed to confirm these hypotheses.
Keywords: Phosphorus, Hemoglobin, Anemia, Chronic Kidney Disease, FGF23, Generalized estimating equation

Introduction

The association of cystatin C with renal function has been studied for more than 25 years. Cystatin C has been described to have better diagnostic performance than creatinine for assessing renal function, particularly in detecting small reductions in glomerular filtration rate (GFR).

Since cystatin C is a low-molecular-weight protein produced by all nucleated cells, it is less influenced by variables such as age, body weight or diet and it has been proposed as a more reliable marker of kidney function than serum creatinine. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.