A. xylosoxidans and R. radiobacter-Induced Polimicrobic Peritonitis in Peritoneal Dialysis: A Case Report

Abstract

Rhizobium radiobacter and Achromobacter xylosoxidans are two Gram-negative microorganisms found in soil. They are only rarely pathogenic to humans. There have been few cases reported of human infections, and even fewer cases of peritonitis in peritoneal dialysis. However, there is a higher risk in immunocompromised individuals. These microorganisms have the ability to form biofilms, leading to catheter-related infections, and possess intrinsic antibiotic resistance properties that are not well understood, making it challenging to identify specific therapies. We present a clinical case of a 61-year-old man undergoing automated peritoneal dialysis (APD) for end-stage renal disease due to light chain deposition disease in multiple myeloma. He was admitted to our department just over a month after starting replacement therapy due to a positive combur test and turbid fluid. The subsequent diagnosis was polymicrobial peritonitis caused by R. radiobacter and A. xylosoxidans. Despite initial empirical intraperitoneal antibiotic therapy with cefazolin and tobramycin, the treatment was optimized by introducing cefepime both intravenously and intraperitoneally, but without significant improvement. Given the diagnosis of refractory polymicrobial peritonitis, removal of the peritoneal catheter was necessary, resulting in drop-out from peritoneal dialysis. Although the outcome was unfavorable for the dialytic method, the purpose of our case report is to describe the first Italian case of peritonitis in peritoneal dialysis caused by these atypical pathogens in an immunocompromised patient. We hope this information will assist clinicians in their practice, as the available literature helped us in our diagnostic and therapeutic approach for this patient.

Keywords: Peritonitis, End-stage Renal Disease, Peritoneal Dialysis, R. radiobacter, A. xylosoxidans, Polymicrobial Peritonitis

Sorry, this entry is only available in Italiano.

Introduzione

La dialisi peritoneale (DP) è una tecnica di terapia renale sostitutiva rivolta ai pazienti affetti da malattia renale cronica terminale (End-Stage Renal Disease, ESRD). Nonostante spesso garantisca una buona qualità della vita, soprattutto in termini di autogestione del proprio tempo, richiede, tuttavia, la messa in pratica di rigorose norme igieniche finalizzate a evitare la prima e più frequente complicanza infettiva del trattamento: la peritonite. Quest’ultima si associa ad aumento dei tassi di ospedalizzazione, mortalità e fallimento della metodica dialitica con drop-out [1]. A. xylosoxidans e R. radiobacter, due batteri Gram-negativi, sono microrganismi atipici che raramente sono causa di peritonite in dialisi peritoneale e di cui sono segnalati solo pochi casi al mondo, ma il cui decorso clinico è spesso gravato da antibiotico-resistenze multiple e conseguente difficoltà di trattamento. Di seguito, riportiamo il caso clinico di un paziente affetto da peritonite polimicrobica da A. xylosoxidans e R. radiobacter.

 

Presentazione del caso

Presentiamo il caso di un uomo di 61 anni, con recente diagnosi di uremia terminale da malattia da depositi di catene leggere (Light Chain Deposit Disease, LCDD) in mieloma multiplo a restrizione monotipica kappa (posto in trattamento chemioterapico e candidato ad autotrapianto di midollo osseo), necessitante avvio del trattamento dialitico sostitutivo.

Previo posizionamento di catetere peritoneale (CP) di Tenckhoff  avviava da fine ottobre 2023 trattamento dialitico con metodica APD standard.

A inizio dicembre, per riscontro di combur test positivo al domicilio, veniva valutato presso il nostro reparto: il paziente si presentava in buone condizioni cliniche generali, apiretico e asintomatico, i parametri vitali risultavano nella norma, l’obiettività addominale negativa, l’exit-site del CP in ordine. Il paziente negava inoltre alterazioni dell’alvo in senso diarroico o disattenzioni nell’esecuzione degli scambi.

Per conferma di positività del combur test con liquido di scarico torbido, veniva avviato al ricovero.

Gli esami di laboratorio mostravano solo modesto rialzo degli indici di flogosi con proteina C reattiva 1,59 mg/dL, procalcitonina 0,56 µg/L, in assenza di leucocitosi; la conta dei globuli bianchi (conta GB) su liquido peritoneale risultava francamente patologica con 11840 cell/µL di cui il 92% polimorfonucleati.

Inoltre, agli esami ematici, in noto quadro di uremia terminale, non si rilevavano franche disionie, con riscontro di noto modesto iperparatirodismo secondario con calcemia e fosforemia nella norma, lieve anemia cronica normocitica iporigenerativa, indici di funzione epatica, colestasi e coagulazione nella norma.

Confermato il sospetto clinico di peritonite, veniva impostata terapia antibiotica empirica come da nostro protocollo con cefazolina e tobramicina intraperitoneali (IP) associate a profilassi antifungina con fluconazolo per os, con contestuale shift di metodica da APD a CAPD con 4 scambi giornalieri di soluzioni isotoniche.

Nei giorni successivi si assisteva tuttavia a solo parziale e transitorio miglioramento clinico e laboratoristico (Tabella 1).

 

Tabella 1.  Andamento dei valori degli esami ematochimici e su liquido peritoneale; conta GB: conta globuli bianchi su liquido peritoneale; PMN: polimorfonucleati su liquido peritoneale; PCR: proteina C reattiva; PCT: procalcitonina.

In seconda giornata perveniva un primo isolamento colturale su liquido peritoneale, positivo per Rhizobium radiobacter, per il quale tuttavia non è stato possibile interpretare la sensibilità alla terapia antibiotica in quanto non disponibile metodica approvata dal laboratorio (Figura 1). Dopo discussione del caso con specialista infettivologo, si sostituiva la cefazolina in corso con cefepime intraperitoneale, senza tuttavia significativa risposta.

MIC concentrazione minima inibente espressa in µg/mL
Figura 1. MIC: concentrazione minima inibente espressa in µg/mL. La sensibilità del microrganismo non è stata determinata in quanto non disponibile una metodica approvata dal nostro laboratorio.

In settima giornata, visto il mancato miglioramento clinico e laboratoristico, si ampliava la copertura antibiotica associando a quella IP già in corso (tobramicina + cefepime) anche copertura sistemica endovenosa con cefepime in associazione a daptomicina (quest’ultima a copertura di possibile sovrainfezione di germi Gram-positivi, successivamente esclusa). Perveniva contestualmente isolamento su liquido peritoneale di un secondo germe, Achromobacter xylosoxidans (Figura 2), mentre risultavano negativi i colturali su sangue, il tampone nasofaringeo di screening per S. aureus meticillino-resistente e la ricerca di miceti e micobatteri su liquido peritoneale.

Figura 2. Antibiogramma di A xylosoxidans. MIC concentrazione minima inibente espressa in µg/mL
Figura 2. Antibiogramma di A. xylosoxidans. MIC: concentrazione minima inibente espressa in µg/mL. S: sensibile in regime di dosaggio standard.

In ottava giornata di terapia, in considerazione dell’isolamento di più patogeni e della non responsività alla terapia antibiotica (persistenza di liquido torbido, combur test positivo e conta GB > 3000 cell/µL, seppur in paziente asintomatico), si poneva indicazione alla rimozione del catetere peritoneale. L’intervento, privo di complicanze, veniva eseguito in corso di copertura antibiotica sistemica con daptomicina (sospesa in terza giornata post-operatoria vista l’assenza di isolamenti di Gram-positivi) e cefepime, mantenuta invece fino alla quattordicesima giornata post-operatoria, con progressiva negativizzazione degli indici di flogosi (Tabella 1).

All’esame colturale della punta del CP rimosso, veniva confermato isolamento del solo Achromobacter xylosoxidans.

Dopo la rimozione del CP, in assenza di urgenze dialitiche (non disionie, buon equilibrio acido-base e ottimo compenso idrosalino grazie a valida diuresi residua con creatinina clearance 14 mL/min, urea clearance 7,5 mL/min), si decideva di sospendere temporaneamente il trattamento sostitutivo.  Il paziente veniva sottoposto ad allestimento di fistola artero-venosa radio-cefalica sinistra e successivamente a trapianto autologo di midollo, mantenendo in programma successivo avvio di emodialisi.

 

Discussione

R. radiobacter, precedentemente noto come Agrobacterium radiobacter, è un bacillo Gram-negativo aerobio presente nel suolo. La sua funzione principale è quella di batterio diazotrofo simbiotico, ovvero è in grado di fissare l’azoto atmosferico aumentandone la disponibilità per le piante, con le quali instaura un meccanismo di simbiosi legandosi alle radici nel terreno e formando biofilm [2]. Nel 1980 è stata segnalata la prima infezione umana in un paziente portatore di valvola aortica protesica affetto da endocardite, e da allora è nota la sua capacità di agente opportunista nei confronti dell’uomo. Proprio per la sua capacità di formare biofilm, nelle infezioni umane si associa frequentemente alla presenza di device, soprattutto cateteri infusionali, risultando patogeno in particolar modo in condizioni di immunosoppressione specifica come nei pazienti affetti da neoplasie solide, ematologiche e in generale nei pazienti sottoposti a trattamenti chemioterapici [3]. Dal 1990 al 2019 sono stati 16 i casi segnalati di peritonite da R. radiobacter, molti dei quali associati ad anamnesi positiva per contaminazione con il suolo. I trattamenti riportati in letteratura comprendono principalmente cefalosporine, soprattutto ceftazidime, oltre a meropenem, piperacillina/tazobactam e ciprofloxacina [46].

A. xylosoxidans è un bacillo Gram-negativo che risiede in ambienti umidi o acquatici, raro ma noto patogeno di infezioni nosocomiali o comunitarie come otiti, polmoniti, faringiti, osteomieliti, endocarditi e infezioni del tratto urinario [7]. Fattori di rischio per lo sviluppo di infezione sono l’immunodepressione, le neoplasie solide o ematologiche e la fibrosi cistica [8, 9]. Dal 1980 al 2018 sono stati riportati in letteratura 17 casi di peritonite da A. xylosoxidans [10, 11]. La capacità del batterio di formare biofilm rende difficoltosa l’eradicazione nelle infezioni catetere-relate, così come i meccanismi intriseci ed acquisiti di antibiotico-resistenza tipici di questo organismo, frequentemente espressi come resistenza alle cefalosporine e aminoglicosidi, mentre è dimostrata la maggiore suscettibilità a carbapenemici e piperacillina [12].

Nella metà dei casi di peritonite da R. radiobacter e in oltre la metà per i casi di peritonite causata da A. xylosoxidans riportati in letteratura è stata necessaria la rimozione del catetere peritoneale [5, 10].

 

Conclusioni

La peritonite causata sia da R. radiobacter che da A. xylosoxidans è una complicanza rara ma clinicamente significativa che può verificarsi nei pazienti in DP, con particolare richiamo ai malati con condizione di immunosoppressione. L’infezione, in entrambi i casi, si associa ad alti tassi di drop-out dalla metodica, di ospedalizzazione e mortalità, verosimilmente da ricondurre all’antibiotico-resistenza, alla ridotta esperienza in merito a trattamenti specifici e alle comorbidità dei pazienti affetti da ESRD. Scopo del nostro case-report è segnalare il primo caso italiano di peritonite causata da questi rari patogeni che, nel contesto specifico, sono stati riscontrati insieme in una condizione di peritonite polimicrobica in un paziente immunodepresso. Inoltre, è nostro proposito, tramite questo lavoro, che tali microrganismi atipici vengano riconosciuti come possibile causa di peritonite, al fine di aiutare i clinici a orientarsi nella propria pratica, così come la letteratura disponibile ha aiutato noi nel definire l’iter diagnostico-terapeutico del nostro paziente.

 

Bibliografia

  1. «ISPD Guidelines», International Society for Peritoneal Dialysis. Consultato: 26 aprile 2024. [Online]. Disponibile su: https://ispd.org/guidelines/.
  2. C.-C. Lai et al., «Clinical and Microbiological Characteristics of Rhizobium radiobacter Infections», Clin. Infect. Dis., vol. 38, fasc. 1, pp. 149–153, gen. 2004, https://doi.org/10.1086/380463.
  3. C.-Y. Chen, K. S. Hansen, e L. K. Hansen, «Rhizobium radiobacter as an opportunistic pathogen in central venous catheter-associated bloodstream infection: case report and review», J. Hosp. Infect., vol. 68, fasc. 3, pp. 203–207, mar. 2008, https://doi.org/10.1016/j.jhin.2007.11.021.
  4. T. V. Levitski-Heikkila e M. E. Ullian, «Peritonitis With Multiple Rare Environmental Bacteria in a Patient Receiving Long-Term Peritoneal Dialysis», Am. J. Kidney Dis., vol. 46, fasc. 6, pp. e119–e124, dic. 2005, https://doi.org/10.1053/j.ajkd.2005.08.021.
  5. S. Roy, D. Basuli, E. U. Rahman, S. Adapa, e S. N. Reddy, «Rhizobium radiobacter-Induced Peritonitis: A Case Report and Literature Analysis», J. Med. Cases, vol. 13, fasc. 9, pp. 471–474, set. 2022, https://doi.org/10.14740/jmc3999.
  6. R. Marta, C. Dâmaso, J. E. da Silva, e M. Almeida, «Peritonitis due to Rhizobium radiobacter», Einstein Sao Paulo Braz., vol. 9, fasc. 3, pp. 389–390, set. 2011, https://doi.org/10.1590/S1679-45082011RC2025.
  7. Y. Igra-Siegman, H. Chmel, e C. Cobbs, «Clinical and laboratory characteristics of Achromobacter xylosoxidans infection», J. Clin. Microbiol., vol. 11, fasc. 2, pp. 141–145, feb. 1980, https://doi.org/10.1128/jcm.11.2.141-145.1980.
  8. R. Donderski, M. Grajewska, A. Mikucka, B. Sulikowska, E. Gospodarek-Komkowska, e J. Manitius, «Achromobacter xylosoxidans Relapsing Peritonitis and Streptococcus suis Peritonitis in Peritoneal Dialysis Patients: A Report of Two Cases», Case Rep. Nephrol., vol. 2018, p. 9454520, lug. 2018, https://doi.org/10.1155/2018/9454520.
  9. B. Isler, T. J. Kidd, A. G. Stewart, P. Harris, e D. L. Paterson, «Achromobacter Infections and Treatment Options», Antimicrob. Agents Chemother., vol. 64, fasc. 11, pp. e01025-20, ott. 2020, https://doi.org/10.1128/AAC.01025-20.
  10. I. Tawhari et al., «Peritoneal Dialysis-Associated Peritonitis Caused by Achromobacter xylosoxidans: A Case Report and Literature Review», J. Investig. Med. High Impact Case Rep., vol. 12, p. 23247096231220467, 2024, https://doi.org/10.1177/23247096231220467.
  11. T. G. Oh et al., «Continuous Ambulatory Peritoneal Dialysis-Associated Peritonitis Caused by Achromobacter xylosoxidans: A Case Report and Comprehensive Literature Review», Infect. Chemother., vol. 43, fasc. 3, pp. 275–278, giu. 2011, https://doi.org/10.3947/ic.2011.43.3.275.
  12. E. P. Barragán, J. S. Pérez, L. Corbella, M. Á. Orellana, e M. Fernández-Ruiz, «Achromobacter xylosoxidans bacteremia: clinical and microbiological features in a 10-year case series», Rev. Esp. Quimioter., vol. 31, fasc. 3, pp. 268–273, giu. 2018.

Telemedicine and Remote Monitoring in peritoneal dialysis improve clinical outcomes, quality of life and cost efficiency

Abstract

Introduction: peritoneal dialysis (PD) is a widely used renal replacement therapy allowing end-stage renal disease patients to undergo a home-based treatment. The remote monitoring (RM) and the telemedicine in patients undergoing automated peritoneal dialysis (APD) improve the technique and the patient survival.
This study evaluated their impact on PD patients, evaluating the safety of the technique, infectious complications and hospitalizations, and the effects on the quality of life.
Patients and methods: 73 patients undergoing PD at the Nephrology and Dialysis Unit of the Papardo Hospital in Messina were enrolled. 39 patients (APD group) were followed with scheduled visits at the hospital centre, whereas the remaining 34 patients (RM-APD group) received complete assistance at home.
Results: the hospitalizations were statistically lower in the RM-APD group than APD patients (7 vs 17; p: 0.03). During the follow-up period, 13 patients were switched from the PD technique to HD. In particular, 10 patients belonged to the ADP group, whereas the remaining 3 patients were followed through the remote control. PD patients had a better psycho-physical state, with better scores in physical performance (p = 0.02) and psycho-emotional well-being (p = 0.001), performing social functions more adequately than HD patients (p = 0.01). The final result is a better perception of health in general in PD patients.
Conclusion: the telemedicine and the remote control have opened new ways to increase the number of patients who can perform PD treatment at home safely, reducing the infective risk and the rate of hospitalization.

Keywords: Telemedicine, Remote Monitoring, Peritoneal Dialysis

Introduction

Peritoneal dialysis (PD) is a widely used renal replacement therapy allowing end-stage renal disease patients to undergo a home-based treatment. However, patients still require periodic hospital visits to receive a full assessment of treatment adequacy [1]. The autonomy of the technique and the lack of real-time monitoring represent the reason for poor adherence, ranging from 5% to 20% in automated peritoneal dialysis (APD) prescriptions, representing a significant risk factor for mortality and hospitalizations [2].

In the last decades, a web-based system for remote monitoring (RM) was introduced in the clinical practice, allowing for patient monitoring at home [3, 4].

During the COVID-19 pandemic, social distancing and regulatory waivers from state governments under the Public Health Emergency provided further opportunities for home dialysis patients to access telemedicine [5, 6].

Recently, it has been reported that the use of RM in APD was associated with lower hospitalization rates and length of hospital stay [7].

News on Peritoneal Dialysis

Abstract

Among the recent advancements in Peritoneal Dialysis, the guidelines on the prevention and treatment of peritonitis, published in March 2022 by the International Society for Peritoneal Dialysis (ISPD), are of particular importance.
The ISPD periodically updates these guidelines, with the previous update dating back to 2016.
Peritonitis, despite its decreased incidence, remains a significant challenge in PD as it continues to be a major cause of morbidity, mortality, and dropout from the modality.
The 2022 ISPD guidelines update the previous recommendations and introduce new ones.
These recommendations are evidence-based where evidence is available.

Keywords: Guidelines, Peritoneal Dialysis, Peritonitis

Sorry, this entry is only available in Italiano.

Una tra le novità in tema di Dialisi Peritoneale (DP) è rappresentata dalla pubblicazione delle raccomandazioni sulla prevenzione e trattamento delle peritoniti. Nel 2022 la Società Internazionale di Dialisi Peritoneale (ISPD) ha pubblicato l’aggiornamento di tali raccomandazioni (la precedente pubblicazione risaliva al 2016).

Benché infatti l’incidenza della peritonite in DP sia diminuita, questa rimane tuttora una ‘spina nel fianco’ della metodica perché costituisce una importante causa di morbilità, mortalità e di drop out.

Come ci dimostrano anche i dati del censimento 2022 del Gruppo di Progetto di Dialisi Peritoneale della SIN (Figura 1).

Figura 1
Figura 1

 

Novità con l’aggiornamento 2022 delle linee guida ISPD sulle peritoniti  

Incidenza delle peritoniti. Vengono riviste ed aggiornate le raccomandazioni del 2016. L’incidenza di peritonite (riportata come episodi per paziente/anno) dovrebbe essere < 0,4 episodi per paziente/anno (1C). Si tratta di un miglioramento dello standard di 0,5 episodi/paziente/anno raccomandato nelle linee guida del 2016 (Figura 2).

Figura 2
Figura 2

Peritoniti a coltura negativa. Nel 2016 si suggeriva di rivedere i metodi di campionamento e coltura se più del 15% degli episodi di peritonite erano coltura negativa (2C). Nel 2022 si raccomanda una percentuale di peritoniti con coltura negativa < al 15% di tutti gli episodi di peritonite (1C).

Prevenzione delle peritoniti. Oltre alle già note misure di prevenzione ne vengono riviste ed introdotte delle nuove.
Vengono riviste precedenti raccomandazioni:

  1. Gestione della contaminazione dei sistemi PD. Viene suggerita la profilassi antibiotica dopo una wet contamination, riferito alla contaminazione con un sistema aperto (2D). Nel 2016 tale misura era not graded.
  2. Procedure invasive. Viene confermato il suggerimento circa la profilassi antibiotica prima della colonscopia (2C) e delle procedure invasive ginecologiche (2D). Si introduce il suggerimento che tali procedure vengano effettuate ad addome vuoto (2D).
  3. Training alla DP. Le linee guida del 2016 raccomandavano che il training fosse effettuato da personale infermieristico con adeguata esperienza (1C). Le nuove linee guida raccomandano che la tecnica di scambio e le conoscenze siano regolarmente rivalutate e aggiornate, con un’enfasi sull’ispezione diretta della pratica (1C).

Vengono introdotte nuove raccomandazioni:

  1. Animali domestici. Si raccomanda ai pazienti che posseggono animali domestici, di adottare precauzioni aggiuntive per prevenire la peritonite (1C). Si suggerisce, inoltre, che gli animali non siano ammessi nella stanza in cui ha luogo lo scambio dialitico e dove è stoccato il materiale di dialisi (2A).
  2. Fattori di rischio modificabili di peritonite (ipokaliemia, antagonisti dei recettori dell’istamina-2). Si suggerisce che evitare e trattare l’ipokaliemia possa ridurre il rischio di peritonite (2C). Si suggerisce che evitare o limitare l’uso degli antagonisti dei recettori dell’istamina-2 può prevenire la peritonite enterica (2C).

Terapia empirica delle peritoniti. Vengono aggiornate le raccomandazioni riguardanti la terapia antibiotica empirica.  Si conferma la terapia empirica raccomandata nel 2016. Per i Gram-positivi: cefalosporina di prima generazione o vancomicina; per i Gram-negativi: cefalosporina di terza generazione o aminoglicosidi (1B). Le linee guida del 2022 introducono il suggerimento che la monoterapia con cefepime possa essere un’alternativa accettabile per i regimi antibiotici empirici (2B). A proposito di tale opzione è importante comunque sottolineare che si tratta ancora di un suggerimento con un grado di evidenza 2B.

N-acetilcisteina.  Viene introdotto il suggerimento che l’aggiunta orale di N-acetilcisteina può aiutare a prevenire l’ototossicità degli aminoglicosidi (2B).

Successiva terapia delle peritoniti.  Vengono aggiornate le raccomandazioni per il trattamento della peritonite da determinati microrganismi:
Corynebacterium. Si suggerisce che la peritonite da Corynebacterium sia trattata con antibiotici efficaci per 2 settimane (2D). Le linee guida del 2016 suggerivano tre settimane di trattamento. Si suggerisce, inoltre, che la peritonite dovuta a ceppi beta-lattamasi resistenti come il Corynebacterium jeikeium sia trattato con vancomicina (2C).
Enterococcus Species. Le Linee guida 2022 rivedono le precedenti raccomandazioni e suggeriscono di trattare la peritonite enterococcica per 3 settimane con amoxicillina orale (per enterococchi sensibili all’ampicillina) o vancomicina intraperitoneale (2C).
Pseudomonas. Rispetto alle precedenti raccomandazioni si suggerisce che, se non c’è risposta clinica dopo 5 giorni di trattamento antibiotico appropriato, la peritonite da Pseudomonas deve essere trattata con la rimozione del catetere(2D).
Stenotrophomonas maltophilia. Vengono introdotte nuove indicazioni. Si suggerisce di trattare tale peritonite con due diverse classi di antibiotici, uno dei quali trimetoprim-sulfametossazolo, per almeno 3 settimane (2D).
Acinetobacter. Vengono introdotte nuove indicazioni. Si suggerisce che la peritonite da Acinetobacter resistente ai carbapenemi deve essere trattata con aminoglicosidi e un agente contenente sulbactam (2C).
Peritonite refrattaria. Viene rivista la raccomandazione riguardante la gestione della peritonite refrattaria (definita come mancata risposta dopo 5 giorni di terapia antibiotica appropriata). Rimane la raccomandazione che nella peritonite refrattaria il catetere sia rimosso (1D). Nelle precedenti linee guida il livello di evidenza era 1C. Si introduce infatti il suggerimento che un’osservazione più lunga di 5 giorni è appropriata se la conta dei globuli bianchi nell’effluente dialitico sta diminuendo verso la normalità (2C).

 

Bibliografia

  1. Li PK, et al. ISPD peritonitis recommendations: 2016 update on prevention and treatment. Perit Dial Int 36: 481–508, 2016
  2. Li PK, et al. ISPD peritonitis guideline recommendations: 2022 update on prevention and treatment. Perit Dial Int. 2022;42(2):110–53.

Prognostic Factors of Peritonitis in Patients on Peritoneal Dialysis: a Retrospective Observational Study

Abstract

Background/Objectives. Peritoneal dialysis stands as an established form of renal replacement therapy; yet peritonitis remains a major complication associated with it. This study, analyzing two decades of data from the Nephrology, Dialysis, and Hypertension Division of the University-Hospital IRCCS in Bologna, aimed to identify prognostic factors linked to peritonitis events. It also sought to evaluate the suitability of different peritoneal dialysis techniques, with a focus on Automated Peritoneal Dialysis (APD) and Continuous Ambulatory Peritoneal Dialysis (CAPD). Additionally, the study assessed the impact of an educational program introduced in 2005 on peritonitis frequency.
Methods. Conducting an observational, retrospective, single-center study, 323 patients were included in the analysis, categorized based on their use of APD or CAPD.
Results. Despite widespread APD usage, no significant correlation was found between the dialysis technique (APD or CAPD) and peritonitis onset. The analysis of the educational program’s impact revealed no significant differences in peritonitis occurrence. However, a clear relationship emerged between regular patient monitoring at the reference center and the duration of peritoneal dialysis.
Conclusions. Despite the absence of a distinct association between peritonitis onset and dialysis technique, regular patient monitoring at the reference center significantly correlated with prolonged peritoneal dialysis duration.

Keywords: end-stage renal disease, peritoneal dialysis, peritonitis, peritoneal catheter

Sorry, this entry is only available in Italiano.

Introduction

Peritoneal dialysis (PD) is an effective treatment option for patients with end-stage renal disease, particularly for populations such as elderly individuals, diabetics, and those with concomitant pathologies [1, 2]. This technique involves the exchange of solutes and fluids between the patient’s peritoneal capillary blood and the introduced dialysis solution, a process made feasible by the Tenckhoff catheter [3]. This catheter has multiple benefits, including effective fluid exchange, a barrier against infections, and cost-effectiveness [4].

Since 2001, there has been a significant rise in the number of patients opting for dialysis treatments, witnessing an annual growth of approximately seven per cent [5, 6]. This surge can be attributed to an aging population, improved life expectancy for those with end-stage renal disease, and increased access to dialysis for younger patients [7]. The decision between PD and hemodialysis (HD) depends largely on regional and individual circumstances. In developed countries, the choice might be driven by patient preference or accessibility constraints to HD units. In contrast, economic challenges in less affluent regions might render PD as the primary choice [6].

Peritoneal Dialysis Network in North-East Italy: Survey About the Peritoneal Catheter Exit-Site Infection Management and Comparison with ISPD Guidelines

Abstract

Introduction. The Triveneto Peritoneal Dialysis (PD) Network aims to bring together doctors and nurses who deal with PD in a collaborative network in which to exchange mutual knowledge and optimize the use of this method of replacing renal function. A topic of particular interest was the management of peritoneal catheter exit-site infection, given the recent publication of the new guidelines of the International Society of Peritoneal Dialysis (ISPD).
Materials and methods. The survey concerned the criteria for carrying out nasal swab and exit-site, management of exuberant granulation tissue “Proud Flesh”, treatment of exit-site infection (ESI), use of silver dressings, the role of subcutaneous tunnel ultrasound and cuff shaving.
Results. All PD centers in the North-East Italy area have joined the survey with at least one operator per centre. There was a wide variability between the indications for performing the exit-site swab. In the presence of ESI, the prevalent approach is that of oral systemic empiric therapy associated (20.0%) or less (28.9%) with topical therapy, and then adapting it in a targeted manner to the culture examination.
Discussion. From the discussion of the survey emerged the importance of the ESI as an outcome indicator, which allows us to verify whether our clinical practice is in line with the reference standards. It is essential to know and base our activity on what is indicated in national and international guidelines and to document the events that occur in the patient population of each dialysis unit.

Keywords: Peritoneal Dialysis, Exit-site management, Catheter-related Infections, Survey

Sorry, this entry is only available in Italiano.

Introduzione

La dialisi peritoneale (PD) è un importante trattamento dialitico domiciliare cui opta quasi un paziente su cinque fra gli afferenti agli ambulatori specialistici nefrologici [1]. Per i pazienti in PD le infezioni correlate al catetere peritoneale (CP) sono tra i principali fattori di rischio di peritoniti, perdita del CP, drop-out dalla metodica. Queste comprendono l’infezione dell’exit-site (ESI) e del tunnel del CP [2].

Il “Network di Dialisi Peritoneale del Triveneto” ha lo scopo di riunire medici e infermieri che si occupano di PD nel Triveneto per la costruzione di una rete collaborativa all’interno della quale sia possibile diffondere la conoscenza e ottimizzare l’impiego di questa metodica sostitutiva della funzione renale. In questi incontri si parte dall’analisi delle evidenze per quindi verificarne l’attuazione nella real life e confrontarle con l’esperienza e i risultati derivanti dalla pratica clinica dei centri dialisi del Triveneto.

Un argomento di particolare interesse è risultato essere la gestione dell’exit-site infetto del CP, soprattutto in considerazione della recente pubblicazione delle nuove linee guida della Società Internazionale di Dialisi Peritoneale (ISPD) [3].

Cuff Shaving in Recurrent Exit-Site Infections in a Patient on Peritoneal Dialysis

Abstract

In patients on peritoneal dialysis, the cutaneous emergency (exit-site) represents a potential access route to the peritoneum; consequently, it can become a site for microbial infections. These infections, initially localized to the exit-site, may spread to the peritoneum causing peritonitis, which is the most common cause of drop-out from peritoneal dialysis and transition to hemodialysis. Peritoneal catheters have dacron caps which have the function of counteracting the traction of the catheter itself and at the same time acting as a barrier for microorganisms, preventing the spread towards the peritoneum. Despite this, the same dacron cap can represent a sort of nest for microorganisms to colonize and, with the formation of a biofilm that facilitates their proliferation, make the same organisms impervious to antibiotic therapy and even resistance to them. The most effective tool for monitoring the health status of the exit-site is represented by the objective examination. This examination, through the use of well-defined scales, helps to provide a pathological score of the exit, facilitating the implementation of necessary precautions. In the presence of recurrent exit-site infections, from both Gram positive and Gram negative bacteria, minimally invasive surgical therapy is a valid approach to break this vicious circle. It helps avoid subjecting the patient to the removal of the peritoneal catheter, temporary transition to hemodialysis with the insertion of a central venous catheter, and subsequent repositioning of another peritoneal catheter. We propose the case of a recurrent Staphylococcus Aureus infection resolved after cuff shaving of the exit-site.

Keywords:  peritoneal dialysis, exit-site infection, cuff shaving

Sorry, this entry is only available in Italiano.

Introduzione

La via d’accesso al peritoneo continua a costituire un problema nodale nella gestione e nella sopravvivenza della dialisi peritoneale, come lo è l’approccio vascolare in emodialisi. La presenza di un corpo estraneo, il catetere peritoneale, che collega l’ambiente esterno al peritoneo, attraverso cute, sottocute, muscoli e fasce, può favorire le infezioni locali e costituire una via d’accesso per i batteri fino alla cavità peritoneale.

La presenza della cuffia costituisce una barriera protettiva contro l’ingresso dei batteri nel peritoneo, ma a sua volta può essere un fattore irritativo o addirittura un buon nido per i batteri che l’abbiano raggiunta.

La gestione dell’emergenza cutanea del catetere (exit-site) in un paziente in dialisi peritoneale è fondamentale per prevenire ed eventualmente trattare una potenziale infezione della stessa che può rappresentare la porta d’ingresso per i germi e l’evoluzione verso una complicanza più complessa, quale può essere la peritonite che rappresenta poi il rischio fondamentale di fallimento della terapia sostitutiva peritoneale e passaggio all’emodialisi.

Palliative and Supportive Dialysis: Current Practices and Recommendations for Best Clinical Practice

Abstract

“Palliative dialysis” is defined as the renal replacement therapy directed to patients living the most critical phases of illness and the end-of-life stage. Offering targeted dialysis prescriptions becomes imperative when health conditions, along with comorbidities, unfavorable prognosis and complications, do not allow standard dialysis to be started or continued. Management should also integrate adequate supportive care measures in both incident and prevalent patients.

This document summarizes nephrological recommendations and scientifical evidence regarding the palliative approach to dialysis, and proposes operative tools for a good clinical practice. After planning and sharing the route of care (“shared-decision-making”), which includes multidimensional evaluation of the patient, a pathway of treatment should be started, focusing on combining the therapeutical available options, adequacy and proportionality of care and patients’ preferences.

We propose a framework of indications that could help the nephrologist in practicing appropriate measures of treatment in patients’ frailest conditions, with the aim of reducing the burden of dialysis, improving quality of life, providing a better control of symptoms, decreasing the hospitalization rates in the end-of-life stage and promoting a home-centered form of care. Such a decisional pathway is nowadays increasingly needed in nephrology practice, but not standardized yet.

Keywords: palliative care, chronic kidney disease, end-of-life, palliative dialysis, hemodialysis, peritoneal dialysis, shared-decision-making

Sorry, this entry is only available in Italiano.

Introduzione

L’applicazione dei principi della medicina palliativa nei pazienti affetti da malattia renale ha lo scopo di alleviare le sofferenze legate alla malattia e al suo trattamento, ed è appropriata lungo l’intera traiettoria di malattia, incluso (ma non limitato a) il fine vita [1]. L’attenzione è focalizzata sul trattamento dei sintomi e sul sollievo dell’impatto psicologico, sociale e funzionale della malattia. Poiché le cure palliative trovano indicazione ben oltre gli ultimi giorni di vita, quando sono ancora in atto cure volte a prolungare la sopravvivenza, come la dialisi, le linee guida nefrologiche internazionali ne hanno definito i criteri per la popolazione affetta da malattia renale cronica (Chronic Kidney Disease, CKD), e hanno introdotto il termine di “Kidney Supportive Care” (cure nefrologiche di supporto o cure simultanee), in luogo di “cure palliative” [2, 3].

Se confrontati con i pazienti oncologici, i pazienti affetti da CKD avanzata hanno più probabilità di morire in ospedale, meno probabilità di ricevere istruzioni sul fine vita, e sono gravati da analoga incidenza di sintomi severi, quale il dolore moderato-severo [4].

In Italia nel 2015 viene pubblicato un documento intersocietario (SIN-SICP) da nefrologi e palliativisti, che riassume i criteri prognostici e di identificazione precoce dei bisogni di cure di supporto nella fase finale della CKD, e suggerisce un percorso condiviso con i palliativisti di presa in carico di questi pazienti, percorso che contempla anche la rimodulazione e la sospensione della dialisi, quando in atto [5]. Questo documento ha gettato le basi per l’implementazione delle cure palliative e simultanee nel nostro paese, consentendo di sviluppare le prime esperienze condivise: presso l’Azienda Provinciale per i Servizi Sanitari di Trento dal 2017 è stato attuato un protocollo integrato di cura per la gestione della fine della vita dei nostri nefropatici e dializzati [6].

Role of the Opinions of the Nephrologist and Structural Factors in Dialysis Modality Selection. Results of a Peritoneal Dialysis Study Group Questionnaire

Abstract

Background. The use of PD depends on economic, structural and organizational factors. The nephrologist’s opinion is that peritoneal dialysis is less used than it shold be. In Italy, PD is not carried out in private Centers, but neither is it in around one third of Public Centers. The aim of this study was to investigate the opinions of nephrologists on PD in Public Centers only, thereby nullifying the influence of the economic factors.
Materials and Methods. The investigation was carried out by means of an online questionnaire (Qs) via mail, and during meetings and Congresses in 2006-07. The Qs investigated the characteristics of the Centers, the nephrologists interviewed, and opinions on the various aspects of the choice of Renal Replacement Therapy Renal Replacement Therapy (RRT) (26 questions). Responses were received from 454 nephrologists in 270 public Centers. Among these, 205 centers (370 Qs) report PD (PD-YES), 36 (42 Qs) do not (PD-NO) and 29 (42 Qs) do not use it but send patients selected for PD to other Centers (PD-TRANSF).
Results. The PD-NO and PD-TRANSF Centers are significantly smaller, with greater availability of beds. In the PD-YES Centers the presence of a pre-dialysis pathway, early referral and nurses dedicated solely to PD are associated with a higher use of PD.
The nephrologists in the PD-NO Centers rate PD more negatively in terms of both clinical and non-clinical factors. The belief that more than 40% of patients can do either PD or HD differs among the nephrologists in the PD-YES (74.3%), PD-TRANSF (45.2%) and PD-NO (28.6%) Centers. Likewise, the belief that PD can be used as a first treatment in more than 30% of cases differs among the nephrologists in PD-YES (49.2%), PD-TRANSF (33.3%) and PD-NO (14.3%) Centers.
Conclusions. The use of PD in Public Centers is conditioned by both structural and organizational factors, and by the opinions of nephrologists on the use and effectiveness of the technique.

 

 

Graphical abstract

 

Keywords: Peritoneal Dialysis, Hemodialysis, Modality selection, Physicians opinion, Chronic Kidney Disease

Background

The use of peritoneal dialysis (PD) in the world is limited to a prevalence of approximately <10% [1]. It has long been known [2] how the use of PD in different countries depends on factors which are unrelated to the patient, such as the type of National Health System and the relationship between the public and private sectors in each single country, the reimbursements envisaged for hemodialysis (HD) and PD, the standard of material and social development, and the cost of labor compared with materials [25]. In the absence of financial and structural barriers, the use of PD can be influenced by other factors, such as the type of referral (early or late), the availability of structured educational programs for patients suffering from CKD, PD training during studies and the availability of assisted PD programs, but they presuppose a system which favors the method.

For Italy, a significant contribution to the understanding of the factors influencing the use of PD was made by the Census of the Italian Society of Nephrology (SIN) relating to the state of dialysis in Italy in 2004 [5], which showed that the factors negatively affecting the use of PD were the presence of private centers (which do not use PD), the number of stations available for HD compared to the number of patients on hemodialysis, and the small size of Centers (evaluated by the number of prevalent patients on dialysis). Even considering public Centers alone however, considerable variability was shown in the use of PD, with Centers of limited overall size but relatively extensive PD programs and large Centers without or with small PD programs. This variability suggested that there were other factors capable of influencing the use of PD, such as the so-called “opinion of the doctor”, the importance of which was highlighted by Hingwala [6].

The numerous papers [716] which have investigated the role of doctors in the choice of dialysis modality show a considerable discrepancy between their opinions – generally favorable – and the actual use of PD in their country, which is at times marginal. These papers often show selection bias, in that they are limited to Nephrologists who use PD in some way.

Objectives of the study

In order to investigate “the opinion of doctors on PD and modality selection” and any role this may have in the actual use of PD in a Center, in 2006-2007 what was then SIN’s Peritoneal Dialysis Study Group (GSDP) devised and carried out research – in the form of a questionnaire (Qs) – limited to Public Centers in order to reduce the influence as far as possible of economic factors on the results, but also involving the Centers which did not use PD.

The main aim of the study was to compare opinions relating to PD and modality selection by analyzing the perspective of Nephrologists who work in Centers which use and those which do not use PD.

As the situation relating to PD remains substantially the same 20 years since the first SIN Census, the current PD Project Group decided to attach the results of this survey – which was never published – to the analysis of the 2022 Census data, as besides remaining valid its depth of analysis and the number of Nephrologists involved make it quite unique.

 

Materials and methods

Recruitment of Centers

The study was carried out by means of an on-line questionnaire (Qs) submitted to all non-pediatric Public Dialysis Centers. Aimed at all the Nephrologists in the Center, the filling out of at least 1 per Center was strongly requested. The completion of the Qs took place between January and October 2007, and was incentivized during Congresses and Conferences held during the period. The results were presented partially at Congresses and Conferences at the time, but have never been published.

The list of dialysis Centers eligible for the research was taken from the SIN Census relating to 2004 [5] (2004-SIN-Cens). In short, the 2004-SIN-Cens had documented the presence in Italy of 658 Dialysis Centers. After excluding private and pediatric Centers, the questionnaire was sent to the remaining 346. However, 15 of these 346 Centers had “special statute” status (research Centers) and 6 had no patients on dialysis and were therefore not considered. So as for the 2004-SIN-Cens, the 325 public, non pediatric, ordinary status Centers with a dialysis – PD and HD – incidence of other than zero have been considered in this analysis. As regards the Nephrologists, only “structured” doctors have been considered in this analysis, excluding specialty trainee and attendant doctors.

Breakdown of Centers

The Centers which did not use PD and those which did had been divided in the 2004-SIN-Cens on the basis of a PD incidence of other than or equal to 0 respectively: it was not used in 116 Centers, and was used in 209. The Qs asked again whether or not the Center the interviewee belonged to had a PD program: of the 270 (83.1%) of the respondent Centers, 65 did not use PD. However, 6 of these 65 had been classified in 2004 as Centers using PD, while 13 of the 205 which stated they had a PD program had been classified in 2004 as Centers which did not use it. It is to be remembered that the 2004 classification had been based on PD incidence, a criterion which no longer seemed correct to us today. We therefore reclassified the 2004-SIN-Cens Centers taking account of the prevalence at 31/12/2004 as well, and comparing the data with those of the GSDP Census of 2005 [17], and subsequent years where necessary. Following this reclassification, the number of inconsistencies was reduced to 4 Centers which had terminated their PD programs, and 6 Centers which had started one after 2004.

In the discussion at the time furthermore, a situation had emerged which was more complex than a simple distinction between Centers which used and those which did not use PD. Indeed, some of the Centers not using PD sent patients with indication (clinical or by choice) for PD to other Centers. The Qs took this distinction – not considered in the 2004-SIN-Cens – into account by dividing the Centers into Centers which use PD (PD-YES Centers), Centers which do not use PD but send patients with indication for it to other Centers (PD-TRANSF Centers) and Centers which do not consider it at all (PD-NO Centers).

In conclusion, 270 of the 325 Centers considered took part in the research with at least 1 Qs. Of these, 205 were PD-YES Centers, 36 were PD-NO Centers and 29 were PD-TRANSF Centers. Of the 55 Centers which did not respond to the Qs, 11 had been classified in 2004 as PD-YES Centers and 44 as PD-NO Centers, although their status at the time of the survey is not actually known as they failed to respond to the Qs.

The study did not relate in any way to patients, only to doctors whose participation was voluntary.

The questionnaire and the fields of investigation

The Qs was composed of 26 questions divided into 2 parts. The first defined the characteristics of the Nephrologist interviewed and the Center in which they worked; the second investigated the opinions of the Nephrologist on the validity of PD and the factors which can influence modality selection.

 

Part 1

Characteristics of the Nephrologist

The characteristics of the Nephrologist considered were: 1) training received in PD – 2) actual experience with PD (none, occasional and discontinuous, continuous for less or more than 3 years) – 3) hierarchical role within the Center (head of department/department director, manager, resident doctor) – 4) time effectively dedicated to dialysis (none; <25%; 25-50%; 50-75%; >75% of working hours) and, on a scale of between 1 and 5 (where 1 is only HD, 3 HD and PD equally, 5 only PD), how much time is dedicated to HD and how much to PD – 5) involvement in the choice of dialysis modality (yes/no), and if yes with which tasks (information, clinical evaluation, psychosocial-aptitude evaluation) and the degree of any such involvement, also on a scale of from 1 (little) to 5 (a lot).

Characteristics of the Center

The characteristics of the Center considered were: 1) the existence of a structured dialysis modality selection program (educational and informative, as well as clinical) – 2) the activities performed by the PD nurses (pre-dialysis, day hospital, inpatients, HD) for the PD-YES Centers – 3) the percentage of early referral patients – 4) an opinion on the level of information received by early referral patients in their Center on the different dialysis modalities – 5) the professional roles involved in their Center in the choice of treatment (head of department, HD doctor, PD doctor, HD nurse, PD nurse, nurses with other functions, psychologist). For the last question, the interviewee also had to express an opinion on the weight the professionals involved in the choice of the method had on a scale of from 1 (negligible) to 5 (decisive). For the first three questions (existence of a structured dialysis modality selection program, activities performed by the PD nurses and percentage of early referrals), in the Centers in which more than one Nephrologist responded, the responses did not always match. In the event of disagreement, the value attributed to the Center was determined on a hierarchical scale (in order: response of the Director if available, of the department manager if available, of the doctor with greater involvement in dialysis activities and finally, if there was still no agreement, of the majority). As the percentage of early referrals is numerical, inconsistencies were excessive, so it was not considered in this analysis.

For the last two questions (information provided to patients and weight of the different professional roles in their Center), as the responses involve opinions more than objective values they were considered individually and not adjusted into one sole value per Center.

 

Part 2

This part was divided into three sub-groups of questions. The first investigated the opinion of the doctor on the general factors which can influence the choice of modality, including the validity of the method; the second the opinion on certain conditions – clinical and non-clinical – of the single patients; and the third PD drop-out and duration.

General NON patient-associated factors

The general factors the interviewee had to give a personal evaluation of were: 1) the weight, on a scale of from 1 (none) to 5 (decisive), the doctor, nurse, patient, family members and other patients on RRT have on the choice of treatment for patients without required indications/contraindications for HD or PD. This assessment was requested for both patients with and without barriers to self-care of the PD – 2) the percentage of PD considered optimal on a scale of from <10% to >50% – 3) if they feel conditioned in the choice of mdality by the risk of peritonitis – 4) a comparison of PD with HD in terms of both dialysis efficiency and survival – 5) how much the total cost of the treatment, a shortage of nurses, private centers in the vicinity, the limited size of the Center (number of prevalent patients on dialysis) and HD station occupancy rates can affect the choice on a scale of from 1 (greatly in favor of HD) to 5 (greatly in favor of PD) – 6) the weight that the following incentives can have on favoring the use of PD: financial reimbursement for the caregivers of patients with barriers who are not suitable for self-care of PD (assisted PD), the development of remote care technology (telemedicine), full-time (24H) nursing phone support for patients on PD, home nursing support for patients on PD, financial incentives for residential care homes to assist patients on PD. Opinions were expressed on a scale of from 1 (no weight) to 5 (considerable weight).

Patient-associated factors

This part investigated opinions on certain specific conditions of patients which can represent an indication or contraindication for PD. In detail: 1) the percentage of patients who are eligible for both modalities – 2) the role of clinical and non-clinical factors associated with the patient and listed in Table 1 (the interviewee had to express an opinion on each of the factors listed on a scale of from 1 to 5 according to the following criteria: 1 = high indication for HD; 2 = moderate indication for HD; 3 = indication for either HD or PD; 4 = moderate indication for PD; 5 = high indication for PD).

CLINICAL FACTORS NON-CLINICAL FACTORS
Congestive heart disease Motivation for self-care
Ischemic heart disease Between 65 and 75 years of age
Diabetes Age > 75 years
Obesity (BMI > 30) Not self-sufficient with caregiver available
Malnutrition (BMI < 20) Living alone
Diverticulosis spread beyond the sigma Body image in patients of < 50 years of age
Polycystic nephropathy Working activity
Flexibility in lifestyle and free time
Quality of life
Table 1. Clinical and non-clinical factors influencing the choice which participants were asked to give an opinion on.

Duration of PD / Drop Out

In this last section, the interviewee had to give an opinion on 1) the duration of the PD – 2) the annual percentage of drop out considered “physiological” – 3) if drop out to HD could be influenced by the number of patients being treated.

Analysis

The responses were divided into the 3 types of Center, and compared using the chi-square method or non-parametric tests where indicated. The results were considered significant for p<0.05 up to 0.00001.

 

Results

Participant Centers and nephrologists

Overall the Qs was completed by 454 Nephrologists in 270 Centers (83.1% of the 325 public Centers considered) with a mean participation of 1.68 Nephrologists per Center, which was higher in the PD-YES Centers (Table 2). The percentage of responses in the PD-YES Centers (205 Centers out of 216 = 94.9%) was significantly higher than in the other Centers (65 Centers out of 109 = 59.6%) (p<0.00001). Of the Centers which do not use PD, 29 send patients to other Centers. The number and percentages of Centers which responded and of completed Qs are given in Table 2 and in Figure 1.

CENTERS / Qs PD-YES PD-TRANSF PD-NO TOTAL
Centers (2004-SIN-Cens)* 209 116 325
Qs-Centers ** 216 109 325
Qs-participant Centers *** 205 29 36 270
Nephrologists 370 42 42 454
Qs per Center 1,80 1,45 1,17 1,68
Table 2. At least one nephrologist responded to the Qs in 270 of the 325 Public Centers resulting from the 2004 SIN Census. The participation in the Census was significantly higher in the Centers using PD.
* Centers (2004-SIN-Cens) shows the breakdown of Centers as per the 2004 SIN Census (5). The distinction within the 116 public Centers not using PD of a sub-group of Centers which “rely” on other Centers for PD was not considered at the time. It is to be remembered that this classification was based on the use of PD for incident patients. The breakdown of Centers in the Qs is slightly different for the reasons given under Materials and Methods.
** “Qs Centers” are the Centers reclassified according to the criteria given under Materials and Methods
*** “Qs participant Centers” are the Centers which took part in the survey with at least 1 questionnaire completed
Participation in the survey of Centers with at least 1 Qs completed.
Figure 1. Participation in the survey of Centers with at least 1 Qs completed. In the middle, the division of the 325 non pediatric, ordinary status public Centers. On the right, Qs respondents in the 216 Centers using PD, and on the left in the 109 not using it.

Table 3 (represented in Figure 3) gives the characteristics of the 270 participant Centers taken from the 2004 SIN Census data. HD bed occupancy and Center size (HD + PD patients) were higher (p<0.0001) in the PD-YES Centers than in the others, while there are significant differences between the PD-NO and PD-TRANSF Centers (Qs-YES in Table 3). The comparison with the Centers which did not respond was significantly different (Qs-NO in Table 3 and in Figure 2).

CENTERS PD INCIDENCE (HD+PD) PREVALENCE (HD+PD) HD pt/PL
ALL NO 109 11,9±9,4 50,0±35,3 2,9±0,9
YES 216 28,7±18,4 116,1±65,9 3,4±0,8
Qs YES NO 36 11,4±7,4 48,9±29,9 3,0±1,0
TRASF 29 11,7±9,9 54,4±36,5 2,9±0,7
YES 205 28,9±18,5 116,6±65,8 3,4±0,8
    p<0,0001 p<0,0001 p<0,0001
   
Qs NO NO 44 12,5±10,6 47,8±39 2,9±1,0
YES 11 25,6±16,1 106,9±69,4 3,4±0,8
Table 3. General characteristics (taken from the 2004-SIN-Cens) of the 270 Centers which responded to the Qs (Qs-YES) and the 55 Centers which did not respond (Qs-NO). The comparison was significant between PD-YES Centers and PD-NO and PD-TRANSF Centers, but not between PD-NO and PD-TRANSF Centers or between Qs-YES and Qs-NO.
verall dialysis (HD + PD) incidence and prevalence, and HD prevalent patients per HD bed or station.
Figure 2. Overall dialysis (HD + PD) incidence and prevalence, and HD prevalent patients per HD bed or station. The data are broken down into PD-YES Centers and Centers which do not use PD (NO), in this case whether they do not consider PD or they transfer candidates for PD to other Centers. The same variables have been considered for all the Centers (ALL) and comparing the Centers which took part in the survey (Qs YES) or did not (Qs NO). For those which did take part, the NO Centers have been divided between those which transfer (TRANSF) and those which do not consider PD at all (NO). This distinction was clearly not possible for the Centers which did not respond. As can be seen, among the Centers which took part there was no difference between the PD-NO and PD-TRANSF Centers. The data are as reported in the 2004-SIN-Cens, so they relate to the year 2004.

Dividing the Centers by size and percentage of use of PD (Table 4) at 31/12/2004, though having an extensive dialysis program 17.5% of the Centers do not use PD or use it in less than 10% of patients, while 13.8% of Centers use it in a significant percentage of patients even though they are small in size. As regards the 4 Italian macro areas they belong to, analysis of the 2004-SIN-Cens data had shown how the use of PD was lower in the regions with a higher number of private Centers. The smaller size of the public Centers in these regions was also attributable to the presence of private Centers. Although the relationship between size and use of PD remains, the Centers using PD in the SOUTH are smaller, but with a higher percentage of patients on PD, which is likely to be compensation for the effect of private Centers and the greater number of Centers not using PD. These observations are summarized in Table 5 and Figure 2. The geographical breakdown of the Centers which took part in the Qs is shown in Figure 4.

At the time of the survey, reclassification was not possible due to not having the 2007 prevalence data, so the only variable considered remains the type of Center as defined above.

PD PREVALENCE (%)
0 <10% 10-<20% ≥20%
CENTERS 102 74 76 73
PATIENTS ON DIALYSIS ≤45 81 18.2 3.4 1.8 1.5
46-80 83 7.7 7.4 4.3 6.2
81-130 80 4.3 5.8 6.5 8.0
>130 81 1.2 6.2 10.8 6.8
Table 4. Breakdown of Centers by size (quartiles of the total number of patients on dialysis per Center) and percentage prevalence of PD at 31/12/2004.
NORTH CENTER SOUTH ISLANDS ALL
CENTERS (number) 116 72 93 44 325
HD (prevalent pts) 13,951 5,509 4,911 1,959 26,330
PD (prevalent pts) 2,368 785 761 286 4,200
SIZE (PTS/CENTER) 140.7 87.4 61.0 51.0 93.9
% PD 14.5 12.5 13.4 12.7 13.8
PD-NO/PD-TRANSF CENTERS 17 26 38 21 102
% of ALL Centers 14.7 36.1 40.9 47.7 31.4
HD (prevalent pts) 1,432 1,479 1,214 813 4,938
PD (prevalent pts) 0 0 0 0 0
SIZE (PTS/CENTER) 84.2 56.9 31.9 38.7 48.4
% PD 0 0 0 0 0
PD-YES CENTERS 99 46 55 23 223
% of ALL Centers 85.3 63.9 59.1 52.3 68.6
HD (prevalent pts) 12,519 4,030 3,697 1,146 21,392
PD (prevalent pts) 2,368 785 761 286 4,200
SIZE (PTS/CENTER) 150.4 104.7 81.1 62.3 95.9
% PD 15.9 16.3 17.1 20.0 16.4
Table 5. Characteristics of Centers divided by geographical macro area and distinguishing between the Centers not using PD (PD-NO and PD-TRANSF were not separate in the 2004-SIN-Cens) and those using it (PD-YES). The data are taken from the 2004-SIN-Cens and therefore refer to 2004 and not to the time of the survey (2007).
Breakdown of the 325 Centers in Italy into 4 macro areas as defined by ISTAT
Figure 3. Breakdown of the 325 Centers in Italy into 4 macro areas as defined by ISTAT (NORTH = Valle d’Aosta, Piemonte, Lombardia, Trentino Alto Adige, Friuli Venezia Giulia, Veneto, Emilia Romagna, Liguria – CENTER = Toscana, Marche, Umbria, Lazio – SOUTH = Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria – ISLANDS = Sicily, Sardinia). On the left (A), the average size of the Centers and the percentage PD prevalence (substantially similar). In the middle (B) at the top, the percentage of Centers not using PD (in black) and at the bottom the average size of the Centers that use (grey) and do not use PD (black). As can be seen, the Centers not using PD are always smaller than those using it in the same macro area, but with a gradual reduction from the NORTH to the ISLANDS. So though the principle that the smaller the Center the less PD is used is valid, it can be seen on the right (C) that when only the Centers using PD are considered, those in the SOUTH and ISLANDS use it more even though they are smaller.

Figure 4. Breakdown of the 325 Centers in Italy into 4 macro areas. On the left (A), the 270 Centers which took part, and on the right (B) the 325 eligible Centers. Qs-YES and Qs-NO refer to the Centers which took part in the survey (with at least 1 respondent) and those which did not.

 

PART 1 – CHARACTERISTICS OF THE NEPHROLOGISTS INTERVIEWED AND OF THEIR CENTERS

Characteristics of the Nephrologists

The general characteristics of the Nephrologists taking part are shown in Table 6. There are no significant differences between the 3 types of Center as regards gender (2/3 male) or age (superimposable), while the geographical area where the Center of the interviewee is based (p<0.0001) reflects the distribution of the Centers and the use of PD, which had already been analyzed in the 2004-SIN-Cens (Figures 2 and 3) [5].

CENTERS

(type, number)

NEPHROLOGISTS
(number)
FEMALE
(%)
AV. AGE
(years ± DS)
NORTH
(%)
CENTER

(%)

SOUTH

(%)

ISLANDS

(%)

PD-NO 36 42 38,1 50,8±6,4 14,3 26,2 31,0 28,6
PD-TRANSF 29 42 33,3 51,0±5,4 7,1 7,1 47,6 38,1
PD-YES 205 370 34,1 51,2±6,8 46,5 18,1 19,7 15,7
ALL 270 454 34,4 51,2±6,6 39,9 17,8 23,3 18,9
Table 6. General characteristics of the 454 Nephrologists who responded to the Qs.

Hierarchical role. As regards the hierarchical role of the interviewees, 20.9% hold a top position (Director, Head of Department, Operating Unit manager), 19.6% Department manager (likely to be, but not necessarily, in PD). Specialty trainee and non-resident attending doctors – at the time only present in University Centers – were not considered in this analysis. With regard to the Centers, taking part in 29.3% of cases was the Director/Head or Manager of the Nephrology and Dialysis Operating Unit, in 23.3% of cases the Sub-Department Manager, and in 5.9% both (Table 7). Overall therefore, the Director and/or a Sub-Department Manager took part in 58.5% of the Centers.

Table 7 also shows the age and gender according to different hierarchical roles.

ROLE % PD-NO PD-TRANSF PD-YES AGE Female(%)
HEAD OF DEPT. 95 20.9 38.1 28.6 18.1 53.3±5.7 11.6
SUB-DEPT. MAN. 89 19.6 7.1 14.3 21.6 53.5±4.2 30.3
RESIDENT 270 59.5 54.8 57.1 60.3 48.6±6.3 43.7
ALL 42 42 370 51.2±6.6 34.4
p<0.01 p<0.00001 p<0.00001
Table 7. Hierarchical role of the 454 participants in the survey.

Training and experience. The majority stated that they had received no or insufficient preparation for PD (score “1” or “2”) during their studies.

Interestingly, the percentage of Nephrologists with no or little preparation for PD (sum of the “None”, “1”, “2” percentages given in Table 8) increases significantly from the PD-NO Centers (38.0%) to the PD-TRANSF Centers (47.5%), and reaching 57.6% in the PD-YES Centers (Table 8 and Figure 5-A).

Vice versa, and in this case as expected, their experience with PD (Table 9) is unsurprisingly significantly greater and with continuity in the PD-YES Centers than the others. In particular, more than 3 years experience with PD had been acquired by 16.7% of the Nephrologists in the PD-NO Centers, by 26.2% in the PD-TRANSF Centers and by 65.1% in the PD-YES Centers (Table 9) (Figure 5-B).

Insufficient                                 Suitable for managing
None 1 2 3 4 5
PD-NO 19.0 7.1 11.9 28.6 11.9 21.4
PD-TRANSF 33.3 7.1 7.1 21.4 14.3 16.7
PD-YES 39.5 7.3 10.8 15.1 8.9 18.4
ALL 37.0 7.3 10.6 17.0 9.7 18.5
p<0.04
Table 8. Preparation received on PD while studying.
      Continuous
None Discontinuous <3 years >3 years
PD-NO 40.5 26.2 16.7 16.7
PD-TRANSF 35.7 19.0 19.0 26.2
PD-YES 6.5 20.3 8.1 65.1
ALL 12.3 20.7 9.9 57.0
Table 9. Experience of the 454 participants gained with PD (p<0.0001).
Characteristics of the Nephrologists who took part in the study.
Figure 5. Characteristics of the Nephrologists who took part in the study. A. Training in PD received during the course of their studies (interestingly, the percentage of those who received no training increases from the PD-NO Centers to the PD-YES Centers). B. Experience of more than 3 years with PD of the 454 Nephrologists interviewed by hierarchical role.

Working activity. As regards their area of work, practically all the interviewees (97.0%) handled dialysis. In detail, more than 50% of their working hours were spent on it by 71.4% of those in PD-NO Centers, 76.2% in PD-TRANSF Centers and 64.4% in PD-YES Centers.

While dialysis can be considered as focused only on HD in the Centers which do not use PD, in the PD-YES Centers the percentage of those working mainly or exclusively with PD is 28.6% (106 of 370 Nephrologists), with 18.6% (69 of 370 Nephrologists) dedicating more than 50% of their working time (Table 10).

0 < 25% 26 – 50% 51 – 75% > 75%
NO 0 0 28.6 26.2 45.2
TRANSF 0 11.9 11.9 21.4 54.8
SI 3.0 10.0 22.7 29.5 34.9
only HD 1.4 0.3 1.1 4.6
mainly HD 1.9 3.5 4.6 7.0
HD and PD 4.3 11.4 14.3 14.1
mainly PD 1.1 4.6 6.5 5.4
only PD 1.4 3.0 3.0 3.8
ALL 2.4 9.3 22.2 28.4 37.7
Table 10. Engagement with dialysis – the differences between the three types of Center are not significant. The modality the Nephrologist is involved with clearly only regards the PD-YES Centers.

Engagement in the choice of dialysis modality. Overall, 94.7% (430 interviewees) feel involved in the dialysis modality choice process, with no significant differences between the 3 types of Center (Table 11) either in the extent of their involvement (on a scale of from 1, “little”, to 5, “a lot”: PD-NO 3.7±1.1; PD-NO-TRANSF 4.2 ± 1.2; PD-YES 3.7 ± 1.4; p = NS).

With regard to the 3 aspects of the selection process (information, clinical assessment and aptitude assessment), most of the doctors in the Centers not using PD feel involved in the information (Table 11). Considering only the interviewees involved in the information process, checking the content of the information shows how 42.1% of those in PD-NO Centers say they provide information on both modalities. Although this is lower than the 75.0% in PD-TRANSF Centers and the 84.5% in PD-YES Centers, it was not expected as the percentage relates to Centers which do not use PD and do not send any possible candidates for PD to other Centers (Figure 6). The number of activities performed in the choice process is shown in Table 12.

ASSESSMENT
Not involved Information Clinical Aptitude
PD-NO 2.4 90.5 28.6 28.6
PD-TRANSF 4.8 85.7 59.5 52.4
PD-YES 5.7 73.2 78.9 68.4
ALL 5.3 76.0 72.5 63.2
Table 11. Engagement in the dialysis modality selection process. The differences between the three types of Center are not significant for the percentage of those involved in some way, but neither are they with regard to the degree to which they feel involved in this aspect. Significant, on the other hand, are the differences as regards the method of involvement (information, clinical assessment and social-aptitude assessment). Meanwhile, the different level of engagement in the three activities is to be expected: it is only natural that there is a negligible level of clinical assessment for indications and contraindications for PD in the Centers not using PD, and even more so aptitude assessment.
ACTIVITIES PERFORMED
CENTERS 0 1 2 3
PD-NO 2.4 69.0 7.1 21.4
PD-TRANSF 4.8 40.5 7.1 47.6
PD-YES 5.7 23.0 16.5 54.9
ALL 5.3 28.9 14.8 51.1
p<0.0001
24 131 67 232
DEGREE 0 3.7±1.2 3.8±1.0 4.1±1.1
Table 12. Engagement in the choice of dialysis modality. The numbers show the activities performed in the modality selection process. These activities are information, clinical assessment and social-aptitude assessment. As can be seen, 51.1% (mainly in the PD-YES Centers) say they are involved in all 3 activities with a medium-high level of engagement.
Involvement in dialysis modality selection.
Figure 6. Involvement in dialysis modality selection. A. Percentages of the 430 interviewees involved in the THREE areas of evaluation (information on the methods available, clinical and social-aptitude evaluation) – B. For the 345 Nephrologists involved in information, the modality(ies) illustrated by the interviewee to the patient. As can be seen, more than 40% of the Nephrologists in the PD-NO Centers say they also provide information on PD.

Characteristics of their Centers

The responses to this part of the survey can in some cases be considered opinions, as will be specified in the individual aspects. For some questions, in some Centers in which more than one Nephrologist took part conflicting assessments emerge between the Nephrologists in the same Center. These cases were resolved as reported under Materials and Methods.

Dialysis modality selection pathway. The existence of a pre-dialysis pathway increases from 47.2% in PD-NO Centers and 55.2% in PD-TRANSF Centers to 73.2% in the 205 PD-YES Centers (p<0.00005) (Figure 7). Of the 97 Centers with more than one Qs, the response of all the participants in 61 Centers (62.9% – 3.1 Qs per Center) is in agreement, while in the remaining 36 Centers (37.1% – 2.6 Qs per Center) there is at least one response which is not in agreement with the other Nephrologists in the same Center. In 6 of these 36 Centers, the response of the head of department or department manager is not in agreement with that of the majority; in particular, in 1 case for the Head of Department/Director there is no pathway while the majority confirm there is, with the opposite in 5 cases.

 Presence of a structured pathway
Figure 7. Presence of a structured pathway (with dedicated personnel and a pre-defined assessment program) in the different types of Center.

Other activities performed by the PD nurse. Of the 205 Centers performing PD, the nurse is dedicated exclusively to PD in just 26 (12.7%), while for the activities considered (pre-dialysis, day hospital activities, inpatients and HD) the PD nurse is responsible for 1, 2, 3 and all 4 in 45.4% (93 centers), 28.8% (59 centers), 10.7% (22 centers) and 2.4% (5 centers) respectively of the remaining 244 Centers (Figure 8). The main activity the PD nurse is engaged in is Pre-dialysis (Figure 8). The size of the PD program is inversely proportional to the number of “other activities” (Figure 9).

Other activities carried out by the nurses who are involved with PD.
Figure 8. Other activities carried out by the nurses who are involved with PD. The data obviously refer to the 205 PD-YES Centers. A. Number of other activities performed (the nurses are exclusively dedicated to PD in only 13% of the Centers). B. Type of activity carried out as a proportion of “other activities”.
The number of “other activities” performed by PD nurses increases as the patients treated with PD reduces
Figure 9. The number of “other activities” performed by PD nurses increases as the patients treated with PD reduces. Obviously the chart can also be read in reverse: the higher the number of other activities performed, the lower the number of patients on PD.

Completeness of the information provided to patients (opinion). Incident HD patients are adequately informed on HD, but not on PD in all three types of Center, though as regards the latter the level improves from the PD-NO Centers to the PD-YES Centers (Table 13). For incident PD patients, the level of information on the two methods is equivalent (not considering, obviously, the PD-NO Centers). The result does not change when the responses given by doctors involved in dialysis activities for more than 50% of their working time are considered.

HD INCIDENT PD INCIDENT
INFORMATION PROVIDED HD PD HD PD
NO 4.4 2.8
NO-TRANS 4.4 3.3 3.0 3.2
YES 4.2 3.7 4.3 4.7
ALL 4.2 3.6 4.0 4.3
N.S. p<0.00005 p<0.00001 p<0.00001
Table 13. Information provided to early referral incident patients.

Influence of different healthcare practitioners in the choice of modality (opinion). The healthcare practitioners considered as having a decisive role in their Center in the choice remain the head of department and the HD doctor for all Centers, while the PD doctor and nurse only have influence in the PD-YES Centers (Figure 10). For the psychologist, the response (some weight only in the PD-YES Centers) depends clearly on the availability of this service, confirming the presence in the PD-YES Centers of a more well-structured pre-dialysis pathway. The Head of Department is recognized as having a decisive role, even though the weight attributed depends on the role of the interviewee (Figure 11).

Opinion on the weight (from left to right) of the Head of
Figure 10. Opinion on the weight (from left to right) of the Head of Department (Director or Operating Unit Manager), the HD Doctor, the PD Doctor, a Doctor not involved with Dialysis, the HD nurse, the PD nurse, a Nurse not directly involved with Dialysis and lastly the Psychologist. The differences relating to PD Doctor and Nurse are as expected, as is the superimposable opinion between PD-NO and PD-TRANSF Centers. The interviewees in all the three types of Center agree on the role of the Head of Department.
Opinion on the role of the Head of Department in the choice depending on the role of the interviewee
Figure 11. Opinion on the role of the Head of Department in the choice depending on the role of the interviewee (Head of Department, Sub-department Manager or resident doctor). The weight is expressed as the mean (± DS) of the weight score attributed by the three professionals to the Head of Department (scores from 0 – no weight – to 5, decisive).

 

PART 2 – THE OPINIONS OF THE NEPHROLOGISTS

General non patient-dependent factors

Weight of different parties, including patient and family members (opinion) in self-sufficient and NON self-sufficient patients. Overall (considering all 3 types of Center together), the “weight” attributed to the doctor and nurse is the same whether the patient is self-sufficient or not. As expected, the “weight” attributed to the patient is greater when the patient is self-sufficient, while for those who are not self-sufficient the family member’s opinion is even more important than that of the doctor (Figure 12). The role of other patients is less important, and minimal for non self-sufficient patients.

Differences in the type of Center they belong to are highlighted in the opinion expressed on the importance of the nurse, patient and family members in the choice of modality (Figure 13) (Figure 14). For self-sufficient patients all three of these are assigned a significantly greater role by the interviewees in the PD-YES Centers than in the other Centers. For NON self-sufficient patients, the difference between PD-YES Centers and the others only relates to the nurse and family member (Figure 14).

Overall opinion (all Centers) on the role that the main professionals
Figure 12. Overall opinion (all Centers) on the role that the main professionals involved have in dialysis modality selection in patients who are self-sufficient or need a caregiver for PD. The value is the mean score (in this case the scale is from 1 – absent or irrelevant – to 5, decisive).
Opinion by type of Center on the weight the main professionals involved have in dialysis modality selection
Figure 13. Opinion by type of Center on the weight the main professionals involved have in dialysis modality selection in self-sufficient patients. The value is the mean score (in this case the scale is from 1 – absent or irrelevant – to 5, decisive).
Figure 14. Opinion by type of Center on the weight the main professionals involved have in dialysis modality
Figure 14. Opinion by type of Center on the weight the main professionals involved have in dialysis modality selection in NON self-sufficient patients (need for a caregiver for PD). The value is the mean score (in this case the scale is from 1 – absent or irrelevant – to 5, decisive).

Optimal percentage of PD. The responses relating to the percentage considered optimal confirm the importance of the type of Center in which the Nephrologist works (Table 14). Those working in Centers which do not use PD express significantly lower percentages as optimal for the use of PD compared to the others. The percentage does not change when only the 350 Nephrologists spending more than 50% of their time on dialysis and heads of department are considered (Figure 15).

OPTIMAL % NO TRANSF SI
=< 10 21.4 2.4 0.3
between 11 and 20 28.6 31.0 19.5
21 – 30 35.7 33.3 31.1
31 – 40 7.1 11.9 28.6
41 – 50 7.1 21.4 13.8
> 50 0.0 0.0 6.8
Table 14. Evaluation of the percentage of patients on dialysis with PD considered optimal (p<0.00001).
Optimal percentage use of PD according to Nephrologists in the different types of Center.
Figure 15. Optimal percentage use of PD according to Nephrologists in the different types of Center. In B, only the 350 Nephrologists with high involvement in dialysis (more than 50% of work time dedicated to dialysis) are considered. There are no significant differences between A and B.

 Fear of peritonitis. Of the 454 interviewees, 24 were not considered because they are not involved in any way in the modality selection process. Being conditioned by a fear of peritonitis is referred to by 48.8%, 19.5% and 15.5% respectively of the Nephrologists in PD-NO, PD-TRANSF and PD-YES Centers (Table 15). Considering only those with more than 3 years of experience with PD, the difference is not more significant, but the limited number of interviewees with >3 years experience in the PD-NO and PD-TRANSF Centers (a total of 16 out of 82), intriguing though it may be, does not allow for the drawing of certain conclusions in this regard, while in the PD-YES Centers there is no significant difference between those who have more or less than 3 years of experience in PD (Figure 16).

FEAR OF PERITONITIS NO TRANSF SI
NO 21 32 295
YES 20 8 54
Table 15. The fear of peritonitis diminishes from the PD-NO Centers (48.8%) to the PD-TRANSF (20.0%) and PD-YES Centers (15.5%).
 Influence of the fear of peritonitis in the choice process,
Figure 16. Influence of the fear of peritonitis in the choice process, considering only the 430 Nephrologists involved in the choice. A. All participants – B. Breakdown by having less or more than 3 years experience.

Validity of the method: adequacy. Table 16 gives the percentages of the different opinions expressed by the interviewees on the validity of clearance adequacy in PD compared to HD. The majority of PD-NO Centers consider it to be lower, while in the PD-TRANSF and PD-YES Centers the majority considered it to be the same or superior (Figure 17). The result does not change if only the interviewees with a high level of involvement in the modality selection pathway are considered.

DIALYSIS ADEQUACY SURVIVAL
CENTERS LOWER EQUAL HIGHER LOWER EQUAL HIGHER
NO 57.1 40.5 2.4 45.2 47.6 7.1
TRANSF 35.7 45.2 19.0 21.4 54.8 23.8
YES 25.7 61.4 13.0 14.1 64.9 21.1
ALL 29.5 57.9 12.6 17.6 62.3 20.0
Table 16. Evaluation of the validity of PD compared to HD. Both are evaluated in a significantly different way in the three types of Center (dialysis adequacy p<0.0005 – survival p<0.00002).
Figure 17. Evaluation of dialysis adequacy in PD compared to HD.
Figure 17. Evaluation of dialysis adequacy in PD compared to HD.

Validity of the method: survival. The results for survival are similar to those for adequacy, though less marked (Table 16) (Figure 17). The majority of participants believe it to be the same in all three types of Center, but only a few fewer in the PD-NO Centers believe it to be worse (47.6% the same – 45.2% worse). The opposite is true in the PD-YES Centers (64.9% the same – 14.1% worse) and in between in the NO-TRANSF Centers (54.8% the same – 28.1% worse). The result does not change when only the 300 interviewees with high involvement in dialysis are considered (lower survival rate – NO = 43.3% – TRANSF = 21.9% – YES = 13.0% – same survival rate – NO = 53.3% – TRANSF = 50.0% – YES = 64.3%)

Structural factors conditioning the use of PD. Of the 5 factors considered (cost, shortage of nurses, closeness to private Centers, limited overall size of Center, excess HD beds) the majority in all three types of Center agree that private Centers in the vicinity, limited size of Center and excess HD beds are factors favoring HD (Table 17) (Figures 18, 19). The majority belonging to PD-NO Centers do not consider cost to be an important factor, while in the PD-TRANSF and PD-YES Centers they consider it an indication for PD. This difference in opinion on costs is no longer significant when only the highly-involved Nephrologists are considered. The opinion expressed on the shortage of nurses as a conditioning factor is similar: the majority (38.1%) in the PD-NO Centers consider it a deciding factor, while in the TRANSF and YES Centers (61.9% and 66.8% respectively) it is considered an indication for PD, both overall and by just Nephrologists with high involvement in dialysis. In the PD-NO Centers however, more than a quarter of the interviewees (26.1%) consider it an indication for HD.

INDICATION FOR HD (1 – 2); INDIFFERENT (3); INDICATION FOR PD (4 – 5)
  1 2 3 4 5
COST (p<0.05)
NO 4.8 4.8 59.5 23.8 7.1
TRANSF 7.1 4.8 28.6 33.3 26.2
YES 3.0 3.8 36.2 26.8 30.3
ALL 3.5 4.0 37.7 27.1 27.8
SHORTAGE OF NURSES (p<0.0001)
NO 11.9 14.3 38.1 26.2 9.5
TRANSF 14.3 7.1 16.7 42.9 19.0
YES 3.0 5.7 24.6 33.8 33.0
ALL 4.8 6.6 25.1 33.9 29.5
PRIVATE CENTERS IN THE VICINITY (N.S.)
NO 47.6 14.3 38.1 0.0 0.0
TRANSF 28.6 19.0 42.9 7.1 2.4
YES 33.5 12.2 43.5 5.4 5.4
ALL 34.4 13.0 43.0 5.1 4.6
LIMITED SIZE OF CENTER (N.S.)
NO 28.6 23.8 31.0 14.3 2.4
TRANSF 33.3 9.5 35.7 14.3 7.1
YES 18.1 22.4 35.7 14.1 9.7
ALL 20.5 21.4 35.2 14.1 8.8
EXCESS HD BEDS (N.S.)
NO 54.8 16.7 23.8 2.4 2.4
TRANSF 38.1 19.0 28.6 7.1 7.1
YES 36.2 17.6 33.5 6.2 6.5
ALL 38.1 17.6 32.2 5.9 6.2
Table 17. Evaluation, as indication for PD or HD, of the structural factors given in the Table. If only the interviewees (300) with high involvement in the choice process (data not shown) are considered, the difference regarding the opinion between the three types of Center on cost is no longer significant.
Overall evaluation (454 Nephrologists) of indication for PD or HD
Figure 18. Overall evaluation (454 Nephrologists) of indication for PD or HD for each of the structural factors reported above on a scale of from 1 to 5.
Evaluation of indication for PD or HD
Figure 19. Evaluation of indication for PD or HD for each of the structural factors reported above on a scale of from 1 to 5. Participants have been divided by the type of Center they belong to.

Possible incentives for PD. The majority of interviewees (Figure 20) (Table 18) judge all 5 incentives considered positively. Analysis by type of Center shows significant differences regarding financial support for assisted PD, telemedicine and the application of financial incentives for residential care homes willing to manage PD: financial support for assisted PD and residential care homes is warmly supported by those belonging to PD-TRANSF and PD-YES Centers, and telemedicine by the PD-NO Centers (Figure 21).

from no importance (1) to considerable weight (5)
  1 2 3 4 5
FINANCIAL SUPPORT FOR ASSISTED PD (p<0.00001)
NO 33.3 16.7 16.7 21.4 11.9
TRANSF 14.3 4.8 28.6 26.2 26.2
YES 4.9 6.8 15.4 28.4 44.6
ALL 8.4 7.5 16.7 27.5 39.9
TELEMEDICINE (p<0.0005)
NO 7.1 7.1 14.3 54.8 16.7
TRANSF 2.4 7.1 31.0 31.0 28.6
YES 11.1 17.0 26.2 25.9 19.7
ALL 9.9 15.2 25.6 29.1 20.3
24H NURSE PHONE SUPPORT (N.S.)
NO 2.4 4.8 14.3 57.1 21.4
TRANSF 0.0 7.1 16.7 38.1 38.1
YES 3.2 9.2 17.0 34.1 36.5
ALL 2.9 8.6 16.7 36.6 35.2
HOME NURSING SUPPORT (N.S.)
NO 4.8 4.8 16.7 40.5 33.3
TRANSF 0.0 2.4 14.3 38.1 45.2
YES 2.4 3.8 9.7 29.5 54.6
ALL 2.4 3.7 10.8 31.3 51.8
FINANCIAL SUPPORT FOR RESIDENTIAL CARE HOMES (p<0.0005)
NO 7.1 4.8 28.6 42.9 16.7
TRANSF 2.4 7.1 19.0 33.3 38.1
YES 3.5 4.9 10.8 26.5 54.3
ALL 3.7 5.1 13.2 28.6 49.3
Table 18. Evaluation of the weight that the incentives for PD given in the Table have on the choice for PD according to Nephrologists by type of Center.
Figure 20. Opinion of the effectiveness
Figure 20. Opinion of the effectiveness of various initiatives generally considered to be incentives for PD: financial support for Caregivers in assisted PD; telemedicine; 24H nurse phone support; home nurse support; financial support for residential care facilities willing to accept and manage patients on PD. All interviewees (454 Nephrologists).
Opinion of Nephrologists of the effectiveness of various initiatives generally considered to be incentives for PD
Figure 21. Opinion of Nephrologists of the effectiveness of various initiatives generally considered to be incentives for PD divided by the type of Center they belong to.

General patient-dependent factors

Together these represent the most common clinical and social-aptitude indications and contraindications to PD which are normally evaluated during the pre-dialysis process.

Percentage of patients with no conditioning. The percentage of early referral patients who are free to choose between HD and PD is evaluated in a significantly different way depending on the type of Center a nephrologist belongs to (Table 19). In particular, while it is believed to be less than 50% of incident patients for 92.8% of interviewees in the PD-NO Centers, 47.6% in the PD-YES Centers believe it to be more than 50% (Figure 22), with the result not changing taking into account only the 300 interviewees with high involvement in dialysis (96.7% and 48.3% respectively).

≤40% 40-50% 50-60% 60-70% ≥70%
NO 71.4 21.4 4.8 0.0 2.4
NO-TRANSF 54.8 23.8 9.5 4.8 7.1
YES 25.7 26.8 21.1 14.1 12.4
ALL 32.6 26.0 18.5 11.9 11.0
Table 19. Percentage of patients free to choose dialysis modality (p<0.00001).
Opinion of the percentage of total incident patients in dialysis with no clinical or social conditioning
Figure 22. Opinion of the percentage of total incident patients in dialysis with no clinical or social conditioning and therefore able to choose either PD or HD.

Particular clinical conditions. Figure 23 compares the assessments given by those belonging to NO and TRANSF Centers considered together (82 interviewees) with those belonging to YES Centers (370 interviewees), considering together high or moderate indication for HD (responses 1 and 2) and PD (responses 4 and 5). On ischemic heart disease, malnutrition and diverticulosis, the responses – indication for PD for CAD and contraindication for PD for BMI<20 and diverticulosis spread beyond the sigma – do not differ significantly between the different types of Center. Opposite evaluations, on the other hand, were given by the majority of the interviewees for heart failure (indication for the PD-YES Centers and contraindication or indifferent for the PD-NO/TRANSF Centers) and polycystic nephropathy (contraindication for the PD-NO/TRANSF Centers and indifferent for the PD-YES Centers) (Figure 24). With regard to Type 2 DM, the proportion among those in the PD-NO/TRANSF Centers who expressed indifference or consider it an indication for PD (indifferent 41.7% – indication 35.7%) is higher than among those belonging to the PD-YES Centers (indifferent 52.4% – indication 21.9%). For obesity too, which is considered by over 75% in both groups to be a contraindication for PD, indifference is higher in the NO/TRANSF Centers (17.9% vs 8.4%). The difference between NO and TRANSF Centers was only significant with regard to Polycystic nephropathy (Figure 24); for all the other conditions the differences in evaluation between NO and TRANSF Centers were not significant.

The results for all three types of Center with the responses on a scale of from 1 to 5 are given in detail in Table 20.

INDICATION FOR HD (1 – 2); INDIFFERENT (3); INDICATION FOR PD (4 – 5)
1 2 3 4 5
CONGESTIVE HEART FAILURE (p<0.005)
NO 28.6 14.3 16.7 33.3 7.1
TRANSF 23.8 14.3 19.0 31.0 11.9
YES 11.1 10.8 17.6 29.2 31.4
ALL 13.9 11.5 17.6 29.7 27.3
ISCHEMIC HEART DISEASE (p<0.0005)
NO 14.3 7.1 26.2 45.2 7.1
TRANSF 2.4 4.8 21.4 52.4 19.0
YES 1.6 5.4 30.0 38.9 24.1
ALL 2.9 5.5 28.9 40.7 22.0
DIABETES (p<0.01)
NO 14.3 11.9 47.6 23.8 2.4
TRANSF 7.1 11.9 35.7 31.0 14.3
YES 5.1 20.5 52.4 15.9 5.9
ALL 6.2 18.9 50.4 18.1 6.4
OBESITY – BMI>30 kg/m² (N.S.)
NO 57.1 16.7 21.4 4.8 0.0
TRANSF 50.0 33.3 14.3 0.0 2.4
YES 52.4 35.1 8.4 3.2 0.8
ALL 52.6 33.3 10.1 3.1 0.9
MALNUTRITION – BMI<20 kg/m² (p<0.05)
NO 38.1 14.3 9.5 35.7 2.4
TRANSF 31.0 23.8 19.0 14.3 11.9
YES 24.1 23.2 25.7 19.7 7.3
ALL 26.0 22.5 23.6 20.7 7.3
DIVERTICULOSIS SPREAD BEYOND THE SIGMA (p<0.01)
NO 57.1 16.7 21.4 0.0 4.8
TRANSF 66.7 19.0 7.1 2.4 4.8
YES 41.9 35.9 17.3 3.5 1.4
ALL 45.6 32.6 16.7 3.1 2.0
APKD (p<0.00001)
NO 35.7 23.8 35.7 0.0 4.8
TRANSF 50.0 33.3 11.9 0.0 4.8
YES 15.4 25.7 50.3 5.9 2.7
ALL 20.5 26.2 45.4 4.8 3.1
Table 20. Detailed evaluation of the single clinical factors (in percentages) on which the opinion of the Nephrologists was requested.
Evaluation of the main clinical factors which can condition the choice of modality.
Figure 23. Evaluation of the main clinical factors which can condition the choice of modality. 1. «CHF» Congestive heart failure; 2. «CAD» Ischemic heart disease; 3. «DM» type 2 Diabetes Mellitus; 4. «BMI>30» Obesity; 5. «BMI<20» Malnutrition; 6. «Diverticulosis», understood as diverticulosis spread beyond the sigma; 7. «ADPKD» Polycystic nephropathy. NOTE – The interviewees in the NO and TRANSF Centers (82) were considered together and compared with those of the PD-YES Centers (370).
Polycystic nephropathy and congestive heart failure in the opinion of the interviewees divided by type of Center.
Figure 24. Polycystic nephropathy and congestive heart failure in the opinion of the interviewees divided by type of Center.

Particular social conditions (NON-clinical factors associated with the patient). Figure 25 and Figure 26 compare the assessments given by those belonging to NO and TRANSF Centers considered together (82 interviewees) with those belonging to YES Centers (370 interviewees), considering together high or moderate indication for HD (responses 1 and 2) and PD (responses 4 and 5). The interviewees agree (p= N.S.) that motivation for self-care, working activity, a need for flexibility in times for dialysis and – in the case of NON self-sufficient patients – the availability of a caregiver all represent indications for PD, just as not sticking with the therapy (NON compliance) is a valid indication for HD. Opinions are significantly different between the three groups, on the other hand, with regard to the importance of body image, age, quality of life and living alone. Body image in particular is considered an indication for HD by 52.4% in PD-NO/TRANSF Centers, while 62.7% in the PD-YES Centers consider it to be an indication for PD or are indifferent (p<0.05); while Quality of Life is considered an indication for PD by 51.2% in the PD-NO/TRANSF Centers, with the percentage rising to 67.3% in the PD-YES Centers (p<0.01); an age of between 65 and 75 is considered an indication for HD or indifferent by 15.5% and 50.0% respectively in the PD-NO/TRANSF Centers, while in the PD-YES Centers these percentages are 4.1% and 57.3% respectively (p<0.0005); the difference is more marked for > 75 years of age, considered an indication for HD by 48.8% of the interviewees in PD-NO/TRANSF Centers compared with 24.3% in the PD-YES Centers (p<0.00005); finally, living alone is an indication for HD for 78.6% in PD-NO/TRANSF Centers compared with 51.6% in PD-YES Centers (p<0.00005).

NON clinical conditions evaluated according to level of indication for HD or PD.
Figure 25. NON clinical conditions evaluated according to level of indication for HD or PD. «MOTIVAT. SELF-CARE»: patient motivated for self-care dialysis; «FLEXIBILITY» in treatment times; «Q of L»: Quality of Life; «NON COMPLIANCE»: limited compliance with prescriptions. NOTE – The interviewees in the NO and TRANSF Centers (84) were considered together and compared with those of the PD-YES Centers (370).
 NON clinical conditions evaluated according to level of indication for HD or PD.
Figure 26. NON clinical conditions evaluated according to level of indication for HD or PD. «ASSIST-PD»: NON self-sufficient patient needing a CareGiver (CG) who is available. NOTE – The interviewees in the NO and TRANSF Centers (82) were considered together and compared with those of the PD-YES Centers (370).

For all the NON clinical conditions considered, the differences in evaluation between PD-NO and PD-TRANSF Centers was not significantly different. The results for all three types of Center are given in detail in Table 21, with the responses on a scale of from 1 to 5. The results of the analysis limited to the 300 Nephrologists with high involvement in dialysis activities proved to be superimposable with those given in Table 21.

INDICATION FOR HD (1 – 2); INDIFFERENT (3); INDICATION FOR PD (4 – 5)
1 2 3 4 5
MOTIVATION FOR SELF-CARE (p<0.00001)
NO 2.4 0.0 0.0 64.3 33.3
TRANSF 0.0 0.0 4.8 31.0 64.3
YES 0.8 0.5 2.4 13.0 83.2
ALL 0.9 0.4 2.4 19.4 76.9
AGED BETWEEN 65 AND 75 (p<0.0005)
NO 7.1 9.5 57.1 21.4 4.8
TRANSF 4.8 9.5 42.9 35.7 7.1
YES 0.3 3.8 57.3 25.9 12.7
ALL 1.3 4.8 55.9 26.4 11.5
AGE > 75 (p<0.00001)
NO 40.5 11.9 19.0 21.4 7.1
TRANSF 21.4 23.8 23.8 14.3 16.7
YES 5.1 19.2 40.0 24.6 11.1
ALL 9.9 18.9 36.6 23.3 11.2
NOT SELF-SUFFICIENT WITH CAREGIVER AVAILABLE (p<0.005)
NO 11.9 7.1 11.9 61.9 7.1
TRANSF 19.0 4.8 19.0 40.5 16.7
YES 8.6 6.2 10.3 40.5 34.3
ALL 9.9 6.2 11.2 42.5 30.2
LIVING ALONE (p<0.005)
NO 50.0 26.2 21.4 0.0 2.4
TRANSF 42.9 38.1 11.9 4.8 2.4
YES 25.1 26.5 40.3 5.4 2.7
ALL 29.1 27.5 35.9 4.8 2.6
BODY IMAGE (p<0.05)
NO 26.2 31.0 35.7 7.1 0.0
TRANSF 23.8 23.8 40.5 9.5 2.4
YES 8.6 28.6 50.3 9.2 3.2
ALL 11.7 28.4 48.0 9.0 2.9
WORK (p<0.05)
NO 2.4 4.8 19.0 59.5 14.3
TRANSF 2.4 4.8 19.0 38.1 35.7
YES 1.6 1.9 17.3 33.5 45.7
ALL 1.8 2.4 17.6 36.3 41.9
TIME FLEXIBILITY (p<0.005)
NO 7.1 0.0 14.3 61.9 16.7
TRANSF 0.0 2.4 14.3 47.6 35.7
YES 1.4 0.5 10.8 34.3 53.0
ALL 1.8 0.7 11.5 38.1 48.0
QUALITY OF LIFE (p<0.00001)
NO 2.4 2.4 47.6 45.2 2.4
TRANSF 0.0 11.9 33.3 40.5 14.3
YES 1.4 1.9 29.5 28.6 38.6
ALL 1.3 2.9 31.5 31.3 33.0
NON COMPLIANCE (p= N.S.)
NO 71.4 11.9 14.3 2.4 0.0
TRANSF 66.7 14.3 11.9 4.8 2.4
YES 67.6 17.0 12.2 1.6 1.6
ALL 67.8 16.3 12.3 2.0 1.5
Table 21. Detailed evaluation of the single NON clinical factors (in percentages) on which the opinion of the Nephrologists was requested.

Duration of PD and drop-out to HD

Duration of PD. When asked if drop-out from PD was to be considered a probable event after 2, 4 or 5 years, or whether PD has no definable time limit a priori, the responses were significantly different, as reported in Table 22. Rather than being a division between those who believe it has a predetermined duration and those who do not (p=N.S.) however, the difference relates to the estimate of the duration given by the former (Figure 27). Limited to the 300 interviewees with high involvement in dialysis, the result of the same analysis was not significant.

2 years 3 years 5 years UNDEFINED
NO 14.3 19.0 19.0 47.6
TRANSF 2.4 21.4 19.0 57.1
YES 2.7 11.6 30.5 55.1
ALL 3.7 13.2 28.4 54.6
 Table 22. Duration of PD.
The duration of PD in the opinion of the interviewees divided by type of Center.
Figure 27. The duration of PD in the opinion of the interviewees divided by type of Center.

Duration of PD and size of PD program. The majority of the interviewees (63.7%) believe that the size of a Center’s PD program (total number of patients treated and/or in treatment) has no influence on the percentage of drop-out to HD (Figure 28-A), with no significant differences among the three types of Center (or when considering only the 300 with high involvement in dialysis).

Figure 28. The response on annual drop-out rate is similar to that on the duration of PD (A). In B, the opinion of the Nephrologists, divided by type of Center, on the influence the size of PD program can have on drop-out.
Figure 28. The response on annual drop-out rate is similar to that on the duration of PD (A). In B, the opinion of the Nephrologists, divided by type of Center, on the influence the size of PD program can have on drop-out.

Percentage of annual drop-out. The interviewees in the three types of Center also gave a similar response to this question (Figure 28-B). Overall, 48.9% believe there is no PHYSIOLOGICAL drop-out percentage, while among the remainder 17.6% and 19.6% respectively consider it to be lower than 6% or between 6 and 10%.

Interest for the subject. When asked “In future, would you like to be informed of the results of this questionnaire and any new initiatives which may follow?”, a total of 91.6% expressed interest, though there was a strongly significant difference between the types of Center. Indeed, while almost all those belonging to YES Centers (98.6%) expressed interest, in the NO Centers the percentage of those interested drops to 47.6% (Figure 29).

Figure 29. The response to this question, asked more out of courtesy than as part of the survey, can be an indicator of interviewee interest in PD.
Figure 29. The response to this question, asked more out of courtesy than as part of the survey, can be an indicator of interviewee interest in PD.

 

Discussion

The 2004-SIN-Cens had shown the importance of structural factors (number of private Centers, size of Center and HD station occupancy rate) in the use of PD: Centers not using PD are smaller, have a lower HD bed occupancy rate and are located in regions where there are numerous private Dialysis Centers. If structural factors alone counted, opinions on PD would be no different between those using PD and those not using it; however, they were shown to be significantly different depending on the type of Center respondents belonged to: negative when it does not use PD and positive in those that do.

As choosing a place to work generally precedes work experience, opinions on PD seem to be defined according to experience gained with the method, confirming the importance of structural factors on use of the modality. However, the importance alongside structural factors of positive opinions of the modality is shown by the fact that there are Centers (PD-TRANSF) which have the same structural characteristics as Centers which do not consider PD at all due to size (small) and HD bed occupancy (low), yet send candidates for PD to other Centers.

In short, the use of PD in public Centers in Italy seems to be the result of balancing structural factors and opinions, with the latter however being conditioned – though only partially – by the former as opinions are enhanced with the gaining of experience in PD.

The main results of the study are summarized in Table 23.

Characteristics of the Nephrologists and their Centers

As regards the Nephrologists in the three types of Center, the only significant difference relates – naturally – to experience with PD, while their personal characteristics, training and engagement with dialysis, and degree of involvement in the choice of modality are substantially similar. The Centers which took part in the survey are not significantly different to those which did not. The main difference between the 3 types of Center regards the presence to a lesser extent of a structured modality selection pathway in the PD-NO Centers than in the PD-YES Centers, and in between the two in the PD-TRANSF Centers. Matching this is the percentage of those involved in all the 3 components of the choice (information, clinical evaluation and social-aptitude evaluation). If this concurs with the nature of the Center (choice is not an issue where PD is not performed), the level of participation of those who define themselves as being involved in the choice is medium-high in all three types of Center. This contradiction could represent a different cultural approach essentially limiting the choice in the PD-NO Centers to information. Strangely however, even in the PD-NO Centers HD incident patients are informed on PD, although insufficiently. Despite this, the difference between PD-NO and PD-YES Centers in regard to the information provided to patients is of note (2.8 vs 3.7 respectively on a scale of from 1 to 5). As the question on information provided related to early referral patients, but did not specify an absence of contraindications for PD, this information may be influenced by these contraindications, which are logically more numerous in HD incident patients in PD-YES Centers (in everyday practice, the existence of contraindications for PD is considered grounds for making informing the patient on this method “unnecessary”).

Opinions: roles played in making the choice

In accordance with the above, there is a clear difference in the way the percentage of patients who could do either PD or HD (with no contraindications) is assessed by Nephrologists in the three types of Center. If the choice is influenced by the healthcare practitioners, everyone recognizes as regards their own Center the decisive role played by the Director, while the weight attributed to other professionals, such as the PD doctor or nurse and psychologist, depends obviously on the type of Center and availability of the Service. Of interest is the role of the psychologist, which is important only in the PD-YES Centers, indicating a more well-structured selection pathway in these Centers. As regards the roles in general of the doctor, nurse, patient, family members and other patients, everyone agrees that the doctor is key, the patient or family members (depending on whether the patient is self-sufficient or not) are important, and other patients are irrelevant. The main difference between the three types of Center lies in the assessment of the role of the nurse, which is seen as NON marginal only by 14.3% of the Nephrologists in the PD-NO Centers compared to 60.5% in the PD-YES Centers.

Opinions: validity of the method, optimal percentage and drop-out

Opinions on adequacy and survival in PD compared to HD also differ considerably in the three types of Center: worse for the PD-NO Centers, the same or better than HD in the PD-YES Centers. Around half believe that PD has no predefined duration, with no differences between the Centers; however, the percentage of the other half who give it a maximum duration of 2 or 3 years compared to 5 years is significantly higher in the PD-NO Centers. It is therefore only natural that just 14.3% in the PD-NO Centers consider a proportion of patients treated with PD of more than 30% optimal, while the proportion is below 10% in 21.4% in these Centers, unlike the others. This means, however, that for 64.3% in the PD-NO Centers the optimal proportion of patients treated with PD is between 10 and 30% (the actual percentage of PD in the PD-YES Centers)[18].

For this aspect, as for several others, the evaluation given by the Nephrologists in PD-TRANSF Centers is similar to that of those in PD-YES Centers.

Opinions: general factors conditioning modality selection

Fear of peritonitis is most felt in the PD-NO Centers, least in the PD-YES Centers and in between the two in the PD-TRANSF Centers. Of interest is the finding that the difference is no more significant when considering only the interviewees with > 3 years of experience with PD. Size of Center, less pressure on HD beds and closeness to private Centers are recognized as factors that favor or are indications for the use of HD with no significant differences between the Centers, while cost and shortage of nurses are indications for PD in the PD-YES and PD-TRANSF Centers, but not in the PD-NO Centers, where to the contrary for the majority they represent an indication for HD or have no importance. This may be justified by the different perspective Nephrologists have in different types of Center. In fact, though the nurses/patients ratio clearly favors PD, and therefore a shortage of nurses should represent an incentive for this method, the perspective taken in PD-NO Centers is of having to start a PD program with an initial investment which is known to always involve a greater use of resources rather than a saving, as becomes evident only after the program has started.

Opinions: patient-specific factors conditioning modality selection

While practically everyone agrees that diverticulosis and obesity are an indication for HD, that coronary artery disease is an indication for PD and that it makes no difference in the case of malnutrition and diabetes, there is no agreement on congestive heart failure (clear indication for PD in the PD-YES Centers) or polycystic nephropathy (clear indication for HD in the PD-YES and DP-TRANSF Centers). For the non-clinical factors, everyone agrees that motivation for self-care, having a work activity and the need for flexible treatment times are all indications for PD, while poor compliance is an indication for HD. The differences regard body image, which is considered an indication for HD in the PD-NO and TRANSF Centers while 50% in the PD-YES Centers are indifferent, and Quality of Life, which is considered better in PD by everyone, but even more positively in the PD-YES Centers. An age of between 65 and 75 is considered as making no difference or an indication for PD by the majority, while an age of over 75 and living alone are judged differently by those in the 3 types of Center. For the majority in the PD-NO Centers, being >75 years of age is an indication for HD, but not in the PD-YES Centers, while living alone represents an indication for HD for everyone, but much more so in the PD-NO Centers. However, if the patient is not self-sufficient and has a caregiver available PD is recognized by everyone as the recommended modality. Clearly, the availability of a caregiver is considered very rare in the PD-NO Centers. As regards possible incentives for PD, financial support for the caregiver or residential care facility is considered most important in the PD-YES Centers, while interestingly the most important for the interviewees in the PD-NO Centers are telemedicine and technological innovation.

PD-NO PD-TRANSF PD-YES
CHARACTERISTICS OF THE NEPHROLOGIST
existence of a structured choice pathway (YES, %) 47.2 55.2 73.2
involvement in all three pre-dialysis activities (%) 21.4 47.6 54.9
experience in PD of >3 years (%) 16.7 26.2 65.1
information on PD provided to pts on HD (score from 1 to 5) 2.8 3.3 3.7
THE CHOICE – ROLES
>40% of incident pts who could do PD (%) 28.6 45.2 74.3
NON marginal role of nurse in the choice (%) 14.3 31.0 60.5
THE VALUE OF PD
lower dialysis adequacy than HD (%) 57.1 35.7 25.7
lower survival rate than HD (%) 45.2 21.4 14.1
drop-out expected after 2 or 3 years (%) 33.3 23.9 14.3
optimal percentage of pts treated with PD of >30% 14.3 33.3 49.2
optimal percentage of pts treated with PD of <10% 21.4 2.4 0.3
FACTORS WHICH CONDITION THE CHOICE – indications for PD
cost (%) 41.0 59.5 57.0
shortage of nurses (%) 35.7 61.9 66.8
congestive heart failure (%) 40.4 42.9 60.6
Quality of Life (%) 47.6 54.8 67.2
pt not self-sufficient with caregiver available (%) 69.0 57.2 84.8
FACTORS WHICH CONDITION THE CHOICE – indications for HD
age > 75 years (%) 52.4 45.2 24.3
living alone (%) 76.2 81.0 51.6
ADPKD 59.5 83.3 41.1
body Image indication for HD 57.2 47.6 37.2
fear of peritonitis 48.8 20.0 15.5
Table 23. Summary of the main differences (considering only significant ones) of opinion between Nephrologists in the three types of Center.

 

Limitations of the study

The study has several limitations. The data were re-analyzed a number of years following their collection, so some findings linked to the time at which the survey was carried out may not have been highlighted or discussed. The prevalence and incidence data refer to 2004, and not to the year of the study. Finally, the participants were selected on a voluntary basis. However, the large size of the sample cohort, the inclusion of a substantial number of Nephrologists who do not prescribe PD and the different aspects considered undoubtedly represent a strength.

 

Conclusions

The study confirms the importance of the opinions or “preconceptions” of Nephrologists associated with the type of Center they work in. Compared with Centers in which PD is performed, in Centers in which it is not the opinion of PD is more negative, if there is a pre-dialysis choice pathway it is simplified to just providing information and the percentage of patients considered optimal for treatment with PD is lower. However, opinions vary in these Centers too (not everyone has the same view), conditioned as they are by the experience the Nephrologist has with PD, and can even be positive on various specific aspects. Together with the existence of Centers which send patients who may have an indication for PD to other Centers though they do not perform it themselves, as is highlighted for the first time by this study, all this suggests that the use of PD depends on a combination of structural factors (size, neighboring private facilities and HD beds) and opinions, in which the latter however are only partially conditioned by the former.

 

Bibliography

  1. United States Renal Data System. 2023 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2023. https://usrds-adr.niddk.nih.gov/2023.
  2. Nissenson AR, Prichard SS, Cheng IK, Gokal R, Kubota M, Maiorca R, Riella MC, Rottembourg J, Stewart JH. Non-medical factors that impact on ESRD modality selection. Kidney Int Suppl. 1993 Feb;40:S120-7. PMID: 8445833.
  3. van de Luijtgaarden MW, Jager KJ, Stel VS, et al. Global differences in dialysis modality mix: the role of patient characteristics, macroeconomics and renal service indicators. Nephrol Dial Transplant. 2013 May;28(5):1264-75. https://doi.org/10.1093/ndt/gft053.
  4. Karopadi AN, Mason G, Rettore E, Ronco C. The role of economies of scale in the cost of dialysis across the world: a macroeconomic perspective. Nephrol Dial Transplant. 2014 Apr;29(4):885-92. https://doi.org/10.1093/ndt/gft528.
  5. Viglino G, Neri L, Alloatti S, Cabiddu G, Cocchi R, Limido A, Marinangeli G, Russo R, Teatini U, Schena FP. Analysis of the factors conditioning the diffusion of peritoneal dialysis in Italy. Nephrol Dial Transplant. 2007 Dec;22(12):3601-5. https://doi.org/10.1093/ndt/gfm416.
  6. Hingwala J, Diamond J, Tangri N, Bueti J, Rigatto C, Sood MM, Verrelli M, Komenda P. Underutilization of peritoneal dialysis: the role of the nephrologist’s referral pattern. Nephrol Dial Transplant. 2013 Mar;28(3):732-40. https://doi.org/10.1093/ndt/gfs323.
  7. Jung B, Blake PG, Mehta RL, Mendelssohn DC. Attitudes of Canadian nephrologists toward dialysis modality selection. Perit Dial Int. 1999 May-Jun;19(3):263-8. https://doi.org/10.1177/089686089901900313.
  8. Mendelssohn DC, Mullaney SR, Jung B, Blake PG, Mehta RL. What do American nephologists think about dialysis modality selection? . Am J Kidney Dis. 2001 Jan;37(1):22-29. https://doi.org/10.1053/ajkd.2001.20635.
  9. Charest AF, Mendelssohn DC. Are North American nephrologists biased against peritoneal dialysis? Perit Dial Int. 2001 Jul-Aug;21(4):335-7. PMID: 11587394.
  10. Jassal SV, Krishna G, Mallick NP, Mendelssohn DC. Attitudes of British Isles nephrologists towards dialysis modality selection: a questionnaire study. Nephrol Dial Transplant. 2002 Mar;17(3):474-7. https://doi.org/10.1093/ndt/17.3.474.
  11. Zhao LJ, Wang T. Attitudes of Chinese chief nephrologists toward dialysis modality selection. Adv Perit Dial. 2003;19:155-8. PMID: 14763053.
  12. Ledebo I, Ronco C. The best dialysis therapy? Results from an international survey among nephrology professionals. NDT Plus. 2008 Dec;1(6):403-408. https://doi.org/10.1093/ndtplus/sfn148.
  13. Bouvier N, Durand PY, Testa A, Albert C, Planquois V, Ryckelynck JP, Lobbedez T. Regional discrepancies in peritoneal dialysis utilization in France: the role of the nephrologist’s opinion about peritoneal dialysis. Nephrol Dial Transplant. 2009 Apr;24(4):1293-7. https://doi.org/10.1093/ndt/gfn648.
  14. Desmet JM, Fernandes V, des Grottes JM, Spinogatti N, Collart F, Pochet JM, Dratwa M, Goffin E, Nortier JL. Perceptive barriers to peritoneal dialysis implementation: an opinion poll among the French-speaking Belgian nephrologists. Clin Kidney J. 2013 Jun;6(3):358-62. https://doi.org/10.1093/ckj/sft041.
  15. Fluck RJ, Fouque D, Lockridge RS Jr. Nephrologists’ perspectives on dialysis treatment: results of an international survey. BMC Nephrol. 2014 Jan 15;15:16. https://doi.org/10.1186/1471-2369-15-16.
  16. Lorcy N, Turmel V, Oger E, Couchoud C, Vigneau C. Opinion of French nephrologists on renal replacement therapy: survey on their personal choice. Clin Kidney J. 2015 Dec;8(6):785-8. https://doi.org/10.1093/ckj/sfv093.
  17. Marinangeli G, Cabiddu G, Neri L, Viglino G, Russo R, Teatini U; Italian Society of Nephrology Peritoneal Dialysis Study Group. Old and new perspectives on peritoneal dialysis in Italy emerging from the Peritoneal Dialysis Study Group Census. Perit Dial Int. 2012 Sep-Oct;32(5):558-65. https://doi.org/10.3747/pdi.2011.00112.
  18. Neri L, Viglino G, Vizzardi V, Porreca S, Mastropaolo C, Marinangeli G, Cabiddu G. Peritoneal Dialysis in Italy: the 8th GPDP-SIN census 2022. G Ital Nefrol. 2023 Jun 29;40(3):2023-vol3. PMID: 37427898.

Peritoneal Dialysis in Italy: the 8th GPDP-SIN Census 2022 – 2nd Part: the Centers

Abstract

Objectives. The results are presented of the 8th National Census (Cs-22) of the Peritoneal Dialysis Project Group of the Italian Society of Nephrology relating to the characteristics of the Centers in Italy which used PD in 2022.
Materials and methods. The 227 non-pediatric centers which used Peritoneal Dialysis (PD) in 2022 took part. The data requested were sent in aggregate form. For the first time, the resources available and training were investigated as well as home visits. The Centers have been divided into Quartiles according to the number of prevalent PD patients at 31/12/2022.
Results. Centers with a smaller PD program (<9 pts) are characterized by 1. smaller overall size – 2. fewer personnel (doctors/nurses) dedicated to PD – 3. greater recourse to external personnel for training – 4. Less incremental prescription and evaluation of peritoneal permeability – 5. higher drop-out to HD in particular for choice/impossibility to continue and for adequacy/catheter-related issues. A lower peritonitis rate was recorded in Centers with a more extensive PD program (≥25 pts). Home visits are carried out regularly by a small minority of Centers. Conclusions. The analysis shows an association between size of Center PD program and available resources, PD modality and outcome.

 

 

Graphical abstract

 

Keywords: Peritoneal Dialysis, Center effect, technique failure

Background

Besides results pertaining to peritoneal dialysis (PD), the Peritoneal Dialysis Project Group Census also investigates a number of organizational aspects, which were broadened in the last edition relating to 2022 to the resources available for PD (premises and dedicated personnel) and training. The PD results were published recently in this Journal [1]. In this second part, the characteristics are reported of the 227 Centers which used PD in 2022 and which have remained virtually the same over almost 20 years, in other words a minority of the Dialysis Centers in Italy.

The first Italian Society of Nephrology Census relating to 2004 had shown that PD was used in 64.3% of the non-pediatric public Centers (209 out of 325 Centers) and practically unused in all the 286 private Centers surveyed at the time. The use of PD was conditioned by whether the Center was public or private (absent in the latter), size of Center and HD bed occupancy (the greater the size and pressure on HD places, the greater the use of PD). In turn, the presence of private Centers ‒ significant in some areas ‒ reduces the size of the public Centers, reinforcing the negative effect on the use of PD.

However, there were large public Centers with a high HD bed occupancy rate which were not using PD, while it was used – even extensively – by others with opposite characteristics. Clearly, alongside the structural factors given there was also a fourth element conditioning the use of PD: the Center’s “policy”. This aspect was investigated by means of a 2007 questionnaire, also carried out by the PD Study Group, the results of which have never been published though. The methodology and breadth of the survey make it quite unique, still today. In an attempt to understand the state of affairs in Italy, it seemed to us only right to retrieve its results, attaching them to this paper.

 

Materials and methods

The methodology of the Census was described at great length in the recent paper published in this Journal, which can be referred to [1].

The characteristics of the Centers surveyed were the existence of premises for PD, the presence of medical and nursing personnel dedicated to PD (whose sole or exclusively attributed activity is PD), training methods in terms of both who performs it and where it is carried out, the performance of PET and lastly home visits.

As with other similar analyses, to facilitate the interpretation of the results the Centers have been divided into quartiles (Table 1) based on the number of prevalent patients on PD at 31/12/2022.

QUARTILE PREVALENT ON DP CENTERS %
MIN (from) MAX (to)
Q1 1 8 55 24,2
Q2 9 14 58 25,6
Q3 15 24 58 25,6
Q4 25 112 56 24,7
227  
Table 1. Division into quartiles of the 227 PD Centers surveyed based on number of prevalent patients on PD at December 31st 2022.

The groups were then compared for “structural” characteristics (size and percentage use of PD, geographical distribution, presence of dedicated personnel and spaces, training methods, home visits and performance of PET), for “use” of PD (manual or automated modality, incremental PD, assisted PD) and for “results” obtained (drop-out and turnover, peritonitis).

The Census represents a snapshot of the situation relating to PD in Italy. The statistical analysis (chi-square) was therefore limited to any differences between the groups.

 

Results

STRUCTURAL CHARACTERISTICS OF THE CENTERS

Size of Center and percentage use of PD

Table 2 shows the structural characteristics of the Centers divided into the 4 quartiles of PD prevalence.

The size of Centers was assessed by considering the total number of dialysis patients (HD + PD) at 31/12/2022, and as a result limited to the 183 Centers which provided HD prevalence data. As can be seen (Table 2), as the overall size of the Center increases, not only the number but also the percent proportion of PD patients with respect to total dialysis patients rise from 6.5% in Centers with a minimal PD program (Q1, 1-8 PD patients per Center) to 20.9% in “large” Centers (Q4, ≥25 patients).

Although it is not certain, the estimate can be considered valid as the number of PD patients per Center (“PD PTS per CENTER”) is practically superimposable on those recorded in all 227 Centers (Table 2).

ALL PD CENTERS CENTERS WITH HD PREVALENCE AVAILABLE
CENTERS PD

PREVAL.

PD PTS per CENTER CENTERS PD

PREVAL.

HD

PREVAL.

PD PTS per CENTER HD PTS per CENTER TOT PTS per CENTER %PD
Q1 55 265 4.8 45 213 3063 4.7 68.1 72.8 6.5
Q2 58 662 11.4 46 535 4466 11.6 97.1 108.7 10.7
Q3 58 1124 19.4 47 903 5134 19.2 109.2 128.4 15.0
Q4 56 2101 37.5 45 1661 6279 36.9 139.5 176.4 20.9
ITALY 227 4152 18.3 183 3312 18942 18.1 103.5 121.6 14.9
Table 2. Percentage use of PD and size of Center. The analysis was only possible for the 183 Centers which provided HD prevalence data. The missing Centers were equally distributed among the 4 groups, and the size of PD program was found to be practically superimposable (“PD PTS per CENTER”). The overall size of the Center is given in the “TOT PTS per CENTER” column: the sum of HD and PD prevalent patients.

The distribution of the Centers in Figure 1 shows how there are some significantly-sized Centers where the use of PD is limited, and other smaller Centers using it in a high percentage of patients, confirming the finding of the first SIN Census.

Distribution of the 183 Centers which also provided HD data. PD prevalence by size of Center
Figure 1. Distribution of the 183 Centers which also provided HD data. PD prevalence by size of Center (HD and PD). The lines define the quartiles of the 2 variables.

Geographical distribution

The geographical breakdown of the Centers by size, which was already partly analyzed in the previous paper, shows how PD programs are more widespread in Centers in the North.

While the number of the Centers using PD per million inhabitants (pmp) is practically superimposable (Table 3), varying only a little from the national average of 3.9 PD Centers pmp, those located in the NORTH follow a greater number of patients (21.9 ±16.5 patients per Center) than the others. It follows that PD prevalence pmp in the NORTH (81.7 PD patients pmp) is also higher than in the Centers in Central Italy (72.9 PD patients pmp) and in the SOUTH and ISLANDS where it is practically identical (55.22 and 55-20 PD patients pmp respectively) (Table 3). However, an examination of the Centers which also sent data for HD confirm (Table 4) the finding of some 20 years ago. The Centers in the SOUTH and ISLANDS which use PD are on average smaller, in terms of both overall size and PD program, but with a higher percentage of PD patients (Table 4).

PD PREVAL. per CENTER
CENTERS
(no.)
POPULATION
(inhabit.)
PD PREVAL.
(no of pts)
PD PREVAL.
(pmp)
CENTERS
(pmp)
MEAN (±DS)
(no. of pts)
MEDIAN
(no. of pts)
NORTH 102 27,349,747 2235 81.7 3.7 21.9±16.5 19
CENTER 54 11,693,240 853 72.9 4.6 15.8±12.0 12
SOUTH 47 12,894,027 712 55.2 3.6 15.1±13.1 13
ISLANDS 24 6,377,044 352 55.2 3.8 14.7±13.9 10
ITALY 227 58,314,058 4152 71.2 3.9 3.3    ±14.8 15
Table 3. Geographical distribution of the Centers in the 4 macro regions of Italy and their size of PD program. The regional breakdown and population are 2022 ISTAT (Italian National Institute of Statistics) data, the prevalence is at 31/12/2022.  pmp = per million population; THE REGIONS OF ITALY AS DEFINED BY ISTAT – NORTH = Valle d’Aosta, Piemonte, Lombardia, Trentino Alto Adige, Friuli Venezia Giulia, Veneto, Emilia Romagna, Liguria – CENTER = Toscana, Marche, Umbria, Lazio – SOUTH = Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria – ISLANDS = Sicily, Sardinia.
CENTERS PREVALENCE (no.)
no. % HD PD SIZE PD/CENTER %PD
NORTH 83 81.4 11588 1751 160.7 21.1 13.1
CENTER 51 94.4 4210 821 98.6 16.1 16.3
SOUTH 29 61.7 2057 443 86.2 15.3 17.7
ISLANDS 20 83.3 1087 297 69.2 14.9 21.5
ITALY 183 80.6 18942 3312 121.6 18.1 14.9
Table 4. Characteristics of the Centers in the 4 macro areas of Italy which also sent data relating to HD. “SIZE” = total number of patients (HD+PD) on dialysis at 31/12/2022 – “PD/CENTER” = prevalent PD patients per Center – “%PD” = mean percentage PD prevalence in the Centers.

Resources dedicated to PD

Most of the Centers (95.1%) have facilities dedicated to PD whatever the size of their PD program, while there are significant differences with regard to the personnel – both medical and nursing – dedicated to PD (Table 5).

In particular, nearly half the small Centers (48.1%) have no one member of staff – either medical or nursing – as a point of reference (“everyone can handle PD as well”). This percentage drops to 12.5% in the Centers with an extensive PD program (Table 5).

CENTERS FACILITIES DOCTORS NURSES BOTH NONE DOCTOR OR NURSE (%)
Q1 54* 49 20 23 15 26 51.9
Q2 58 54 19 30 17 26 55.2
Q3 57* 56 32 44 31 12 78.9
Q4 56 55 36 45 41 7 87.5
ITALY 225 214 107 142 104 71 68.4
NS p<0.005 p<0.00005     p<0.00005
Table 5. Resources for PD in the 227 Centers which use it. For the personnel, dedicated professionals are considered to be doctors and nurses who are engaged exclusively with PD, but also those who, in particular in the “small” Centers, are assigned the exclusive task of handling it. “Both” refers to the Centers where there are both medical and nursing personnel dedicated to PD (the difference between “Doctors” plus “Nurses” and “Both” provides the number of Centers which have only the Doctor or Nurse as dedicated PD professional). “None” refers to the Centers which have no dedicated PD professionals. * Two Centers (Q1 and Q3) did not provide information on Training.

Activities

The activities considered by the Census are training, home visits and the performance of PET.

Training. Training is carried out by in-Center personnel in 57.3% of the Centers, by external personnel in 11.6% and by both in 31.1%. The contribution of external personnel is lower in the large and medium-small Centers (Q4 and Q2, 26.8% and 41.4% of Centers respectively) and greater in the Centers with a small or medium-large PD program (Q1 and Q3, 51.9% and 50.9% of Centers respectively) (Table 6). The place where the training takes place more frequently is the Center (52.4% of cases), partly at home and partly in the Center in 37.8% of cases and only at home in 9.8% of the Centers (Table 6). The location of the training depends on the provider. In fact, when the training is performed by in-house personnel (57.3% of the Centers) it takes place mostly in the Hospital (80.6% of cases), while in the Centers in which only or partly external personnel are involved (42.7% of the Centers) the training is performed exclusively or partly at home (85.4% of the Centers, p<0.000001) (Figure 2).

PROVIDER PLACE OF TRAINING
CENTERS CENTER EXTERNAL BOTH % CENTER CENTER HOME BOTH % HOME
Q1 54* 26 7 21 48.1 27 5 22 50.0
Q2 58 34 11 13 58.6 36 5 17 37.9
Q3 57* 28 5 24 49.1 20 6 31 64.9
Q4 56 41 3 12 73.2 35 6 15 37.5
ITALY 225 129 26 70 57.3 118 22 85 47.6
p<0.03 p<0.001
Table 6. The Provider and Place where the Training takes place. The Provider can be “Center” personnel only, “External” personnel only, or “Both” if it is performed in the Center by both in-house and external personnel. The absolute values and percentages refer to the Centers and NOT to the number of Trainings.* Two Centers did not provide information on Training. “% CENTER” is the percentage of Centers in which the Training is performed by in-house personnel. “% HOME” is the percentage of Centers which perform the Training exclusively or partly at home.
Figure 2. Training divided by provider.
Figure 2. Training divided by provider. The place (home, hospital or both) where it is carried out is given for each provider.

Home visits. The home visits (HV) program once the PD has started is in keeping with training practice. They are not envisaged by the majority of the Centers (55.2%), with no significant differences between the 4 groups (Table 7), while only a minority of the remainder carry them out regularly following a pre-defined program (8.5%). In the other Centers they are basically performed when necessary. With respect to previous years, the percentage of the Centers with no HV program once PD has started has increased (48.5% in 2016), while the percentage of the number of the Centers with a regular HV program remains unchanged, as an absolute value as well (Figure 3).

FREQUENCY OF HOME VISITS
CENTERS NOT ENVISAGED VARIABLE REGULAR % NO
Q1 53 25 25 3 47.2
Q2 57 32 21 4 56.1
Q3 57 30 22 5 52.6
Q4 56 36 13 7 64.3
ITALY 223 123 81 19 55.2
Table 7. Frequency of home visits after PD has started. The question was answered by 223 of the 227 Centers considered. The difference between the groups was NOT significant. Variable frequency is to be understood as meaning “only during the initial period”, which was not further specified, “at the start when needed” and lastly “only if necessary”. “Not envisaged” means they are not considered by the Center for PD follow-up.
Figure 3. Home visits over time.
Figure 3. Home visits over time. The data relating to 2019 are incomplete. The home visits considered are those carried out once PD has started, i.e. excluding those during training.

PET. Evaluation of the peritoneal membrane by PET is not performed by 11.9% of the Centers, mostly the smaller ones (NO PET – Q1 = 18.2%; Q2 = 13.8%; Q3 = 12.1%; Q4 = 3.6% – p = N.S.), although the difference is not statistically significant.

PD MODALITY

CAPD/APD and incremental PD in incident patients

Overall, the most used PD modality in incident patients is CAPD (52.1%), but with a significant difference between the groups according to size of PD program: the smaller Centers mostly use APD, while CAPD is the most widely-used modality in the larger Centers (p<0.005). This is partly associated with incremental prescription, for which CAPD is preferred, with its use rising as size of Center increases (Table 8). Lastly, admissions from HD and Tx increase (percentage-wise with respect to total admissions) as PD program size grows, although not significantly.

INCIDENT PATIENTS OTHER ADMISSIONS
CENTERS CAPD APD TOT % CAPD INCR % INCR from HD/Tx TOT IN % from HD/Tx
Q1 55 38 54 92 41,3 25 27,2 12 104 11,5
Q2 58 104 120 224 46,4 65 29,0 33 257 12,8
Q3 58 240 164 404 59,4 170 42,1 55 459 12,0
Q4 56 321 309 630 51,0 217 34,4 126 756 16,7
ITALIA 227 703 647 1350 52,1 477 35,3 226 1576 14,3
P<0,005 P<0,005 N.S.
Table 8. PD modality (CAPD and APD) and incremental prescription (“INCR”) at the start of treatment by size of PD program. On the right, admissions from HD and transplant (Tx), and their percentage weight on the total of admissions to PD recorded in 2022.

The percentage of late referrals to PD was shown NOT to differ significantly among the groups (Q1 = 5.4% – Q2 = 8.0% – Q3 = 11.4% – Q4 = 7.9% – p = N.S.)

CAPD/APD and assisted PD in prevalent patients

APD is confirmed as the most used PD modality for prevalent patients, but ‒ as with incident patients ‒ significantly more so in the smaller Centers (Table 9). Recourse to assisted PD, on the other hand, is greater in the smaller Centers, in particular in the second quartile compared to the fourth. Overall it is used in 26% of prevalent patients in the Centers with fewer than 15 prevalent PD patients, and in 19.8% of patients in the Centers with a higher prevalence.

No significant difference emerged between the Quartiles with regard to type of caregiver, with a family member being confirmed as the most commonly-involved caregiver in Italy (86.3%) (Table 9).

PREVALENT PTS – TYPE OF PD PREVALENT PTS – ASSISTED PD
CENTERS CAPD APD TOT % CAPD RSA FAM. CARER IP TOT ASS. PD % ASS. PD
Q1 55 98 167 265 37.0 3 47 2 5 57 21.5
Q2 58 261 401 662 39.4 2 165 14 3 184 27.8
Q3 58 513 611 1124 45.6 20 212 18 2 252 22.4
Q4 56 931 1170 2101 44.3 15 334 31 5 385 18.3
ITALY 227 1803 2349 4152 43.4 40 758 65 15 878 21.1
p<0.01 N.S. p<0.0001
Table 9. PD modality (CAPD and APD) and assisted PD in prevalent PD patients at 31/12/2022. “RSA” = nursing home, facility for the elderly – “FAM.” = family-member caregiver– “CARER” = live-in carer, paid assistant – “IP” = nurse (or other healthcare worker) who performs the dialysis at the patient’s home – “% ASS. PD” represents the percentage of prevalent patients on assisted PD.

OUTCOME

Peritonitis

Although the incidence of peritonitis was lower in the larger Centers, it was substantially superimposable. The percentage of negative cultures was not significantly different either (Table 10).

CENTERS PERITONITIS INCIDENCE NEGATIVE % NEGATIVE
Q1 54 50 0.186 7 14.0
Q2 58 115 0.185 23 20.0
Q3 58 221 0.209 35 15.8
Q4 56 310 0.156 69 22.3
ITALY 226 696 0.176 134 19.3
Table 10. Episodes of peritonitis (total and culture-negative peritonitis) and size of Centers. The peritonitis rate is expressed as episodes per patient year. “% NEGATIVE” is the percentage of culture-negative peritonitis out of total episodes (N.S.). Only one Center did not provide data on peritonitis.

Drop-out from PD

The average duration of PD, taken from the Replacement Index (ratio between Prevalent patients at 31/12/2022 and all admissions recorded in 2022, expressed in years) was higher in the larger Centers (RI – Q1 = 2.5 equivalent to 30.6 months; Q2 = 2.6 equivalent to 30.9 months; Q3 = 2.4 equivalent to 29.4 months; Q4 = 2.8 equivalent to 33.3 months).

Causes of drop-out from PD. In 2022 a total of 464 patients were transferred to HD, 400 died and 296 received a transplant for a total of 29.3 drop-outs from PD per 100 patient-years. Mortality was significantly different, while a higher number of transplants and in particular Drop-Outs to HD were recorded in small Centers (Table 11).

EVENTS EVENTS / 100 PT-YEARS
CENTERS PREV. TRANSF DEATH TX D-O DEATH TX
Q1 55 265 64 30 35 22.9 10.8 12.5
Q2 58 662 80 49 49 12.9 7.9 7.9
Q3 58 1124 140 120 61 13.2 11.3 5.8
Q4 56 2101 180 201 151 9.0 10.1 7.6
ITALY 227 4152 464 400 296 11.7 10.1 7.5
p<0.00001 N.S. p<0.001
Table 11. Drop-out from PD due to transfer to HD (TRANSF), death and transplant (Tx) during 2022 divided by size of Centers.

As regards the specific causes of transfer to HD, in the small Centers (subject to a higher drop-out to HD) the main cause is choice or impossibility to continue, followed by catheter and dialysis adequacy issues. Confirming the validity of this is peritonitis as cause of drop-out which, like incidence of peritonitis, is also essentially superimposable in the different quartiles (Table 12).

EVENTS ep/100 pt-years
CENTERS TOT. TRANSF PERITON. CAT./ADEQ, CH./IMP. PERITON. CAT./ADEQ. CH./IMP.
Q1 55 64 9 27 28 3.2 9.7 10.0
Q2 58 80 22 37 21 3.5 6.0 3.4
Q3 58 140 25 60 55 2.4 5.7 5.2
Q4 56 180 53 76 51 2.7 3.8 2.6
ITALY 227 464 109 200 155 2.8 5.1 3.9
p<0.05
Table 12. Drop-out from PD for transfer to HD (TRANSF), death and transplant (Tx) during 2022 divided by size of Centers. “PERITON:” = peritonitis; “CAT./ADEQ.” = malfunctioning or infected catheter/adequacy both clearance and UF;“CH./IMP.” = choice or impossibility to continue.

 

Discussion

The limitations of the Census were already extensively discussed in part one [1].

The results of the 2022 Census confirm the findings of the first SIN Census in 2004. The use of PD is proportional in percentage terms to the size of Center and, as emerges from the geographical distribution of the Centers, lower wherever there are more private Centers, although the few Centers which do use it in these regions do so to a greater than average extent (see Annex – Questionnaire).

From an organizational point of view, smaller Centers are characterized first and foremost by fewer personnel dedicated to PD, either exclusively or – in the smaller Centers – as PD point of reference even though they certainly (Annex – Questionnaire) perform other activities. In the Centers in which there are no dedicated personnel, the “everyone does everything” principle most probably applies and in the end recourse to external personnel is necessary for training, the most important part of a PD program. Indeed, the Centers with a limited PD program rely more for training on external personnel, whose role – if any – in PD patient follow up was not however investigated. Though a positive aspect of training performed by external personnel or in combination is that it is carried out at home, this ends up “separating” PD patients even more from their Center. Lastly, another characteristic of the Centers with a limited PD program is less incremental prescription, and therefore greater use of APD.

Finally it is confirmed how home visits after starting on PD are carried out regularly only by a tiny minority of Centers.

Mortality is substantially superimposable in the different groups, while drop-out to HD is significantly higher in the Centers with a modest PD program, in which the main cause of drop-out to HD is patient choice and/or impossibility to continue. The latter term however, as discussed in the first part, is ambiguous as it can refer not only to loss of self-sufficiency but also clinical causes, to which inaccurate patient selection or insufficient follow up can contribute. Drop-out for adequacy due to catheter-related causes is also higher in smaller Centers. Peritonitis rates seem to be lower in the Centers with an extensive PD program, but drop-out for this cause is substantially similar.

 

Conclusions

In the public Centers in Italy which use PD the resources deployed, the modality of use and drop-out are associated (negatively) with size of PD program. In turn, the size of PD program is influenced by well-known factors which, as illustrated in “The Questionnaire” annex also condition – though only partly – the opinions Nephrologists in Centers not using PD have of this modality. There are therefore many reasons for the limited use of PD which are not justified by the results obtained and its potential, or by the prospect of having to treat increasingly fragile patients with ever more limited resources.

 

Acknowledgements

We thank the contacts in the Centers which took part in the Census and whose commitment made the collection of the data and this paper possible:

Abdulsattar Giamila (Oristano); Alberghini Elena (Cinisello Balsamo); Albrizio Paolo (Voghera); Alessandrello Maria Grazia Ivana (Modica); Alfano Gaetano (Modena); Amar Karen (Cernusco sul Naviglio); Ambrogio Antonina (Rovigo); Ancarani Paolo (Sestri Levante); Angelini Maria Laura (forlì); Ansali Ferruccio (Civitavecchia); Apponi Francesca (Frosinone); Argentino Gennaro (Napoli); Avella Alessandro (Varese); Barattini Marina (Massa); Barbera Vincenzo (Colleferro); Basso Anna (Padova); Bellotti Giovanni (Sapri); Benozzi Luisa (Borgomanero); Bermond Francesca (Torino); Bianco Beatrice (Verona); Bigatti Giada (Sesto San Giovanni); Bilucaglia Donatella (Torino); Boccadoro Roberto (Rimini); Boito Rosalia (Crotone); Bonesso Cristina (San Donà di Piave); Bonincontro Maria Luisa (Bolzano); Bonvegna Francesca (Verbania); Borettaz Ilaria (Melegnano – Vizzolo Predabissi); Borrelli Silvio (Napoli); Bosco Manuela (Gorizia); Braccagni Beatrice (Poggibonsi); Budetta Fernando (Eboli); Cabibbe Mara (Milano); Cabiddu Gianfranca (Cagliari); Cadoni Maria Chiara (San Gavino Monreale); Campolo Maria Angela (Lamezia Terme); Cannarile Daniela Cecilia (Bologna); Cannavo’ Rossella (Firenze); Canonici Marta (Fabriano); Cantarelli Chiara (Parma); Caponetto Carmelo (Siracusa); Cappadona Francesca (Genova); Cappelletti Francesca (Siena); Caprioli Raffaele (Pisa); Capurro De Mauri Federica Andreana (Novara); Caria Simonetta (Quartu Sant’ Elena); Carta Annalisa (Nuoro); Caselli Gian Marco (Firenze); Casuscelli di Tocco Teresa (Messina); Cataldo Emanuela (Altamura); Cernaro Valeria (Messina); Cerroni Franca (Rieti); Ciabattoni Marzia (Savona); Cianfrone Paola (catanzaro); Cimolino Michele (Pordenone); Comegna Carmela (Tivoli); Consaga Marina (Livorno); Contaldo Gina (Monza); Conti Paolo (Arezzo); Cornacchia Flavia (Cremona); Cosa Francesco (Legnano); Cosentini Vincenzo (San Bonifacio); Costantini Luigia (Vercelli); Costantino Ester Grazia Maria (Manerbio); Costanza Giuseppa (Gela); D’Alonzo Silvia (Roma); D’Altri Christian (Martina Franca); D’Amico Maria (Erice); De Blasio Antonietta (Caserta); Del Corso Claudia (Pescia); Della Gatta Carmine (Nola); D’Ercole Martina (La Spezia); Di Franco Antonella (Barletta); Di Liberato Lorenzo (Chieti); Di Loreto Ermanno (Atri); Di Renzo Brigida (Brindisi); Di Somma Agnese (San Marco Argentano); Di Stante Silvio (Pesaro – Fano); Dinnella Angela Maria (Anzio); Distratis Cosimo (Manduria); Dodoi Diana Teodora (Chieri); Domenici Alessandro (Roma); Esposito Samantha (Grosseto); Esposito Vittoria (Pavia); Farina Marco (Lodi); Ferrando Carlo (Cuneo); Ferrannini Michele (Roma); Ferrara Gaetano (San Giovanni Rotondo); Figliano Ivania Maria (Vibo Valentia); Figliola Carmela (Gallarate); Filippini Armando (Roma); Finato Viviana (San Miniato); Fiorenza Saverio (Imola); Frattarelli Daniele (Roma Ostia); Gabrielli Danila (Aosta); Gai Massimo (Torino); Garofalo Donato (Fermo); Gazo Antonietta (Vigevano); Gennarini Alessia (Bergamo); Gherzi Maurizio (Ceva); Giancaspro Vincenzo (Molfetta); Gianni Glauco (Prato); Giovannetti Elisabetta (Camaiore); Giovannetti Elisabetta (Lido di Camaiore); Giozzet Morena (Feltre); Giuliani Anna (Vicenza); Giunta Federica (Macerata); Graziani Romina (Ravenna); Guizzo Marta (Castelfranco Veneto); Heidempergher Marco (Milano); Iacono Rossella (Civita Castellana); Iadarola Gian Maria (Torino); Iannuzzella Francesco (Reggio Emilia); Incalcaterra Francesca (Palermo); La Milia Vincenzo (Lecco); Laudadio Giorgio (Bassano del Grappa); Laudon Alessandro (Trento); Lenci Federica (Ancona); Leonardi Sabina (Trieste); Lepori Gianmario (Olbia); Leveque Alessandro (Citta’ di Castello); Licciardello Daniela (Acireale); Lidestri Vincenzo (Chioggia); Lisi Lucia (Vimercate); Lo Cicero Antonina (San Daniele del Friuli ); Luciani Remo (Roma); Maffei Stefano (Asti); Magnoni Giacomo (Bologna); Malandra Rossella (Teramo); Manca Rizza Giovanni (Pontedera); Mancuso Verdiana (Agrigento); Manfrini Vania (Seriate); Manini Alessandra (Crema); Marcantoni Carmelita (Catania); Marchetti Valentina (Lucca); Marini Alvaro (Popoli); Martella Vilma (Lecce); Masa Maria Alessandra (Sondrio); Mastrippolito Silvia (Lanciano); Mastrosimone Stefania (Treviso); Matalone Massimo (Catania); Mauro Teresa (Corigliano Rossano); Mazzola Giuseppe (Mantova); Melfa Gianvincenzo (Como); Messina Antonina (Catania); Miglio Roberta (Busto Arsizio); Miniello Vincenzo (Pistoia); Mollica Agata (Cosenza); Montalto Gaetano (Taormina); Montanari Marco (Ariccia); Montemurro Vincenzo (Firenze); Musone Dario (Formia); Nardelli Luca (Milano); Neri Loris (Alba); Orani Maria Antonietta (Milano); Palmiero Giuseppe (Napoli); Palumbo Roberto (Roma); Panuccio Vincenzo Antonio (Reggio Calabria); Panzino Antonio Rosario (Catanzaro); Parodi Denise (Arenzano); Pastorino Nadia Rosa (Novi Ligure); Pellegrino Cinzia (Cetraro); Perilli Luciana (Vasto); Perna Concetta (Cerignola); Perosa Paolo (Pinerolo); Pieracci Laura (Imperia); Pietanza Stefania (Putignano); Pignone Eugenia (Torino); Pinerolo Maria Cristina (Milano); Piraina Valentina (ivrea); Pirrottina Maria Anna (San Benedetto del Tronto); Pisani Antonio (Napoli); Pogliani Daniela Rosa Maria (Garbagnate Milanese); Porreca Silvia (Bari); Pozzi Marco (Desio); Prerez Giuseppina (Dolo); Previti Antonino (Santorso); Puliti Maria Laura (Palestrina); Randone Salvatore (Avola); Ricciardi Daniela (Castiglione del Lago); Ricciatti Annamaria (Ancona); Rocca Anna Rachele (Roma); Rubini Camilla (Venezia Mestre); Russo Francesco Giovanni (Scorrano); Russo Roberto (Bari); Sabatino Stefania  (Udine); Sacco Colombano (Biella); Sammartino Fulvio Antonio (Pescara); Santarelli Stefano (Jesi); Santese Domenico (Taranto); Santinello Irene (Piove di Sacco); Santirosi Paola Vittori (Foligno-Spoleto); Santoferrara Angelo (Civitanova Marche); Saraniti Antonello (Milazzo); Savi Umberto (Belluno); Scalso Berta Ida (Cirie’); Scarfia Rosalia Viviana (Caltagirone); Serriello Ilaria (Roma); Signorotti Sara (Cesena); Silvana Baranello (Campobasso); Somma Giovanni (Castellamare di Stabia); Sorice Mario (Senigallia); Spissu Valentina (Sassari); Stacchiotti Lorella (Giulianova); Stucchi Andrea (Milano); Taietti Carlo (Treviglio); Tata Salvatore (Venezia); Teri Antonino (Foggia); Tettamanzi Fabio (Tradate); Timio Francesca (Perugia); Todaro Ignazio (Piazza Armerina); Toriello Gianpiero (Polla); Torraca Serena (Salerno); Trepiccione Francesco (Napoli); Trubian Alessandra (Legnago); Turchetta Luigi (Cassino); Vaccaro Valentino (Alessandria); Valsania Teresa (Piacenza); Vecchi Luigi (Terni); Veronesi Marco (Ferrara); Visciano Bianca (Magenta); Viscione Michelangelo (Avellino); Vizzardi Valerio (Brescia); Zanchettin Gianantonio (Conegliano); Zeiler Matthias (Ascoli Piceno).

 

Bibliography

  1. Neri L, Viglino G, Vizzardi V, Porreca S, Mastropaolo C, Marinangeli G, Cabiddu G. Peritoneal Dialysis in Italy: the 8th GPDP-SIN census 2022. G Ital Nefrol. 2023 Jun 29;40(3):2023-vol3. PMID: 37427898.
  2. Viglino G, Neri L, Alloatti S, Cabiddu G, Cocchi R, Limido A, Marinangeli G, Russo R, Teatini U, Schena FP. Analysis of the factors conditioning the diffusion of peritoneal dialysis in Italy. Nephrol Dial Transplant. 2007 Dec;22(12):3601-5. https://doi.org/10.1093/ndt/gfm416.

West Nile Infection and Kidney Disease: Description of Two Clinical Cases in Peritoneal Dialysis Patients

Abstract

The West Nile Virus (WNV), an RNA arbovirus, has been transmitted by wild birds and conveyed by ticks and mosquitoes, with wide diffusion all over the world; it is not transmitted from human to human. It can give clinical symptoms only in a minority of infected subjects such as fever, headache, muscle tiredness, visual disturbances, drowsiness, convulsions and muscle paralysis; in the most serious cases even potentially fatal encephalitis. In the literature there are few reports on WNV infection in patients with kidney diseases: here we report our experience on two patients on peritoneal dialysis infected by WNV with a revision of the literature.

Keywords: West Nile virus infection, chronic kidney disease, end-stage kidney failure, peritoneal dialysis, kidney transplant

Sorry, this entry is only available in Italiano.

Introduzione

Il virus del Nilo occidentale (West Nile VirusWNV) (Figura 1), un arbovirus a RNA, fu isolato per la prima volta in Uganda nel 1937 e in seguito si è diffuso in Europa, Asia e Australia. Nel 1996, la prima grande epidemia europea si è verificata in Romania, seguita successivamente da diverse epidemie in vari paesi dell’Eurasia, dove i virus sono attualmente endemici. Nel 1999, il WNV ha raggiunto il continente nordamericano, dove negli USA si è diffuso rapidamente diventando endemico con circa 3 milioni di individui infetti nel 2010 (780.000 che hanno manifestato la malattia) [1, 2].

Il WNV si manifesta in due distinti gruppi, l’1 e il 2, con ceppi diversi, ed è ospite di uccelli selvatici; è veicolato da zecche e zanzare e non si trasmette da uomo a uomo.

La potenziale trasmissione per via orale in un uccello predatore può spiegare la diffusione relativamente rapida del WNV, così come di altri flavivirus caratterizzati da modelli di trasmissione simili [3].

In meno dell’1% dei casi, il WNV può provocare manifestazioni neurologiche, caratterizzate da una mortalità del 10% con meningite, encefalite, paralisi flaccida acuta simile alla poliomielite e sindrome simile a Guillain-Barré. I fattori di rischio associati a peggior prognosi sono la malattia renale cronica (MRC), il cancro, l’abuso di alcol, l’ipertensione, il diabete, l’età avanzata e l’immunosoppressione [4].

Il WNV può essere trovato dopo l’infezione in vari tessuti quali cervello, linfonodi, milza e reni: il virus è stato costantemente rilevato nelle urine di pazienti durante l’infezione acuta, persistendo per un tempo più lungo rispetto al sangue. La presenza di antigeni WNV è stata rilevata anche nel rene nelle autopsie di pazienti trapiantati colpiti da WNV [5].