Studio trombofilico nei pazienti dializzati

Abstract

La malattia renale cronica è un fenotipo complesso che risulta dall’associazione di malattie renali sottostanti e di fattori ambientali e genetici. In aggiunta ai tradizionali fattori di rischio, nell’eziologia della malattia renale sono coinvolti fattori genetici tra cui i polimorfismi dei singoli nucleotidi che potrebbero giustificare l’aumentata mortalità per patologia cardiovascolare dei nostri pazienti emodializzati. I geni che influenzano lo sviluppo e la velocità di progressione della malattia renale meritano di essere definiti meglio. Noi abbiamo valutato le alterazioni dei geni della trombofilia nei pazienti emodializzati e nei soggetti donatori di sangue e abbiamo messo a confronto i risultati ottenuti. L’obiettivo del presente studio è quello di identificare dei biomarker di morbidità e di mortalità, che ci consentano di individuare i pazienti con malattia renale cronica ad alto rischio, grazie ai quali è possibile mettere in atto delle accurate strategie terapeutiche e delle strategie preventive che abbiano l’obiettivo di intensificare i controlli in questi pazienti.

Parole chiave: Polimorfismi dei singoli nucleotidi, pannel trombofilico, biomarker di mortalità, scienze omiche, malattia renale cronica, emodialisi

Introduzione

La malattia renale cronica è definita come una progressiva ed irreversibile perdita della funzione renale, evidenziata con un GFR stimato al di sotto di 60 ml/min/1,73 m2, con la persistente presenza di manifestazioni che sono suggestive di danno renale (proteinuria, sedimento urinario attivo, danni istologici, anormalità strutturali o storia di trapianto renale) o con entrambi, presenti da più di tre mesi [1].

La malattia renale cronica è da sempre considerata un problema di salute pubblica mondiale che richiede un’importante assistenza e significativi oneri economici. È noto che ad una riduzione del GFR fa seguito un incremento degli eventi cardiovascolari, delle ospedalizzazioni e complessivamente della mortalità [2]. La prevalenza della malattia renale cronica varia a seconda delle aree geografiche e per lo più varia tra il 10% e il 20 %, percentuale che aumenta gradualmente soprattutto nei paesi sviluppati [3, 4]. Questo trend potrebbe essere attribuito all’aumentato invecchiamento della popolazione a livello globale [5], oltre che all’incremento di patologie come il diabete mellito, l’ipertensione e l’obesità [6].

Nonostante i miglioramenti tecnologici in ambito dialitico, il tasso di mortalità dei pazienti in emodialisi è molto alto, soprattutto a causa delle patologie cardiovascolari, ma non solo [7]. Recenti studi dimostrano che i fattori genetici come i polimorfismi dei singoli nucleotidi influenzano significativamente la risposta immune, i livelli dei markers infiammatori, così come la prevalenza dell’aterosclerosi in questo gruppo di pazienti [8].

 

Ruolo dei polimorfismi dei singoli nucleotidi

Come accade in altre patologie multifattoriali, anche i fattori genetici sono coinvolti nella patogenesi della malattia renale. In questo contesto sono stati individuati, nei soggetti in emodialisi, diversi polimorfismi di singoli nucleotidi (SNPs), caratterizzati dalla variazione di una singola coppia di basi nella sequenza del DNA e alcuni studi hanno dimostrato l’influenza di questi SNPs sul rischio cardiovascolare nei pazienti in emodialisi [9].

Le scienze omiche, negli anni, stanno cominciando a dare grandi risultati. Queste sono discipline che permettono di indagare le diverse classi di componenti biologiche e comprendono la genomica, ovvero lo studio dell’intero set di geni, la trascrittomica o lo studio dei livelli di mRNA, la proteomica, ovvero lo studio della traduzione proteica e la metabolomica o lo studio dell’insieme dei metaboliti [10]. La genomica e lo studio dei polimorfismi dei singoli nucleotidi sono utili nella diagnosi di condizioni predisponenti a fatali eventi tromboembolici e nel determinismo di varianti genetiche correlate alla morte improvvisa come ad esempio la sindrome correlata all’allungamento congenito del tratto QT [11, 12]. I polimorfismi dei singoli nucleotidi possono interessare le regioni non codificanti che alterano la regione del promoter, introni o la sequenza trailer che si trova a valle della sequenza codificante, oppure possono interessare le regioni codificanti ed in questo caso alterano la sequenza degli esoni.

 

Materiali e metodi

Sono stati arruolati 31 pazienti in trattamento emodialitico (di cui 21 di sesso maschile e 10 di sesso femminile) e 31 soggetti donatori di sangue (di cui 22 soggetti di sesso maschile e 9 di sesso femminile). Nei nostri pazienti dializzati abbiamo riscontrato un aumento dei valori di omocisteina nel 75 % dei casi (23 pazienti su 31); questo dato lo abbiamo messo in relazione alla tipologia di filtro utilizzato e alla metodica dialitica usata. Altresì abbiamo riscontrato un aumento dei valori medi della mioglobina a prescindere dal filtro e dalla metodica utilizzati e valori di catene k/λ quasi sempre nel range di normalità (Tabella 1). Considerando che l’iperomocisteinemia spesso è associata a mutazioni del gene MTHFR abbiamo analizzato in questi pazienti i geni del pattern trombofilico riscontrando delle anomalie rispetto ai soggetti donatori.

  AN 69 ST1,6/1,6

AFBK

n. pz 6

Helixone

Plus/1,8

HDF online

n. pz 8

Poliariletersulfone

400/1,7

HD

n. pz 2

Helixone plus/2,2

HDF online

n. pz 3

Polynephron

19 H/1,9

HDF online

n. pz 6

Polynephron 17 H/1,7

HDF online

n. pz 3

Polynephron 21 H/2,1

HDF online

  n. 1 pz

AN 69

ST 2,2/2,2

AFBK

n. 2 pz

OMOCISTEINA

(vn 15-30)

(min-max)

34,6

 

(9-58)

53,8

 

(22-96)

29,5

 

(22-37)

34,3

 

(19-53)

56

 

(26-100)

52

 

(39-76)

15 34,5

 

(9-60)

MIOGLOBINA

(vn 25-72)

(min-max)

149,2

 

(86,7-306)

216,2

 

(142-385)

272

 

(173-371)

120,3

 

(115-126)

280,1

 

(203-363)

112

 

(85-137)

136 220,5

 

(143-298)

Catene kappa/lamda

(vn<1350/723)

Catene K (min-max)

Catene λ (min-max)

847,5/594

 

(630-1570)

(363-1070)

1052/534

 

(545-1720)

(257-785)

1181/571

 

(832-1530)

(400-742)

828/512,3

 

(792-889)

(443-637)

750,6/434,6

 

(458-1080)

(251-734)

667/362,3

 

(375-960)

(160-481)

1080/911 813,5/358,5

 

(743-884)

(252-465)

Tabella 1: Valori medi di omocisteina, mioglobina e catene k/λ nei pazienti dializzati.

 

Risultati dello studio

Abbiamo esaminato le principali mutazioni e polimorfismi interessanti i geni dei fattori della coagulazione (Fattore V, Fattore II e Fattore XIII) (Grafico 1), della metilentetraidrofolato reduttasi (MTHFR) (Grafico 2) e della cistationina beta-sintetasi (CBS) di cui non si è registrata nessuna mutazione, della Glicoproteina IIIa piastrinica (GP IIIa) dell’enzima di conversione dell’angiotensina (ACE) e dell’apolipoproteina E per i quali emergono dati sovrapponibili tra i due gruppi di pazienti, dell’inibitore dell’attivazione del plasminogeno (PAI-1) dell’angiotensinogeno (AGT) del recettore dell’angiotensina II (ATR-1) e del Beta Fibrinogeno (FGB) (Grafico 3), in 31 pazienti emodializzati e i risultati sono stati messi a confronto con 31 soggetti donatori.

La tecnica utilizzata è stata quella dell’amplificazione delle sequenze bersaglio, dopo l’isolamento del DNA, con successiva ibridazione inversa su striscia e rivelazione colorimetrica, ed il kit impiegato è stato il CVD 14.

Grafico 1: Mutazioni dei fattori della coagulazione. 
Grafico 1: Mutazioni dei fattori della coagulazione.

Grafico 2: Mutazioni del gene MTHFR.

Grafico 2: Mutazioni del gene MTHFR.
Grafico 2: Mutazioni del gene MTHFR.

 

Grafico 3: Mutazioni del gene ATR-1, AGT, FGB-455 e PAI 1.
Grafico 3: Mutazioni del gene ATR-1, AGT, FGB-455 e PAI 1.

 

Discussione

Analizzando i dati raccolti è emerso nei dializzati un aumento della variante T del gene AGT. Molti studi hanno dimostrato che mutazioni dei geni RAAS e i loro polimorfismi causano l’insorgenza di una maggiore suscettibilità a svariate malattie come l’ipertensione, il diabete mellito tipo 2, la malattia renale cronica allo stadio terminale [13]. Il gene AGT è considerato uno dei geni componenti di RAAS che include oltre ad AGT anche ACE, ACE2, AGTR1 (recettore tipo 1 dell’angiotensina II), AGTR2 (recettore tipo 2 dell’angiotensina II) e la renina (REN) [14]. Questo gene consiste di 4 introni e cinque esoni che sono localizzati sul braccio lungo del cromosoma 1. Come parte di RAAS codifica per 485 aminoacidi. Sono stati studiati due missense SNP del gene AGT (SNPs; l’rs699, Met268Thr ovvero M268T e l’rs4762, Thr207Met ovvero T207M) [15]. L’rs699 (M268T) precedentemente noto come M235T è un missense polimorfismo sull’esone 2 che codifica per la variante treonina (l’aminoacido metionina è sostituito dall’aminoacido treonina nella posizione 235) che è associata ad aumentati livelli di angiotensinogeno.

Recentemente è stata indagata, per dimostrarne il coinvolgimento nell’ESRD, la relazione tra il polimorfismo dei geni RAAS (determinante un’aumentata concentrazione dell’angiotensinogeno) e l’insufficienza renale cronica allo stadio terminale [16]. A causa dell’aumentata attività di RAAS, dopo l’induzione dell’angiotensina II iniziano la vasocostrizione e la sintesi dell’aldosterone che portano all’espansione del volume plasmatico e all’ipertensione. Il RAAS è sempre stato fortemente implicato nella patogenesi dell’ipertensione essenziale, delle patologie cardiovascolari e dell’insufficienza renale progressiva. RAAS gioca un ruolo centrale nella regolazione della pressione arteriosa, del metabolismo del sodio e dell’emodinamica renale, con le sue azioni mediate principalmente dall’angiotensina II [17]. L’angiotensina II può influenzare anche il metabolismo del glucosio attraverso dei meccanismi a cascata che interessano l’attivazione del segnale insulinico, l’adipogenesi, la circolazione sanguigna e lo stress ossidativo [18]. L’angiotensina II svolge un importante ruolo nei processi di rimodellamento tissutale, promuovendo la sintesi e la deposizione delle proteine della matrice extracellulare in diversi organi come il cuore, i vasi ed il rene, favorendo la fibrosi a sua volta responsabile del danno d’organo cardiovascolare e renale [19, 20].

Recenti studi hanno dimostrato la correlazione tra la presenza della variante rs699 del gene AGT con la cardiopatia ischemica [21] e l’arteriopatia periferica [22]. Alcuni studi suggeriscono che il polimorfismo M235T (genotipo TT) potrebbe essere un bio-marcatore utile per lo screening degli individui suscettibili all’infarto del miocardio, almeno per quanto riguarda la popolazione asiatica [23]. Studi effettuati su popolazione giapponese [24], cinese [25], italiana [26] e spagnola [27] rivelano una significativa associazione tra M235T e l’infarto del miocardio. Altri studi non hanno osservato tale associazione [28] e ciò potrebbe essere dovuto alle varianti geografiche e all’etnia, oppure perché i gruppi di pazienti selezionati non erano appropriati per gli studi genetici. Il polimorfismo del gene ATR1 (recettore tipo 1 dell’angiotensina II) è stato anch’esso analizzato per spiegare l’associazione con il tasso di progressione della malattia renale. Nei nostri pazienti è stato dimostrato un aumento del polimorfismo dell’ATR1 in eterozigosi A/C.

In letteratura sono presenti alcuni studi che indicano che la presenza dell’allele C polimorfico dell’ATR1 (genotipo AC/CC) potrebbe essere associata a più rapido peggioramento della funzione renale [29]. Altro polimorfismo da noi studiato è quello del gene PAI-1. PAI-1 è una serina proteasi con feedback negativo sulla fibrinolisi grazie al legame con l’attivatore del plasminogeno tissutale (tPA) di cui ne inibisce l’attivazione. Elevati livello di questo inibitore sono stati associati ad un maggior rischio trombotico sia di tipo arterioso (infarto miocardico e malattia coronarica) che venoso (tromboembolismo) specie nei soggetti fumatori ed ipertesi [30]. Il polimorfismo PAI-1 4G/5G è significativamente associato ad alti livelli di omocisteina soprattutto nei giovani pazienti con trombosi del seno venoso cerebrale [31]. Nei nostri pazienti dializzati è stato riscontrato un aumento dei casi del polimorfismo del gene PAI 4G/5G. I pazienti con trombosi hanno principalmente uno squilibrio tra i sistemi di coagulazione e di fibrinolisi e questo squilibrio è spesso attribuito ad alti livelli di espressione e di attività del gene PAI-1 [32]. Il polimorfismo del gene PAI-1 4G/5G è associato ad alti livelli di PAI-1 nel plasma. Diversi studi hanno valutato la relazione tra il polimorfismo PAI-1 4G/5G ed il rischio di trombosi venosa [33]. È stato dimostrato altresì che il polimorfismo 4G/5G del gene PAI-1 potrebbe essere considerato come un fattore che possa portare ad una maggiore suscettibilità al tromboembolismo venoso soprattutto nei pazienti con altri disordini genetici del pattern trombofilico [34].

Il tromboembolismo venoso è la terza maggiore causa di malattie cardiovascolari e di morte e rappresenta un problema sociale e medico rilevante per la sua alta frequenza. Il tromboembolismo venoso può essere prevenuto e trattato; per tale motivo la ricerca dei fattori di rischio è un obiettivo importante [35]. Varianti di geni che determinano un effetto pro-coagulante giocano un ruolo importante in condizioni di ipercoagulabilità. Oltre alle note varianti dei geni con attività protrombotica (fattore V di Leiden, MTHFR C677T) vi sono altre varianti che giocano un ruolo in alcune forme di trombosi venosa che includono il Fattore V H1299R, MTHFR A1298C, Fattore XIII e l’FGB 455 G>A [36].

Nei nostri pazienti dializzati è stato riscontrato anche un aumento del polimorfismo FGB-455 G/A in eterozigosi. Diversi studi hanno dimostrato che tale fattore potrebbe essere un predittore suscettibile di ictus ischemico [37]. Nei nostri pazienti emodializzati è stato riscontrato un aumento anche delle mutazioni a carico del gene MTHFR e la più comune è la mutazione C677T che potrebbe essere responsabile dell’iperomocisteinemia [38]. Vi è una chiara evidenza di iperomocisteinemia e mortalità cardiovascolare ed eventi aterotrombotici in pazienti in emodialisi [39, 40]. La malattia renale cronica rappresenta un fattore di rischio accertato per tromboembolismo (TE) arterioso e venoso. Mentre il rischio di TE risulta essere di 2,5 volte più alto nei pazienti con IRC moderata, non in dialisi, rispetto alla popolazione normale, il rischio aumenta di 5,5 volte nei pazienti con severa insufficienza renale [41]. Le complicanze trombotiche sono descritte in più del 25% dei pazienti che si sottopongono a dialisi [42] e sono a carico soprattutto dell’accesso vascolare che rappresenta l’ancora di salvezza nei pazienti in dialisi ed il suo malfunzionamento è associato ad una incrementata morbidità, mortalità e ad elevati costi. Numerosi studi sono stati pubblicati sull’associazione tra trombofilia acquisita/congenita e complicanze dell’accesso vascolare e i risultati sono stati contrastanti, ovvero alcuni studi hanno suggerito la loro significativa associazione [43], mentre in altri questa associazione non è stata documentata [44, 45]. Nel 2005 Knoll e i suoi collaboratori hanno dimostrato in uno studio prospettico canadese che 107 dei 419 pazienti in emodialisi arruolati hanno sviluppato una trombosi dell’accesso vascolare e la percentuale di trombosi aumentava nei pazienti che avevano di base una condizione di trombofilia [46]. I dati di questo studio sono in linea con i risultati ottenuti da Klamroth in Germania e con quelli documentati su pazienti svedesi [47, 48]. Le discrepanze sono principalmente dovute alla tipologia di studi differenti (retrospettivi versus prospettici), al fatto che questi studi sono stati eseguiti su piccoli campioni di pazienti, all’assenza di gruppi di controllo e al fatto che sono stati condotti su differenti fattori di rischio trombofilici. Sono sicuramente necessari studi di coorte prospettici, multicentrici, ampi, per dimostrare il ruolo della trombofilia nella trombosi dell’accesso vascolare.

Per quanto riguarda lo stato di ipercoagulabilità presente prima del trapianto renale, questa condizione può essere considerata uno dei maggiori fattori di rischio per sviluppare eventi immediati trombotici post-trapianto. Il trapianto renale può correggere con successo uno stato di ipercoagulabilità acquisita nei pazienti in emodialisi. Screening pre-trapianto per i fattori correlati all’ipercoagulabilità sono necessari per prevenire eventi protrombotici post-trapianto e sono raccomandati nei pazienti che hanno in prospettiva la possibilità di essere sottoposti a un trapianto renale [49]. Per concludere, la trombofilia congenita non è da considerare un fattore di rischio per lo sviluppo di trombosi nei pazienti con sindrome nefrosica [50], ma anche a tal riguardo sarebbero necessari ulteriori studi.

 

Conclusioni

Nonostante gli sviluppi e i miglioramenti delle tecniche dialitiche, i pazienti con malattia renale cronica allo stadio terminale continuano ad avere un aumento marcato della morbidità e mortalità cardiovascolare. Recentemente molto interesse è stato focalizzato sul ruolo dei fattori di rischio cardiovascolari non tradizionali come l’infiammazione, le calcificazioni vascolari e lo stress ossidativo. Recenti studi dimostrano che i fattori genetici, come i polimorfismi, possono influenzare significativamente la risposta immune, come anche la prevalenza dell’aterosclerosi in questi pazienti.

Sembra ipotizzabile che nel prossimo futuro test di DNA prognostici o predittivi possano fornire, alla comunità nefrologica, un più preciso approccio terapeutico e possano aiutarci nel mettere in atto delle adeguate strategie preventive. In definitiva, servono dei biomarker di morbidità e mortalità per identificare tempestivamente i pazienti ad alto rischio, perché l’aumentato rischio cardiovascolare dei nostri pazienti dializzati potrebbe essere messo in relazione, in definitiva, ad un insieme di mutazioni genetiche.

 

Bibliografia

  1. Kidney disease: improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1-150.
  2. Tonelli M, Wiebe N et al. Chronic Kidney disease and mortality risk: a systematic review. Am. Soc. Nephrol. 2006, 17, 2034-2047. https://doi.org/10.1681/ASN.2005101085.
  3. Hill NR, Fatoba SR et al. Global Prevalence of Chronic kidney disease- a systematic review and meta-analysis. PloS ONE 2016 11, e0158765. https://doi.org/1371/journal.pone.0158765.
  4. Ruiz-Ortega M, Rayego-Mateos S et al. Targeting the progression of chronic kidney disease. Rev. Nephrol. 2020, 16, 269-288.
    https://doi.org/10.1038/s41581-019-0248-y.
  5. Stevens LA, Viswanathan G et al. Chronic kidney disease and end-stage renal disease in the elderly population: current prevalence, future projections and clinical significance. Chronic Kidney Disease 2010, 17, 293-301. https://doi.org/10.1053/j.ackd.2010.03.010.
  6. Duan J, Wang C et al. Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in Chinese rural residents: a cross-sectional survey. Sci Rep 2019 Jul 18 (1):10408. https://doi.org/1038/s41598-019-46857-7.
  7. Ishimitsu T, Tsukada K et al. Increased cardiovascular risk in long-term hemodialysis patients carrying deletion allele of ACE gene polymorphism. Am J Kidney Dis 2004; 44: 466-475. https://doi.org/1053/j.ajkd.2004.04.050.
  8. Nordfors L, Lindholm B et al. End-stage renal disease-not an equal opportunity disease: the role of genetic polymorphisms. Journal of Internal Medicine 2005; 258: 1-12. https://doi.org/1111/j.1365-2796.2005.01516.x.
  9. Balbino KP, Hermsdorff HHM et al. Polymorphism related to cardiovascular risk in hemodialysis subjects: a systematic review. Braz. Nephrol. 2018; 40 (2): 179-192. https://doi.org/10.1590/2175-8239-jbn-3857.
  10. Cervasato A, Raucci R et al. La proteomica e la metabolomica nello studio delle malattie genetiche del rene: dai big data alla medicina di precisione. GIN 2020. Anno 37 Volume 6 n°5.
  11. Santurro A, Vullo AM et al. Personalized medicine applied to forensic sciences: new advances and perspectives for a tailored forensic approach. Current Pharmaceutical Biotechnology 2017,18(3):263-273. https://doi.org/2174/1389201018666170207141525.
  12. Zhao Z, Fu YX et al. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene 2003; 312: 207-213. https://doi.org/10.1016/s0378-1119(03)00670-x.
  13. Buraczynska M, Ksiazek P et al. Genetic polymorphisms of the renin-angiotensin system in end-stage renal disease. Dial. Transplant. 2005, 21, 979-983. https://doi.org/10.1093/ndt/gfk012.
  14. Smyth LJ, Canadas-Garre M et al. Genetic associations between genes in the renin-angiotensin-aldosterone system and renal disease: a systematic review and meta-analysis. BMJ Open 2019; 9: e026777. https://dx.doi.org/1136/bmjopen-2018-026777.
  15. El-Garawani IM, Shaheen EM et al. Angiotensinogen Gene Missens Polymorphisms (rs699 and rs4762): the association of end-stage renal failure risk with type 2 diabetes and hypertension in Egyptians. Genes 2021, Feb 25; 12(3): 339. https://doi.org/10.3390/genes12030339.
  16. Zhou T, Yin S-S et al. Association of angiotensinogen M235T gene polymorphism with end-stage renal disease risk: a meta-analysis. Biol. Rep. 2012, 40, 765-772. https://doi.org/10.1007/s11033-012-2114-x.
  17. M Angels ORTIZ, Anna DE PRADO et al. Angiotensin-converting enzyme polymorphism gene and evolution of nephropaty to end-stage renal disease. Nephrology Vol 8 (4), 2003, 171-176. https://doi.org/10.1046/j.1440-1797.2003.00165.x.
  18. Muscogiuri G, Ghavez A.O. et al. The crosstalk between insulin and renin-angiotensin-aldosterone signaling systems and its effect on glucose metabolism and diabetes prevention. Vasc. Pharmacol. 2008, 6, 301-312. https://doi.org/10.2174/157016108785909715.
  19. Ruperez M, Lorenzo O et al. Connective tissue growth factor is a mediator of angiotensin II-induced fibrosis. Circulation 108; 1499-1505. https://doi.org/10.1161/01.CIR.0000089129.51288.BA.
  20. Ma L, Fogo A et al. Modulation of glomerulosclerosis. Semin Immunopathol. 2007; 29, 385-395. https://doi.org/10.1007/s00281-007-0087-y.
  21. Hongyan Zhao, Ranzun Zhao et al. Gene polymorphism associated with angiotensinogen (M235T), endothelial lipase (584 C/T) and susceptibility to coronary artery disease: a meta-analysis. Biosci Rep. 2020 Jul 31; 40 (7): BSR20201414. https://doi.org/10.1042/BSR20201414.
  22. Yerik Junusbekov, Burcu Bayoglu et al. AGT rs699 and AGTR1 rs5186 gene variants are associated with cardiovascular-related phenotypes in atherosclerotic peripheral arterial obstructive disease. Ir J Med Sci. 2020 Aug; 189 (3): 885-894. https://doi.org/10.1007/s11845-019-02166-6.
  23. Fariba R, Mohamed K et al. Angiotensinogen-M235T as a risk factor for myocardial infarction in asian populations: a genetic association study and a bioformatics approach. Croat Med J. 2016 Aug; 57 (4): 351-362. https://doi.org/10.3325/cmj.2016.57.351.
  24. Kamitani A, Rakugi H et al. Enhanced predictability of myocardial infarction in Japanese by combined genotype analysis. 1995; 25: 950-3 https://doi.org/10.1161/01.HYP.25.5.950.
  25. Chen D, Zhang M et al. A molecular variant of angiotensinogen gene is associated with myocardial infarction in Chinese. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 1998; 15: 133-5 Medline:9621117.
  26. Olivieri O, Stranieri C et al. Homozygosity for angiotensinogen 235T variant increases the risk of myocardial infarction in patients with multi-vessel coronary artery disease. J Hypertens. 2001; 19: 879-84. https://doi.org/10.1097/00004872-200105000-00007.
  27. Fernandez-Arcas N, Dieguez-Lucena JL et al. Both alleles of the M235T polymorphism of angiotensinogen gene can be a risk factor for myocardial infarction. Clin Genet. 2001; 60:52-7. https://doi.org/10.1034/j.1399-0004.2001.600108.x.
  28. Tiret L, Ricard S et al. Genetic variation at the angiotensinogen locus in relation to high blood pressure and myocardial infarction: the ECTIN study. J Hypertens. 1995; 13: 311-7.
  29. Buraczynska M, Ksiazek P et al. Angiotensin II type 1 receptor gene polymorphism in end-stage renal disease. Nephron 2002; 92:51-55. https://doi.org/10.1159/000064455.
  30. Qiang Zhang, YunRui Jin et al. Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous thromboembolism- a meta-analysis and systematic review. Vasa (2020), 49 (2), 141-146. https://doi.org/10.1024/0301-1526/a000839.
  31. Gogu AE, Motoc AG et al. Plasminogen Activator Inhibitor-1 (PAI-1) gene polymorphisms associated with cardiovascular risk factors involved in cerebral venous sinus thrombosis. Metabolites 2021, 11, 266. https://doi.org/3390/metabo11050266.
  32. Xu H, Wang L et al. Association between plasminogen activator inhibitor-1 promoter gene polymorphism and venous thromboembolism. Pharm Clin Res. 2018; 26: 261-4
  33. Pradhudesai A, Shetty S et al. Investigation of plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphism in Indian venous thrombosis patients: a case control study. Eur J Haematol. 2017; 99: 249-54. https://doi.org/10.1111/ejh.12912.
  34. Wang J, Wang C et al. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and risk of venous thromboembolism: a meta-analysis. Thromb Res. 2014; 134:1241-8. https://doi.org/10.1016/j.thromres.2014.09.035.
  35. Rosendaal F, Reitsma P et al. Genetics of venous thrombosis. Thromb. Haemost. 2009, 7, 301-304. https://doi.org/10.1111/j.1538-7836.2009.03394.x.
  36. Cernera G, Di Minno A et al. Molecular analysis of prothrombotic gene variants in venous thrombosis: a potential role of sex and thrombotic localization. Journal of Clinical Medicine 2020, 9, 1008. https://doi.org/10.3390/jcm9041008.
  37. Seung-Han Lee, Myeong-Kyu Kim et al. Beta-Fibrinogen gene -455 G/A polymorphism in Korean ischemic stroke patients. J Clin Neurol. 2008 Mar; 4 (1): 17-22.
  38. Moll S, Varga EA et al. Homocysteine and MTHFR mutations. Circulation 2015; 132: e6-e9. https://doi.org/10.1161/CIRCULATIONAHA.114.013311.
  39. Mallamaci F, Zoccali C et al. Hyperhomocysteinemia predicts cardiovascular outcomes in hemodialysis patients. Kidney International (2002) Vol. 61, 609-614. https://doi.org/10.1046/j.1523-1755.2002.00144.x.
  40. Wrone EM, Zehender JL et al. An MTHFR variant, homocysteine, and cardiovascular comorbidity in renal disease. Kidney International (2001) Vol. 60 1106-1113. https://doi.org/10.1046/j.1523-1755.2001.0600031106.x.
  41. Bauer Alexander, Limperger Verena et al. End-stage renal disease and thrombophilia. Hamostaseologie 2016. https://doi.org/10.5482/HAMO-14-11-0063.
  42. Danis R, Ozmen S et al. Trombophilias and arteriovenous fistula dysfunction in maintenance hemodialysis. J Thromb Thrombolysis 2009; 27: 307-315.  https://doi.org/10.1007/s11239-008-0216-z.
  43. Samela B, Hartman J et al. Trombophilia and arteriovenous fistula survival in ESRD. Clin J Am Soc Nephrol 2013; 8: 962-8. https://doi.org/10.2215/CJN.03860412.
  44. Palomo I, Pereira J et al. Vascular access thrombosis is not related to presence of anti-phospholipid antibodies in patients on chronic hemodialysis. Nephron 2002; 92: 957-958. https://doi.org/10.1159/000065580.
  45. Meyer M, Laux G et al. No association of factor V Leiden, prothrombin G20210A, and MTHFR C677T gene polymorphisms with kidney allograft survival: a multicenter study. Transplantation2007;83:1055-1058. https://doi.org/10.1097/01.tp.0000259556.99281.47.
  46. Greg A. Knoll, Philip S. Wells et al. Trombophilia and the risk for hemodialysis vascular access thrombosis. J Am Soc Nephrol 16: 1108-1114, 2005. https://doi.org/10.1681/ASN.2004110999.
  47. Klamroth R, Orlovic M et al. The influence of thrombophilic risk factors on vascular access survival in chronic dialysis patients in a retrospective evaluation. VASA 2013; 42: 32-39. https://doi.org/10.1024/0301-1526/a000245.
  48. Salmela B, Hartman J et al. Thrombophilia and arteriovenous fistula survival in ESRD. Clin J Am Soc Nephrol 2013; 8: 962-8. https://doi.org/10.2215/CJN.03860412.
  49. Mangalathillam R.N. Nampoory, Kshitish C. Das et al. Hypercoagulability, a serious problem in patients with ESRD on maintenance hemodialysis, and its correction after kidney transplantation. Am J of Kidney Disease Vol 2 N° 4 (October) 2003: pp 797-805 https://doi.org/10.1016/s0272-6386(03)00860-6.
  50. Fabri, V.M.S. Belangero et al. Inherited risk factors for trombophilia in children with nephrotic syndrome. Eur J Pediatr (1998) 157: 939-942. https://doi.org/10.1007/s004310050972.

Fistola ad alta portata: un problema di non facile gestione

Abstract

Nei pazienti emodializzati con una fistola (FAV) ad alta portata si può sviluppare una insufficienza cardiaca in relazione al notevole aumento del flusso dell’accesso vascolare con conseguente eccessivo carico di lavoro cardiaco, insufficienza cardiaca congestizia ed ipertensione polmonare.
La definizione di “alto flusso” è, però, varia e quasi sempre collegata a fistole prossimali, nelle quali l’emodinamica è influenzata da un flusso sanguigno che supera di gran lunga quello richiesto per l’emodialisi, compromettendo tutta la dinamica circolatoria, in particolare nei soggetti anziani con associata patologia cardiaca.
Un flusso elevato di accesso vascolare è, spesso, associato a complicazioni come insufficienza cardiaca, ipertensione polmonare, fistola aneurismatica, stenosi della vena centrale, sindrome da furto associata alla dialisi o sindrome ischemica da ipoperfusione distale. Sebbene non vi sia un accordo univoco sui valori del volume di flusso della FAV, né sulla definizione di alto flusso, non c’è dubbio che la portata dovrebbe essere considerata troppo alta se si sviluppano segni di insufficienza cardiaca.
La soglia esatta per definire l’accesso vascolare ad alto flusso non è stata convalidata o universalmente accettata dalle linee guida, sebbene sia stato suggerito un valore di portata da 1 a 1,5 l/min.
Inoltre, valori anche più bassi possono essere indicativi di un flusso sanguigno relativamente eccessivo, a seconda delle condizioni del paziente.
La fisiopatologia che contribuisce a questo processo patologico è lo smistamento del sangue dal sistema arterioso ad alta resistenza al sistema venoso a bassa resistenza, aumentando il ritorno venoso fino allo scompenso cardiaco.
È necessaria una diagnosi accurata e tempestiva dell’emodinamica arterovenosa ad alto flusso mediante il monitoraggio del flusso sanguigno della fistola e della funzione cardiaca per interrompere questo processo prima che si manifesti l’insufficienza cardiaca.
Descriviamo la storia di due pazienti portatori di FAV ad alta portata con revisione della letteratura.

Parole chiave: portata FAV, insufficienza cardiaca, accesso vascolare, emodialisi

Introduzione

Una insufficienza cardiaca ad alta gittata può essere la conseguenza di svariate condizioni patologiche quali anemia, sepsi, ipertiroidismo, beri beri. Un’altra causa nota, in alcuni pazienti emodializzati, può essere la presenza di una fistola arterovenosa (FAV) in relazione al notevole aumento del flusso dell’accesso vascolare con conseguente eccessivo carico di lavoro cardiaco, insufficienza cardiaca congestizia ed ipertensione polmonare [13].

Come è ben noto, la sindrome uremica è associata ad un aumento della morbilità e mortalità cardiovascolare; il rischio di morte in un paziente emodializzato con insufficienza cardiaca è del 33%, 46% e 57% rispettivamente a 12, 24 e 36 mesi dopo l’inizio della terapia dialitica secondo i dati del Renal Data System statunitense [4]. Un’insufficienza cardiaca congestizia può manifestarsi nel 25-50% dei pazienti emodializzati, in particolare nei pazienti con “fistola artero-venosa ad alto flusso”.

La definizione di “FAV ad alto flusso” è, però, varia e, quasi sempre, collegata a FAV prossimali, nelle quali l’emodinamica è influenzata da un flusso sanguigno che supera di gran lunga quello richiesto per l’emodialisi, compromettendo tutta la dinamica circolatoria, in particolare nei soggetti anziani [5]. Sebbene una velocità di flusso eccessivamente alta sia associata a conseguenze avverse, la capacità di tollerare un flusso elevato è variabile.

Infatti, nei soggetti giovani può essere tollerato un flusso della fistola a riposo fino a 4 l/min senza alcun effetto negativo sull’emodinamica; anche se va considerato che, durante l’esercizio fisico, la gittata cardiaca può raddoppiare o triplicare e quindi il flusso può raggiungere anche 12 l/min con conseguente sovraccarico cardiaco ed ipertensione polmonare [1, 6].

Il termine di “FAV ad alto flusso” non è utilizzato in modo uniforme per i pazienti con i segni di insufficienza cardiaca (edemi periferici, ascite e ipotensione) o per quelli con un flusso ematico della FAV (Qa) >1500-2000 ml/min o quando il rapporto Qa e gittata cardiaca (GC = CO) è > 30% [7].

La Vascular Access Society definisce come FAV ad alta portata un accesso vascolare con valori di 1000-1500 ml/min ed affianca a tale definizione un ulteriore dato, il “ricircolo cardiopolmonare” (RCP), ossia il rapporto tra il flusso della FAV e la portata cardiaca al fine di valutarne l’impatto emodinamico. Quando tale indice è > 20% si può verificare una condizione di rischio di scompenso ad alto output. La prevalenza di questa condizione non è però ben stabilita, poiché molti casi non vengono segnalati e rimangono misconosciuti [1].

Le linee guida KDOQI [8] sottolineano l’importanza di uno stretto monitoraggio (attento esame fisico e determinazione di RCP) ogni 6-12 mesi (o, più frequentemente, in caso di necessità) per gestire precocemente la FAV con alto flusso, evitando complicazioni gravi o irreversibili, quali insufficienza cardiaca ad alta gittata, ipertensione polmonare, stenosi delle vene centrali, ipertensione venosa, degenerazione aneurismatica della FAV e ischemia della mano. Sebbene la soglia per definire l’accesso ad alto flusso non sia stata rigorosamente convalidata né universalmente accettata, è stata indicato dalle linee guida KDOQI un Qa compreso tra 1 e 1,5 l/min o un Qa > 20% della gittata cardiaca. Le linee guida riservano, inoltre, il termine di “insufficienza cardiaca” solo ai pazienti sintomatici e considerano “precursori dello scompenso cardiaco” alcune alterazioni ecocardiografiche quali la disfunzione diastolica, la dilatazione delle cavità cardiache e lo sviluppo di rigurgito valvolare. Inoltre le linee guida non sono d’accordo riguardo all’indicazione chirurgica della riduzione del flusso nei pazienti asintomatici [911].

Va sottolineato, tuttavia, che c’è un elemento di individualità intrinseco alla definizione di flusso elevato della FAV. Infatti, sintomi legati all’ insufficienza cardiaca congestizia si possono sviluppare a valori di Qa anche inferiori; in particolare nei pazienti con cardiopatia sottostante o comorbilità correlate; pertanto secondo le linee guida potrebbe essere di aiuto l’esecuzione di un ecocardiogramma bidimensionale ogni 6-12 mesi.

Le linee guida spagnole suggeriscono nei casi di Qa > 2000 ml/min e/o nei pazienti con ricircolo cardiopolmonare > 30% la riduzione del flusso della FAV (mediante banding o procedure di rivascolarizzazione come la revisione dell’afflusso distale o RUDI) al fine di ridurre il rischio di insufficienza cardiaca ad alta gittata [12].

Le linee guida della Società Europea di Chirurgia Vascolare raccomandano per i pazienti emodializzati con un Qa > di 1500 ml/min un regolare monitoraggio mediante misurazioni del flusso, ecocardiografia e valutazione dei segni clinici di insufficienza cardiaca [13].

È un aspetto di cruciale importanza dell’assistenza al paziente emodializzato fare una diagnosi accurata e precoce della FAV ad alto flusso ed, inoltre, selezionare le procedure più idonee per trattare questa condizione patologica e le sue complicanze; infatti l’insufficienza cardiaca, come evidenziato in letteratura, è potenzialmente reversibile con la riduzione della portata e/o con la chiusura della FAV, sia spontanea per trombosi, che chirurgica dopo trapianto di rene [14, 15].

Nel presente lavoro descriviamo la storia di due pazienti portatori di FAV ad alta portata con revisione della letteratura.

 

Caso clinico 1

Uomo di 45 anni sottoposto a trapianto di rene da donatore cadavere. Dopo rigetto cronico, all’età di 55 anni riprendeva il trattamento emodialitico, utilizzando come accesso vascolare una FAV radio-cefalica sx prossimalizzata, mantenuta pervia, contro il parere dei sanitari, durante tutta la durata (10 anni) di funzionalità del graft.

Alla presa in carico presso il nostro centro, il paziente si presentava asintomatico e con valori di pressione arteriosa nella norma, l’esame obiettivo metteva in evidenza una FAV molto sviluppata con un enorme aneurisma. L’indagine con ecocolordoppler mostrava una dilatazione aneurismatica post-anastomotica a pareti indenni da lesioni; il calcolo della portata risultava di 10 l/min (eseguito in modo automatico dall’ecografo attraverso l’impostazione di 2 parametri: diametro dell’arteria omerale in B-Mode e velocità media calcolata sempre sullo stesso vaso a circa 2 cm dalla piega del gomito secondo le indicazioni delle linee guida) (Fig. 1).

FAV con portata di 10 l/min. 
Figura 1: FAV con portata di 10 l/min.  I parametri necessari per il calcolo della portata della FAV sono: diametro del vaso (arteria omerale) e velocità media del sangue.  Flusso (ml/min) = Area × Velocità media × 60, dove per area si intende l’area di sezione del vaso (cm²) e la velocità media è quella dei globuli rossi (cm/sec) ricavata dal tracciato Doppler nella sede in cui viene misurata l’area del vaso.

L’ecocardiogramma evidenziava ipertrofia concentrica del ventricolo sinistro, dilatazione biatriale, FE pari al 50% e assenza di ipertensione polmonare. Il paziente, dopo un breve periodo in cui è stato sottoposto a stretto monitoraggio, ha finalmente dato il suo consenso al trattamento chirurgico di riduzione dell’aneurisma e della portata della FAV, come concordato dal nefrologo e dal chirurgo vascolare.

Dopo anestesia plessica con carbocaina, è stata eseguita una flebografia dell’arto, tramite venopuntura della vena cefalica arterializzata, per valutare l’eventuale presenza di una stenosi dei vasi venosi centrali, non evidenziabile all’indagine ecocolordoppler. L’esame risultava negativo per stenosi. Pertanto, si procedeva con incisione longitudinale al terzo prossimale-medio dell’avambraccio, veniva isolata l’anastomosi ed il primo tratto del versante venoso dove era presente l’aneurisma (Fig. 2).

Aneurisma in FAV ad alta portata
Figura 2: Aneurisma in FAV ad alta portata. Dopo incisura al terzo prossimale-medio dell’avambraccio è ben visibile l’aneurisma a livello del primo tratto del versante venoso.

Dopo clampaggio dei vasi, è stata eseguita una venotomia longitudinale di circa 8 cm fino all’anastomosi (Fig. 3).

FAV prossimale ad alta portata.
Figura 3: FAV prossimale ad alta portata. Apertura della sacca aneurismatica.

La parete in eccesso della sacca aneurismatica veniva rimossa (Fig. 4), si procedeva a chiusura della parete con sutura continua e riduzione dell’anastomosi stessa (Fig. 5).

FAV prossimale ad alta portata.
Figura 4: FAV prossimale ad alta portata. Resezione con riduzione dell’aneurisma.
Termine intervento dopo aneurismectomia e riduzione del diametro dell’anastomosi.
Figura 5: Termine intervento dopo aneurismectomia e riduzione del diametro dell’anastomosi. Portata FAV attuale circa 2,0 l/min.

Al termine, la portata della FAV, intraoperatoria, si attestava a circa 2,0 l/min. A distanza di circa 8 mesi, il follow-up ecografico confermava la stabilità della portata della FAV (Fig. 6).

Portata FAV post-intervento: 1900 ml/min.
Figura 6: Portata FAV post-intervento: 1900 ml/min. Ecocolordoppler: curva spettrale a bassa resistenza con elevata componente diastolica.

 

Caso clinico 2

Uomo di 60 anni. In anamnesi ipertensione arteriosa, ipotiroidismo, nefrectomia renale sinistra per carcinoma a cellule renali nel 2005. Nel maggio 2017 si evidenziava comparsa di malattia nel rene destro per cui veniva sottoposto ad intervento di nefrectomia. Iniziava trattamento emodialitico con catetere venoso centrale e, successivamente, a giugno 2018, veniva allestito un accesso vascolare prossimale tra l’arteria omerale e la vena cefalica del braccio. La FAV, dopo adeguata maturazione, è stata punta regolarmente e sono stati eseguiti controlli periodici con ecocolordoppler in relazione ad alta portata (circa 4 l/min, con una bocca anastomotica di 5 mm). Nell’aprile 2019, per il riscontro all’ecocolordoppler di una stenosi al terzo medio della vena cefalica arterializzata, eseguiva una angioplastica (PTA).

Ad inizio 2020 il follow-up con ecocolordoppler mostrava un netto incremento della portata (8 l/min) ed un progressivo incremento delle dimensioni di una dilatazione aneurismatica post-anastomosi (Fig. 7).

Immagine B-mode: si apprezza l’anastomosi e l’aneurisma post anastomosi, il diametro dell’arteria omerale è di 9,2 mm.
Figura 7: Immagine B-mode: si apprezza l’anastomosi e l’aneurisma post anastomosi, il diametro dell’arteria omerale è di 9,2 mm.

Si proponeva al paziente la riduzione dell’anastomosi. L’intervento veniva, però, posticipato per oltre un anno per il sopraggiungere dell’emergenza Covid. In seguito ad un controllo ecocardiografico veniva effettuato un ricovero in Cardiologia e sottoposto ad angioplastica (PTCA) + stent medicati (DES) su IVA per riscontro di necrosi settale e severa disfunzione di pompa, in nota insufficienza mitralica e dilatazione biatriale, insufficienza tricuspidale con ipertensione polmonare (PAPS stimata > 65 mmHg).

La situazione clinica del paziente si complicava per una grave emorragia addominale causata dalla ripresa della malattia oncologica con metastasi addominali. Il paziente presentava episodi di flutter/fibrillazione atriale trattati con betabloccante e digitale endovena ed era ipoteso (PA 110/60 mmHg). A settembre 2021 ricovero per l’intervento di riduzione della FAV. Eseguito un esame fisico ed ecocolordoppler prima dell’intervento che metteva in evidenza la presenza di un collaterale a partenza dalla vena cefalica arterializzata di buon calibro (>3 mm) (Fig. 8), si decideva di utilizzare tale collaterale in sede di intervento.

Figura 8: Mega fistola con portata preintervento di 8 l/min.
Figura 8: Mega fistola con portata preintervento di 8 l/min.

In anestesia plessica con carbocaina, veniva eseguita incisione longitudinale in corrispondenza dell’aneurisma che veniva isolato. Si identificava il vaso collaterale da usare per nuovo allestimento di FAV, lo si mobilizzava e si chiudevano dei piccoli rami collaterali. Si lavava con fisiologia eparinata. L’aneurisma era chiuso, a livello prossimale e distale, e resecato. Veniva riconfezionato un nuovo accesso vascolare poco più prossimalmente rispetto al precedente (Fig. 9). L’intervento permetteva una riduzione della portata a meno di 2 l/min. Dopo la riduzione della portata, si assisteva ad un miglioramento del quadro clinico con buon compenso emodinamico, risalita dei valori pressori e riduzione della frequenza cardiaca. A distanza di pochi mesi però, si assisteva al decesso del paziente a causa di una sepsi a partenza da un’ulcera dell’arto inferiore destro.

Figura 9: Rappresentazione schematica di fistola pre- e post-intervento.
Figura 9: Rappresentazione schematica di fistola pre- e post-intervento.

 

Discussione

I casi clinici riportati riassumono le caratteristiche e le complicanze cliniche relative ad una FAV ad alta portata; tale condizione si associa, spesso, a dilatazioni aneurismatiche della vena arterializzata.

Sebbene non ci sia un rapporto causa-effetto chiaramente definito, alta portata e dilatazioni aneurismatiche sono meritevoli di particolare attenzione al fine di evitare quadri clinici più complessi come l’insufficienza cardiaca ad alta gittata con l’aumento del volume telediastolico ventricolare sinistro, l’ipertensione polmonare, le stenosi delle vene centrali e la sindrome ischemica da ipoperfusione distale, ulcerazioni cutanee e rottura. La dilatazione aneurismatica si verifica a causa di una complessa interazione tra fattori biologici che inducono il rimodellamento della parete e fattori fisici come la tensione della parete, in aggiunta all’indebolimento della parete da ripetute venopunture (lesioni tissutali e successiva guarigione) e all’aumento della pressione dell’accesso a causa di una stenosi relativa o assoluta [16]. Le manifestazioni cliniche associate ad un accesso ad alto flusso possono variare da un reperto accidentale asintomatico ad una situazione grave e pericolosa per la vita. Il sospetto di una alta portata della FAV va considerato in ogni paziente con caratteristiche cliniche riassunte nella Tabella 1.

Ipertrofia ventricolare sinistra eccentrica Rimodellamento del muscolo cardiaco con dilatazione delle quattro camere proporzionale al Qa
Insufficienza cardiaca ad alta gittata

Indice cardiaco superiore alla norma o gittata cardiaca elevata.

Sintomi: dispnea a riposo o con vari gradi di sforzo, ortopnea, dispnea parossistica notturna, edema polmonare e/o periferico

Ischemia miocardica Squilibrio avverso tra l’apporto di ossigeno subendocardico e l’aumento della richiesta di ossigeno dovuta all’aumento della gittata cardiaca
Ipertensione polmonare

Aumento della gittata cardiaca dopo creazione di FAV associato ad aumento della pressione arteriosa polmonare che è correlata al Qa.

Sintomi: dispnea progressiva, astenia, sincope e insufficienza cardiaca dx

Ischemia distale

indotta dall’accesso dell’emodialisi

Diminuzione della pressione di perfusione distalmente all’anastomosi FAV

Ischemia sino alla gangrena

Qa spesso elevato, in alcuni casi normale o basso

Diminuzione della clearance della dialisi Elevato ricircolo cardiopolmonare con ridotta efficienza dialitica
Stenosi venosa periferica e centrale

La stenosi del deflusso venoso è il risultato dell’iperplasia neointimale dovuta alla risposta dell’endotelio vasale all’alterazione del flusso sanguigno. Ciò avviene in siti specifici (biforcazione dei vasi, valvole venose, zone curve fortemente angolate all’interno del vaso) la cui anatomia favorisce un flusso sanguigno turbolento con conseguente squilibrio nello shear stress di parete.

Qa eccessivamente alto favorisce lo sviluppo di stenosi centrali

Allargamento aneurismatico dell’accesso (megafistola) Progressivo aumento dei vasi rendendo la FAV diffusamente tortuosa ed ectasica
Tabella 1: Manifestazioni cliniche legate ad una FAV ad alta portata.

La sintomatologia dell’insufficienza cardiaca ad alta gittata dovuta ad una FAV ad alto flusso è varia e caratterizzata da difficoltà respiratoria, palpitazioni, edema agli arti inferiori, inappetenza, ortopnea, dispnea anche per piccoli sforzi e/o dispnea parossistica notturna. La FAV ad alto flusso è una causa frequente di ipertensione polmonare quando la pressione arteriosa polmonare media supera i 25 mmHg a riposo o durante l’esercizio; in genere è asintomatica nei pazienti emodializzati, ma possono essere presenti sintomi come respiro corto, vertigini, svenimento, segni di insufficienza cardiaca destra ed edemi agli arti inferiori. Tale situazione può regredire con la riduzione del flusso e conseguente notevole abbassamento della pressione dell’arteria polmonare; incerto è, invece, un miglioramento della prognosi di vita di questi pazienti.

Nella pratica clinica quotidiana, spesso, non si riesce a trovare una correlazione univoca tra la sintomatologia e l’alto flusso di una FAV e non sono chiare le cause alla base dell’evoluzione di un sovraccarico di volume verso una insufficienza cardiaca conclamata. Le motivazioni sono svariate e legate sia alla tipologia del paziente (sovraccarico di volume, alterato metabolismo calcio-fosforo con calcificazioni arteriose, ipertensione arteriosa ed un aumento del cardiac output secondario all’anemia cronica, oltre alla coesistente presenza di malattie organiche come diabete, aritmie, cardiopatia ischemica o valvulopatie [17]), sia al fatto che la portata ematica di una FAV è legata soprattutto alla sede dell’anastomosi, più alta quanto più prossimale, alle dimensioni della breccia anastomotica (per esempio in una FAV prossimale > 4-6 mm), all’angolazione e al calibro del primo tratto venoso.

Diversi studi hanno dimostrato che, subito dopo la creazione di una FAV, si verifica una istantanea diminuzione delle resistenze vascolari periferiche e, per i successivi sette giorni, un progressivo compensatorio aumento, pari al 10-20% della gittata cardiaca e del 12,7% [18, 19] della massa ventricolare sinistra [20]. Lo sviluppo di una FAV è, quindi, un complesso rimodellamento vascolare venoso, arterioso e della circolazione sistemica con modificazioni dello shear stress di parete, dilatazione delle arterie e delle vene con cambiamenti strutturali della parete vasale [21]. Seppur raramente, sono descritti in letteratura casi di insufficienza cardiaca ad alta gittata “iperacuta” con quadri drammatici, già in sala operatoria, subito dopo l’allestimento di una FAV, tanto da rendere necessaria la legatura dell’accesso per ripristinare la stabilità emodinamica [22].

Basile e colleghi, in uno studio prospettico di riferimento, nel 2008, analizzando nelle FAV distali e prossimali la correlazione tra portata della FAV e cardiac output, hanno dimostrato un elevato valore predittivo dell’alta portata della FAV nel determinare una insufficienza cardiaca ad alta gittata soprattutto nelle FAV prossimali e/o nelle FAV con flussi maggiori o uguali a 2000 ml/min.

In particolare, i casi di scompenso ad alta portata sono osservati per il 70% tra i pazienti portatori di FAV prossimale e la soglia di rischio indicata riguarda un flusso maggiore di 2,2 l/min [23].

Molti autori hanno studiato gli effetti emodinamici di una FAV e l’impatto sugli indici ecocardiografici della funzione cardiaca (aumento dei volumi diastolici, gittata sistolica, ricircolo cardiopolmonare) già poco dopo la creazione della FAV ed, in particolare, nelle FAV prossimali rispetto a quelle distali [2426].

Quarello e colleghi, analizzando alcuni case report presenti in letteratura, suggeriscono che i pazienti in emodialisi dovrebbero essere valutati per scompenso cardiocircolatorio ad alta portata utilizzando il dato del RCP. Se RCP è > 30% l’ecocardiogramma di controllo deve essere eseguito con cadenza semestrale. Nei pazienti con RCP > 40%, in presenza di sintomatologia, si impone la chiusura della FAV al fine di ottenere il massimo recupero cardiaco. Miglioramenti della funzione cardiaca riducendo la portata sono stati segnalati da vari autori con riduzione dell’ipertrofia sia eccentrica che concentrica oltre che della gittata cardiaca e dell’ipertensione polmonare [27].

Se, da un lato, in letteratura, non vi è accordo sulla definizione di FAV ad alta portata, arbitrariamente possiamo considerare basso un flusso < a 600 ml/min, normale da 600 a 1500 ml/min, alto > 1500 ml/min.

Il test di Nicoladoni-Branham può aiutarci a capire se una fistola ad alto flusso è un fattore di stress per il cuore con un sovraccarico di volume cardiaco. È un test semplice, che si può utilizzare nella pratica clinica quotidiana e può essere effettuato al letto del paziente. Si esegue una pressione a livello dell’anastomosi arteriosa per 30-60 secondi al fine di occludere il flusso sanguigno alla fistola. La risposta a questa manovra è la diminuzione della frequenza cardiaca e l’aumento della pressione sanguigna, dovuto alla normalizzazione del flusso sanguigno circolante occludendo la fistola [28].

La diagnosi di una FAV ad alto flusso è, comunque, complicata [5]. Nella quotidianità un attento esame fisico può aiutare a confermare un sospetto di un elevato flusso, avvalorato dalla determinazione della portata della FAV sull’arteria brachiale con l’ecocolordoppler (Tabella 2); occorre poi eseguire una valutazione ecocardiografica e determinare la gittata cardiaca. L’insufficienza cardiaca può essere diagnosticata con un’ecografia transtoracica, ma, talora, può richiedere un cateterismo cardiaco destro per la diagnosi definitiva [29].

SEDE Qa elevato nelle FAV prossimali rispetto alle distali
DIMENSIONE

Grandi dimensioni, soprattutto se presente un’ostruzione a valle,

FAV diffusamente tortuosa ed ectasica

PALPAZIONE

Rilevazione del fremito (thrill) in corrispondenza dell’anastomosi.

Il thrill è continuo: indicatore di flusso.

Più forte (prominente) nell’accesso AV ad alto flusso rispetto ad un accesso con flusso normale o basso

AUSCULTAZIONE

Soffio vascolare continuo: indicatore di flusso.

La pulsazione o un soffio intermittente, invece, sono indicatori di elevata resistenza o iniziale occlusione.

Normalmente, man mano che si avanza lungo la vena, l’importanza del thrill e del soffio di sottofondo diminuisce leggermente; ciò non succede con un accesso con Qa ad alto flusso.

ECOCOLORDOPPLER

La diagnosi di un Qa elevato dipende dalla sua misurazione, che deve essere effettuata a livello dell’arteria brachiale almeno 5 cm prossimalmente all’anastomosi indipendentemente dal fatto che si tratti di una fistola AV radiale o dell’arteria brachiale.

Per l’elevata portata e l’alternarsi di tratti successivi di calibro diverso, è frequente riscontrare nella vena efferente, soprattutto nel suo tratto più vicino all’anastomosi, zone a flusso vorticoso, che conferiscono alternata codifica di colore (aliasing) nel lume vasale con un caratteristico andamento spiroidale

Tabella 2: FAV Alta Portata: caratteristiche Ecocolordoppler e correlati clinici.

In alcuni casi la FAV ad alto flusso, in presenza di stenosi dell’arco cefalico o della vena di deflusso (Fig. 10) e di dilatazioni aneurismatiche della vena arterializzata (Fig. 11), può evolvere verso la megafistola. Alcuni autori hanno stabilito i criteri per la definizione di megafistola: 1) Portata della FAV > 2,2 l/min, 2) Vena arterializzata ipertrofica, 3) Ricircolo cardiopolmonare > 20%, 4) Insufficienza cardiaca con gittata cardiaca > 4-8 l/min, 5) Indice cardiaco (rapporto tra gittata cardiaca e superficie corporea) > 3. Un’altra definizione proposta è la presenza di svariati segmenti della FAV molto dilatati (più del doppio del diametro della vena normale adiacente), portata maggiore di 2000 ml/min e pressioni intra-accesso elevate [11, 30, 31].

Stenosi sulla vena di deflusso.
Figura 10: Stenosi sulla vena di deflusso. Ben visibile il fenomeno dell’aliasing. All’analisi spettrale elevate velocità sisto-diastoliche.
Sezione trasversa e longitudinale in B-mode e color di tratti aneurismatici di FAV.
Figura 11: Sezione trasversa e longitudinale in B-mode e color di tratti aneurismatici di FAV.

Gardezi e colleghi, in un recente lavoro, valutando 10 pazienti con megafistola sottolineano quanto sia importante riconoscere e trattare le stenosi dell’outflow oltre alla sorveglianza continua dell’accesso, soprattutto nei pazienti che non sono in dialisi, come i portatori di trapianto, al fine di non avere quadri complicati con alta portata fino alla megafistola. Una volta che si sviluppa una megafistola, non ci sono molte opzioni di trattamento oltre alla legatura con conseguente perdita di un accesso che potrebbe ancora essere necessario in futuro [32].

In uno studio prospettico osservazionale, Stoumpos e colleghi hanno studiato, con l’utilizzo della risonanza magnetica nucleare (RMN), sia gli effetti della creazione della FAV che la funzione cardiaca nei pazienti con malattia renale cronica avanzata. In particolare, hanno messo in relazione le misurazioni ecografiche del Qa a 6 settimane con gli effetti dell’allestimento della FAV sulla massa ventricolare sinistra al basale e dopo un tempo medio di 6,3 settimane.

Gli autori hanno osservato un aumento sostanziale della massa ventricolare sinistra e della gittata cardiaca (p = 0,02) dopo 6,3 settimane, proporzionale alla portata misurata sull’arteria brachiale (p = 0,04). L’incremento della massa ventricolare sinistra era pari al 10,2% quando il Qa era superiore a 600 ml/min. Secondo gli autori tale aumento non era dovuto al peggioramento dell’uremia, al sovraccarico di volume plasmatico o alle variazioni dell’ematocrito poiché tali parametri non erano cambiati significativamente nell’intervallo di tempo osservato (mediana 8,3 settimane). Inoltre, gli autori hanno confermato che le fistole del braccio hanno flussi sanguigni più elevati rispetto alle fistole dell’avambraccio e, di conseguenza, hanno dimostrato che l’incidenza di insufficienza cardiaca è molto più alta nei pazienti con FAV prossimali rispetto alle distali. Questo è il primo studio che dimostra tali cambiamenti precoci nella massa del ventricolo sinistro e collega il flusso iniziale della FAV al cambiamento della massa del ventricolo sinistro [33].

Altri autori hanno valutato il Qa (mediante una tecnica di diluizione a due aghi) e la sopravvivenza in una popolazione in emodialisi per un periodo di 9 anni, considerando la mortalità cardiovascolare secondo la classificazione della European Renal Association-European Dialysis and Transplant Association.

Gli autori hanno studiato sia il Qa iniziale (definito come il primo valore di Qa ottenuto in una FAV ben funzionante) sia il ruolo del Qa effettivo (definito come il volume di flusso di accesso ottenuto di routine una volta ogni 1-2 mesi per la sorveglianza della FAV) e i cambiamenti periodici nel Qa effettivo. I risultati mostravano, in periodi di 3 mesi, un’associazione tra l’aumento del Qa effettivo e la mortalità (p = 0,010) indicando che solo i pazienti con un Qa crescente avevano maggiore probabilità di morire, sebbene il Qa effettivo non era correlato alla sopravvivenza. Inoltre, gli autori, pur riconoscendo i limiti dello studio (limitato numero di pazienti, dati ematochimici ed ecocardiogramma seriali non disponibili per tutti i pazienti), concludevano che la conoscenza di queste nuove caratteristiche del Qa può contribuire a comprendere l’elevata mortalità cardiovascolare nei pazienti emodializzati, e, pertanto, potranno essere di aiuto studi futuri combinati e seriali di cardiofisiologia e di imaging con il monitoraggio di marcatori biochimici [34].

Inoltre, piccoli studi osservazionali suggeriscono che la massa del ventricolo sinistro potrebbe migliorare dopo la legatura della FAV dopo trapianto di rene [3537].

Più recentemente, utilizzando la risonanza magnetica, è stato eseguito in Australia uno studio randomizzato in 63 pazienti adulti con trapianto di rene. La legatura della FAV in pazienti trapiantati stabili migliora il rimodellamento ventricolare sinistro con riduzione significativa dopo 6 mesi della massa ventricolare sinistra, dei volumi telediastolici, dei volumi atriali, della gittata cardiaca (da 6,8 l/min al basale a 4,8 l/min a 6 mesi p < 0,05) e del pro-BNP [38].

Inoltre, lo scompenso cardiaco si manifesta, anche, in presenza di un flusso non elevato della FAV per una riduzione della riserva cardiaca poiché un valore di Qa nel range di normalità (600-1200 ml/min) può essere eccessivo a causa di una bassa riserva coronarica (ridotta contrattilità miocardica con bassa gittata cardiaca), in quanto il cuore non riesce a soddisfare l’aumento della gittata cardiaca dovuta alla creazione della FAV [39, 40].

Recentemente, Malik e colleghi focalizzano l’attenzione sull’emodinamica cardiovascolare nei pazienti emodializzati portatori di FAV e suggeriscono alcuni elementi per la scelta dell’accesso vascolare più idoneo per ogni paziente considerando che la funzione cardiaca con o senza scompenso cardiaco dovrebbe essere uno dei criteri principali per selezionare il tipo di accesso appropriato utilizzando, in base alla gravità dei sintomi, la classificazione della New York Heart Association (4 classi) e dell’American Heart Association (stadio da A a D). Gli autori concludono proponendo l’utilizzo di modelli predittivi validati per stimare la portata che avrà la fistola dopo il suo allestimento ed i suoi effetti cardiaci [41].

Sono ben documentati i criteri terapeutici per la riduzione del flusso della FAV nelle condizioni quali malattie cardiopolmonari (insufficienza cardiaca, ipertensione polmonare, ischemia distale indotta dall’accesso all’emodialisi) associate a un Qa eccessivamente elevato. Al di là di queste condizioni, i criteri per il trattamento non sono ben definiti. Nei casi di stenosi venosa il Qa può essere normale, basso o elevato. Se il Qa è alto, dovrebbe essere eseguita una riduzione del flusso piuttosto che un’angioplastica, poichè ci si può aspettare che il Qa aumenti (ad eccezione di una stenosi venosa centrale) [42]. Questo aumento di flusso dopo angioplastica può peggiorare (come nel nostro caso clinico n°2) o slatentizzare problematiche quali l’insufficienza cardiaca, l’edema polmonare o l’ischemia della mano [43].

A tutt’oggi non esiste un valore target generalmente accettato per la riduzione del flusso; sono fondamentali il giudizio clinico e la considerazione della gravità della condizione individuale del paziente. L’obiettivo ideale del trattamento di una FAV ad alta portata è alleviare gli effetti avversi riducendo il Qa senza rischiare la perdita della pervietà dell’accesso vascolare.

Sono disponibili vari approcci per la riduzione del flusso quali la legatura degli affluenti venosi, il banding (chirurgico o endovascolare) e le procedure di rivascolarizzazione come la revisione dell’afflusso distale o RUDI [44].

 

Conclusioni

Il monitoraggio e la sorveglianza degli Accessi Vascolari sono essenziali al fine di migliorare la gestione e la cura del paziente in emodialisi e, per questo, si fa sempre più strada una stretta collaborazione tra nefrologo e altre professionalità con l’uso di protocolli e procedure basati su evidenze scientifiche uniformando gli interventi e i comportamenti. Dobbiamo definire e quindi ottimizzare il flusso sanguigno della FAV per prevenire le complicazioni a lungo termine, considerando che l’accesso vascolare può influenzare la funzione cardiaca e, in alcuni pazienti, potrebbe peggiorare lo stato clinico. Il trattamento deve essere individualizzato in base alla presentazione clinica, alla sintomatologia ed alle comorbilità del paziente.

Varie tecniche chirurgiche ed endovascolari sono state utilizzate per trattare l’alta portata. Il trattamento chirurgico, come nel nostro caso, consente di preservare la FAV autologa.

 

Bibliografia

  1. Bailey WB, Talley JD. High-output cardiac failure related to hemodialysis arteriovenous fistula. J Ark Med Soc 2000 96: 340-341.
  2. Alkhouli Mohamad, Sandhu Paul, Boobes Khlaed, Hatahet Kamel, Razae Farhan, Boobes Yousef. Cardiac complications of arteriovenous fistulas in patients with end-stage renal disease. Nefrologia. 2015;35(3):234–245. https://doi.org/1016/j.nefro.2015.03.001.
  3. Rao Nitesh N, Dundon Benjamin K, Worthley Matthew I, Faull Randall J. The Impact of Arteriovenous Fistulae for Hemodialysis on the Cardiovascular System Semin Dial 2016 May;29(3):214-21 3. https://doi.org/1111/sdi.12459.
  4. Saran R, Robinson B, Abbott KC, et al. US Renal Data System 2016 Annual Data Report: epidemiology of kidney disease in the United States. Am J Kidney Dis 2017; 69: A7–A8. https://doi.org/10.1053/j.ajkd.2016.12.004.
  5. Floccari F, Di Lullo L, Rivera R, Malaguti M, Santoboni A, Granata A, Timio M La fistola arterovenosa e lo scompenso ad alta gittata: un tema di grande… portata TN&D Anno XXIV n. 3.
  6. Iwashima Y, Horio T, Takami Y, Inenaga T, Nishikimi T, et al. (2002) Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am J Kidney Dis 40: 974-982. https://doi.org/10.1053/ajkd.2002.36329.
  7. Malik J, Valerianova A, Tuka V, Trachta P, Bednarova V, Hruskova Z, Slavikova M, Rosner MH, Tesar V. The effect of high-flow arteriovenous fistulas on systemic haemodynamics and brain oxygenation. ESC Hear. Fail. 2021, 8, 2165–2171. https://doi.org/1002/ehf2.13305.
  8. Lock E, Huber T, Lee T, Shenoy S, Yevzlin A et al. KDOQI Clinical Practice Guideline For Vascular Access AJKD Vol 75, Iss 4, Suppl 2, April 2020. https://doi.org/10.1053/j.ajkd.2019.12.001.
  9. Sequeira A, Tan TW. Complications of a High-flow Access and Its Management. Semin Dial 2015; 28:533. https://doi.org/10.1111/sdi.12366.
  10. Management of high flow in A/V fistula and graft. Available at www.vascularaccesssociety.org.
  11. Miller GA, Hwang WW. Challenges and management of high-flow arteriovenous fistulae. Semin Nephrol 2012; 32:545. https://doi.org/10.1016/j.semnephrol.2012.10.005.
  12. Ibeas J, Roca-Tey R, Vallespin J, et al. Spanish clinical guidelines on vascular access for haemodialysis (vol 37, pg 1, 2017). Nefrologia 2019; 39: 1–2. https://doi.org/10.1016/j.nefro.2017.11.004.
  13. Schmidli J, Widmer M.K., Basile C., de Donato G. et al. Editor’s Choice – Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J.Vasc. Endovasc. Surg. 2018, 55, 757–818. https://doi.org/10.1016/j.ejvs.2018.02.001.
  14. Unger Philippe, Velez-Roa S, Wissing KM. Regression of left ventricular hypertrophy after arteriovenous fistula closure in renal transplant recipients: a long-term follow-up. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2004 4(12): 2038-44. https://doi.org/10.1046/j.1600-6143.2004.00608.x.
  15. Movilli E, Viola BF, Brunori G, et al. Long-term effects of arteriovenous fistula closure on echocardiographic functional and structural findings in hemodialysis patients: a prospective study. Am J Kidney Dis 2010; 55: 682. https://doi.org/10.1053/j.ajkd.2009.11.008.
  16. Mudoni A, Cornacchiari M, Gallieni M, Guastoni C, McGrogan D, Logias F, Ferramosca E, Mereghetti M, Inston N. Aneurysms and pseudoaneurysms in dialysis access. Clin Kidney J. 2015 Aug;8(4):363-7. https://doi.org/10.1093/ckj/sfv042.
  17. Kanno T., Kamijo Y., Hashimoto K., Kanno Y. Outcomes of blood flow suppression methods of treating high flow access in hemodialysis patients with arteriovenous fistula. J. Vasc. Access 2015, 16 (Suppl. S1), S28–S33. https://doi.org/10.5301/jva.5000415.
  18. Korsheed S., Eldehni M.T., John S.G., Fluck, R.J., McIntyre C.W. Effects of arteriovenous fistula formation on arterial stiffness and cardiovascular performance and function. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. 2011,26, 3296–3302. https://doi.org/10.1093/ndt/gfq851.
  19. Ori, Y.; Korzets, A.; Katz, M.; Erman, A.; Weinstein, T.; Malachi, T.; Gafter, U. The contribution of an arteriovenous access for hemodialysis to left ventricular hypertrophy. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 40, 745–752. https://doi.org/10.1053/ajkd.2002.35685.
  20. Dundon, B.K.; Torpey, K.; Nelson, A.J.; Wong, D.T.; Duncan, R.F.; Meredith, I.T.; Faull, R.J.; Worthley, S.G.; Worthley, M.I. The deleterious effects of arteriovenous fistula-creation on the cardiovascular system: A longitudinal magnetic resonance imaging study. Int. J. Nephrol. Renovasc. Dis. 2014, 7, 337–345. https://doi.org/10.2147/IJNRD.S66390.
  21. Jie, K.; Feng, W.; Boxiang, Z.; Maofeng, G.; Jianbin, Z. et al. Identification of Pathways and Key Genes in Venous Remodeling After Arteriovenous Fistula by Bioinformatics Analysis. Front . Physiol. 2020, 11, 565240. https://doi.org/10.3389/fphys.2020.565240.
  22. Bornstein Yadin, Weaver M. Libby, Holscher Courtenay M., Reifsnyder Thomas. Development of Hyperacute High-Output Heart Failure at the Time of Access Creation February J of Vascular Surgery Cases and Innovative Techniques Volume 7, Issue 3, September 2021, Pages 529-531. https://doi.org/10.1016/j.jvscit.2021.02.006.
  23. Basile C, Lomonte C, Vernaglione L, Casucci F, Antonelli M, Losurdo N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant 2008; 23(1): 282-7. https://doi.org/10.1093/ndt/gfm549.
  24. Zamboli P., Lucà S., Borrelli S., Garofalo C., Liberti M.E., Pacilio M. High-flow arteriovenous fistula and heart failure: could the indexation of blood flow rate and echocardiography have a role in the identification of patients at higher risk? J Nephrol, 31 (2018), pp. 975-983 https://doi.org/10.1007/s40620-018-0472-8.
  25. Movilli E, Viola BF, Brunori G, et al. Long-term effects of arteriovenous fistula closure on echocardiographic fun ctional and structural findings in hemodialysis patients: a prospective study. Am J Kidney Dis 2010; 55: 682. https://doi.org/10.1053/j.ajkd.2009.11.008.
  26. Saleh Mohamed Ayman, Kilany Wael Mahmoud El, Keddis Viola William, Tamer Wahid El Said. Effect of high flow arteriovenous fistula on cardiac function in hemodialysis patients Egypt Heart J 2018 Dec;70(4):337-341. https://doi.org/10.1016/j.ehj.2018.10.007.
  27. Quarello Francesco, Forneris Giacomo, Borca Marco Pozzato Marco Do central venous catheters have advantages over arteriovenous fistulas or grafts? J Nephrol May-Jun 2006;19(3):265-79. https://pubmed.ncbi.nlm.nih.gov/16874685/
  28. Burchell H. B, “Observations on bradycardia produced by occlusion of an artery proximal to an arteriovenous fistula (Nicoladoni-Branham sign),” Medical Clinics of North America, vol. 42, no. 4, pp. 1029–1035, 1958. https://doi.org/10.1016/s0025-7125(16)34255-9.
  29. Stern B. and Klemmer P. J. High-output heart failure secondary to arteriovenous fistula. Hemodialysis International, 2011. vol. 15, no. 1, pp. 104–107, https://doi.org/10.1111/j.1542-4758.2010.00518.x.
  30. Lam W, Betal D, Morsy M, et al. Enormous brachio cephalic arteriovenous fistula aneurysm after renal transplantation: case report and review of the literature. Nephrol Dial Transplant 2009; 24(11): 3542–3544. https://doi.org/10.1093/ndt/GFP337.
  31. Sangeetha B., Chaitanya V., Reddy M. H., Kumar A. C. V., Ram R., Sivakumar V. Mega‑ 2016, vol. 26, issue 5, 385-386. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5015523/.
  32. Gardezi Ali I, Mawih Mustafa, Alrawi Ezzideen B, Karim Muhammad S, Aziz Fahad, Chan Micah R. Mega Fistulae! A case series J Vasc Access. 2021 Nov;22(6):1026-1029. https://doi.org/10.1177/1129729820968425.
  33. Stoumpos, Rankin A, Barrientos P, Mangion K, McGregor E et al. Interrogating the haemodynamic effects of haemodialysis arteriovenous fistula on cardiac structure and function Scientific Reports (2021) 11:18102. https://doi.org/10.1038/s41598-021-97625-5.
  34. Yadav R., Gerrickens M.W.M., van Kuijk S M.J., Vaes R H. D., Snoeijs M G. J., Scheltinga M.R.M. Access flow volume (Qa) and survival in a haemodialysis population: an analysis of 5208 Qa measurements over a 9-year period Nephrol Dial Transplant (2021) 1–7. https://doi.org/10.1093/ndt/gfab242.
  35. Peteiro J, Alvarez N, Calvino R, et al. Changes in leftventricular mass and filling after renal-transplantation are related to changes in blood-pressure – an echocardiographic and pulsed Doppler study. Cardiology 1994; 85: 273–283. https://doi.org/10.1159/000176695.
  36. Ferreira SRC, Moises VA, Tavares A, et al. Cardiovascular effects of successful renal transplantation: a 1-year sequential study of left ventricular morphology and function, and 24-hour blood pressure profile. Transplantation 2002; 74: 1580–1587). https://doi.org/10.1097/00007890-200212150-00016.
  37. Rao NN, Stokes MB, Rajwani A, Ullah S, Williams K, King D, et al. Effects of arteriovenous fistula ligation on cardiac structure and function in kidney transplant recipients. Circulation 2019; 139: 2809–2818. https://doi.org/10.1161/CIRCULATIONAHA.118.038505.
  38. Van Duijnhoven, E.C.; Cheriex, E.C.; Tordoir, J.H.; Kooman, J.P.; van Hooff, J.P. Effect of closure of the arteriovenous fistula on left ventricular dimensions in renal transplant patients. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. 2001, 16, 368–372. https://doi.org/10.1093/ndt/16.2.368.
  39. Malik J. Heart disease in chronic kidney disease – review of the mechanisms and the role of dialysis access. J Vasc Access 2018; 19: 3–11. https://doi.org/10.5301/jva.5000815.
  40. Konner K, Nonnast-Daniel B and Ritz E. The arteriovenous fistula. J Am Soc Nephrol 2003; 14: 1669–1680. https://doi.org/10.1097/01.ASN.0000069219.88168.39.
  41. Malik J., Lomonte C., Rotmans J., Chytilova E., Roca-Tey R., Kusztal M., Grus T., Gallieni M. Hemodialysis vascular access affects heart function and outcomes: Tips for choosing the right access for the individual patient. Vasc. Access 2020, 22, 32–41. https://doi.org/10.1177/1129729820969314.
  42. Cornacchiari M, Mudoni A, Di Nicolò P, Mereghetti M, Gidaro B, Stasi A, Neri AL, Guastoni C Sindrome da ipoperfusione periferica e sindrome monomielica: dalla diagnosi al trattamento. Descrizione di un caso clinico con revisione della letteratura G Ital Nefrol. 2019 Luglio 24;36(4). https://giornaleitalianodinefrologia.it/tag/accesso-vascolare/.
  43. Yan Y, Sudheendra D, Dagli MS, William Stavropoulos S, Clark TW, Soulen MC, Mondschein JI, Shlansky-Goldberg RD, Trerotola SO. Effect of central venous angioplasty on hemodialysis access circuit flow: prospective study of 25 symptomatic patients.J Vasc Interv Radiol. 2015;26(7):984. https://doi.org/10.1016/j.jvir.2015.03.005.
  44. Vélez-Martínez M, Weinberg BD, Mishkin JD. Flash pulmonary oedema after relief of haemodialysis graft stenosis. Heart Lung Circ. 2013;22(8):672. https://doi.org/10.1016/j.hlc.2012.11.009.

Impatto dell’emodialisi sull’equilibrio acido-base: stato dell’arte e nuove prospettive

Abstract

Nel periodo interdialitico la produzione acida endogena del paziente uremico diminuisce per la ridotta perdita urinaria del bicarbonato e degli anioni metabolizzabili degli acidi organici, pertanto l’acidosi metabolica raramente è di grado severo; in questi pazienti, con inattesa frequenza, si riscontrano anche acidosi e alcalosi respiratoria.
Durante la dialisi, l’omeostasi acido-base risente del guadagno diffusivo/convettivo di CO2 e bicarbonato e della perdita diffusiva degli anioni organici.
La bicarbonato-dialisi arricchisce di CO2 l’acqua totale corporea, imponendo un incremento della ventilazione (>10%). Il carico di CO2 è accentuato in emodiafiltrazione on-line per l’infusione diretta del dialisato nel circuito extracorporeo e, al contrario, è assente in acetate-free biofiltration, caratterizzata da dialisato CO2-free.
Bicarbonato e acetato si diffondono nel liquido extracellulare seguendo i rispettivi gradienti di concentrazione dialisato-sangue. Il gradiente del bicarbonato, inizialmente molto ampio, si riduce progressivamente per l’incremento della bicarbonatemia. Per l’acetato, invece, tale gradiente è modesto ma costante, per la rapida trasformazione metabolica in bicarbonato che previene aumenti della acetatemia. Gli alcali somministrati con il trattamento ripristinano i buffer consumati nel periodo interdialitico, ma stimolano anche una robusta sintesi di acidi organici, i cui idrogenioni consumano oltre il 90% del bicarbonato somministrato. Inoltre, la diffusione nel dialisato degli anioni di questi acidi diventa la principale componente del carico acido dei pazienti in emodialisi.
Un nuovo protocollo prevede un incremento progressivo della concentrazione di bicarbonato nel dialisato (Staircase protocol), consentendo di ottenere un graduale incremento intradialitico della bicarbonatemia e di ridurre la perdita diffusiva degli anioni degli acidi organici, ottimizzando così il trattamento.

Parole chiave: Acido-base, Biossido di carbonio, Bicarbonato, Dialisato, Emodialisi

Introduzione

L’acidosi metabolica compare negli stadi precoci dell’insufficienza renale cronica e progredisce con la severità della malattia, ne accelera la progressione, e contribuisce all’incremento della mortalità [1]. La ritenzione degli idrogenioni (H+) inizia già nello stadio 2, con pH e concentrazione sierica di bicarbonato ([HCO3]) ancora nella norma [2]. A partire dallo stadio 3, la compromissione del riassorbimento tubulare del bicarbonato causa acidosi ipercloremica. In presenza di più severa compromissione funzionale, il difetto di escrezione degli H+ degli acidi fissi e la progressiva riduzione della filtrazione glomerulare determinano acidosi a elevato anion gap [3, 4]. Poco è noto sulla presenza di altri disturbi acido-base, possibile conseguenza delle molteplici comorbidità, perché quasi tutte le conoscenze sono limitate alla [HCO3] e sono pochi i dati relativi a pH e pressione parziale di CO2 (pCO2).

Con l’inizio del trattamento emodialitico si assiste ad un sovvertimento dell’omeostasi acido-base, non più incentrata sul pH dei fluidi, ma regolata dai principi fisici della diffusione e della convezione [5]. La contrazione della diuresi mitiga la perdita urinaria degli anioni degli acidi organici e ciò riduce il carico di H+ nel paziente uremico, ma proprio la perdita diffusiva di tali anioni nel dialisato diventa la principale componente della produzione acida endogena nel paziente in trattamento emodialitico [6]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Tripla stenosi su fistola arterovenosa brachio-basilica: utilità dell’angioplastica, case report e review della letteratura

Abstract

La principale complicanza della fistola artero-venosa (FAV) è rappresentata dalla patologia stenotica. Tale condizione è caratterizzata da una riduzione del calibro del vaso arterioso o venoso che costituiscono la FAV. Più frequentemente si riscontra in corrispondenza della regione iuxta-anastomotica del segmento venoso.

Ci sono molti meccanismi responsabili della formazione della stenosi; alcuni correlati allo shear stress nella parete del tratto venoso, altri associati alle ripetute venipunture durante il trattamento dialitico.

È raccomandabile che ogni centro dialisi attivi un programma di monitoraggio della FAV in grado di identificare e trattare le stenosi.

Descriviamo il caso clinico di una giovane donna con una malattia da stenosi multipla di una FAV brachio-basilica trasposta.

Parole chiave: FAV, emodialisi, stenosi, angioplastica, angioplastica ecoguidata

Introduzione

Tra le complicanze della fistola arterovenosa (FAV) per emodialisi (Tabella I), vanno annoverate le stenosi; trattasi di una complicanza strutturale a cui è esposta la FAV. Le stenosi delle FAV native possono interessare sia il versante venoso che quello arterioso. L’incidenza di stenosi coinvolgenti il sistema venoso della FAV risulta essere di gran lunga maggiore rispetto a quello arterioso [15]. Le stenosi sono senza dubbio la causa più frequente di failure della fistola arterovenosa; la caduta di portata di cui sono responsabili riduce l’efficienza dialitica con calo del Kt/V, inoltre sono causa di un incremento della pressione negativa nel circuito, ostacolano il ritorno venoso, favoriscono il ricircolo [6, 7].

COMPLICANZE STRUTTURALI COMPLICANZE EMODINAMICHE
Ridotto/assente inflow (stenosi vaso afferente) Ridotta portata della FAV per perdita dell’inflow
Ridotto/assente outflow (stenosi del vaso efferente) Sindrome da furto (Steal syndrome)
Stenosi della porzione centrale del vaso efferente Presenza di collaterali venose che riducono la portata
Ematoma Scompenso cardiaco congestizio
Aneurisma Edema del braccio
Pseudoaneurisma
Calcificazioni
Tabella I: complicanze della FAV (Meola M: Ecografia clinica in nefrologia. Fistola arterovenosa, p 1308. Meola M. Eureka editore 2015).

Alcuni autori hanno classificato le stenosi del versante venoso della FAV in iuxta-anastomotiche o distali, a seconda che la sede della stenosi sia rispettivamente entro o oltre i 2 cm dall’anastomosi; anche se per Tessitore [8] vanno considerate tali anche le stenosi entro i 5 cm dall’anastomosi; questo sottotipo è responsabile dell’80 % delle stenosi.

Altra possibile classificazione riguardante la sede delle stenosi prevede la distinzione di stenosi centrali, iuxta-anastomotiche e stenosi riguardanti il tratto di vena compreso tra queste due regioni. Infine, da un punto di vista emodinamico, possiamo classificarle in stenosi dell’inflow e stenosi dell’outflow. Le prime determinano, da un punto di vista emodinamico, una riduzione della portata della fistola e riguardano le stenosi arteriose e le stenosi venose iuxta-anastomotiche; le seconde, invece, sono le stenosi venose distali che determinano un ostacolo al deflusso venoso anche in presenza di una valida portata [9].

La sede più frequente di stenosi è la porzione iuxta-anastomotica [1013], ma sono frequenti anche le stenosi della porzione centrale della vena efferente sede di venopuntura. Possiamo definire critica una stenosi quando la riduzione del diametro del lume vasale è superiore al 50 % rispetto a quello misurato nella porzione prestenotica. Ma tale definizione non può prescindere dalle alterazioni emodinamiche causate dalla stenosi: una riduzione della portata, l’aumento degli indici di resistenza, l’incremento della velocità di picco sistolico in corrispondenza della stenosi e, non ultima, l’inadeguata efficienza dialitica che accompagnano la stenosi [14].

La FAV è un “bene prezioso” per il paziente emodializzato; il patrimonio vascolare non è illimitato e il ricorso al catetere venoso centrale dovrebbe essere una seconda scelta. La stenosi deve essere considerata come l’iniziale processo di chiusura della FAV: se precocemente riconosciuta e trattata può evitare la chiusura definitiva dell’accesso vascolare.

 

Case report

Descriviamo il caso di una paziente di 54 anni, ipertesa, uremica in trattamento emodialitico da 3 anni, affetta da sindrome Nail-Patella. All’avvio al trattamento veniva confezionata una FAV radio-cefalica distale all’avambraccio sinistro previo mapping preoperatorio dell’arto che evidenziava una vena cefalica di 2 mm che incrementava il suo diametro a più del 50% dopo posizionamento del laccio emostatico; arteria radiale di 2,2 mm con portata di 15 ml/m e un test dell’iperemia reattiva che mostrava una caduta delle resistenze e incremento della portata.

Dopo 6 mesi la FAV andava incontro a failure, per cui veniva posizionato un catetere venoso centrale definitivo in vena giugulare destra. Allestita una nuova FAV distale radio-cefalica a carico dell’avambraccio di destra, quest’ultima andava incontro ad early failure nonostante il mapping preoperatorio mostrasse vasi aggredibili con buona compliance vascolare. Veniva quindi allestita una FAV prossimale brachio-basilica a carico del braccio sinistro con trasposizione della basilica. La portata della fistola, calcolata sull’arteria brachiale, dopo 7 giorni dall’allestimento era pari a 765 ml/m e incrementava a 1130 ml/m dopo 30 giorni.

Durante i trattamenti emodialitici si riscontravano pressioni venose elevate nell’accesso vascolare e pressioni arteriose eccessivamente negative. Veniva intrapreso quindi un follow-up ecografico e veniva posticipata la rimozione del CVC definitivo. Un controllo a distanza di 8 mesi mostrava una caduta della portata a 880 ml/m. L’accesso vascolare, monitorato nei mesi successivi, mostrava una progressiva riduzione di portata: 760 ml/m dopo 10 mesi dall’allestimento; 600 ml/m dopo 13 mesi. Giunge alla nostra osservazione a marzo 2022. L’esame doppler metteva in evidenza una portata pari a 465 ml/min. IR pari a 0,5 e l’evidenza di 3 stenosi lungo il decorso della vena basilica trasposta. Di queste, una si presentava in regione iuxta-anastomotica, con velocità di picco sistolico (PSV) calcolata in corrispondenza della stenosi pari a 350 cm/sec e le due restanti in regione distale con PSV rispettivamente di 617 cm/sec e 387 cm/sec. Si concludeva dunque per FAV malfunzionante con patologia stenotica multipla, con impatto emodinamico significativo. Per difficoltà operativa nel reperire un accesso unico che consentisse di trattare tutte e tre le stenosi contemporaneamente, veniva pianificato un trattamento di PTA in due tempi:

  1. PTA delle due stenosi distali con approccio anterogrado.
  2. PTA della stenosi iuxta-anastomotica con approccio retrogrado.

Veniva eseguita una prima procedura di PTA ecoguidata con balloon non compliante ad alta pressione delle dimensioni di 6 x 30 mm gonfiato fino a 24 atmosfere con completa distensione delle due lesioni stenotiche. Immediatamente dopo la procedura la portata dell’accesso vascolare risultava essere di 1100 ml/min con IR pari a 0,42 (Figure 1-5).

Figura 1: B-Mode. Scansione longitudinale su vena basilica efferente la FAV. Si nota esteso tratto stenotico.
Figura 1: B-Mode. Scansione longitudinale su vena basilica efferente la FAV. Si nota esteso tratto stenotico.
Figura 2: Color-doppler. Portata calcolata su arteria brachiale: 465ml/min; IR 0.5.
Figura 2: Color-doppler. Portata calcolata su arteria brachiale: 465ml/min; IR 0.5.
B-Mode. Gonfiaggio del pallone per angioplastica nel lume
Figura 3: B-Mode. Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico. Si notano due incisure disegnate sul profilo del pallone, sede di maggiore resistenza della stenosi, che verranno completamente sfiancate al raggiungimento di 24 atmosfere.
B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Figura 4: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura.
Figura 5: Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura. Si nota un incremento della portata a 1094 ml/min con riduzione indici di resistenza a 0,41.

A distanza di 15 giorni veniva eseguita seconda proceduta di PTA ecoguidata su stenosi iuxta-anastomotica. Veniva utilizzato balloon non compliante ad alta pressione delle dimensioni di 6 x 30 mm gonfiato fino a 24 atmosfere con completa risoluzione della stenosi (Figure 6-10).

Scansione longitudinale su vena basilica efferente la FAV in corrispondenza della regione iuxta-anastomotica stenotica.
Figura 6: B-Mode. Scansione longitudinale su vena basilica efferente la FAV in corrispondenza della regione iuxta-anastomotica stenotica.
Figura 7: Color-doppler. Portata calcolata su arteria brachiale: 920 ml/min con IR 0.49.
Figura 7: Color-doppler. Portata calcolata su arteria brachiale: 920 ml/min con IR 0.49.
Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico.
Figura 8: B-Mode. Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico. Pallone completamente disteso, gonfiato a 24 atmosfere.
Figura 9: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Figura 9: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Portata calcolata su arteria brachiale successivamente alla procedura
Figura 10: Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura. Si nota un incremento della portata a 1756 ml/min con riduzione indici di resistenza a 0,37.

La portata dell’accesso al termine della procedura risultava pari a 1600 ml/min con IR pari a 0,37. Contestualmente nella stessa seduta operatoria veniva rimosso CVC giugulare definitivo destro. In Figura 11 è riportato l’andamento della portata della FAV dal suo allestimento fino all’espletamento dell’ultima procedura descritta.

Figura 11: Il grafico, portata/tempo, mostra l’andamento del flusso prima e dopo le due procedure di angioplastica.
Figura 11: Il grafico, portata/tempo, mostra l’andamento del flusso prima e dopo le due procedure di angioplastica.

 

Discussione

Il primum movens del processo di stenosi è rappresentato dall’iperplasia neointimale, a sua volta legata ad un incremento dello shear-stress di parete per l’imponente incremento di flusso cui è sottoposto il vaso dopo la creazione dell’anastomosi. Concorrono, al processo di stenosi, anche lo stato pro infiammatorio proprio della malattia renale cronica, le venipunture ripetute, lo stress chirurgico, fattori genetici. Tutti questi elementi sono responsabili del rimodellamento della parete vascolare e di una anomala proliferazione [15] e migrazione delle cellule muscolari lisce mediata da una serie di fattori: citochine, chemochine, ossido di azoto, endotelina, osteopontina, apolipoproteina [10, 16-21].

È inoltre dimostrata una migrazione di fibroblasti dall’avventizia all’intima e la loro trasformazione in miofibroblati che contribuisce in maniera significativa alla riduzione del lume vascolare [2228]. Alcuni studi hanno incentrato l’attenzione sulla natura delle cellule che costituiscono la neointima: la loro identificazione pone infatti le basi per azioni terapeutiche volte a inibire il processo di proliferazione neointimale. In particolare la recente evidenza di fibroblasti migrati dall’avventizia all’intima e trasformati in miofibroblasti ha sottolineato il ruolo fondamentale di queste cellule nella produzione di matrice extracellulare della neointima. Tutto questo rimarca l’importanza dell’avventizia come attore in prima linea nel processo di iperplasia neointimale e la pone al centro dell’attenzione di interventi terapeutici che mirino al controllo di tutti questi elementi cellulari (fibroblasti, miofibroblasti, cellule muscolari lisce). Da ciò la proposta di alcuni autori di utilizzare farmaci antiproliferativi ad azione perivascolare [29-31]. Non ultima la necessità di una corretta manipolazione chirurgica intraoperatoria finalizzata a preservare l’avventizia e i vasa vasorum [29]; è dimostrato infatti che il ridotto traumatismo della parete vasale riduce in maniera significativa l’iperplasia neointimale [32].

Il malfunzionamento dell’accesso vascolare è una temuta complicanza del paziente in trattamento emodialitico: la sorveglianza clinica e il monitoraggio strumentale della FAV tendono a scongiurare questo pericolo. Negli anni si sono sviluppati programmi di sorveglianza clinico/strumentale spesso dissociati in quanto il nefrologo non sempre è il fulcro di questa sorveglianza, demandando al chirurgo vascolare o al radiologo la parte tecnico/strumentale. Nel nostro centro da tempo è stata posta l’attenzione a questo tipo di problematica e un team dedicato, oltre ad effettuare una sorveglianza clinica (esame ispettivo della FAV, Kt/V, ricircolo dell’accesso, monitoraggio delle pressioni venose ed arteriose intradialitiche), provvede al monitoraggio ecografico delle FAV a rischio di chiusura. L’ecocolordoppler infatti va ritenuto l’unica indagine capace di fornire informazioni strutturali e funzionali sull’accesso vascolare [33-36]; la metodica, infatti, oltre ad identificare deficit funzionali, mediante la valutazione della portata [3547], è in grado di individuare stenosi e trombosi da correggere mediante interventi di angioplastica, anch’essi ecoguidati, con i quali lo stesso nefrologo può cimentarsi.

Va comunque precisato che i programmi di sorveglianza degli accessi vascolari a tutt’oggi sono oggetto di discussione, in quanto lì dove studi osservazionali indicano che la correzione preventiva delle stenosi riduca la percentuale di fallimento dell’accesso vascolare [47] e le stesse linee guida NKF-K-DOQI [48] consigliano di sottoporre gli emodializzati portatori di FAV ad un programma di sorveglianza dell’accesso vascolare, ci sono pareri discordanti che attribuiscono una scarsa efficacia a detti programmi [4951].

I dati presenti in letteratura mostrano come vi sia una tendenza alla recidiva della stenosi dopo trattamento mediante PTA.

Le varie casistiche identificano una pervietà della FAV tra il 50-60% ad un anno dal trattamento. L’ipotesi eziopatogenetica è identificata nella iperplasia reattiva dei miociti della parete del vaso sottoposto a stretching durante la procedura con conseguente reazione sclerotico-cicatriziale e riformazione della stenosi [52]. A tal ragione vengono usati con maggiore frequenza balloon medicati (DCB), ricoperti da farmaci antiproliferativi come il Placitaxel, che rilasciati nella parete vascolare durante la dilatazione della stenosi vanno ad inibire la proliferazione reattiva. Grazie all’utilizzo di tali dispositivi si è ottenuta una pervietà primaria maggiore rispetto ai ballon convenzionali: fino all’80% a 6 mesi [53].

 

Conclusioni

La FAV va considerata l’accesso vascolare di prima scelta, la sua sopravvivenza deve essere garantita con l’utilizzo di tutti i mezzi a nostra disposizione: osservazione clinica e strumentale, monitoraggio intradialitico, accuratezza nella venopuntura. Le stenosi rappresentano la causa più frequente di malfunzionamento della FAV, se precocemente riconosciute e trattate l’accesso vascolare “sopravvive”. È nostra esperienza che la restenosi di una FAV, sottoposta ad angioplastica, è una evenienza possibile, ma proprio la sorveglianza di queste FAV a rischio ci consente di reintervenire concedendo all’accesso vascolare un ulteriore periodo di utilizzo.

 

Bibliografia

  1. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Update 2006. Am J Kidney Dis 2006; 48 (suppl 1): 5248-73. https://doi.org/10.1053/j.ajkd.2006.03.010.
  2. Beathard GA, Arnold P, Jackson J, Litchfield T; Physician Operators Forum of RMS Lifeline. Aggressive treatment of early fistula failure. Kidney Int. 2003 Oct;64(4):1487-94. https://doi.org/1046/j.1523-1755.2003.00210.x.
  3. Marcello Napoli, Raffaele Prudenzano, Francesco Russo, Assunta Lucia Antonaci, Maria Aprile, Erasmo Buongiorno. Juxta-anastomotic stenosis of native arteriovenous fistulas: surgical treatment versus percutaneous transluminal angioplasty. J Vasc Access. 2010 Oct-Dec;11(4):346-51. https://doi.org/5301/jva.2010.5968.
  4. Roy-Chaudhury P. PTA versus surgery for juxta-anastomotic stenosis. Acta of 5th Annual Controversies in Dialisys Access. Washington, DC USA October 2008.  J  Vasc Access 2008; 9: 185.
  5. Clark Timothy W I, Hirsch David A, Jindal Kailash J, Veugelers Paul J, LeBlanc John. Outcome and prognostic factors of restenosis after percutaneous treatment of native hemodialysis fistulas. J Vasc Interv Radiol. 2002 Jan;13(1):51-9. https://doi.org/1016/s1051-0443(07)60009-8.
  6. Aruny JE, Lewis CA, Cardella JF, Cole PE et al. Quality improvement guidelines for percutaneous management of the thrombosed or dysfunctional dialysis access. Standards of Practice Committee of the Society of Cardiovascular & Interventional Radiology. J Vasc Interv Radiol. 1999 Apr;10(4):491-8. https://doi.org/1016/s1051-0443(99)70071-0.
  7. National Kidney Foundation: K/DOQI Clinical practice guidelines for vascular access 2006 Am J Kidney Dis . 2006 Jul;48 Suppl 1:S176-247. https://doi.org/10.1053/j.ajkd.2006.04.029.
  8. Tessitore Nicola, Mansueto Giancarlo, et al. Endovascular versus surgical preemptive repair of forearm arteriovenous fistula juxta-anastomotic stenosis: analysis of data collected prospectively from 1999 to 2004. Clin J Am Soc Nephrol. 2006 May;1(3):448-54. https://doi.org/2215/CJN.01351005.
  9. Dacian-Călin Tirinescu et Al. Ultrasonographic diagnosis of stenosis of native arteriovenous fistulas in haemodialysis patients. Med Ultrason. 2016 Sep;18(3):332-8. https://doi.org/11152/mu.2013.2066.183.fis.
  10. Rajan DK, Bunston S, Misra S, Pinto R, Lok CE. Dysfunctional autogenous hemodialysis fistulas: outcomes after angioplasty–are there clinical predictors of patency? Radiology. 2004 Aug;232(2):508-15. https://doi.org/1148/radiol.2322030714.
  11. Clark TW, Hirsch DA, Jindal KJ, Veugelers PJ, LeBlanc J. Outcome and prognostic factors of restenosis after percutaneous treatment of native hemodialysis fistulas. J Vasc Interv Radiol. 2002 Jan;13(1):51-9. https://doi.org/10.1016/s1051-0443(07)60009-8.
  12. Giovanni Lipari1, Nicola Tessitore, Albino Poli, Valeria Bedogna, Antonella Impedovo, Antonio Lupo, Elda Baggio. Outcomes of surgical revision of stenosed and thrombosed forearm arteriovenous fistulae for haemodialysis. Nephrol Dial Transplant 2007 Sep;22(9):2605-12. https://doi.org/10.1093/ndt/gfm239.
  1. Allon M, Robbin ML. Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. Kidney Int. 2002 Oct;62(4):1109-24. https://doi.org/10.1111/j.1523-1755.2002.kid551.x.
  2. Mario Meola, Antonio Marciello, Gianfranco Di Salle , Ilaria Petrucci. Ultrasound evaluation of access complications: Thrombosis, aneurysms, pseudoaneurysms and infections. J Vasc Access. 2021 Nov;22(1_suppl):71-83. https://doi.org/10.1177/11297298211018062.
  3. Chang CJ, Ko PJ, Hsu LA, et al. Highly increased cell proliferation activity in the restenotichemodialysis vascular access after percutaneous transluminal angioplasty: implication in prevention of restenosis. Am J Kidney Dis 2004;43:74–84. https://doi.org/10.1053/j.ajkd.2003.09.015.
  4. Lawrence Vascular Access for Hemodialysis in adult. Chap 4.pp 49-78. of dialysis therapy. Nissenson AR, Fine RN Eds. 4th edition: Saunders-Elsevier Philadelphia, 2008
  5. Asif A, Roy-Chaudhury P, Beathard GA Early arteriovenous fistula failure: a logical proposal for when and how to intervene. Clin J Am Soc Nephrol. 2006 Mar;1(2):332-9. https://doi.org/10.2215/CJN.00850805.
  6. Moreno PR, Fallon JT, Murcia AM, Leon MN, Simosa H, Fuster V, Palacios. Tissue characteristics of restenosis after percutaneous transluminal coronary angioplasty in diabetic patients.J Am Coll Cardiol. 1999 Oct;34(4):1045-9. https://doi.org/10.1016/s0735-1097(99)00338-1.
  7. Megan Nguyen, Finosh G Thankam, Devendra K Agrawal. Sterile inflammation in the pathogenesis of maturation failure of arteriovenous fistula. J Mol Med (Berl). 2021 Jun;99(6):729-741. https://doi.org/10.1007/s00109-021-02056-4.
  8. Jinjing Zhao, Frances L Jourd’heuil, et al. Dual Function for Mature Vascular Smooth Muscle Cells During Arteriovenous Fistula Remodeling. J Am Heart Assoc. 2017 Mar 30;6(4):e004891. https://doi.org/10.1161/JAHA.116.004891.
  9. Chun-Yu Wong, Margreet R de Vries, Yang Wang, Joost R van der Vorst, et al. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg. 2014 Jan;59(1):192-201.e1. https://doi.org/1016/j.jvs.2013.02.242.
  10. Honda HM, T Hsiai,  Wortham C M, M Chen, H Lin, M Navab, L L Demer. A complex flow pattern of low shear stress and flow reversal promotes monocyte binding to endothelial cells. Atherosclerosis 2001 Oct;158(2):385-90. https://doi.org/10.1016/s0021-9150(01)00462-2.
  11. Dardik A, Leiling Chen, Frattini J, et al. Differential effects of orbital and laminar shear stress on endothelial cells. Comparative Study. J Vasc Surg 2005 May;41(5):869-80. https://doi.org/10.1016/j.jvs.2005.01.020.
  12. Gambillara V, Montorzi G, Christelle Haziza-Pigeon, Stergiopulos N, Silacci P. Arterial wall response to ex vivo exposure to oscillatory shear stress. J Vasc Re Nov-Dec 2005;42(6):535-44. https://doi.org/10.1159/000088343.
  13. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephro. 2006 Apr;17(4):1112-27. https://doi.org/10.1681/ASN.2005050615.
  14. Alfred K Cheung, Christi Terry, Li Li. Pathogenesis and local drug delivery for prevention of vascular access stenosisJ Ren Nutr. 2008 Jan;18(1):140-5. https://doi.org/1053/j.jrn.2007.10.028.
  15. Li G, Chen SJ, Oparil S, et al. Direct in vivo evidence demonstrating neointimal migration ofadventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 2000;101:1362–1365. https://doi.org/10.1161/01.cir.101.12.1362.
  16. Li Li 1, Christi M Terry, Donald K Blumenthal, Tadashi Kuji, Takahisa Masaki, Bonnie C H Kwan, Ilya Zhuplatov, John K Leypoldt, Alfred K CheungCellular and morphological changes during neointimal hyperplasia development in a porcine arteriovenous graft modelNephrol Dial Transplant. 2007 Nov;22(11):3139-46. https://doi.org/1093/ndt/gfm415.
  17. Napoli M. Complicanze steno-trombotiche delle AVF. Eco color doppler & accessi vascolari per emodialisi Cap 4 pp 67-84. Wichtig Editore 2010.
  18. Kim SJ, Masaki T, Leypoldt JK, et al. Arterial and venous smooth-muscle cells differ in their responsesto antiproliferative drugs. J Lab Clin Med 2004;144:156–162. https://doi.org/10.1016/j.lab.2004.06.002.
  19. Kim SJ, Masaki T, Rowley R, et al. Different responses by cultured aortic and venous smooth musclecells to gamma radiation. Kidney Int 2005;68:371–377. https://doi.org/10.1111/j.1523-1755.2005.00407.x.
  20. Shenoy S. Pro/con juxta-anastomotic stenosis… Avoidable. Selected short paper from “Controversies in dialysis access”. San Francisco USA November 2006. J Vasc Access 2006; 7:167.
  21. Meola M. Ecografia clinica in nefrologia. Fistola arterovenosa, p 1299. Meola M. Eureka editore 2015.
  22. RobbinM, Chamberlain N, et al. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology. 2002 Oct;225(1):59-64. https://doi.org/10.1148/radiol.2251011367.
  23. Lomonte C, Meola M, Petrucci I, Casucci F, Basile C. The Key Role of Color Doppler Ultrasound in the Work-up of Hemodialysis Vascular Access. Semin Dial. 2015; 28: 211-5. https://doi.org/10.1111/sdi.12312.
  24. Ferring M, Henderson J, Wilmink A, Smith S. Vascular ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence. Nephrol Dial Transplant. 2008 Jun;23(6):1809-15. https://doi.org/10.1093/ndt/gfn001.
  25. Silva Jr, Hobson MB, Pappas PJ, et al. A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation. J Vasc Surg. 1998 Feb;27(2):302-7; discussion 307-8. https://doi.org/10.1016/s0741-5214(98)70360-x.
  26. McCarley P, Wingard RL, et al. Vascular access blood flow monitoring reduces access morbidity and costs. Kidney Int . 2001 Sep;60(3):1164-72. https://doi.org/10.1046/j.1523-1755.2001.0600031164.x.
  27. Sands J, Miranda C. Prolongation of hemodialysis access survival with elective revision. J Clin Nephrol. 1995 Nov;44(5):329-33.
  28. Wiese P, Nonnast-Daniel B. Colour Doppler ultrasound in dialysis access. Nephrol Dial Transplant. 2004 Aug;19(8):1956-63. https://doi.org/1093/ndt/gfh244.
  29. Richard E. et al. Predictive measures of vascular access thrombosis: A prospective study. Kidney International Volume 52, Issue 6, December 1997, Pages 1656-1662. https://doi.org/10.1038/ki.1997.499
  30. Lauvao LS, Ihnat DM, et al. Vein diameter is the major predictor of fistula maturation. J Vasc Surg. 2009 Jun;49(6):1499-504. https://doi.org/1016/j.jvs.2009.02.018.
  31. RobbinML, Oser RF, et al. Hemodialysis access graft stenosis: US detection. Radiology. 1998 Sep;208(3):655-61. https://doi.org/10.1148/radiology.208.3.9722842.
  32. BackMR, Maynard M, Winkler A, et al. Expected flow parameters within hemodialysis access and selection for remedial intervention of nonmaturing conduits. Vasc Endovascular Surg. Apr-May 2008;42(2):150-8. https://doi.org/10.1177/1538574407312648.
  33. Dumars MC, Thompson WE, et al. Management of suspected hemodialysis graft dysfunction: usefulness of diagnostic US. Radiology. 2002 Jan;222(1):103-7. https://doi.org/10.1148/radiol.2221991095.
  34. Malovrh Native arteriovenous fistula: preoperative evaluation. Am J Kidney Dis 2002 Jun;39(6):1218-25. https://doi.org/10.1053/ajkd.2002.33394.
  35. Tordoir JH, de Bruin HG, Hoeneveld H. Duplex ultrasound scanning in the assessment of arteriovenous fistulas created for hemodialysis access: comparison with digital subtraction angiography. J Vasc Surg. 1989 Aug;10(2):122-8. https://doi.org/10.1067/mva.1989.0100122.
  36. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Update 2006. Am J Kidney Dis 2006; 48 : 1-322.
  37. TonelliM, Jindal Screening for subclinical stenosis in native vessel arteriovenous fistulae. J Am Soc Nephro. 2001 Aug;12(8):1729-1733. https://doi.org/10.1681/ASN.V1281729.
  38. Tonelli M, James M,Wiebe N. Ultrasound monitoring to detect access stenosis in hemodialysis patients: a systematic review. Am J Kidney Dis. 2008 Apr;51(4):630-40. https://doi.org/1053/j.ajkd.2007.11.025.
  39. Sands JJ, Ferrell LM, Perry MA. The role of color flow Doppler ultrasound in dialysis access. Semin Nephrol. 2002 May;22(3):195-201. https://doi.org/1053/snep.2002.31705.
  40. WouterJukema J, Verschuren JJW. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nature Reviews Cardiology volume 9, pages5362 (2012).
  41. Robert A. Lookstein et Al. Drug-Coated Balloons for Dysfunctional Dialysis ArteriovenousFistulas. NEJM 20 Aug 2020.

La gestione dell’emergenza COVID-19 in ambito nefrologico: i risultati di un’indagine trasversale sulla gestione delle procedure atte a fronteggiare la pandemia

Abstract

A partire da metà marzo 2020, la pandemia da COVID 19 ha posto le strutture sanitarie di fronte alla necessità di attuare una immediata e profonda riorganizzazione, ma molti ospedali non hanno avuto il tempo di organizzare una risposta rapida ed efficace, sia per la velocità di diffusione del virus sia per la mancanza di precedenti esperienze sulla gestione di una pandemia di questa portata. La Società Infermieri Area Nefrologica (SIAN), attraverso la conduzione di un’indagine online, rivolta a tutti i professionisti iscritti, ha indagato se le procedure e raccomandazioni adottate dalle Aziende durante tale periodo, nei servizi di dialisi ed emodialisi dei centri italiani, siano giunte alla conoscenza di tutti e adottate in risposte organizzative. L’indagine è stata condotta nella prima e seconda ondata della pandemia.

Il questionario online è stato compilato da 150 infermieri. Dalle risposte si evince che i servizi hanno predisposto protocolli e procedure per la gestione dei pazienti durante la pandemia, tuttavia non tutti i professionisti ne erano a conoscenza. Per quanto riguarda la formazione del personale all’utilizzo dei DPI, il 18.6% dichiara di non aver ricevuto formazione. Quasi la totalità del campione ha attuato precauzioni specifiche per la gestione dei pazienti, la sensibilizzazione e le informazioni.

Parole chiave: emodialisi, dialisi peritoneale, competenze infermieristiche, procedure, COVID-19

Introduzione

La malattia da coronavirus (COVID-19) è stata identificata a dicembre 2019 a Wuhan, in Cina, e si è diffusa rapidamente, con oltre 81 000 casi confermati in tutta la Cina. Nel febbraio 2020, l’organizzazione mondiale della sanità (OMS) ha introdotto la sua definizione [1]. L’11 marzo 2020 l’OMS, dopo aver valutato i livelli di gravità e la diffusione globale dell’infezione, ha dichiarato che l’epidemia da COVID-19 doveva essere considerata una pandemia [2]. L’Italia è stata tra i Paesi più gravemente colpiti dalla pandemia da COVID-19 [13], con una crescita schiacciante di casi attivi e mortalità, uno dei più alti al mondo [4]. Il primo paziente italiano positivo al COVID-19 è stato confermato il 21 febbraio 2020 all’Ospedale di Codogno in Lombardia. Inizialmente, il COVID-19 si era diffuso rapidamente in tutto il Paese, ma in modo eterogeneo, con maggiore diffusione nelle regioni del Nord e minore nelle regioni meridionali e nelle isole principali [5]. La relazione tra infezione da SARS-CoV-2 e la comorbilità è complessa, sfaccettata e ulteriormente complicata da un numero imprecisato di casi asintomatici [6]. Tuttavia, i casi più gravi e mortali sono spesso riportati nei pazienti anziani, specialmente in quelli con comorbilità [7]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Potrebbe l’emodialisi incrementale essere un nuovo standard di cura? Un suggerimento da uno studio osservazionale a lungo termine

Abstract

Introduzione: Il termine emodialisi (HD) incrementale significa che sia la dose di dialisi che la frequenza possono essere piccole all’inizio del trattamento dialitico e dovrebbero essere aumentate progressivamente per compensare una successiva riduzione della funzione renale residua. Politica del Centro Dialisi di Matera è tentare un inizio incrementale del trattamento dialitico senza una rigorosa dieta ipoproteica in tutti i pazienti che scelgono l’HD e con diuresis quotidiana (UO) >500 ml/die. Questo studio ha lo scopo di analizzare i risultati di questa politica negli ultimi 20 anni.
Materiali e metodi: Sono stati valutati i dati dei pazienti che hanno iniziato il trattamento dialitico nel periodo compreso tra il 01-01-2000 e il 31-12-2019. Criteri di esclusione dallo studio furono: diuresi giornaliera <500 ml/die o follow-up <3 mesi dopo l’inizio del trattamento dialitico.
Risultati: I pazienti valutati furono 266; 64 furono esclusi dallo studio. I restanti 202 pazienti furono arruolati nello studio e suddivisi in 3 gruppi (G1, G2 e G3) in base alla frequenza del trattamento all’inizio della dialisi: 117 pazienti (57.9%) cominciarono con ritmo monosettimanale (1HD/wk) (G1); 46 (22.8%) con ritmo bisettimanale (2HD/wk) (G2); 39 (19.3%) con ritmo trisettimanale (3HD/wk) (G3). I pazienti di G1 rimasero in 1HD/wk 11.9 ±14.8 mesi e furono successivamente trasferiti in 2HD/wk per ulteriori 13.0 ±20.3 mesi. I pazienti di G2 rimasero in 2HD/wk 16.7 ±23.2 mesi. Complessivamente, 25943 sessioni furono effettuate durante i periodi di dialisi meno frequente invece di 47988, che sarebbero state effettuate se i pazienti fossero state trattati con 3HD/wk, risparmiando così 22045 sedute (45.9%). La mortalità dell’intero gruppo fu 12.6%, sovrapponibile a quella della mortalità media della popolazione dialitica italiana (16.2%). La sopravvivenza a 1 e 5 anni, non differente in maniera significativa tra i 3 gruppi, fu: 94% e 61% (G1); 83% e 39% (G2); 84% e 46% (G3).
Conclusioni: Il nostro studio osservazionale a lungo termine suggerisce che l’HD incrementale è una valida opzione nei pazienti incidenti, essendo possibile nella gran parte di loro (80.7%) per circa 1-2 anni, con evidenti benefici socio-economici e percentuali di sopravvivenza comparabili a quelli della popolazione dialitica italiana. Tuttavia, mancano studi randomizzati controllati e quindi necessari urgentemente. Se questi confermeranno i dati osservazionali, l’HD incrementale sarà un nuovo standard di cura.

Parole chiave: emodialisi, emodialisi incrementale, clearance renale dell’urea, modello cinetico dell’urea, Diuresi

Ci spiace, ma questo articolo è disponibile soltanto in inglese.

Introduction

There is growing interest in an incremental approach to haemodialysis (HD) for incident end-stage kidney disease (ESKD) patients, starting with one (1HD/wk) or two sessions per week (2HD/wk) [14]. Such an approach not only seems to preserve residual kidney function (RKF) and improve health-related quality of life with similar or higher survival rates than those observed in patients receiving the standard thrice weekly HD (3HD/wk) regimen, but also allows saving economic resources [57]. The term “incremental HD” means that, in the presence of substantial RKF, both dialysis dose and frequency can be low at dialysis inception but should be progressively increased, to compensate for any subsequent reduction in RKF [8, 9].

RKF in dialysis patients plays important roles in fluid and salt removal, effective phosphorus excretion, middle molecule clearance, and endogenous vitamin D and erythropoietin production [1, 2]. There is increasing evidence to suggest that clearance of some uraemic solutes, particularly middle molecules such as β2-microglobulin, is highly dependent on RKF. This extends even to very low levels of RKF: patients with kidney urea clearance (KRU) <0.5 ml/min have significantly higher serum β2-microglobulin levels than those with values between 0.5 and 1 ml/min [10]. Furthermore, residual renal tubular function may represent important removal pathways for these and other compounds, such as hippurate, phenylacetylglutamine, indoxyl sulfate, and p-cresol sulfate [11, 12].

Loss of RKF is linked to decreased survival [13, 14], likely from poorer uraemic solute clearance [13], volume and blood pressure control [15, 16], higher erythropoietin requirements [17], more inflammation [13] and higher left ventricular mass [18]. The benefits of preserving KRU appear to be greater that one would expect from simply enhanced small solute clearance: a multivariate survival analysis of patients on incremental HD suggested that 1 ml/min of KRU resulted in greater survival benefit compared to 1 ml/min of dialysis urea clearance, possibly due to greater removal of middle molecules by native kidneys and improved volume control [15]. Finally, the available literature suggests greater preservation of RKF with infrequent dialysis [5, 7, 19].

The Matera Dialysis Center has adopted over the last 20 years the policy of attempting to start HD always incrementally in all ESKD patients in relatively stable conditions and with preserved diuresis. Over the years, a lot of data has accumulated on patients who received incremental HD in our Center. The present study aims to compare the long-term results of such a policy.

 

Subjects and methods

Policy of the Matera Dialysis Center

As mentioned above, the policy of our Center over the last 20 years has been to try to initiate HD incrementally in almost all patients with advanced chronic kidney disease (CKD-5D), in relatively stable conditions and with preserved diuresis. All patients treated in our Center give their written informed consent to the choice of HD as first mode of renal replacement therapy (RRT); furthermore, they give written informed consent to starting with the incremental regimen. They also receive the information that a less frequent treatment can be harmful, especially in the presence of insufficient RKF. Two important corollaries complete this information:

  1. the need of collecting periodically the 24-hour urine output (UO) to quantify RKF;
  2. the need of promptly increasing dialysis frequency if RKF falls below established levels, even in the absence of clear symptoms and signs of clinical worsening.

In brief, the dialysis treatment is started with 1 or 2 sessions per week and can be empirically increased to 2 or 3, based on the trend of clinical and biochemical data, with particular regard to the state of nutrition, the values of KRU, dialysis dose (Kt/V) and normalized protein catabolic rate (PCRn), which are assessed monthly.

Inclusion/exclusion criteria

For decades, all the main clinical, biochemical and epidemiological data of patients treated at the Hospital of Matera’s Division of Nephrology, have been managed and archived with the GEPADIAL® software (La Traccia, Matera, Italy). This allowed us to retrieve the dataset of all patients who had started HD in the Matera Dialysis Center from January 1st, 2000 to December 31st, 2019 (with a prolongation of the follow-up until June 30th, 2021). In particular, for each patient, the duration of the follow-up was calculated from the difference (in months) between the date of the first and last dialysis session in our Center.

Patients who had a follow-up <3 months after the start of the dialysis treatment were excluded from the study to avoid enrolling patients affected by acute kidney injury, or severely sick, or transiently treated in our Center. Patients with a follow-up >3 months but with UO <500 ml/day at the start of treatment were also excluded from the study.

Patients were divided into three groups (G), which were determined exclusively by the weekly regimen at the start of dialysis treatment: G1: once-a-week (1HD/wk); G2: twice-a-week (2HD/wk); G3: thrice-a-week (3HD/wk), and regardless of subsequent rhythm variations, if any, thus creating a kind of intervention arm of an “intention to treat” study, taking into account the policy of our Center, i.e., that of trying to initiate HD incrementally in almost all patients.

Measurement of the main parameters of UKM

The measurement of the main parameters of urea kinetic modeling (UKM) (Kt/V, PCRn and KRU if UO >200 ml/day) was performed on a monthly basis in all patients, using the specific software GEPADIAL®, based on the so-called modified algorithm of UKM [20]. The software automatically calculates also the “equivalent renal urea clearance” (EKR) corrected for a urea distribution volume of 40 l (EKRc) [21]. The latter has been converted into the new version of EKR, which is corrected for a urea distribution volume of 35 l with the following formula: EKR35 = EKRc x 35/40 [22]. The calculation of the post-rebound equilibrated Kt/V (eKt/V) and of the most recent version of the standardized Kt/V (stdKt/V) has been utilized in the present study using the formulas recommended by the KDOQI Clinical Practice Guideline for Hemodialysis Adequacy 2015 [9]. Furthermore, the latter proposed the following criteria of adequacy of stdKt/V: a target value of 2.3 and a minimum value of 2.1 volumes/week (v/wk) for non-thrice-a-week dialysis rhythms [9]. Similarly, Casino and Basile have proposed the following criteria of adequacy of EKR35: a target and a minimum value, as described by the following equations:

  1. target EKR35 = 12 – KRUN (EKRT12) [22, 23]
  2. minimum EKR35 = 10 – 1.5 x KRUN (EKRT10) [23, 24]

where KRUN = KRU (ml/min)/V (l) x 35 (l) [23].

Two sets of kinetic data were obtained for each patient, at two different time points of the treatment. The first one (T3), corresponding to approximately 3 months of dialysis, coincides with the third measurement of the main parameters of UKM, and should reflect the initial, but already fairly stabilized, stage of treatment; the second one (T_end) changes from one patient to another: it corresponds to the time point at which a last value of UO >200 ml/day was available during the study, or just before the exit of the patient from the study because of death, kidney transplant, transfer to another center or end of the study (June 30th, 2021), the patient being alive.

Statistics

Means and standard deviations (SD) were obtained using Excel®; χ2 test, graphics, Student’s t-test, ONE-WAY ANOVA and survival analyses (Kaplan-Meier) were performed with the statistical package R of CRAN project [2527].

 

Results

Data related to 266 patients were retrieved from the local electronic database, representing the set of all patients who started maintenance HD at the Matera Dialysis Center in the study period considered: of them, 45 (17%) were excluded because their follow-up after the start of the dialysis treatment was <3 months; 12 (4%) were excluded because they had started the dialysis treatment in the setting of continuous renal replacement therapy; lastly, 7 (3%) were excluded because their baseline UO was either <500 ml/day or had not been reported. All in all, 202 patients were enrolled into the study. The main demographic, clinical and laboratory data of the 202 patients enrolled into the study are reported in Table I.

They were subdivided into 3 groups (G), according to their weekly regimen at the start of dialysis treatment: 117 were on a once-a-week (G1), 46 on a twice-a-week (G2), and 39 on a thrice-a-week schedule (G3).

Age (years) 66 ±15 Serum albumin (g/l) 29.7±11.7
Gender (male/female) 120/82 Diabetic nephropathy 42 (20.8 %)
Body weight (kg) 63.2 ±13.3 Glomerulonephritis 40 (19.8%)
Body mass index (kg/m2) 24.6 ±4.4 Hypertensive nephropathy 52 (25.7%)
Body surface area (m2) 1.65 ±0.197 Interstitial nephropathy 29 (14.4%)
Blood urea nitrogen (mg/dl) 99 ±33 Polycystic kidney disease 9 (4.5%)
Serum creatinine (mg/dl) 8.0 ±3.1 Other/Unknown 30 (14.9%)
KRU (ml/min/1.73 m2) 4.5 ±1.6 Charlson comorbidity index 6.9 ±2.6
ClCr (ml/min/1.73 m2) 8.0 ±2.9 Late referral (<3 months) 33 (16.3%)
GFRm (ml/min/1.73 m2) 6.2 ±2.1 Group 1 (G1): start on 1HD/wk 117 (57.9%)
Urine Output (ml/day) 1800 ±700 Group 2 (G2): start on 2HD/wk 46 (22.8%)
Proteinuria (g/day) 3.0 ±3.0 Group 3 (G3): start on 3HD/wk 39 (19.3%)
Table I: It reports the main demographic, clinical and laboratory data of the 202 patients enrolled into the study. Means ±SD; KRU = residual kidney urea clearance; ClCr = creatinine clearance; GFRm = mean of KRU and ClCr.

Table II shows the comparison of the main demographic, clinical and laboratory data between the groups of patients starting HD incrementally (G1+G2) and the group of patients starting dialysis on a thrice-a-week schedule (G3). KRU and UO were significantly lower in G3; this group had a percentage of women and late referral to the nephrology team (follow-up <3 months before the start of the dialysis treatment) much larger than G1+G2 (61.5% vs. 35.6%, P = 0.003; 38.5% vs. 11.0%, P = 0.001, respectively).

  G1+G2 (N = 163) G3 (N = 39) t P
Gender (M/F) (%) 105/58 (F=35.6%) 15/24 (F=61.5%) 8.79* 0.003
Age (years) 66.91 ±14.63 62.15 ±16.96 1.769 0.078
Body weight (kg) 63.43 ±13.37 62.09 ±12.96 0.568 0.571
Body mass index (kg/m2) 24.7 ±4.47 24.38 ±4.15 0.400 0.689
Diabetic nephropathy 32 10
Glomerulonephritis 31 9
Hypertensive nephropathy 46 6 4.48* 0.482
Interstitial nephropathy 25 4
Polycystic kidney disease 7 2
Other/Unknown 22 8
Blood urea nitrogen (mg/dl) 98.30 ±29.96 100.38 ±43.66 -0.354 0.724
Serum creatinine (mg/dl) 7.87 ±2.65 8.70 ±4.61 -1.482 0.14
Serum albumin (g/l) 30.22 ±11.90 27.36 ±10.51 1.377 0.170
Urine Output (ml/day) 1875 ±659 1357 ±816 4.195 <0.001
Proteinuria (g/day) 2.95 ±2.90 3.35 ±3.57 -0.746 0.456
KRU (ml/min/1.73 m2) 4.63 ±1.42 3.76 ±1.94 3.195 0.002
ClCr (ml/min/1.73 m2) 8.10 ±2.42 7.60 ±4.52 0.951 0.343
GFRm (ml/min/1.73 m2) 6.36 ±1.79 5.68 ±3.05 1.836 0.068
Late referral (<3 months) (%) 18/163 (11.0%) 15/39 (38.5%) 17.3* 0.001
Charlson comorbidity index 6.99 ±2.64 6.51 ±2.63 1.011 0.313
Table II: Comparison of the main demographic, clinical and laboratory data between the groups of patients starting HD incrementally (G1+G2) and the group of patients starting dialysis on a thrice-a-week schedule (G3). Means ±SD; KRU = residual kidney urea clearance; ClCr = creatinine clearance; GFRm = mean of KRU and ClCr. All the variables of the 2 groups were compared with the Student’s t-test, except gender, classes of nephropathies and late referral, which were compared with the c2 test (*).

Figure 1 shows the numbers of patients on 1HD/wk, 2HD/wk and 3HD/wk at different time points: at the start (T0) and 3 (T3), 12 (T12), 24 (T24) and 60 (T60) months after the start of dialysis treatment: 94 patients (46.5%) and 52 patients (25.7%) were on incremental HD after 1 and 2 years, respectively.

Figure 1: It shows the numbers of patients on 1HD/wk, 2HD/wk
Figure 1: It shows the numbers of patients on 1HD/wk, 2HD/wk and 3HD/wk at different time points: at the start (T0), and 3 (T3), 12 (T12), 24 (T24) and 60 (T60) months after the start of dialysis treatment: 94 patients (46.5%) and 52 patients (25.7%) were on incremental HD after 1 and 2 years, respectively.

Table III shows the main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at the third month of dialysis treatment (T3). Notably, UO and KRU were significantly higher in G1 and G2 than in G3, whereas PCRn, EKR35 and stdKt/V were significantly lower in G1 and progressively increased in G2 and G3.

Table IV shows the main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at T_end. It occurred 27.9 ±27.6 months after the start of dialysis treatment. The main significant differences among the three groups were the number of dialysis sessions per week, UO, weekly UF, EKR35 and stdKt/V.

Table V shows the differences among the values of the main clinical data including kinetic studies at T3 and T_end (data of the entire population under study and of the 3 groups of patients). The main differences were: a net reduction in KRU and UO, an increase in the number of weekly sessions, weekly ultrafiltration, EKR35 and stdKt/V.

Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) 79.3 ±24.4 84.5 ±23.7 73.9 ±22.1 70.0 ±25.4 0.002
BUN-post (mg/dl) 25.1 ±13.4 27.0 ±14.6 23.7 ±11.4 20.9 ±10.8 0.021
Session length (min) 228 ±21.7 228 ±21.4 230 ±20.8 225 ±223.8 0.708
Sessions per week (n/wk) 1.88 ±0.79 1.41 ±0.60 2.13 ±0.34 3.00
Body weight-pre (kg) 64.8 ±13.5 63.9 ±12.6 67.5 ±15.9 64.2 ±13.0 0.392
Body weight-post (kg) 63.1 ±13.3 62.5 ±12.4 65.5 ±15.6 62.3 ±12.8 0.466
Ultrafiltration (l/session) 1.68 ±0.99 1.47 ±0.95 1.99 ±1.13 1.96 ±0.77 0.002
Weekly ultrafiltration (l/week) 3.24 ±2.37 2.24 ±1.90 4.63 ±2.65 4.58 ±1.79 0.001
Urine Output (ml/day) 1380 ±690 1547 ±660 1374 ±724 900 ±493 0.001
KRU (ml/min/1.73 m2) 3.34 ±1.79 3.54 ±1.74 3.50 ±1.89 2.53 ±1.63 0.005
Single pool Kt/V 1.40 ±0.40 1.38 ±0.41 1.41 ±0.37 1.47 ±0.36 0.427
Equilibrated Kt/V 1.24 ±0.35 1.22 ±0.37 1.24 ±0.33 1.29 ±0.32 0.452
PCRn (g/kg/day) 1.05 ±0.30 0.99 ±0.25 1.13 ±0.30 1.15 ±0.39 0.006
EKR35 (ml/min/35 l) 10.8 ±3.62 9.2 ±3.1 11.9 ±2.7 14.4 ±2.8 0.001
Standard Kt/V (v/wk) 2.45 ±0.74 2.14 ±0.65 2.67 ±0.60 3.12 ±0.62 0.001
Table III: Main clinical data including kinetic studies of the entire population under study and of the 3 groups of patients at the third month (T3). Means ±SD; *ONE-WAY ANOVA; BUN = Blood urea nitrogen; KRU = residual kidney urea clearance; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.
Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) 76.2 ±22.2 78.2 ±22.5 80.2 ±22.4 65.8 ±18.3 0.001
BUN-post (mg/dl) 21.0 ±8.9 21.4 ±8.8 23.2 ±9.6 17.2 ±16.8 0.002
Session length (min) 231 ±19.0 230 ±19.9 234 ±13.5 230.±21.9 0.353
Sessions per week (n/wk) 1.97 ±0.79 2.17 ±0.89 2.60 ±0.55 2.90 ±0.36 <0.001
Body weight-pre (kg) 63.7 ±13.6 62.6 ±12.6 66.4 ±15.8 63.9 ±13.6 0.353
Body weight-post (kg) 61.7 ±13.2 60.7 ±12.3 64.1 ±15.3 61.7 ±13.4 0.398
Ultrafiltration (l/session) 2.07 ±1.03 1.95 ±1.06 2.3 ±1.07 2.2 ±0.84 0.036
Weekly ultrafiltration (l/week) 4.67 ±2.51 4.3 ±2.6 5.2 ±2.5 5.1 ±2.0 0.039
Urine Output (ml/day) 650 ±440 688 ±476 646 ±479 538 ±242 0.036
KRU (ml/min/1.73 m2) 1.45 ±1.11 1.41 ±1.06 1.49 ±1.33 1.50 ±1.07 0.878
Single pool Kt/V 1.53 ±0.35 1.53 ±0.36 1.49 ±0.36 1.59 ±0.31 0.383
Equilibrated Kt/V 1.35 ±0.31 1.35 ±0.32 1.31 ±0.32 1.40 ±0.28 0.410
PCRn (g/kg/day) 1.06 ±0.32 1.01 ±0.27 1.14 ±0.31 1.09 ±0.43 0.109
EKR35 (ml/min/35 l) 11.8 ±3.27 11.1 ±3.5 11.9 ±2.5 13.5 ±2.8 0.001
Standard Kt/V (v/wk) 2.46 ±0.59 2.32 ±0.63 2.48 ±0.49 2.85 ±0.40  0.001
Table IV: Main clinical data including kinetic studies at T_end. Data of the entire population under study and of the 3 groups of patients are shown. Means ±SD; *ONE-WAY ANOVA; KRU = residual kidney urea clearance; BUN = Blood urea nitrogen; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.
Groups of patients (N) Total (202) G1 (117) G2 (46) G3 (39) p*
BUN-pre (mg/dl) -3.05 ±27.2 -6.36 ±28.9 6.33 ±25.5 -4.2 ±21.1 0.024
BUN-post (mg/dl) -4.10 ±13.6 -5.63 ±15.4 -0.5 ±10.6 -3.71 ±10.2 0.057
Session length (min) 2.98 ±23.3 2.0 ±24.7 4.0 ±20.0 4.8 ±23.1 0.756
Sessions per week (n/wk) 0.63 ±0.83 0.94 ±0.86 0.52 ±0.55 0.02 ±0.16 0.001
Body weight-pre (kg) -1.07 ±4.96 -1.30 ±4.97 -1.15 ±3.31 -0.28 ±6.41 0.666
Body weight-post (kg) -1.46 ±4.91 -1.78 ±4.97 -1.42 ±3.23 -0.53 ±6.22 0.510
Ultrafiltration (l/session) 0.39 ±1.30 0.48 ±1.36 0.28 ±1.43 0.24 ±0.92 0.430
Weekly ultrafiltration (l/week) 1.43 ±3.05 2.05 ±3.05 0.61 ±3.36 0.56 ±2.15 0.002
Urine Output (ml/day) -0.73 ±0.75 -0.86 ±0.74 -0.73 ±0.78 -0.36 ±0.59 0.001
KRU (ml/min/1.73 m2) -1.9 ±1.9 -2.1 ±1.8 -2.0 ±2.0 -1.0 ±1.6 0.002
Single pool Kt/V 0.12 ±0.40 0.15 ±0.43 0.08 ±0.35 011 ±0.37 0.595
Equilibrated Kt/V 0.11 ±0.36 0.13 ±0.39 0.07 ±0.31 0.10 ±0.33 0.624
PCRn (g/kg/day) 0.01 ±0.35 0.02 ±0.31 0.02 ±0.41 -0.06±0.38 0.468
EKR35 (ml/min/35 l) 0.98 ±3.55 1.99 ±3.66 -0.02 ±2.63 -0.91 ±3.11 0.001
Standard Kt/V (v/wk) 0.01 ±0.67 0.18 ±0.71 0.52 ±0.55 -0.27 ±0.53 0.001
Table V: Differences among the values of the main clinical data including kinetic studies at T3 and T_U200. Data of the entire population under study and of the 3 groups of patients are shown. Means ±SD; *ONE-WAY ANOVA; BUN = Blood urea nitrogen; PCRn = normalized protein catabolic rate; EKR35 = Equivalent renal urea clearance (EKR) corrected for urea distribution volume of 35 l.

Figure 2 shows that 50 out of 76 (66%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of stdKt/V [9]. Figure 3 shows that only 15 out of 76 (19.7%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of EKR35 [23, 24].

Figure 4 shows the curves of survival (Kaplan-Meier analysis) of RKF, expressed as time to event referred to the first observation of UO <200 ml/day, in the three groups of patients. The median estimates (months) were: G1 40.3; G2 23.2; G3 26.5. The differences were statistically significant when comparing G1 with G2, and G1 with G3, but not when comparing G2 with G3.

Figure 2: It shows that 50 out of 76
Figure 2: It shows that 50 out of 76 (66%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of stdKt/V [9].
Figure 3: It shows that only 15 out of 76 (19.7%)
Figure 3: It shows that only 15 out of 76 (19.7%) patients on 1HD/wk would have been considered receiving inadequate total weekly clearances at T3, by applying the minimum value of EKR35 [23].
Figure 4: It shows the curves of survival (Kaplan-Meier analysis)
Figure 4: It shows the curves of survival (Kaplan-Meier analysis) of RKF, expressed as time to event referred to the first observation of UO <200 ml/day, in the three groups of patients. The median estimates (months) were: G1 40.3; G2 23.2; G3 26.5. The differences were statistically significant when comparing G1 with G2, and G1 with G3, but not when comparing G2 with G3.
  G1 (N=117) G2 (N=46) G3 (N=39) P
Months on 1HD/wk 11.9 ±14.8 0 0
Months on 2HD/wk 13.0 ±20.3 16.7 ±23.2 0 0.315*
Months on 3HD/wk 37.4 ±46.5 34.7 ±38.6 56.3 ±55.3 0.113**
Months of follow-up 62.6 ±48.8 51.4 ±40.8 56.3 ±55.3 0.327**
Table VI: Duration of dialysis treatments in the three groups of patients. Means ±SD; *Student’s t-test; **ONE WAY ANOVA.

The duration (means ±SD) of once-a-week, twice-a-week and thrice-a-week treatments performed in the 3 groups of patients is summarized in Table VI: patients of G1 received 1HD/wk for 11.9 ±14.8 months, and subsequently 2HD/wk for further 13.0 ±20.3 months; patients of G2 received 2HD/wk for 16.7 ±23.2 months.

Patients on incremental HD (G2+G2) were administered 25943 dialysis sessions, of which 6066 on 1HD/wk and 19877 on 2HD/wk. We estimated that a total of 47988 dialysis sessions would have been administered to them if they had been on a thrice-a-week schedule for exactly the same period of time, thus saving 22045 sessions, equal to 45.9%. Just taking into account the reimbursement cost of one session of standard bicarbonate dialysis (service code 39.95.4 of the Italian Health Service, rate = 165€), approximately 3.64 million € would have been saved.

Figure 5 shows the survival curve of the entire group of 202 patients estimated by means of the Kaplan-Meier analysis: the median estimate was 66 months with 95% confidence interval comprised between 54 and 84 months.

Figure 6 shows the survival curves of the three groups of patients estimated by means of the Kaplan-Meier analysis at 12, 36 and 60 months of dialysis treatments: the trend was better in patients of G1 than in patients of G2 and G3; however, the difference was not statistically significant.

It shows the survival curve of the entire group of 202 patients
Figure 5: It shows the survival curve of the entire group of 202 patients estimated by means of the Kaplan-Meier analysis: the median estimate was 66 months with 95% confidence interval comprised between 54 and 84 months.
It shows the survival curves of the three groups
Figure 6: It shows the survival curves of the three groups of patients estimated by means of the Kaplan-Meier analysis at 12, 36 and 60 months of dialysis treatments: the trend was better in patients of G1 than in patients of G2 and G3; however, the difference was not statistically significant.

 

Discussion

Our study suggests that incremental HD is a valuable option in incident patients, and is viable in most of them (80.7%) for about 1-2 years, with obvious socio-economic benefits. A key question arises: are these benefits achieved at the expense of hard outcomes, such as patient survival? The answer is given by Figure 5: the median survival of the entire group of 202 patients was 5.5 years corresponding to an annual mortality rate of 12.6%. This rate is probably lower, but almost certainly not higher than that estimated in the period 2011-2013 for the Italian dialysis population, which was equal to 16.2 per 100 patient-years [28]. Figure 6 provides interesting information on the three groups of patients: it clearly shows the superiority of starting with 1HD/wk (G1) compared to starting with 2HD/wk or 3HD/wk, even if the intersection between the curves of G2 and G3 makes the difference among the three groups not statistically significant. The first obvious explanation is that the patients enrolled into the three groups may differ as far as phenotype and/or co-existence of underlying comorbid conditions are concerned. It is evident that this is the Achille’s heel of any observational study design, in which an obvious selection bias (assignment of patients to different treatments) occurs. However, we think that the striking difference between G1+G2 and G3 in the late referral to our nephrology team, as shown in Table II (11.0% vs. 38.5%, P = 0.001), may be another important explanation. Therefore, we think that the synergistic interplay of the above factors, i.e., a different phenotype of the patients (for instance, as shown in Table II, there was a much larger percentage of women in G3 than in G1+G2: 61.5% vs. 35.6%, P = 0.003), co-existing underlying co-morbid conditions and a late referral, may constitute an ominous prognostic sign in G3.

In conclusion, our study seems to suggest that adequate educational, nutritional and pharmacological interventions in the pre-dialysis stage may allow a relatively good RKF and, therefore, the start of incremental dialysis in most of the incident patients. As far as the prescription of a low-protein diet is concerned, policy of our team is not to prescribe a very rigorous low-protein diet even when on once-a-week dialysis schedule, at variance with the advice given by some studies [2932]. Only 4 patients enrolled into the study were prescribed keto-analogues in their pre-dialysis diet, which were continued when on dialysis, but only for some months and not for all the days of the week. All the other patients were prescribed a mild protein restriction when on dialysis, as shown by the PCRn values reported in Table III: at T3 PCRn in G1 on average was about 1 g/kg/day, while that in G2 was 1.13, almost comparable to 1.15 g/kg/day observed in G3. Furthermore, Tables IV and V show that PCRn values remained relatively constant over time. In conclusion, this study suggests that, in the presence of sufficiently elevated RKF (for instance, KRU in the range of 3-5 ml/min/1.73 m2) a strict low-protein diet is useful but not essential, provided that the clinical status of the patient and his/her values of KRU, UO and PCRn are frequently monitored.  This allows to considerably enlarge the number of patients eligible to start dialysis with one session a week, which in our study approached 60% (117/202 = 0.579) of all patients. This group of patients had a baseline GFR of 6.2 ±2.1 ml/min/1.73 m2 and a baseline KRU of 4.5 ±1.6 ml/min/1.73 m2. Furthermore, taking into account the patients who started with a twice-a-week dialysis schedule, the percentage of patients starting dialysis not on a thrice-a-week schedule exceeded 80% (163/202 = 0.807).

The analysis of Tables III, IV and V shows other interesting data, such as the relative constancy both of the duration of the session and of the dialysis dose, expressed by spKt/V and eKt/V. Therefore, the reduction of KRU was substantially compensated in G1 and G2 by increasing the frequency of the treatment. Here, it must be underlined that the prescription of the dialysis dose has been prevalently empirical worldwide, in the absence of shared criteria of dialysis adequacy of the incremental treatment, which have only recently been proposed [9, 22, 24]. Here, we have to acknowledge that we did not prescribe well-defined targets of the weekly dialysis dose to be achieved by the patients, at least in the early years of the present study: thus, our prescription too was prevalently empirical, targeting urea clearance metrics of spKt/V ≥1.20, and increasing the frequency of treatment in the following situations: marked reduction in KRU (below 2-3 ml/min) and/or in UO (<500 ml/day); marked increase in inter-dialysis body weight, not controllable by increasing the dose of diuretics; need of ultrafiltration rate >13 ml/kg/h; symptoms or signs, such as nausea or malnutrition, that could not be controlled with medical therapy. More recently, we have suggested the criteria for the prescription of incremental dialysis on a quantitative basis associated with UKM [22, 24, 33, 34].

We have to acknowledge that our study has limitations, such as being a single-center retrospective observational study, but we have to underline its strengths, such as its long-term follow-up, and the availability of a large number of KRU and UO values measured in all patients with UO >200 ml/day. Despite increasing evidence derived from observational studies, such as ours, to support the use of incremental HD, randomized controlled trials (RCTs) are lacking and urgently needed. A multicenter feasibility RCT to assess the impact of incremental vs. conventional initiation of HD on RKF was recently conducted in the UK: serious adverse events were less frequent in the incremental arm; hospitalisation rate was higher in the control arm; in addition, median costs of the 12-month trial were higher in the standard care arm than in the incremental arm that benefited from reduced transport, session and adverse event costs [35].

At the present time no RCT testing incremental HD has yet been published. Of note, several ongoing RCTs are using thresholds of residual KRU to establish clinical effectiveness of less frequent HD in the form of once-a-week or twice-a-week HD vs. thrice-a-week HD [33, 34, 36, 37].

 

Conclusions

The optimal regimen for incident patients is not known. Incremental HD seems to be a valuable option, whereas it is plausible that the routine practice of fixed-dose 3HD/wk in incident patients with substantial RKF may be harmful, even contributing to an accelerated loss of RKF. Our long-term observational study suggests that incremental HD is a valuable option in incident patients and is possible in most cases (80.7%) for about 1-2 years, with obvious socio-economic benefits, and with survival rates comparable to that of the Italian dialysis population. If the potential benefits will be confirmed by RCTs, then incremental HD will become a new standard of care.

 

Bibliography

  1. Kalantar-Zadeh K, Casino FG. Let us give twice-weekly hemodialysis a chance: revisiting the taboo. Nephrol Dial Transplant 2014; 29:1618-20. https://doi.org/10.1093/ndt/gfu096
  2. Kalantar-Zadeh K, Unruh M, Zager PG, et al. Twice-weekly and incremental hemodialysis treatment for initiation of kidney replacement therapy. Am J Kidney Dis 2014; 64:181-86. https://doi.org/10.1053/j.ajkd.2014.04.019
  3. Basile C, Casino FG, Kalantar-Zadeh K. Is incremental hemodialysis ready to return on the scene? From empiricism to kinetic modelling. J Nephrol 2017; 30:521-29. https://doi.org/10.1007/s40620-017-0391-0
  4. Murea M, Moossavi S, Garneata L, et al. Narrative review of incremental hemodialysis. Kidney Int Rep 2020; 5:135-48. https://doi.org/10.1016/j.ekir.2019.11.014
  5. Fernandez-Lucas M, Teruel-Briones JL, Gomis-Couto A, et al. Maintaining residual renal function in patients on haemodialysis:5-year experience using a progressively increasing dialysis regimen. Nefrologia 2012; 32:767-76. https://pubmed.ncbi.nlm.nih.gov/23169359/
  6. Mathew A, Obi Y, Rhee CM, et al. Treatment frequency and mortality among incident hemodialysis patients in the United States comparing incremental with standard and more frequent dialysis. Kidney Int. 2016; 90:1071-79. https://doi.org/10.1016/j.kint.2016.05.028
  7. Obi Y, Streja E, Rhee CM, et al. Incremental hemodialysis, residual kidney function, and mortality risk in incident dialysis patients: a cohort study. Am J Kidney Dis 2016; 68:256-65. https://doi.org/10.1053/j.ajkd.2016.01.008
  8. Mehrotra R, Nolph KD, Gotch F. Early initiation of chronic dialysis: role of incremental dialysis. Perit Dial Int 1997; 17:426-30. https://doi.org/10.1177/089686089701700502
  9. National Kidney Foundation. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy:2015 update. Am J Kidney Dis 2015; 66:884-930. https://doi.org/10.1053/j.ajkd.2015.07.015
  10. Fry AC, Singh DK, Chandna SM, et al. Relative importance of residual renal function and convection in determining beta-2-microglobulin levels in high-flux haemodialysis and on-line haemodiafiltration. Blood Purif 2007; 25:295-302. https://org/10.1159/000104870
  11. Masereeuw R, Mutsaers HA, Toyohara T, et al. The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol 2014; 34:191-208. https://doi.org/10.1016/j.semnephrol.2014.02.010
  12. Leong SC, Sao JN, Taussig A, et al. Residual function effectively controls plasma concentrations of secreted solutes in patients on twice weekly hemodialysis. J Am Soc Nephrol 2018; 29:1992-99. https://doi.org/10.1681/ASN.2018010081
  13. Shafi T, Jaar BG, Plantinga LC, et al. Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE) Study. Am J Kidney Dis 2010; 56:348-358. https://doi.org/10.1053/j.ajkd.2010.03.020
  14. van der Wal WM, Noordzij M, Dekker FW, et al. Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol Dial Transplant 2011; 26:2978-83. https://doi.org/10.1093/ndt/gfq856
  15. Vilar E, Wellsted D, Chandna SM, et al. Residual renal function improves outcome in incremental hemodialysis despite reduced dialysis dose. Nephrol Dial Transplant 2009; 24:2502-10. https://org/10.1093/ndt/gfp071
  16. Marquez IO, Tambra S, Luo FJ, et al. Contribution of residual renal function to removal of protein-bound solutes in hemodialysis. Clin J Am Soc Nephrol 2011; 6:290-96. https://org/10.2215/CJN.06100710
  17. Menon MK, Naimark DM, Bargman JM, et al. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transplant 2001; 16:2207-13. https://doi.org/10.1093/ndt/16.11.2207
  18. Wang AY, Wang M, Woo J, et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int 2002; 62:639-47. https://doi.org/10.1046/j.1523-1755.2002.00471.x
  19. Caria S, Cupisti A, Sau G, et al. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol 2014; 15:172. https://doi.org/10.1186/1471-2369-15-172
  20. Casino FG, Basile C, Gaudiano V, et al. A modified algorithm of the single pool urea kinetic model. Nephrol Dial Transplant 1990(5):214-19. https://doi.org/10.1093/ndt/5.3.214
  21. Casino FG, Lopez T. The equivalent renal urea clearance: a new parameter to assess dialysis dose. Nephrol Dial Transplant 1996; 11:1574-81. https://pubmed.ncbi.nlm.nih.gov/8856214/
  22. Casino FG, Basile C. The variable target model: a paradigm shift in the incremental haemodialysis prescription. Nephrol Dial Transplant 2017; 32:182-90. https://doi.org/10.1093/ndt/gfw339
  23. Casino FG, Basile C. How to set the stage for a full-fledged clinical trial testing ‘incremental haemodialysis’. Nephrol Dial Transplant 2018; 33:1103-09. https://doi.org/10.1093/ndt/gfx225
  24. Basile C, Casino FG on behalf of the EUDIAL Working Group of ERA- EDTA. Incremental haemodialysis and residual kidney function: more and more observations but no trials. Nephrol Dial Transplant 2019; 34:1806-11. https://doi.org/10.1093/ndt/gfz035
  25. The jamovi project (2021). jamovi. (Version 1.8). https://www.jamovi.org (date accessed: January 4, 2022).
  26. R Core Team (2021). A language and environment for statistical computing (Version 4.0). (R packages retrieved from MRAN snapshot 2021-04-01). https://cran.r-project.org (date accessed: January 4, 2022).
  27. Terry M Therneau (2020). A package for survival analysis. https://cran.r-project.org/package=survival (date accessed: January 18, 2022).
  28. Nordio M, Limido A, Conte F, et al. Italian Registry Dialysis and Transplant 2011-2013. G Ital Nefrol 2016; 33(3):gin/33.3.6. https://giornaleitalianodinefrologia.it/en/2016/06/report-del-registro-italiano-di-dialisi-e-trapianto-relativo-agli-anni-2011-2013/
  29. Locatelli F, Andrulli S, Pontoriero G, et al. Supplemented low-protein diet and once-weekly hemodialysis. Am J Kidney Dis 1994; 24:192-204. https://doi.org/10.1016/s0272-6386(12)80181-8
  30. Caria S, Cupisti A, Sau G, et al. The incremental treatment of ESRD: a low-protein diet combined with weekly hemodialysis may be beneficial for selected patients. BMC Nephrol 2014; 15:172. https://doi.org/10.1186/1471-2369-15-172
  31. Bolasco P, Caria S, Egidi MF, et al. Incremental approach to hemodialysis: twice a week, or once weekly hemodialysis combined with low-protein low-phosphorus diet? G Ital Nefrol 2015; 32(6):gin/32.6.2. https://giornaleitalianodinefrologia.it/wp-content/uploads/sites/3/pdf/GIN_A32V6_00225_2.pdf
  32. Nakao T, Kanazawa Y, Takahashi T. Once-weekly hemodialysis combined with low-protein and low-salt dietary treatment as a favorable therapeutic modality for selected patients with end-stage renal failure: a prospective observational study in Japanese patients. BMC Nephrol 2018 Jun 28; 19(1):151. https://doi.org/10.1186/s12882-018-0941-2
  33. Deira J, Suárez MA, López F, et al. IHDIP: a controlled randomized trial to assess the security and effectiveness of the incremental hemodialysis in incident patients. BMC Nephrol 2019; 20:8. https://doi.org/10.1186/s12882-018-1189-6
  34. Casino FG, Basile C, Kirmizis D, et al on behalf of Eudial Working Group of ERA-EDTA. The reasons for a clinical trial on incremental haemodialysis. Nephrol Dial Transplant 2020; 35:2015-19. https://doi.org/10.1093/ndt/gfaa220
  35. Vilar E, Kaja Kamal RM, et al. A multicenter feasibility randomized controlled trial to assess the impact of incremental versus conventional initiation of hemodialysis on residual kidney function. Kidney Int 2021; 19:S0085-2538(21)00749-3. https://doi.org/10.1016/j.kint.2021.07.025
  36. Fernández Lucas M, Ruíz-Roso G, Merino JL, et al. Initiating renal replacement therapy through incremental haemodialysis: protocol for a randomized multicentre clinical trial. Trials 2020; 21:206. https://doi.org/10.1186/s13063-020-4058-0
  37. Murea M, Patel A, Highland BR, et al. Twice-weekly hemodialysis with adjuvant pharmacotherapy and transition to thrice-weekly hemodialysis: a pilot study. Am J Kidney Dis 2021 Dec 18:S0272-6386(21)01040-4. https://doi.org/10.1053/j.ajkd.2021.12.001

A volte ritornano: recidiva di COVID-19 in paziente in emodialisi cronica. Case report

Abstract

La pandemia COVID-19, causata da SARS-CoV-2, ha finora causato milioni di infezioni e morti in tutto il mondo. Dopo la guarigione è stata segnalata la possibilità di reinfettarsi.

I pazienti in emodialisi sono ad alto rischio di contrarre infezione da SARS-CoV-2 e di sviluppare gravi complicanze. Inoltre, in essi è sinora solo parzialmente conosciuta la percentuale di sviluppo e la durata della risposta immune e anticorpale, trattandosi di una popolazione relativamente ipo-anergica. Questo potrebbe avere un ruolo nella eventuale suscettibilità alla reinfezione. Ad oggi sono stati segnalati in letteratura solo 3 casi di reinfezione da SARS-CoV-2 da ceppi antecedenti la variante Omicron in pazienti in emodialisi cronica. In essi la prima infezione è stata rilevata per screening, in assenza di sintomi, il che giustificherebbe una scarsa risposta immune, e non vi sono dati sul titolo anticorpale eventualmente sviluppato.

Riportiamo il caso di una recidiva di COVID-19 risalente al 2020 – prima infezione verosimilmente da ceppo di Wuhan; reinfezione verosimilmente da variante inglese (Alpha) a distanza di 7 mesi – in un paziente emodializzato con sintomi clinici, alterazioni ecografiche polmonari e positività al tampone nasofaringeo in entrambi gli episodi. Si segnala la negatività dei tamponi seriati nel periodo intercorrente, che escludeva quindi una eventuale persistenza di positività, nonché la documentata mancanza di protezione anticorpale dopo la prima infezione al test sierologico.

Il ruolo della potenziale mancanza (o rapida perdita) della protezione immunitaria dopo esposizione a SARS-CoV-2 nei pazienti in emodialisi deve essere ancora meglio definito, anche nell’ottica delle vaccinazioni anti-COVID e dell’avvento della variante Omicron che appare eludere l’immunità indotta dai vaccini e dalle precedenti varianti. A tale scopo sono in corso studi multicentrici prospettici in diversi paesi europei.

Questo caso evidenzia anche la necessità di uno screening attento con tamponi nasofaringei nelle sale dialisi, anche dopo superamento dell’infezione e/o dopo vaccinazione.

Parole chiave: SARS-CoV-2, COVID, emodialisi, recidiva COVID-19

Introduzione

L’infezione e la reinfezione da SARS-CoV-2: epidemiologia e meccanismi di risposta immune

La pandemia causata da SARS-CoV-2 ha finora causato oltre 270 milioni di infezioni e 5 milioni di morti in tutto il mondo [1]. Si tratta di una malattia virale estremamente contagiosa, sia nella forma “wild type” che nelle successive varianti emerse.

Dopo guarigione dalla COVID-19 la reinfezione è un evento possibile e documentato in letteratura, seppur raro prima dell’arrivo della variante Omicron: il rischio è stato difatti stimato allo 0,02% e il tasso di incidenza di reinfezione a 0,36 per 10.000 settimane-persona [2]. Il meccanismo della reinfezione da SARS-CoV-2 appare sostenuto dalla dimostrazione che non tutti gli individui infettati sviluppano una immunità protettiva, oppure possono perderla in un breve lasso di tempo, soprattutto in caso di forme di COVID-19 lievi-moderate nell’infezione primaria o stati di immunodepressione.

Le valutazioni relative allo sviluppo o meno di immunità sono state per lo più incentrate sulla quantificazione della presenza di anticorpi specifici nel siero, al loro titolo e alla loro durata nel tempo [3,4] seppure siano ben note problematiche di standardizzazione delle metodiche e di individuazione di cut off sierologici condivisi.

Con tutti i limiti suddetti, nella popolazione generale è stato stimato che dopo infezione da SARS-CoV-2 mediamente si verifica una sieroconversione IgM e IgG dopo circa una settimana dall’insorgenza dei sintomi. Il titolo anticorpale aumenta fino alla quarta settimana e si riduce successivamente; entro la settima settimana le IgM non vengono più rilevate nella maggior parte casi, mentre le IgG persistono più a lungo, anche se per un periodo di tempo ancora sconosciuto [5].

In merito al ruolo dell’immunità cellulo-mediata, anche nella infezione da SARS-CoV-2 le cellule T CD4+ appaiono cruciali nel network che conduce alla generazione di anticorpi neutralizzanti, e le cellule T CD8+ di memoria antigene-specifiche sono fondamentali per prevenire le reinfezioni. A dimostrazione di ciò, cellule T CD4+ e CD8+ specifiche sono state identificate nel sangue periferico rispettivamente del 100% e del 70% di pazienti da poco guariti da COVID-19 [6]. Tuttavia − dal momento che le analisi delle risposte immunitarie cellulari sono proceduralmente più complesse rispetto alle analisi anticorpali − esse sono state meno utilizzate su larga scala a scopo di dimostrare la presenza o meno dello sviluppo di immunità protettiva dopo infezione e/o dopo vaccinazione versus SARS-CoV-2, anche perché a complicare il quadro vi è la possibilità della presenza di cellule T di memoria cross-reattive derivanti da precedenti incontri con altri coronavirus, il cui ruolo funzionale non è affatto chiaro [7].

Indipendentemente dai diversi meccanismi alla base, ciò che è stato postulato anche dal punto di vista epidemiologico è che la protezione immunitaria vs SARS-CoV-2 sia transitoria e, particolarmente in alcune situazioni, labile. Tale assunto sta alla base dell’indicazione a procedere a vaccinazione anche negli individui che abbiano superato l’infezione naturale, nonché costituisce il razionale per la somministrazione − dopo ciclo vaccinale primario e/o infezione naturale − di dosi vaccinali addizionali e booster.

La pandemia COVID-19 nella popolazione dialitica

Per quanto riguarda nello specifico la popolazione dialitica, la pandemia di COVID-19 ha avuto un impatto particolarmente importante: nei pazienti in dialisi è stato infatti dimostrato un maggior rischio di contagio rispetto alla popolazione generale (favorito dagli spostamenti ripetuti, dalla permanenza protratta in ambienti comuni e dai frequenti accessi ospedalieri) ed un tasso di mortalità assai più elevato (oltre 1/3 di decessi nei pazienti infettati) [8,9,10].

Questo eccesso di mortalità riscontrato nei dializzati è verosimilmente correlato anche all’elevato tasso in questa specifica popolazione di comorbidità quali diabete, ipertensione, pregresso uso di farmaci immunodepressori etc. Tali fattori di rischio rendono questi pazienti più fragili rispetto alle probabilità a priori di poter avere un decorso negativo, sia in generale che specifico della patologia COVID-19.

Un’altra motivazione che sta alla base di questa maggiore suscettibilità ad ammalarsi e a sviluppare forme gravi è legata all’effetto deleterio che l’uremia ha sul sistema immunitario: i pazienti uremici sono difatti noti per essere ipo-anergici, sia sul versante dell’immunità innata (deplezione e disfunzione delle cellule dendritiche, alterazione della degranulazione e delle capacità fagocitarie dei PMN) che su quello dell’immunità adattativa (precoce “ageing” immunologico, alterazione del microambiente citochinico, scarso rinnovo del comparto T e B cell con aumentata apoptosi delle cellule memoria) [11,12,13]. A conferma di questa senescenza immunitaria precoce, recenti studi hanno dimostrato un accelerato accorciamento dei telomeri leucocitari nei pazienti emodializzati [14].

Inoltre, al di là dell’uremia in senso stretto, un importante ruolo nella demodulazione immunitaria dei pazienti dializzati può essere attribuito anche allo stato di flogosi e attivazione infiammatoria cronica. Esso appare legato alla MIA syndrome [15], al contatto con le membrane artificiali, alle soluzioni dializzanti, a tutto ciò che – pur nell’aumentata biocompatibilità raggiunta grazie ai progressi della tecnica [16,17] – rende il paziente dializzato un paziente cronicamente infiammato, e pertanto maggiormente soggetto alla “cytokine storm” così cruciale nella COVID-19 [18].

Si deve tenere in conto anche il fatto che i pazienti dializzati abbiano una risposta spesso insoddisfacente nei confronti degli stimoli vaccinali, come per esempio è stato dimostrato per la vaccinazione anti HBV [19,20].

Per tutte le motivazioni suddette, nel corso della pianificazione della campagna vaccinale anti-COVID gli individui sottoposti a trattamento dialitico sono stati considerati “super fragili”, ottenendo quindi la priorità sia rispetto al ciclo vaccinale primario che per le dosi booster e/o addizionali [21].

I dati riguardanti la percentuale di sviluppo e la durata della risposta immune sia ai vaccini che all’infezione primaria da SARS-CoV-2 sono solo parzialmente conosciute nei dializzati, e non è altrettanto chiaro se la loro nota ipo-anergia o meglio dissinergia immunitaria possa giocare un ruolo non solo nelle probabilità di contrarre l’infezione, ma anche nella suscettibilità alla reinfezione, nonché quale parte abbia in esso la dimostrazione dell’aver sviluppato o meno un titolo anticorpale specifico.

A nostra conoscenza ad oggi sono stati segnalati in letteratura solo 3 casi di reinfezione sospetta da SARS-CoV-2 da ceppi antecedenti la variante Omicron in pazienti con ESRD sottoposti a emodialisi cronica [22,23]; in tutti e 3 i casi la prima infezione è stata documentata per screening, in assenza di sintomi (fattore rilevante, poiché pare che l’infezione asintomatica causi una risposta immune inferiore) [24].

Descriviamo qui il caso di una recidiva di COVID-19 risalente al 2020 – prima infezione verosimilmente da ceppo di Wuhan; reinfezione verosimilmente da variante inglese (Alpha) – in un paziente emodializzato il quale ha avuto sintomi clinici e alterazioni laboratoristiche ed ecografiche polmonari in entrambi gli episodi. Essi si sono verificati a distanza di 7 mesi, con conferma di positività per SARS-CoV-2 al tampone nasofaringeo con RT-PCR in entrambi gli episodi e negatività dei tamponi seriati nel periodo intercorrente tra le due infezioni, escludendo quindi una eventuale persistenza di malattia tra i due episodi. Inoltre, è stata documentata l’assenza di protezione anticorpale dopo la prima infezione al test sierologico, comparsa invece dopo il secondo episodio, seppure a basso titolo.

 

Il caso

Un paziente di sesso maschile di 89 anni in emodialisi trisettimanale da 1 anno, con anamnesi di ipertensione e insufficienza renale cronica “end stage” da nefropatia proteinurica di origine sconosciuta, ha segnalato in data 3 aprile 2020 la comparsa nelle 24 ore precedenti di nausea, iporessia, mialgia e tosse senza distress respiratorio. È stato sottoposto il giorno stesso a tampone rinofaringeo per SARS-CoV-2, ed è risultato positivo all’analisi in RT-PCR.

Oltre alla patologia renale aveva una storia medica di ipertensione, diabete di lieve entità in trattamento con linagliptin e presenza in anamnesi di una linfocitosi B monoclonale a tipo leucemia linfatica cronica (considerata clinicamente irrilevante dagli ematologi, e pertanto non in follow up specialistico) con lieve trombocitopenia.

Al momento della positività era in buone condizioni cliniche, pressione arteriosa 140/60 mmHg, frequenza cardiaca 65 bpm, saturazione di ossigeno 99% in aria ambiente, temperatura corporea normale. L’obiettività polmonare non era significativa.

Il paziente è stato immediatamente posto in isolamento domiciliare e sottoposto a trattamento dialitico in sala contumaciale dedicata con trasporto individuale, come da protocollo del nostro centro dialisi per i pazienti positivi. Nell’ambito della sorveglianza clinica riservata ai pazienti emodializzati affetti da COVID-19 è stato sottoposto a:

  • panel di ematochimici, che ha mostrato globuli bianchi normali (7.000/mm3 con neutrofili 50%, linfociti 37%), anemia compatibile con ESRD con emoglobina 11 g/dL e trombocitopenia cronica nota 105.000/mm3. I marker infiammatori erano moderatamente elevati (Proteina C-reattiva 9,8 mg/dL, D-dimero 16.450 ng/mL, LDH 422 UI/L, IL-6 21,8 pg/mL e Ferritina 520 ng/mL);
  • controllo ecografico polmonare e calcolo del LUS score. Si tratta di una tecnica bedside non invasiva per la diagnostica di diversi quadri polmonari molto utilizzata nell’ambito della medicina d’urgenza [25,26]. Viene applicata una valutazione a 12 zone in cui ciascun emitorace è virtualmente suddiviso in tre aree longitudinali (anteriore, laterale e posteriore) e ognuna di queste è ulteriormente suddivisa in due ulteriori zone, superiore e inferiore. Ogni zona viene esaminata mediante sonda convex a media frequenza con un piano di scansione sia coincidente con gli spazi intercostali che trasversale. Vengono valutati la linea pleurica (aspetto e movimento), il parenchima (artefatti e immagini tissutali) e il contenuto pleurico (spazio virtuale, gas o fluido). In particolare, per quanto riguarda la sindrome interstiziale tipica della malattia COVID-19, il coinvolgimento viene espresso da un punteggio che esprime diversi livelli di severità da 0 (normale) a 3 (severo) che sono applicati a ognuna delle 12 zone e che possono essere sommati per definire un LUS score generale (minimo 0, massimo 36) [27]. Il paziente aveva alcune linee B isolate in due sezioni, con un punteggio LUS score di 2.
Figura 1: Immagine tratta da Cibinel GA, Paglia S, Magnacavallo A, et al. [27]
Figura 1:Immagine tratta da Cibinel GA, Paglia S, Magnacavallo A, et al. [27]
Come da protocollo di trattamento adottato nella cosiddetta “prima ondata” di COVID-19 il paziente è stato quindi sottoposto a terapia con idrossiclorochina 200 mg/die ed eparina a basso peso molecolare a dose profilattica aggiustata per ESRD per 10 giorni. Si è osservato un buon decorso clinico con la gestione ambulatoriale, senza necessità di ricovero ospedaliero. Il paziente si è infatti ripreso rapidamente dai sintomi, ed è risultato negativo a ripetuti tamponi il 21/4, 28/4, 11/9, 20/10 e 3/11/2020.

In data 17/11/2020 a fine dialisi ha riportato un episodio ipotensivo con transitoria perdita di coscienza seguita da brividi, febbricola, subcianosi ungueale senza desaturazione e tosse senza dispnea. È stato pertanto eseguito un altro tampone nasofaringeo RT-PCR per SARS-CoV-2, risultato nuovamente positivo dopo 7 mesi dalle precedenti manifestazioni di COVID-19, in un periodo di elevata circolazione della cosidetta “variante inglese” (Alpha).

Al momento della seconda positività il paziente era in buone condizioni cliniche, con una saturazione di ossigeno del 97% in aria ambiente. Gli esami di laboratorio hanno rivelato una normale conta leucocitaria (6.590/mm3 con neutrofili 53%, linfociti 32,5%), lieve anemia emoglobina 9 g/dL e trombocitopenia 84.000/mm3. I marker infiammatori sono risultati meno elevati rispetto al primo episodio (proteina C-reattiva 0,7 mg/dL, D-dimero 7.907 ng/mL, LDH 272 UI/L, IL-6 11,8 pg/mL e Ferritina 1211 ng/mL), e l’esame ecografico polmonare ha mostrato un punteggio LUS score di 4, lievemente superiore rispetto al primo episodio.

Il paziente è stato quindi trattato con sintomatici come paracetamolo e copertura antibiotica con amoxicillina/clavulanato, come da indicazioni relative alla gestione clinica della “seconda ondata”. Anche nel caso della reinfezione non ha necessitato di ricovero ospedaliero.

In occasione del riscontro della seconda positività, nel sospetto di una mancata risposta alla infezione primaria (o ad una rapida perdita della protezione immunitaria) è stata effettuata la misurazione degli anticorpi contro la spike protein di SARS-CoV-2 (S1/S2) mediante immunodosaggio in chemiluminescenza indiretta: essa ha dimostrato una completa assenza di anticorpi (IgG e IgM entrambi negativi).

In data 2/12/2020 – dopo 15 giorni dalla reinfezione – si è riscontrata la comparsa di una iniziale risposta anticorpale vs S1/S2, seppure a basso titolo: IgM negative; IgG 26 UA/mL (test positivo >15).

Il paziente si è rapidamente ripreso dai sintomi, ed è risultato negativo al tampone nasofaringeo di controllo in data 9/12/2020.

Si è poi monitorato il titolo anticorpale a distanza, riscontrando un ulteriore aumento delle IgG anti S1/S2 a 41,6 UA/ml il 17/02/21 (a 3 mesi dalla reinfezione).

In data 7/6/21 e 28/6/21 è stato sottoposto a vaccinazione con Comirnaty Pfizer, senza complicanze.

Paziente uomo, 89 anni, età dialitica 12 mesi

Sintomi clinici Score ecografico polmonare (LUS) PaO2/FiO2 PCR (mg/dL) IL-6 (ng/mL) Ddimero (ng/mL)

Durata malattia (tampone pos → neg)

1^ episodio (apr 2020)

Tosse, mialgia, nausea

2 300 9,8 21,8 16.454 28 gg
2^ episodio (nov 2020)

Febbricola, tosse, astenia

4 620 0,7 11,8 7.907 23 gg
Tabella I: Quadro clinico, laboratoristico e strumentale nei due episodi
  IgM (UA/mL; cut off>15) IgG (UA/mL; cut off>15)
Dopo 7 mesi dal 1^ episodio neg neg
Dopo 15 gg dal 2^ episodio neg pos (26)
Dopo 3 mesi dal 2^ episodio neg pos (41,6)
Tabella II: Andamento sierologia nei due episodi

 

Discussione

La risposta immunitaria a SARS-CoV-2 nella popolazione dialitica

È stato recentemente ipotizzato che la ridotta protezione immunitaria nei confronti specificamente di SARS-CoV-2 nella popolazione dialitica sia dovuta proprio ad una risposta T difettosa e alla mancata generazione di titoli anticorpali neutralizzanti, così come evidenziato in uno studio francese dopo due dosi di vaccino a mRNA [28].

La relativa anergia del paziente dializzato e quindi la sua relativa difficoltà a montare una risposta immunitaria adeguata potrebbe condizionare una maggiore suscettibilità non solo ad infettarsi, ma anche a reinfettarsi, rispetto alla popolazione generale.

Infatti, ciò che pare evidenziarsi in letteratura è che una robusta risposta immunitaria iniziale – sia umorale che cellulo-mediata – sembra proteggere più a lungo dal rischio di reinfezione [29]; nello stesso tempo l’invecchiamento (sia anagrafico che – come nel caso dei pazienti dializzati – biologico) determina un impairment immunitario in particolare sul versante adattativo, con maggior suscettibilità e sviluppo di malattia COVID-19 più grave [30].

Al momento i dati relativi specificamente all’efficacia clinica dello sviluppo e della durata di una risposta immunitaria – cellulare e/o anticorpale, indotta da infezione contratta o da vaccinazione – versus SARS-CoV-2 nei dializzati, e quale ruolo essa possa avere nello sviluppo di forma più o meno gravi di COVID-19, sono ancora in via di acquisizione. In particolare, non vi sono ancora esiti di ampi trial con end-point clinici in merito [35].

Tuttavia, in letteratura sono presenti (e in incremento) diversi lavori che – avendo valutato la risposta immune sia alla vaccinazione che all’infezione nei dializzati – possono fornire un panorama e consentire di formulare alcune ipotesi.

In merito alla risposta dopo infezione, uno studio inglese ha valutato i titoli anticorpali specifici per SARS-CoV-2 6 mesi dopo l’infezione in pazienti dializzati, riscontrando che l’85% dei pazienti con sieroconversione dopo l’infezione aveva ancora anticorpi specifici per SARS-CoV-2, ma il cui titolo significativamente diminuiva nel tempo [38].

In merito alla risposta dopo vaccinazione, in alcuni lavori viene segnalata una risposta nei dializzati ai vaccini a mRNA (mRNA-1273 and BNT162b2) ragguardevole, pari al 97% [34]. Parrebbe invece inferiore nella popolazione dializzata la risposta ai vaccini adenovirus-based, come AZD1222 [37]. Tuttavia, questa buona risposta immune – umorale e cellulare – conseguente al vaccino nei dializzati non appare durevole: essa pare infatti diminuire 4 mesi dopo completamento del ciclo vaccinale primario e perdersi del tutto nel 17,1% (razionale sul quale la popolazione dializzata è stata ritenuta prioritaria per la somministrazione delle dosi booster) [36].

Tutti questi lavori si basano su dati antecedenti alla comparsa della variante Omicron, la quale parrebbe eludere ulteriormente la risposta immune sia da infezione naturale dei pregressi ceppi che da vaccinazione anche con dosi booster; in tal senso, sarà interessante capire se e come la popolazione dializzata si discosterà dal tasso di reinfezione da variante Omicron rispetto alla popolazione generale.

In tale ottica appaiono assai importanti i risultati in itinere che arriveranno da due studi osservazionali prospettici europei, l’italiano COVID-VAX (Studio di coorte su efficacia e sicurezza della vaccinazione anti COVID-19 nelle persone in dialisi) promosso da SIN e ISS e il francese ROMANOV (Response of Hemodialyzed Patients to COVID-19 Vaccination) in merito all’incidenza e gravità della malattia COVID-19 in pazienti dializzati anche in base al loro stato di vaccinazione e al ruolo delle “terze” e “quarte” dosi vaccinali nell’aumento di effettori immunitari in questa peculiare popolazione [28,31].

Peculiarità del nostro caso rispetto agli altri casi di reinfezione in emodializzati in letteratura

A nostra conoscenza ad oggi sono stati segnalati in letteratura solo 3 casi di sospetta reinfezione da SARS-CoV-2 in pazienti con ESRD sottoposti a emodialisi cronica da ceppi antecedenti la variante Omicron [22,23]; in tutti e 3 i casi la prima infezione è stata documentata per screening, in assenza di sintomi (fattore che potrebbe giustificare lo sviluppo di una scarsa risposta immune dopo l’infezione primaria).

In uno dei tre casi il tampone molecolare in occasione del primo episodio è addirittura risultato negativo, e la prima infezione è stata supposta solo sulla base della sierologia, lasciando aperto il quesito se si trattasse realmente di una reinfezione o invece di una problematica di cross reazione del test per rilevare le IgG, come giustamente sottolineato dagli autori [22]. Negli altri due casi invece la documentata negatività dei tamponi tra un episodio e l’altro sembrerebbe confermare che si sia trattato effettivamente di una reinfezione, anche se in entrambi i casi vi è stato solo 1 tampone negativo tra i due episodi, e tutti ben conosciamo la possibilità di avere un tampone negativo e poi nuovamente uno positivo a breve distanza, come riscontrato più volte nella “prima ondata” quando il protocollo di guarigione prevedeva l’effettuazione doppio tampone negativo. Inoltre, in uno di questi due casi mancano completamente dati relativi alla sierologia [23].

Rispetto al nostro caso, in nessuno dei 3 casi riportati in letteratura sono stati svolti esami strumentali in entrambi gli episodi e pertanto non è noto se vi fosse un coinvolgimento polmonare o meno nel primo evento (anche se l’asintomaticità dei pazienti lascia supporre di no) e non sono noti dati ematochimici che possano fornire informazioni riguardo al livello di attivazione citochinica avvenuto.

Il tempo intercorso tra primo e secondo episodio in tutti e tre i casi precedentemente riportati risulta al massimo di 2 mesi, mentre nel nostro caso esso risulta di 7 mesi. Tale latenza temporale, unita ai ripetuti tamponi negativi tra i due episodi (ben 5), conferma in maniera inequivocabile che, nel nostro paziente, si sia trattato di una reale reinfezione a distanza.

Caratteristiche paziente

Sintomi clinici

(1^ episodio/
2^ episodio)

Tampone molecolare (1^episodio/
2^ episodio)
Sierologia IgG (1^ episodio/
2^ episodio)
Tempo intercorso tra 1^ e 2^ episodio

Tamponi negativi tra i 2 episodi (n°)

Uomo, 51 aa

Nessuno/

Febbre, dispnea,desaturazione

Neg/Pos Pos/Pos 2 mesi No
Uomo, 70 aa

Nessuno/

Tosse, dispnea, mialgie

Pos/Pos Non disponibile/

Pos

1 mese Si (1)
Donna, 55 aa

Nessuno/

Febbricola, mialgie

Pos/Pos Non disponibile/Non disponibile 2 mesi Si (1)
Tabella III: Caratteristiche degli altri casi di reinfezione da SARS-CoV-2 in pazienti in dialisi cronica segnalati in letteratura

Allo stato attuale pertanto il caso da noi riportato appare l’unico in letteratura relativo ad un paziente in emodialisi con reinfezione documentata in RT-PCR mediante tampone nasofaringeo risalente al 2020, ossia antecedente ai vaccini e alla variante Omicron. La prima infezione verosimilmente è stata determinata dal ceppo originale di Wuhan, mentre la reinfezione si è verificata a causa della variante inglese (Alpha). I ripetuti controlli intermedi negativi, l’evidenza di interessamento polmonare all’ecografia e le alterazioni in senso flogistico agli ematochimici in entrambi gli episodi, nonché l’assenza di risposta anticorpale dopo il primo episodio e la comparsa della stessa dopo il secondo episodio, costituiscono elementi di interesse di questo caso.

Il ruolo dell’ecografia polmonare (LUS) nei pazienti dializzati affetti da COVID-19

Considerando le suddette problematiche connesse alla morbilità e mortalità da COVID-19 nei pazienti in dialisi, nonché la possibilità che i sintomi possano essere in fase iniziale lievi o confondersi con altre problematiche (es. dispnea da sovraccarico), appare opportuno che nei pazienti infetti vi siano mezzi diagnostici opportuni per quantificare l’entità del coinvolgimento respiratorio e differenziare precocemente coloro gestibili ambulatorialmente da quelli meritevoli di ricovero.

In particolare, sarebbero consigliabili strategie di stratificazione del rischio e di definizione diagnostica pratiche, sensibili, affidabili, ripetibili e possibilmente utilizzabili al letto del paziente (onde evitare spostamenti in radiologia con rischio di diffusione del virus), e possibilmente prive di radiazioni ionizzanti.

In quest’ottica, presso il nostro centro dialisi abbiamo attuato nelle prime due ondate pandemiche – prima dell’avvento dei vaccini anti-COVID – una sorveglianza specifica dedicata ai pazienti ambulatoriali positivi per SARS-CoV-2, integrando al monitoraggio clinico e al panel di esami ematochimici l’applicazione dell’ecografia polmonare (LUS) secondo l’apposito score.

Monitoraggio clinico Esami ematochimici

Esami strumentali

Temperatura corporea, PA, FC, saturazione dell’ossigeno, rilevamento sintomatologia specifica

Emocromo con formula, proteina C reattiva, IL-6, LDH, ferritina, coagulazione completa, EGA arteriosa se sintomi respiratori

Ecografia polmonare con calcolo LUS score

Tabella IV: Protocollo sorveglianza 1° livello sala dialisi COVID pazienti ambulatoriali – prime due ondate pandemiche

Un LUS score all’ingresso superiore a 8-10 costituiva elemento di allarme, in particolare in associazione a alterazioni ematochimiche come linfopenia, PCR >2x e IL-6 >4x, anche in assenza di alterazioni della saturazione. I pazienti con tali caratteristiche venivano considerati per il ricovero ospedaliero.

La LUS prima della pandemia COVID-19 veniva effettuata di routine presso il nostro centro per la definizione del peso ideale dialitico in abbinamento alla valutazione del diametro e della collassabilità della vena cava inferiore, ma ha trovato una sua applicazione peculiare nei pazienti dializzati affetti da COVID-19, trattandosi come già detto di un esame molto affidabile ed utilizzato in ambito urgentistico [25,26,27].

Per quanto riguarda nello specifico i pazienti in dialisi, l’esame viene effettuato a inizio della seduta dialitica, mediante ecografo dedicato ai pazienti positivi. Le immagini ecografiche della polmonite da COVID-19 mostrano un tipico aspetto bilaterale caratterizzato da linee B multiple o confluenti con aree risparmiate, linea pleurica ispessita e irregolare e rari consolidamenti subpleurici; tali peculiarità, integrate con la valutazione della vena cava inferiore in termini di diametro e collassabilità inspiratoria, consentono di effettuare una diagnostica differenziale con le linee B da sovraccarico di volume.

L’approccio ultrasonografico polmonare al paziente dializzato positivo per SARS-CoV-2 appare quindi assai utile per la stratificazione e la gestione dei pazienti, in parallelo con quanto evidenziato nelle casistiche di medicina d’urgenza, ed è stato adottato anche in altri centri dialisi, come segnalato da alcune esperienze della letteratura [32].

Il ruolo dello screening con tampone nasofaringeo nelle sale dialisi

Le sale dialisi possono essere potenzialmente sede di focolai/cluster e per tale motivo i pazienti devono essere adeguatamente protetti con l’utilizzo dei dispositivi di protezione individuale (DPI). Rispetto allo screening periodico con tamponi nasofaringei, in letteratura le posizioni variano tra l’indicazione ad un periodico controllo a tappeto in tutti i pazienti all’effettuazione dell’esame solo nei sintomatici, così come variano i cut-off ritenuti indicati rispetto alla temperatura corporea al triage, la distanza ottimale tra i pazienti, e quando concludere l’isolamento dei positivi (e se applicare differenze nelle tempistiche e nella gestione tra vaccinati e non) [33].

Presso il nostro centro dialisi, in base anche all’esperienza di COVID-hospital durata 9 mesi e avendo sottoposto da inizio pandemia a trattamento dialitico più di 80 pazienti positivi, attuiamo:

  • trattamento in sala dialisi contumaciale per i positivi, sia vaccinati che non. In questi pazienti, in presenza di sintomi, effettuiamo sorveglianza mediante panel di ematochimici e ecografia polmonare (LUS). Rientro in sala dialisi solo dopo documentazione di tampone molecolare negativo secondo le tempistiche determinate dalle indicazioni ministeriali;
  • effettuazione immediata di tampone molecolare e trattamento in sala dialisi grigia dei sintomatici e degli asintomatici entrati in contatto con positivi, per una durata stabilita secondo le indicazioni ministeriali relative alla quarantena (differenziata pertanto tra vaccinati con booster, vaccinati solo parzialmente e non vaccinati). Tale approccio si applica anche ai pazienti guariti da precedente COVID-19;
  • screening periodico di tutti i pazienti mediante tamponi molecolari o antigenici di terza/quarta generazione, con cadenza differenziata e modulabile a seconda dello status vaccinale e della fase epidemiologica;
  • utilizzo costante per tutti i pazienti dei DPI (forniti dal centro dialisi stesso), misurazione della temperatura corporea e rilevamento di eventuali sintomi sentinella in tutte le sedute di dialisi;
  • controllo sierologico nei pazienti in lista attiva trapianto dopo guarigione dall’infezione. Non sono programmati controlli sierologici di routine negli altri casi.

 

Conclusioni

A nostra conoscenza questo è il 4° caso riportato in letteratura di recidiva di COVID-19 in un paziente con ESRD sottoposto a emodialisi cronica da ceppi antecedenti la variante Omicron.

La peculiarità del nostro caso rispetto a quelli segnalati in precedenza sta nella presenza di sintomi e alterazioni ecografiche polmonari ed ematochimiche in entrambi gli episodi, nella documentata assenza di risposta sierologica dopo il primo episodio, e nella ripetuta negatività dei tamponi intermedi nel tempo che esclude una persistenza di malattia.

In uno scenario di pandemia, rispetto alla quale i meccanismi patogenetici e immunologici che stanno alla base delle dinamiche della suscettibilità all’infezione da SARS-CoV-2 e della severità della malattia COVID-19 non sono stati ancora del tutto chiariti, il ruolo della rapida perdita o mancanza di sviluppo della protezione anticorpale e più in generale immunitaria dopo infezione e/o dopo vaccinazione nei pazienti in dialisi, e il suo impatto clinico, deve essere ulteriormente indagato.

Ciò appare particolarmente importante in una popolazione fragile e ipo-anergica come quella dializzata, anche per definire le strategie gestionali attuali e future.

Questo caso evidenzia a nostro parere anche la necessità di mantenere uno screening attento mediante tamponi nasofaringei per la ricerca di SARS-CoV-2 nelle sale dialisi, anche nei pazienti che abbiano superato l’infezione e/o siano stati vaccinati, nonché la prosecuzione attenta delle precauzioni di barriera e del distanziamento.

Sono in corso studi clinici multicentrici di numerosità ampia in diverse nazioni europee, come il COVID-VAX in Italia e il ROMANOV in Francia, i quali auspicabilmente dovrebbero poter aumentare la comprensione di tali questioni ancora aperte, soprattutto in merito alle dinamiche infettive post vaccinazione e post infezione.

 

Bibliografia

  1. World Health Organisation. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/ (ultimo accesso 05/01/2022).
  2. Laith J. Abu-Raddad, et al. Assessment of the risk of SARS-CoV-2 reinfection in an intense re-exposure setting. Clin Infect Dis 2021 Dec 14; 73(7):e1830–40. https://doi.org/10.1093/cid/ciaa1846
  3. Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. 2021; 591(7851):639-44. https://doi.org/10.1038/s41586-021-03207-w
  4. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, Elliott J, Hofmann C, Hausner MA, et al. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid- 19. N Engl J Med 2020; 383:1085-87. https://doi.org/10.1056/NEJMc2025179
  5. Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA 2020; 323(22):2249-51. https://doi.org/10.1001/jama.2020.8259
  6. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, et al. Targets of T Cell Responses to SARS‐CoV‐2 Coronavirus in Humans with COVID‐19 Disease and Unexposed Individuals. Cell 2020; 181(7):1489-501. https://doi.org/10.1016/j.cell.2020.05.015
  7. Lipsitch M, Grad YH, Sette A, Crotty S. Cross‐reactive memory T cells and herd immunity to SARS‐CoV‐ Nat Rev Immunol 2020; 20(11):709-13. https://doi.org/10.1038/s41577-020-00460-4
  8. Hsu C, et al. COVID-19 in dialysis patients: outlasting and outsmarting a pandemic, Kidney Int 2020 Dec; 98(6):1402-04. https://doi.org/10.1016/j.kint.2020.10.005
  9. Xiong F, et al. Clinical Characteristics of and Medical Interventions for COVID-19 in Hemodialysis Patients in Wuhan, China. J Am Soc Nephrol 2020 Jul; 31(7):1387-97. https://doi.org/10.1681/ASN.2020030354
  10. Quintaliani G, et al; Italian Society of Nephrology COVID-19 Research Group. Exposure to novel coronavirus in patients on renal replacement therapy during the exponential phase of COVID-19 pandemic: survey of the Italian Society of Nephrology. J Nephrol 2020 Aug; 33(4):725-36. https://doi.org/10.1007/s40620-020-00794-1
  11. Vaziri ND et al. Effect of uremia on structure and function of immune system. J Ren Nutr 2012 Jan; 22(1):149-56. https://doi.org/10.1053/j.jrn.2011.10.020
  12. Betjes M. Uremia-Associated Ageing of the Thymus and Adaptive Immune Responses, Toxins (Basel) 2020 Apr 3; 12(4):224. https://doi.org/10.3390/toxins12040224
  13. Kato S, Chmielewski M, Honda H, Pecoits-Filho R, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 2008 Sep; 3(5):1526-33. https://doi.org/10.2215/CJN.00950208
  14. Wang Y, Chen S, Feng S, et al. Telomere shortening in patients on long-term hemodialysis. Chronic Dis Transl Med 2021; 7(4):266-75. https://doi.org/10.1016/j.cdtm.2021.07.003
  15. Stenvinkel P, Heimburger O, Paultre F, et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int 1999; 55:1899-911. https://doi.org/10.1046/j.1523-1755.1999.00422.x
  16. Ward RA. Do clinical outcomes in chronic hemodialysis depend on the choice of a dialyzer? Semin Dial 2011 Jan-Feb; 24(1):65-71. https://doi.org/10.1111/j.1525-139X.2010.00807.x
  17. Abdelrasoul A, Westphalen H, Saadati S, Shoker A. Hemodialysis biocompatibility mathematical models to predict the inflammatory biomarkers released in dialysis patients based on hemodialysis membrane characteristics and clinical practices. Sci Rep 2021; 11(1):23080. https://doi.org/10.1038/s41598-021-01660-1
  18. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med 2020; 383(23):2255-73. https://doi.org/10.1056/NEJMra2026131
  19. Fabrizi F, Martin P, Dixit V, Bunnapradist S, Dulai G. Meta-analysis: the effect of age on immunological response to hepatitis B vaccine in end-stage renal disease. Aliment Pharmacol Ther 2004 Nov 15 ;20(10):1053-62. https://doi.org/10.1111/j.1365-2036.2004.02264.x
  20. Haddiya I. Current knowledge of vaccinations in chronic kidney disease patients. Int J Nephrol Renovasc Dis 2020; 13:179-185. https://pubmed.ncbi.nlm.nih.gov/32801834/
  21. International Society of Nephrology. Priority COVID-19 Vaccination for Dialysis Patients. https://www.theisn.org/blog/2021/02/15/priority-covid-19-vaccination-for-dialysis-patients/ (ultimo accesso 05/01/2022).
  22. Munoz Mendoza J, Alcaide ML. COVID-19 in a patient with end-stage renal disease on chronic in-center hemodialysis after evidence of SARS-CoV-2 IgG antibodies. Reinfection or inaccuracy of antibody testing. IDCases 2020; 22:e00943. https://doi.org/10.1016/j.idcr.2020.e00943
  23. Krishna VN, Ahmad M, Overton ET, Jain G. Recurrent COVID-19 in Hemodialysis: A Case Report of 2 Possible Reinfections. Kidney Med 2021 May-Jun; 3(3):447-50. https://doi.org/10.1016/j.xkme.2021.02.004
  24. Lei Q, Li Y, Hou HY, et al. Antibody dynamics to SARS-CoV-2 in asymptomatic COVID-19 infections. Allergy 2021; 76(2):551-61. https://doi.org/10.1111/all.14622
  25. Peng Q, Wang X, Zhang L. and Chinese Critical Care Ultrasound Study Group. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensive Care Med 2020; 46:849-50. https://doi.org/10.1007/s00134-020-05996-6
  26. Soldati G, Smargiassi A, Inchingolo R, Buonsenso D, et al. Proposal for international standardization of the use of lung ultrasound for COVID-19 patients; a simple, quantitative, reproducible method. J Ultrasound Med 2020 Mar 30; 39(7):1413-19. https://doi.org/10.1002/jum.15285
  27. Cibinel GA, Paglia S, Magnacavallo A, et al. Prima linea Covid-19. Ecografia in urgenza. https://www.simeu.it/w/download/get/0/Rapporto%20Prima%20Linea_Covid-19_ecografia.pdf/download/articoli/4031 (ultimo accesso 05/01/2022).
  28. Espi M, Charmetant X, Barba T, Mathieu C, Pelletier C, et al. A prospective observational study for justification, safety, and efficacy of a third dose of mRNA vaccine in patients receiving maintenance hemodialysis. Kidney Int 2021 Nov 29; 101(2):390-402. https://doi.org/10.1016/j.kint.2021.10.040
  29. Havervall S, Ng H, Jernbom Falk A, Greilert-Norin N, et al. Robust humoral and cellular immune responses and low risk for reinfection at least 8 months following asymptomatic to mild COVID-19. J Intern Med 2022 Jan; 291(1):72-80. https://doi.org/10.1111/joim.13387
  30. Rydyznski Moderbacher C, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell 2020; 183(4):996-1012. https://doi.org/10.1016/j.cell.2020.09.038
  31. Menniti Ippolito F, Messa P. Studio di coorte su efficacia e sicurezza della vaccinazione anti COVID-19 nelle persone in dialisi. https://sinitaly.org/wp-content/uploads/2021/01/Studio-vaccino-in-Dialisi-.pdf (ultimo accesso 05/01/2022).
  32. Allinovi M, Laudicina S, Dallari L, Gianassi I, Dervishi E, Biagini M, Cirami L. Lung ultrasound may help in the differential diagnosis of suspected oligosymptomatic COVID-19 patients on hemodialysis: A case report. Hemodial Int 2021 Oct; 25(4):E48-52. https://doi.org/10.1111/hdi.12958
  33. Alfano G, Ferrari A, Magistroni R, Fontana F, Cappelli G, Basile C. The frail world of haemodialysis patients in the COVID-19 pandemic era: a systematic scoping review. J Nephrol 2021; 34(5):1387-403. https://doi.org/10.1007/s40620-021-01136-5
  34. Broseta JJ, Rodríguez-Espinosa D, Rodríguez N, et al. Humoral and Cellular Responses to mRNA-1273 and BNT162b2 SARS-CoV-2 Vaccines Administered to Hemodialysis Patients. Am J Kidney Dis 2021 Oct; 78(4):571-81. https://doi.org/10.1053/j.ajkd.2021.06.002
  35. Wilde B, Korth J, Jahn M, et al. COVID-19 vaccination in patients receiving dialysis. Nat Rev Nephrol 2021; 17:788-89. https://doi.org/10.1038/s41581-021-00499-z
  36. Dulovic A, et al. Diminishing immune responses against variants of concern in dialysis patients four months after SARS-CoV-2 mRNA vaccination. Preprint at medRxiv 2021. https://doi.org/10.1101/2021.08.16.21262115
  37. Carr EJ, et al. Neutralising antibodies after COVID-19 vaccination in UK haemodialysis patients. Lancet 2021; 398:1038-41. https://doi.org/10.1016/S0140-6736(21)01854-7
  38. Clarke CL, et al. Longevity of SARS-CoV-2 immune responses in hemodialysis patients and protection against reinfection. Kidney Int 2021; 99:1470-77. https://doi.org/10.1016/j.kint.2021.03.009

 

Ultrasonografia vascolare nell’allestimento e nella sorveglianza della fistola artero-venosa: esperienza monocentrica

Abstract

L’incremento dell’età media dei pazienti che iniziano il trattamento emodialitico cronico e la maggiore prevalenza tra gli stessi di patologie ad elevato impatto sul sistema cardio-vascolare, determinano maggiori difficoltà nell’allestire una fistola artero-venosa (FAV).

La scelta dei vasi da utilizzare per il confezionamento dell’accesso vascolare per dialisi è avvenuta in passato essenzialmente attraverso l’esame obiettivo degli arti superiori. Le linee guida internazionali attualmente suggeriscono l’esecuzione di un ecocolordoppler (ECD) a completamento dell’esame fisico in tutti i pazienti candidati al confezionamento di una FAV. L’esame ultrasonografico vascolare costituisce altresì in fase post-operatoria un momento fondamentale per un’adeguata sorveglianza dell’accesso.

Nel nostro Centro abbiamo condotto un’analisi retrospettiva finalizzata ad analizzare, se e in quali termini, l’utilizzo dell’ECD nella pratica clinica abbia avuto delle ripercussioni sulla sopravvivenza degli accessi vascolari.

Sono stati a tal proposito individuati tre periodi storici, in relazione alla modalità di esecuzione della valutazione vascolare pre-intervento e della sorveglianza della FAV che ha visto, nelle tre fasi osservate, la progressiva integrazione dei parametri clinici con quelli ultrasonografici.

L’analisi dei dati ha evidenziato una migliore sopravvivenza statisticamente significativa per tutti gli accessi vascolari valutati cumulativamente e per le FAV distali nella terza fase rispetto alle precedenti, nonostante una percentuale di pazienti over 75 maggiore in quest’ultimo periodo (48% versus 28%).

In conclusione, riteniamo che l’approccio integrato, clinico ed ultrasonografico, sia indispensabile per identificare il sito più idoneo per il confezionamento di un accesso vascolare e per garantirne una buona funzionalità nel tempo.

Parole chiave: emodialisi, fistola arterovenosa, ecocolordoppler, monitoraggio, accesso vascolare

Introduzione

Un trattamento emodialitico adeguato necessita di un accesso vascolare ben funzionante nel tempo.

I pazienti affetti da insufficienza renale cronica (CKD) al IV° stadio (eGFR <30 ml/min), devono pertanto essere accuratamente studiati al fine di poter avviare il trattamento sostitutivo con un accesso vascolare idoneo [1].

I dati della letteratura e le linee guida internazionali in merito indicano la fistola artero-venosa (FAV), allestita con vasi nativi, quale accesso di prima scelta per un minore rischio d’infezione e trombosi, una migliore sopravvivenza, minori costi correlati alla necessità di ospedalizzazione se paragonati alla FAV protesica o al catetere venoso centrale tunnellizato (CVCt) [2].

Nei pazienti affetti da CKD il corretto utilizzo del patrimonio vascolare degli arti superiori costituisce un momento fondamentale ai fini del futuro confezionamento di una FAV. L’attuale incremento dell’età media dei pazienti a inizio trattamento emodialitico cronico e la maggiore prevalenza negli stessi di patologie ad elevato impatto sul sistema cardio-vascolare (diabete mellito, angiosclerosi, arteriopatia obliterante polidistrettuale), determinano maggiori difficoltà nell’allestire una FAV che garantisca buona efficienza dialitica e sufficiente durata nel tempo [3].

Tra le FAV native, il gold standard è rappresentato dalla FAV radio-cefalica distale con anastomosi a livello del polso: essa è associata ad un minor rischio sindrome di steal [4] e, al contrario di una FAV prossimale (omero-cefalica; omero-basilica), raramente sviluppa una elevata portata, causa non trascurabile di scompenso cardiaco nei pazienti uremici.

Basile et al. in uno studio prospettico hanno analizzato il rapporto tra Qa FAV ed output cardiaco e concludevano che una portata uguale o maggiore a 2000 ml/min rappresenta il giusto cut-off nel predire il rischio di scompenso cardiaco cronico ad alta gittata [5].

La FAV distale non è sempre proponibile e può andare incontro a scarsa maturazione e a conseguente fallimento, tuttavia la sua realizzazione, ove possibile, permette un più corretto utilizzo del patrimonio vascolare del singolo paziente e la possibilità per il medesimo di poter usufruire dell’eventuale confezionamento nel tempo di ulteriori accessi che richiedano l’utilizzo di vasi posti in sede più prossimale.

Altra tipologia di accesso vascolare che può essere considerato prima del confezionamento di una FAV prossimale è quella mid-arm, con l’utilizzo del tratto prossimale dell’arteria radiale. Essa è caratterizzata da una portata inferiore rispetto alla prima, ed in genere è ben tollerata anche nei pazienti anziani, diabetici o con vasculopatia periferica [6].

La scelta dei vasi da utilizzare per il confezionamento dell’accesso vascolare per dialisi è avvenuta in passato essenzialmente attraverso l’esame obiettivo degli arti superiori: un attento esame fisico ed anamnestico permette di raccogliere alcune importanti informazioni sul circolo venoso superficiale e sul circolo arterioso:

  • palpabilità delle vene superficiali, valutazione del loro calibro e decorso
  • palpabilità dei polsi arteriosi
  • presenza di cicatrici chirurgiche o aree di distrofia cutanea
  • presenza di pace-maker (PM)
  • pregressi traumi/fratture o interventi chirurgici a carico degli arti superiori o precedenti accessi vascolari
  • storia di pregressi posizionamenti di CVC
  • segni di pregressa reiterata venipuntura, segni di tromboflebite in atto o pregressa
  • presenza di comorbidità rilevanti (scompenso cardiaco, grave valvulopatia, cardiopatia ischemica, patologie della coagulazione).

Le linee guida internazionali attualmente suggeriscono l’esecuzione di un ecocolordoppler (ECD), a completamento dell’esame fisico, in tutti i pazienti candidati al confezionamento di una FAV. Esso consente, in fase preoperatoria, la scelta dei vasi più idonei all’intervento e, in fase post-operatoria, rappresenta un momento fondamentale per un’adeguata sorveglianza dell’accesso e la diagnosi precoce di eventuali cause di malfunzionamento suscettibili di correzione [7].

L’ECD fornisce, infatti, numerose e dettagliate informazioni sul circolo venoso superficiale e profondo e sul circolo arterioso dell’intero arto superiore, consente altresì valutazioni emodinamiche e morfologiche permettendo di identificare eventuali varianti anatomiche.

Lo studio vascolare pre-intervento effettuato di routine ha permesso di incrementare negli anni la percentuale di FAV confezionate con vasi nativi a scapito della FAV protesiche, nonché di migliorare la sopravvivenza nel tempo, attraverso una più adeguata sorveglianza e la identificazione precoce delle complicanze [89].

Il mapping artero-venoso pre intervento fa riferimento ai parametri di seguito riportati:

  1. Parametri arteriosi (Fig.1):
  • diametro dell’arteria radiale: un diametro minimo di 2 mm è stato correlato ad una elevata percentuale di pervietà primaria ad un anno (83%) [10]
  • spessore e qualità intima-media: l’incremento dello stesso correla con un peggior outcome della FAV [11]
  • flusso/compliance vascolare nel test dell’iperemia reattiva: un valore dell’indice di resistenza (IR) >0,7 in fase di iperemia reattiva è correlato ad un fallimento precoce dell’accesso vascolare [12]
  • presenza di calcificazioni vascolari
  • presenza di lesioni steno-ostruttive
Figura 1: Parametri arteriosi
Figura 1: Parametri arteriosi
  1. Parametri venosi (Fig.2):
  • pervietà del vaso e struttura di parete: lume anecogeno, comprimibilità del vaso, parete sottile
  • diametro e distensibilità della vena cefalica: 2 mm senza elastocompressione, 2,5 mm con elastocompressione [13]
  • profondità: <6 mm rispetto al piano cutaneo, al fine di consentire un’agevole venipuntura
  • decorso: deve essere sufficientemente rettilineo
  • presenza di circoli collaterali a meno di 5 cm dall’anastomosi [14].
Figura 2: Parametri venosi
Figura 2: Parametri venosi

Una FAV si definisce matura quando il diametro venoso permette la venipuntura con aghi di grosso calibro e la portata raggiunge i 600 ml/min, il diametro del vaso 6 mm, con un decorso del vaso a non più di 6 mm di profondità rispetto al piano cutaneo.

Appare auspicabile che i pazienti in emodialisi siano sottoposti ad una regolare sorveglianza dell’accesso vascolare, finalizzata alla diagnosi precoce delle cause di malfunzionamento dell’accesso. In particolare, l’identificazione di stenosi emodinamicamente significative (riduzione maggiore del 50% del lume vasale) e la valutazione del trend della portata dell’accesso, incrementano in modo significativo il tasso di pervietà riducendo di conseguenza l’incidenza di trombosi della FAV [15].

In merito alla sorveglianza degli accessi vascolari, i metodi di screening per la ricerca di stenosi significative sono stati suddivisi in quelli di I e II generazione [16]:

  1. Metodi di I generazione:
  • il monitoraggio fisico
  • vigilanza della pressione FAV (valutazione di pressione venosa dinamica, intra accesso e statica)
  • test del ricircolo
  • riduzione dell’efficienza dialitica (riduzione kt/v ed URR).
  1. Metodi di II generazione, permettono di calcolare la portata dell’accesso:
  • screening diluzionale
  • ECD.

La misurazione della portata a livello dell’arteria brachiale al di sopra del gomito tramite ECD rappresenta il miglior modo per sorvegliare una FAV; una portata <500 ml/min o una sua riduzione progressiva nel tempo sono altamente predittive di stenosi [1].

La trombosi, di fatto, rappresenta quasi sempre una causa di fallimento tardivo, con innumerevoli conseguenze cliniche negative, che determinano un incremento della frequenza di ospedalizzazione e della spesa sanitaria, nonché della morbidità e mortalità dei pazienti in emodialisi cronica [17].

 

Materiali e metodi

Nel nostro Centro abbiamo condotto un’analisi retrospettiva finalizzata ad analizzare se ed in quali termini l’utilizzo dell’ECD nella pratica clinica in ambito nefrologico abbia avuto delle ripercussioni sulla sopravvivenza degli accessi vascolari.

Sono stati a tal proposito individuati tre periodi storici (Tab. I), in relazione alla modalità di esecuzione nel Centro di:

  • valutazione vascolare pre-intervento
  • sorveglianza della FAV.
Pre-intervento Sorveglianza
2000-2004:
  • esame fisico
  • eventuale flebografia
  • monitoraggio clinico
  • test del ricircolo, scadimento efficienza dialitica
  • ECD (se presente indicazione clinica, ma non in ambito nefrologico)
2005-2009:
  • esame fisico
  • avvio mapping vascolare in ambito nefrologico
  • monitoraggio clinico
  • test del ricircolo, scadimento efficienza dialitica
  • inizio uso ECD per ricerca stenosi e misurazione portata:
    • ogni 90 giorni per le FAV protesiche
    • su indicazione clinica per le FAV native
    • ad un mese da procedure interventistiche e successivamente ogni 6 mesi
2010-2015:
  • esame fisico
  • mapping vascolare di routine in ambito nefrologico
  •  monitoraggio clinico
  • test del ricircolo, scadimento efficienza dialitica
  • ECD per ricerca stenosi e misurazione portata:
    • ogni 90 giorni per le FAV protesiche
    • su indicazione clinica per le FAV native
    • ad un mese da procedure interventistiche e successivamente ogni 6 mesi
Tabella I: Tre fasi storiche in relazione alla modalità di esecuzione di valutazione vascolare pre-intervento e di sorveglianza della FAV

Sono stati altresì definiti i parametri cui fare riferimento tanto per la fase di studio pre-operatoria, quanto per quella di sorveglianza (Tab. II).

Riferimenti nella fase di pre-intervento: Riferimenti nella fase di sorveglianza:
Esame fisico:

Presenza e consistenza dei polsi arteriosi (brachiale, radiale, ulnare)

Valutazione del reticolo venoso superficiale con elastocompressione: palpabilità, e decorso dei vasi

Monitoraggio clinico:

Presenza e trasmissione del thrill, prolungato sanguinamento a fine dialisi, difficoltà al posizionamento degli aghi

Flebografia:

Valutazione pervietà e calibro dei vasi venosi scarsamente palpabili

Parametri dialitici:

Test ricircolo urea >10%, scadimento trend della efficienza dialitica (riduzione dello 0.2 Kt/v)

Mapping Vascolare:

–        Arteria: calibro della a. radiale uguale o maggiore di 2 mm, profilo velocimetrico trifasico, test iperemia reattiva IR uguale e inferiore a 0.7

–        Vena: pervietà del vaso ed integrità di parete, calibro maggiore o uguale a 2.5 mm con elastocompressione (avambraccio), calibro uguale o maggiore di 4 mm per protesi

Parametri ultrasonografici:

Portata inferiore a 500 ml/min, trend con riduzione maggiore del 25%

Riscontro di aree di stenosi superiori al 50% (PSV > 400 cm/s o PSV ratio >2)

Tabella II: Parametri di riferimento

Tecnica chirurgica

Le FAV con vasi nativi sono state tutte confezionate in anestesia locale (ropivacaina 7.5%) con anastomosi latero-terminale per le FAV distali e prossimali, e latero-laterale o latero-terminale per le FAV mid-arm, con lunghezza del tratto anastomotico 5-7 mm.

Le FAV protesiche tutte in politetrafluoroetilene (PTFE), coniche 4-7 mm (gore-tex STRETCH), sono state confezionate in anestesia plessica (levobupivacaina 2%, ropivacaina 5%) con conformazione a loop fra arteria omerale e vena basilica, o conformazione retta fra arteria omerale e vena omerale o ascellare.

Dopo il primo anno di collaborazione con il chirurgo, tutti gli accessi sono stati eseguiti da equipe nefrologica.

Tecnica ultrasonografica

Al fine di decidere l’arto da utilizzare ed il tipo di accesso da confezionare, il nefrologo ha eseguito ECD usando sonda lineare L4-15 mHz eseguendo scansioni longitudinali e trasversali dei vasi esaminati con utilizzo del doppler pulsato per le valutazioni velocimetriche, facendo riferimento ai parametri specificati nella Tab. II.

Il numero dei pazienti prevalenti, compresi i pazienti incidenti, nei tre periodi considerati è stato di 130 ±6 pazienti, con una percentuale di CVCt che è gradualmente aumentata: 13% nel primo periodo, 18% nel a secondo periodo 22% nel a terzo periodo.

Al fine di prevenire il fallimento precoce dell’accesso, tutti i pazienti sottoposti ad intervento di confezionamento di FAV hanno avviato terapia antiaggregante (acido acetilsalicilico 100 mg) salvo quelli che eseguivano terapia con anticoagulante orali per altre motivazioni cliniche [18].

Metodo statistico

Per l’analisi statistica sono state utilizzate le curve di sopravvivenza secondo Kaplan-Meier al fine di valutare le differenze nei tre periodi osservati. Il livello di significatività definito come p <0.05.

 

Risultati

La sopravvivenza cumulativa degli accessi vascolari nei tre periodi osservati è apparsa migliore nel terzo periodo di osservazione in modo statisticamente significativo (P <0.05) rispetto ai precedenti (Fig. 3).

Figura 3: FAV totali
Figura 3: FAV totali

È stata successivamente condotta una analisi statistica specifica mirata alla valutazione della sopravvivenza di ciascuna tipologia di accesso realizzato nei tre periodi. L’analisi dei dati ha evidenziato per la FAV distale una migliore sopravvivenza, statisticamente significativa (p< 0.05), nella 3° coorte rispetto alle prime due (Fig. 4).

Figura 4: FAV distale
Figura 4: FAV distale

Per la FAV mid-arm, confezionata in due dei tre periodi osservati, si è evidenziata una migliore sopravvivenza nel terzo rispetto al secondo periodo, ma senza significatività statistica (Fig. 5).

Figura 5: FAV mid-arm
Figura 5: FAV mid-arm

Per la FAV prossimale si è osservato un trend di miglior sopravvivenza nella 3° coorte rispetto alle prime due, ma anche in questo caso senza significatività statistica (Fig.6).

Figura 6: FAV prossimale
Figura 6: FAV prossimale

Per la FAV protesica sono state osservate minime differenze nei tre periodi osservati prive di rilevanza statisticamente significativa (Fig.7).

Figura 7: FAV protesica
Figura 7: FAV protesica

È stata inoltre effettuata una analisi per valutare le caratteristiche anagrafiche della popolazione inclusa nei tre periodi osservati. A dispetto della migliore sopravvivenza degli accessi nella terza coorte dei pazienti, essa ha evidenziato un progressivo incremento percentuale delle FAV confezionate nei soggetti over 75 dal primo periodo (28,3%) al terzo periodo (47,9%) (Fig. 8).

Figura 8: Numero di pazienti e numero di accessi in pazienti over 75
Figura 8: Numero di pazienti e numero di accessi in pazienti over 75

A completare l’analisi dei dati, è stata effettuata una valutazione sull’incidenza dei fallimenti precoci, considerata a 30 giorni dal confezionamento dell’accesso, che ha evidenziato un tasso di incidenza con trend in riduzione, dal 12,8% del primo periodo al 5,5% e 6,7% rispettivamente del secondo e terzo periodo.

 

Discussione

Pur con i limiti dello studio retrospettivo, l’analisi dei risultati evidenzia un miglioramento degli outcomes clinici in termini di pervietà globale dopo l’introduzione in ambito nefrologico della tecnica ultrasonografica in fase di progettazione e sorveglianza dell’accesso vascolare, e la sua integrazione con il monitoraggio clinico, dato peraltro ampiamente confermato in letteratura [19-20].

Nei tre periodi considerati la percentuale di pazienti diabetici (25-30%) ed obesi (8-10%) era sovrapponibile, pertanto i risultati non appaiono influenzati in modo significativo da tali variabili.

È al contrario evidente che il supporto ultrasonografico risulta fondamentale al fine incrementare il numero di FAV confezionate nel paziente anziano, essendo il dato percentuale delle FAV realizzate nel paziente over 75 incrementato dal 28% del primo periodo, al 48% del terzo periodo. Aspetto quest’ultimo non trascurabile se si considera che l’utilizzo del CVCt quale accesso definitivo per emodialisi è correlato ad un maggiore morbilità e mortalità del paziente uremico [17].

Di fatto, la sola età anagrafica non può costituire un limite al confezionamento di una FAV nel paziente anziano da avviare alla terapia dialitica [21].

L’analisi eseguita in relazione alla singola tipologia di FAV ha posto in evidenza un risultato chiaramente significativo in termini di sopravvivenza a favore delle fistole confezionate con vasi nativi. Nella fattispecie, il dato è apparso statisticamente significativo per le fistole radio-cefaliche, ma ha mostrato un trend in miglioramento anche per le fistole mid-arm e prossimali.

È altrettanto vero che nei tre periodi considerati, si è registrata una riduzione percentuale delle FAV radio-cefaliche rispetto al totale delle FAV realizzate, dal 57% della prima coorte, al 44% della seconda fino al 37% della terza. Tale aspetto è tuttavia essenzialmente da riferire alla realizzazione nel secondo e nel terzo periodo delle FAV mid-arm, tipologia di accesso in precedenza non confezionato, che ha determinato una riduzione percentuale anche della FAV prossimali. Il dato è sostanzialmente da riferire al metodico studio preoperatorio ed alla scelta del sito reputato più idoneo per il confezionamento dell’accesso che, in una popolazione con elevata percentuale di anziani, ha favorito l’utilizzo di vasi in sede più prossimale rispetto al polso ma ha anche permesso di utilizzare in modo adeguato ed efficace il tratto intermedio del braccio, prima di optare per il confezionamento di una FAV prossimale [22].

Non vi è stata alcuna variazione significativa, nei tre periodi considerati, della sopravvivenza delle FAV di tipo protesico, la cui percentuale nei tre intervalli ha registrato leggero progressivo incremento come numero assoluto. Tuttavia per tale tipologia di accesso è possibile evidenziare un miglioramento della sopravvivenza nella seconda e terza coorte rispetto alla prima a 12 e 24 mesi, ma peggiore a 36 mesi.

Il dato non appare di semplice interpretazione, pur con i limiti dovuti alla modesta numerosità del campione esaminato, un adeguato mapping vascolare preoperatorio è sembrato importante al fine di ridurre il tasso di insuccessi precoci, come per altro dimostrato in letteratura [16]. La sopravvivenza peggiorativa a distanza sembra invece ridimensionare il valore del controllo strumentale della FAV protesica, nei confronti della quale, nel nostro pool di pazienti, è stato effettuato un metodico controllo ECD con cadenza trimestrale, avvalorando in modo indiretto il concetto del ruolo di primo piano del monitoraggio clinico nell’ambito della sorveglianza dell’accesso vascolare per emodialisi [23].

Il numero di procedure interventistiche è progressivamente aumentato: dalle 31 eseguite nel primo periodo alle 36 nel secondo periodo fino a raggiungere le 52 nel terzo periodo. L’incremento di tali procedure, che tuttavia è apparsa contenuta in termini assoluti, conduce a nostro parere a due riflessioni: da una parte l’innegabile ruolo dell’ECD nell’identificazione precoce di lesioni stenotiche correggibili per via endovascolare, dall’altra, la necessità di ottimizzare il programma di sorveglianza strumentale, senza tuttavia eccedere nell’indicazione allo studio angiografico.

Appare evidente che un’azione integrata, clinica ed ultrasonografica, sia indispensabile al fine di perseguire due fondamentali obiettivi: identificare il sito più idoneo per il confezionamento di un accesso vascolare e garantire una corretta sorveglianza finalizzata al mantenimento di una buona funzionalità della fistola nel tempo [924].

Alla luce di tali considerazioni e dell’esperienza da noi condotta, crediamo che un approccio multidisciplinare alla complessa problematica dell’accesso vascolare per emodialisi sia di fondamentale importanza: in tal senso in ambito nefrologico appare indispensabile la realizzazione di un settore specifico finalizzato alla valutazione ultrasonografica preoperatoria del paziente da indirizzare ad un programma di emodialisi, nonché alla sorveglianza dei pazienti medesimi nel tempo [25].

Il nefrologo dovrebbe costituire il riferimento clinico del team multidisciplinare, che vede coinvolti anche chirurghi vascolari, angioradiologi ed infermieri di dialisi ed in tal senso interagire con le figure menzionate e con esse decidere in merito alla creazione dell’accesso vascolare, alla gestione del medesimo ed alla risoluzione di eventuali problemi connessi al suo utilizzo.

Tale team multidisciplinare dovrebbe avere il compito fondamentate di definire il life-plan individuale del paziente con uremia terminale, nello specifico definire la sede e il timing di confezionamento dell’accesso vascolare nonché garantire l’adeguata sorveglianza nel tempo. Ogni scelta andrebbe effettuata in maniera prospettica tenendo presente che il paziente uremico nell’arco della sua storia dialitica potrebbe avere la necessità di confezionare più accessi [26].

Risulta a nostro parere importante acquisire e mantenere in ambito nefrologico le risorse umane e le competenze adeguate per poter garantire con continuità la realizzazione della FAV in tempi corretti e nel sito più idoneo, realizzando di fatto un primo livello clinico assistenziale sul tema specifico. Appare altresì fondamentale che tale attività sia coordinata con un secondo livello clinico assistenziale che vede attive le altre figure professionali coinvolte.

Chirurghi vascolari ed angioradiologi appaiono indispensabili per la risoluzione delle complicanze connesse all’utilizzo degli accessi vascolari nonché per la realizzazione di accessi complessi, ma estremamente importante è mantenere una costante attività di sorveglianza e collaborazione con infermieri della sala di dialisi che spesso costituisce la prima sede in cui è possibile verificare l’adeguato funzionamento dell’accesso vascolare o la eventuale presenza degli iniziali segni di malfunzionamento.

 

Conclusioni

In conclusione, crediamo di poter affermare che programmi formativi volti a consolidare le competenze di carattere ultrasonografico vascolare in ambito nefrologico possano essere rilevanti al fine di migliorare gli outcomes clinici della fistola artero-venosa per emodialisi.

Riteniamo anche che l’ausilio dell’ECD non possa in nessuna fase di cura sostituire l’importanza dell’esame fisico e della sorveglianza clinica che rimangono fondamentali per garantire una migliore sopravvivenza e qualità di vita dei pazienti uremici.

È auspicabile altresì che ogni unità operativa di Nefrologia e Dialisi effettui un monitoraggio continuativo dei propri dati e che valuti nel tempo la sopravvivenza delle FAV e l’incidenza di complicanze ad esse correlate, al fine di poter al meglio modulare la strategia operativa, sempre nel rispetto delle linee guida di riferimento in merito.

  

Bibliografia

  1. Besarab A, Work J, Brouwer D, Konner K, Bunchman TE, et al. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis 2006; 48(S1):S1-S322. https://doi.org/10.1053/j.ajkd.2006.03.051
  2. Gibson KD, Gillen DL, Caps MT, et al. Vascular access survival and incidence of revisions: a comparison of prosthetic grafts, simple autogenous fistulas, and venous transposition fistulas from the United States Renal Data System Dialysis Morbidity and Mortality Study. J Vasc Surg 2001; 34:694-700. https://doi.org/10.1067/mva.2001.117890
  3. Hwang D, Park S, Kim HK, Huh SJ. Comparative outcomes of vascular access in patients older than 70 years with end-stage renal disease. Vasc Surg 2019; 69(4):1196-206. https://doi.org/10.1016/j.jvs.2018.07.061
  4. Leake AE, Winger DG, Leers SA, Gupta N, Dillavou ED. Management and outcomes of dialysis access-associated steal syndrome. J Vasc Surg 2015; 61(3):754-60. https://doi.org/10.1016/j.jvs.2014.10.038
  5. Basile C, Lomonte C, Vernaglione L, Casucci F, Antonelli M, Losurdo N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant 2008; 23(1):282-87. https://doi.org/10.1093/ndt/gfm549
  6. Bonforte G, Rossi E, Auricchio S, Pogliani D, Mangano S, Mandolfo S, Galli F, Genovesi S. The middle-arm fistula as a valuable surgical approach in patients with end-stage renal disease. J Vasc Surg 2010; 52(6):1551-56. https://doi.org/10.1016/j.jvs.2010.06.165
  7. Tordoir J, Canaud B, Haage P, et al. EBPG on vascular Access. Nephrol Dial Transplant 2007; 22(S2):ii88-117. https://doi.org/10.1093/ndt/gfm021
  8. Lok CE. Fistula First Initiative: Advantages and Pitfalls. Clin J Am Soc Nephrol 2007; 2: 1043-53. https://doi.org/10.2215/CJN.01080307
  9. Zamboli P, Calabria M, Camocardi A, Fiorini F, D’Amelio A, Lo Dico C, Granata A. Color-Doppler imaging and arteriovenous fistula: preoperative evaluation and surveillance. G Ital Nefrol 2012; 29(S57):S36-46. https://giornaleitalianodinefrologia.it/wp-content/uploads/sites/3/pdf/storico/2012/S57/GINS57_12_ZAMBOLI.pdf
  10. Silva MB Jr, Hobson RW, Pappas PJ, et al. A strategy for increasing use of autogenous hemodialysis access procedures: impact of pre-operative noninvasive evaluation. J Vasc Surg 1998; 27:302-07. https://doi.org/10.1016/s0741-5214(98)70360-x
  11. Ku YM, Kim YO, Kim J, et al. Ultrasonographic measurement of intima-media thickness of radial artery in pre-dialysis uremic patients: comparison with histological examination. Nephrol Dial Transplant 2006; 21:715-20. https://doi.org/10.1093/ndt/gfi214
  12. Malovrh M. Native arteriovenous fistula: preoperative evaluation. Am J Kidney Dis 2002; 39:1218-25. https://doi.org/10.1053/ajkd.2002.33394
  13. Lockhart ME, Robbin ML, Fineberg NS, et al. Cephalic vein measurement before forearm fistula creation: does use of a tourniquet to meet the venous diameter threshold increase the number of usable fistula? J Ultrasound Med 2006; 25:1541-45. https://doi.org/10.7863/jum.2006.25.12.1541
  14. Beathard GA, Arnold P, Jackson J, et al. Aggressive treatment of early fistula failure. Kidney Int 2003; 64:1487-94. https://doi.org/10.1046/j.1523-1755.2003.00210.x
  15. Lomonte C, Meola M, Petrucci I, Casucci F and Basile C. The Key Role of Color Doppler Ultrasound in the Work-up of Hemodialysis Vascular Access. Seminars in Dialysis 2015; 28(2):211-15. https://doi.org/10.1111/sdi.12312
  16. Ibeasa J, Roca-Teyb R, Vallespínc J, Moreno T, Moñux G, et al. Spanish Clinical Guidelines on Vascular Access for Haemodialysis. Nefrologia 2017; 37(S1):1-191. https://doi.org/10.1016/j.nefro.2017.11.004
  17. Rehman R, Schmidt RJ, and Moss AH. Ethical and Legal Obligation to Avoid Long-Term Tunneled Catheter Access. Clin J Am Soc Nephrol 2009; 4(2):456-60. https://doi.org/10.2215/CJN.03840808
  18. Fan PY, Lee CC, Liu SH, Li I-J, Weng CH, et al. Preventing arteriovenous shunt failure in hemodialysis patients: a population-based cohort study. J Thromb Haemost 2018; 17(1):77-87. https://doi.org/10.1111/jth.14347
  19. Mudoni A, Caccetta F, Caroppo M, Musio F, Accogli A, et al. Echo color Doppler ultrasound: a valuable diagnostic tool in the assessment of arteriovenous fistula in hemodialysis patients. J Vasc Access 2016; 17(5):446-52. https://doi.org/10.5301/jva.5000588
  20. Aragoncillo Sauco I, Ligero Ramos JM, Vega Martínez A, Morales Muñoz ÁL, et al. Vascular access clinic results before and after implementing a multidisciplinary approach adding routine Doppler ultrasound. Nefrologia 2018; 38(6):616-21. https://doi.org/10.1016/j.nefro.2018.04.003
  21. Olsha O, Hijazi J, Goldin I, and Shemesh D. Vascular access in hemodialysis patients older than 80 years. J Vasc Surg 2015; 61(1):177-83. https://doi.org/10.1016/j.jvs.2014.07.005
  22. Borzumati M, Funaro L, Mancini E, Resentini V, Baroni A. Survival and complications of arteriovenous fistula dialysis access in an elderly population. J Vasc Access 2013; 14(4):330-34. https://doi.org/10.5301/jva.5000143
  23. Gallieni M, Hollenbeck M, Inston N, Kumwenda M, Powell S, et al. Clinical practice guideline on peri- and postoperative care of arteriovenous fistulas and grafts for haemodialysis in adults. Nephrol Dial Transplant 2019; 34:ii1–ii42. https://doi.org/10.1093/ndt/gfz072
  24. Aragoncillo I, Abad S, Caldés S, Amézquita Y, Vega A, Cirugeda A, at al. Adding access blood flow surveillance reduces thrombosis and improves arteriovenous fistula patency: a randomized controlled trial. J Vasc Access 2017; 18(4):352-58. https://doi.org/10.5301/jva.5000700
  25. Niyyar VD. Ultrasound in dialysis access: Opportunities and challenges. J Vasc Access 2020; 21(3):272-80. https://doi.org/10.1177/1129729819855487
  26. Lok C, Shenoy S, Yevzlin A, Huber TS, Lee T. KDOQI Clinical Practice Guideline For Vascular Access: 2018. AJKD Submission Draft, April 2019. https://www.vasbi.org.uk/static/uploads/resources/kdoqi_vasc-access-review2019_v2.pdf

La dialisi peritoneale rappresenta la tecnica sostitutiva di prima scelta per i pazienti candidabili al trapianto di rene?

Abstract

Il trapianto di rene è ampiamente riconosciuto come il trattamento sostitutivo d’elezione della malattia renale terminale. È stato, infatti, dimostrato che sottoporre il paziente a trapianto di rene ancor prima dell’inizio della terapia dialitica garantisce sia la migliore sopravvivenza del soggetto che dell’organo trapiantato. Tuttavia, a causa della considerevole discrepanza fra il numero di donatori e i soggetti in lista di attesa, la maggior parte dei candidati a trapianto di rene necessita di un lungo periodo di terapia dialitica prima di ricevere un organo.

Per molti anni la dialisi peritoneale e l’emodialisi sono state considerate terapie sostitutive contrastanti. Recentemente questa visione dualistica è stata messa in discussione da dati emergenti a supporto dell’idea che l’approccio più appropriato sia quello personalizzato. Infatti, passaggi di metodica dialitica accuratamente pianificati e coscienziosamente determinati sulla base delle particolari esigenze del singolo paziente nello specifico momento permettono di ottenere i risultati più soddisfacenti.

Degno di nota è il fatto che le attuali evidenze favoriscono nei pazienti candidabili a trapianto di rene l’utilizzo della metodica peritoneale. In questa specifica popolazione i vantaggi della dialisi peritoneale sono rappresentati, infatti, da un più lungo mantenimento della funzione renale residua, una superiore qualità di vita, una minore incidenza di ritardata ripresa funzionale dell’organo trapiantato, una migliore sopravvivenza e una riduzione dei costi associati alla metodica.

Parole chiave: dialisi peritoneale, trapianto di rene, emodialisi, terapia sostitutiva renale, lista di attesa, funzione renale residua, qualità di vita, ritardata ripresa funzionale

Introduzione

Il trapianto di rene (KT) è ampiamente riconosciuto come la terapia renale sostitutiva (RRT) d’elezione per la malattia renale terminale (ESRD) [13]. Idealmente, sottoporre il paziente a KT prima dell’inizio della terapia dialitica è la strategia che permette di ottenere i risultati più soddisfacenti [46]. Tuttavia, a causa della limitata disponibilità di donatori, la maggior parte dei soggetti candidati a KT necessita di un lungo periodo di trattamento dialitico prima di ricevere un organo [7]. Per molti anni l’emodialisi (HD) ha rappresentato l’unica opzione per i pazienti in lista di trapianto [8,9]. Negli anni ‘80 l’avvento della dialisi peritoneale (PD) nella pratica clinica ha sollevato la questione di quale fosse la terapia dialitica da preferire nei pazienti candidabili a KT [10,11].

Le preoccupazioni maggiori concernenti l’uso della PD sono rappresentate dalla possibile creazione di leakage/aderenze peritoneali, dal rischio di infezioni peri-trapianto e dalla convinzione che la metodica sia correlata ad una maggiore incidenza di episodi di rigetto acuto [1216].

Sebbene diversi studi abbiano dimostrato che la PD non influenza negativamente il numero di complicanze chirurgiche e mediche precoci, molti nefrologi sono ancora riluttanti a proporre la PD come terapia sostituiva iniziale nei pazienti candidabili a KT. Questa tendenza è alquanto discutibile poiché l’HD e la PD non devono essere considerate tecniche dialitiche competitive, quanto piuttosto strategie complementari finalizzate a ottenere i migliori risultati prima e dopo il trapianto di rene [17].

Infatti, la tecnica dialitica dovrebbe essere personalizzata sulla base delle particolari caratteristiche e esigenze del singolo paziente tenendo in considerazione la loro variabilità nel tempo. Dunque, trasferimenti accuratamente pianificati fra le diverse tecniche di terapia renale sostitutiva dovrebbero essere accuratamente considerati nelle specifiche circostanze [18].

A questo riguardo, sempre maggiori evidenze sembrano suggerire che nei pazienti candidabili a trapianto di rene la PD permette di ottenere migliori risultati rispetto all’HD. In particolare, i vantaggi della PD sono rappresentati da un più lungo mantenimento della funzione renale residua, da una superiore qualità di vita, una minore incidenza di ritardata ripresa funzionale dell’organo trapiantato (DGF), una migliore sopravvivenza e una riduzione dei costi associati alla metodica. Il presente lavoro si prefigge, dunque, lo scopo di discutere i vantaggi teorici della “PD-first policy” nell’ambito del paziente candidabile a KT.

 

Sopravvivenza del paziente durante la terapia dialitica

I pazienti affetti da ESRD presentano un’elevata prevalenza di malattie cardiovascolari, un più alto rischio di eventi cardiovascolari maggiori e un’aumentata mortalità rispetto alla popolazione generale [7]. Questi fattori, purtroppo, possono ridurre in modo significativo la possibilità di rimanere in lista attiva di trapianto e inficiano tanto la sopravvivenza dell’organo quanto quella del ricevente dopo KT. Dunque, la terapia renale sostitutiva in grado di garantire la minore mortalità e la più bassa incidenza di comorbidità è certamente da preferire.

In uno studio condotto su 398.940 pazienti che hanno iniziato la terapia sostitutiva fra il 1995 e il 2000, Vonesh et al. [19] mostrarono che la sopravvivenza dei pazienti in PD e HD variava secondo specifiche caratteristiche legate al paziente, quali la causa dell’insufficienza renale, l’età e le comorbidità. In particolare, gli autori osservarono che, eccetto per i pazienti anziani con diabete in cui la PD presentava uno svantaggio di sopravvivenza, in tutti gli altri sottogruppi la mortalità fra i pazienti era simile o perfino migliore in PD. Uno studio danese basato su 4568 pazienti in HD e 2443 in PD evidenziava che i pazienti in PD possedevano un vantaggio in termini di sopravvivenza nei primi due anni di RRT [20]. In modo simile, un’analisi eseguita su una coorte di pazienti dializzati canadesi dimostrava che negli individui giovani e non affetti da diabete la sopravvivenza in PD era superiore rispetto all’HD e, sebbene di minore entità, questo vantaggio si confermava anche negli altri sottogruppi [21].

Liem et al., analizzando il registro olandese di malattia renale terminale (16.643 pazienti), osservavano che la sopravvivenza differiva fra le due metodiche dialitiche a seconda della presenza o meno di diabete e dall’età del paziente all’inizio della dialisi [22]. In particolare, gli autori concludevano che il vantaggio della PD sull’HD diminuiva con l’aumento dell’età del paziente e in presenza di diabete.

Degno di rilevanza è il risultato proveniente da uno studio di confronto (PD vs HD) includente 6637 coppie di pazienti accoppiate secondo il metodo del propensity score in cui i pazienti trattati con PD mostravano un rischio di mortalità complessivo inferiore dell’8% rispetto ai pazienti che iniziavano l’HD [23].

Dunque, considerando globalmente le evidenze a disposizione in letteratura, i pazienti giovani e non diabetici trattati con PD presentano un vantaggio in termini di sopravvivenza rispetto ai soggetti sottoposti a HD, in particolare nei primi anni di trattamento.

 

Sopravvivenza del paziente e dell’organo dopo trapianto di rene

Rispetto alla terapia dialitica, il trapianto di rene garantisce sia una migliore qualità che una più lunga aspettativa di vita [24,25]. Inoltre, il rientro in dialisi dopo il fallimento di un primo trapianto è caratterizzato da una maggiore mortalità in confronto al periodo di trattamento dialitico pre-trapianto [2628]. Dunque, la preservazione della funzione del trapianto è un requisito fondamentale al fine di ottimizzare la sopravvivenza del paziente.

Diversi studi hanno indagato l’impatto del tipo di metodica dialitica intrapresa dal paziente prima di essere sottoposto a trapianto sulla sopravvivenza dell’organo e del ricevente ottenendo, però, risultati divergenti.

Nei primi anni 90 uno studio includente 500 pazienti sottoposti a un primo trapianto di rene non mostrava né una differente percentuale di sopravvivenza a 5 anni dei soggetti (HD 88% vs PD 87%), né dell’organo (HD 67% vs PD 66%) confrontando i pazienti trattati precedentemente con HD o PD [29]. Simili valori sia di sopravvivenza dei pazienti che del trapianto venivano osservati in altri studi dall’Università dell’Ohio, dal CHRU di Lille e dall’Università di Glasgow su popolazioni più ridotte [3032], così come in una vasta analisi retrospettiva del database Medicare condotta su 22.776 soggetti [33].

Al contrario, Goldfarb-Rumyantzev et al. [34], utilizzando i dati provenienti dall’ U.S. Renal Data System (USRDS), osservavano che la PD era associata a una riduzione del rischio di fallimento del trapianto e di mortalità, pari al 3% in confronto al 6% dell’HD.

La maggior parte degli studi successivi non rilevavano, invece, la superiorità di una metodica rispetto all’altra, specialmente nel breve e medio termine [3539]. Tuttavia, estendo il follow-up a 10 anni, Lopez-Oliva et al. [40] riuscivano a dimostrare che la PD era associata a una minore mortalità rispetto all’HD [HR=2,62 (1,01–6,8); p=0,04], nonostante una sopravvivenza del trapianto pressoché sovrapponibile [HR=0,68 (0,41–1,10); p=0,12].

Allo stesso modo Schwenger et al. [41], utilizzando il vasto database dell’International Collaborative Transplant Study Group comprensivo di 60.008 riceventi, osservavano nei pazienti precedentemente trattati mediante PD una migliore sopravvivenza associata ad un’equivalente probabilità di fallimento dell’organo. L’analisi multivariata secondo il modello di Cox rivelava, infatti, che i pazienti in PD (n=11.664) mostravano una mortalità per tutte le cause del 10% inferiore (p=0,014) rispetto ai pazienti in HD (n=45.651) e una simile sopravvivenza del trapianto (p=0,39). Questa differenza in termini di mortalità appariva essere la conseguenza di una significativa riduzione di morte con organo funzionante secondaria a evento cardiovascolare nei pazienti che avevano ricevuto l’organo da un donatore a criteri espansi.

Valutando i risultati provenienti da tutti i riceventi di trapianto renale presenti nel Scientific Registry of Transplant Recipients, anche Molnar et al. [42] dimostravano che i pazienti in trattamento dialitico peritoneale prima del trapianto possedevano un minore tasso di mortalità (21,9/1000 paziente-anni, 95% intervallo di confidenza: 18,1–26,5) rispetto ai pazienti emodializzati (32,8/1000 paziente-anni, 95% intervallo di confidenza: 30,8–35,0). La PD pre-trapianto era associata ad una riduzione del 43% della mortalità corretta per diversi fattori confondenti e a un 66% di decremento della mortalità per evento cardiovascolare. Interessante è il fatto che la PD era, inoltre, associata a una riduzione del rischio di fallimento dell’organo trapiantato del 17% rispetto all’HD.

Nonostante la positività di queste evidenze, alcuni autori hanno riferito il vantaggio della PD in termini di risultati post-trapiantato a un possibile bias di selezione, in quanto i pazienti candidabili alla PD risulterebbero più sani rispetto a coloro che intraprendono la HD [4345]. Per smentire questa ipotesi, sono stati adoperati diversi modelli statistici con risultati alterni [33,34,36,46]. A riguardo, significativo è lo studio di Kramer et al. [47] che, utilizzando il metodo delle variabili strumentali al fine di minimizzare i potenziali bias derivanti da fattori confondenti non misurati, valutava i dati di 29.088 pazienti provenienti da registri regionali e nazionali europei. L’analisi standard corretta per l’età, il sesso, la malattia renale di base, la tipologia di donatore, la durata della dialisi e l’età del trapianto mostrava che la PD, come terapia sostitutiva prima del trapianto, era associata a una migliore sopravvivenza sia del ricevente [hazard ratio (HR) 95% CI = 0,83 (0,76–0,91)] che dell’organo trapiantato [(HR 95% CI 0,90 (0,84–0,96)] rispetto all’HD. Tuttavia, il metodo delle variabili strumentali dimostrava che la PD non correlava né con la sopravvivenza post-trapianto del paziente [HR (95% CI = 1,00 (0,97–1,04)], né con la sopravvivenza dell’organo [HR (95% CI) = 1,01 (0,98–1,04)].

Dunque, le evidenze disponibili suggeriscono che la PD come terapia sostitutiva pre-trapianto, a differenza dell’HD, possiede un effetto favorevole sulla sopravvivenza post trapianto del paziente, sebbene siano ancora mancanti solidi dati a lungo termine.

 

Ripresa funzionale ritardata

La DGF viene comunemente definita come la necessità di terapia dialitica durante la prima settimana successiva al trapianto o l’assenza di diminuzione della creatinina sierica di un valore pari o superiore del 50% (T Scr) alla terza giornata post-trapianto [48].

La DGF è stata considerata comunemente un surrogato di risultati a lungo termine, quali la sopravvivenza del paziente e dell’organo trapiantato [49], in quanto è un accertato fattore di rischio per il rigetto acuto, le complicanze peri-operatorie e la perdita precoce del trapianto [5053].

Giral-Classe et al. [54] dimostravano che la durata della DGF rappresenta un fattore predittivo indipendente di sopravvivenza a lungo termine dell’organo trapiantato. In particolare, gli autori identificavano un elevato rischio di fallimento del trapiantato nei pazienti con una DGF uguale o superiore a 6 giorni. Inoltre, Troppmann et al. [55] osservavano che la sopravvivenza dell’organo era ampiamente inferiore per i pazienti che manifestavano una DGF associata a rigetto. È stato, inoltre, dimostrato che il rigetto è più frequente nei casi in cui la biopsia venga eseguita per un mancato miglioramento della funzione renale (valore sierico di creatininemia stabile o decremento minore <10% per tre giorni consecutivi) [56].

L’influenza della modalità dialitica prima del trapianto sull’incidenza e la durata della DGF è stata oggetto di diversi studi. In particolare, Perez-Fontan et al. [50] valutarono l’incidenza e i fattori di rischio per il verificarsi della DGF confrontando i pazienti che erano stati trattati prima del trapianto mediante PD (n=92) rispetto con HD (n=587). Gli autori osservarono che la percentuale di DGF nel gruppo PD era pari a 22,5% mentre raggiungeva il 39,5% nel gruppo HD e che la modalità dialitica rappresentava il fattore predisponente più significativo per l’incidenza di DGF. Inoltre, stabilivano che una durata di DGF maggiore di 3 settimane si associava a una minore sopravvivenza dell’organo e ad un’aumentata mortalità.

In uno studio caso-controllo, 117 riceventi trattati in precedenza con PD venivano accoppiati per età, sesso, tempo in dialisi, compatibilità degli HLA e tempi di ischemia calda e fredda con altrettanti riceventi sottoposti a HD prima del trapianto renale [57]. La DGF si verificava nel 23,1% dei pazienti in trattamento con PD rispetto al 50,4% dei pazienti in HD (p=0,0001), mentre il sT1/2 Scr era pari a 5,0 ± 6,6 giorni nel gruppo PD in confronto a 9,8 ± 11,5 giorni del gruppo HD (p<0,0001).

Al contrario Caliskan et al., impiegando un simile metodo statistico non osservarono differenze in termini di incidenza di DGF fra i due gruppi [36].

Si specula che la più bassa incidenza di DGF descritta generalmente nei riceventi esposti in precedenza alla PD sia dovuto ad un bilancio idrico peri-operatorio più favorevole rispetto ai pazienti trattati con HD. A questo proposito, Issad et al [58] hanno dimostrato che i candidati al trapianto in PD possedevano una pressione arteriosa polmonare media pari a 21,1 mmHg e maggiore di 25 mmHg in più del 50% dei pazienti. Queste rilevazioni sembrano supportare la tesi che i pazienti in trattamento peritoneale siano spesso iper-idratati.

Tuttavia, analizzando i dati provenienti da soggetti sottoposti a primo trapianto di rene da donatore deceduto, un gruppo di ricercatori della università di Gent ha dimostrato che la PD come modalità dialitica pre-trapianto, così come l’ottimizzazione del bilancio dei liquidi pre-operatorio, rappresentavano due fattori predittivi indipendenti di immediata ripresa funzionale [48]. Questa osservazione suggerisce che gli effetti positivi della PD in termini di minore incidenza di DGF non dipendano unicamente dallo stato di idratazione del paziente.

Un’ulteriore evidenza che la PD riduca il rischio di DGF rispetto alla HD proviene dallo studio di Bleyer et al. [59] che, sfruttando l’archivio dati dello United Network of Organ Sharing, analizzavano i risultati precoci dopo trapianto di rene nei pazienti in PD e HD. In particolare, gli autori osservarono che la probabilità di manifestare oliguria nelle prime 24 ore post-trapianto era 1,49 (1,28–1,74) volte maggiore nei pazienti in HD. Questa differenza risultava perfino più pronunciata nei pazienti di etnia afroamericana.

Simili risultati sono stati descritti da lavori più recenti a conferma dell’ipotesi che la tecnica dialitica pre-trapianto può influenzare gli esiti post-intervento [32,33,42,60]. Diverse teorie sono state avanzate per spiegare la più bassa incidenza di DGF osservata nei pazienti in precedente trattamento con PD tra cui, oltre a un miglior equilibrio volemico, un ridotto stato di stress-ossidativo e una superiore funzione renale residua al momento del trapianto di rene.

 

Funzione renale residua

Nei pazienti affetti da malattia renale cronica si assiste ad una progressiva riduzione del valore di filtrazione glomerulare (GFR) associato nello stadio terminale a una riduzione graduale del volume urinario giornaliero. Questo fenomeno può, infine, determinare una riduzione della capacità vescicale, un’iperattività detrusoriale e un alterato svuotamento vescicale [6167].

È stato ampiamente documentato che i riceventi di trapianto renale con vescica atrofica o disfunzionale possiedono un elevato rischio di prolungato cateterismo vescicale, di complicanze urologiche precoci e di reflusso vescicoureterale [61,62,66]. È stata, inoltre, osservata una stretta correlazione tra la perdita della funzione renale residua (RRF) e specifici esiti post-trapianto, quali le complicanze urologiche post-intervento e la sopravvivenza dell’organo a breve termine [67].

Dunque, la preservazione della RRF nei pazienti in trattamento dialitico è fondamentale per minimizzare le complicanze urologiche precoci, il periodo di cateterismo vescicale post-procedurale e le infezioni urinarie. Ad oggi la durata della RRT rappresenta il fattore predittivo maggiormente associato all’atrofia vescicale e all’esaurimento della RRF [61,62,66,67]. Tuttavia, numerose evidenze suggeriscono che anche la tecnica dialitica pre-trapianto giochi un ruolo significativo nel rallentare la perdita della RRF.

La prima segnalazione della migliore preservazione della RRF nei pazienti in PD risale al 1983 [68]. Successivamente, diversi lavori hanno dimostrato la superiorità della PD rispetto alla HD nel mantenere la RRF con una riduzione relativa della perdita di GFR compresa fra il 20 e l’80% a seconda degli studi considerati [6973].

Nello studio prospettico NECOSAD-2 (prospective study Netherlands Cooperative Study on the Adequacy of Dialysis phase 2) venivano valutati per 12 mesi i valori di GFR di 522 pazienti in terapia dialitica. I risultati mostravano che la PD garantiva una migliore preservazione della RRF rispetto alla HD, anche dopo correzione per il GFR basale, l’età, la malattia renale di base, le comorbidità, l’indice di massa corporea, la pressione sanguigna sistemica, l’uso di farmaci antipertensivi e la causa di fallimento della metodica [74].

Inoltre, qualche studio ha valutato l’impatto dei nuovi regimi emodialitici. Come osservato precedentemente, la velocità di diminuzione della RRF risultava minore nei pazienti in PD, nonostante l’impiego di tecniche emodiafiltrative finalizzate alla minimizzazione dell’instabilità emodinamica [72,75,76].

La PD può favorire la preservazione della RRF attraverso multipli meccanismi. La metodica garantisce, infatti, minori squilibri volemici così come ridotte fluttuazioni della pressione osmotica rispetto alla HD diminuendo gli eventi di instabilità emodinamica transitoria [70]. Questo effetto è probabilmente associato sia ad una pressione glomerulare più stabile, sia a un valore di filtrazione più costante. L’assenza di rapidi cambiamenti del volume circolante e dell’osmolarità plasmatica può anche prevenire eventuali episodi di ischemia parenchimale [73]. Lo stato di modesto sovraccarico idrico frequentemente osservato nei pazienti in PD potrebbe giocare un ruolo nel mantenimento della RRF [77].

È interessante notare che esistono molteplici evidenze a supporto dell’influenza positiva della RRF sia nei pazienti in trattamento peritoneale [74,7885] che emodialitico [74,86]. Il contributo relativo della RRF e della clearance peritoneale nei confronti della sopravvivenza del paziente in PD è stato oggetto di numerose indagini. In particolare, lo studio NECOSAD-2 [74] e lo studio ADEMEX [84] hanno mostrato una riduzione della mortalità del 12 e dell’11%, rispettivamente, per ogni 10 litri/settimana/1,73 m2 di incremento di clearance della creatinina, mentre non si osservava una relazione fra la sopravvivenza del paziente e la dose di PD o il valore totale di rimozione delle piccole molecole. Inoltre, l’analisi multivariata, condotta su pazienti dell’Andalusia (n=402) incidenti in PD negli anni compresi fra il 1999 e il 2005, dimostrava che una RRF al di sotto del valore mediano (4,33 ml/min) era un fattore di rischio indipendente di mortalità [85].

Ulteriori benefici derivanti dalla preservazione della RRF sono rappresentati dalla diminuzione della pressione sistemica [87], dalla protezione dall’ipertrofia ventricolare sinistra [8890], dall’incremento della rimozione del sodio [91,92], da un più adeguato equilibrio volemico [92,93], da una maggiore clearance di b2-microglobulina [9497], da più elevati valori di emoglobina sierica [88,89], da un più adeguato stato nutrizionale [83,88,96,98], e dalla riduzione della quantità di molecole infiammatorie circolanti [99]. Inoltre, la RRF facilita il raggiungimento degli obbiettivi depurativi [74,75,81,82,86,88,100] e aiuta a controllare i livelli di fosfato/acido urico [88,91,101], bicarbonato [96] e colesterolo [102].

Dunque, il mantenimento a lungo termine della RRF rappresenta probabilmente il vantaggio più significativo della PD rispetto alla HD nei primi anni di RRT per i pazienti candidabili a trapianto.

 

Qualità di vita

Il trapianto renale garantisce una migliore qualità di vita (QoL) rispetto alla terapia dialitica [25,103,104]. Il tempo trascorso dai pazienti in lista trapianto varia a seconda della nazione considerata. Tuttavia, durante questo periodo una quota significativa dei candidati viene rimosso dalla lista o va incontro a decesso ancora prima di ricevere un organo.

Per esempio, analizzando i più recenti dati italiani del Centro Nazionale Trapianti, nel corso del 2020 2843 dei 7941 (circa 36%) pazienti in lista di attesa al 31 dicembre 2019 sono usciti di lista: 1623 per trapianto, 239 per decesso e 980 per inidoneità temporanea o definitiva. Inoltre, il tempo mediano di attesa prima di ricevere un organo era pari a circa 3 anni e 3 mesi [105].

Lo stadio terminale della malattia renale associato alla necessità di terapia dialitica cronica può inficiare diversi aspetti della vita del paziente influenzando negativamente il benessere fisico, psichico, sociale ed economico. Dunque, nei candidati al KT il mantenimento di una elevata qualità di vita anche durante l’attesa in lista rappresenta un obbiettivo di vitale importanza.

A differenza dell’HD, la metodica dialitica peritoneale può essere eseguita a domicilio dal paziente indipendentemente o con il supporto di un familiare/badante. Inoltre, il breve tempo richiesto per effettuare uno scambio, permette di stilare uno schema dialitico flessibile concedendo al paziente di viaggiare e di partecipare ad attività ricreative.

Come per i risultati clinici, il confronto della QoL sperimentata dai pazienti in HD rispetto ai soggetti in PD è un compito di non semplice realizzazione. A questo scopo, lo strumento maggiormente impiegato per la valutazione della QoL dei pazienti in trattamento dialitico è rappresentato dal questionario “Kidney Disease Quality of Life” (KDQOL) [106]. Successivamente, sono state proposte multiple versioni di questo score, quali la KDQOL-Short Form Version 1.3 [107], la KDQOL-Short Form 36 e la Short Form-12 [108]. Un altro questionario frequentemente utilizzato è il CHOICE Health Experience Questionnaire (CHEQ), formulato nello studio “Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE)”. Il CHEQ permette di integrare lo SF-36, essendo stato progettato per rilevare differenze più sottili fra la HD e la PD [109].

Tramite lo score KDQOL-SF 1.3, Wakeel et al. [110] confrontavano la QoL di 200 pazienti in HD o PD in Arabia Saudita. Dopo aver escluso i pazienti con difetti cognitivi, deficit neurologici e patologie psichiatriche, gli autori dimostravano che la PD era associata ad un punteggio più elevato in quasi tutti i domini esplorati. In un altro lavoro riguardante più di 300 pazienti, attraverso l’utilizzo del KDQOL-SF36, si evidenziava che i pazienti in PD possedevano un punteggio più alto nei domini inerenti allo stato lavorativo (25,00 vs 14,64; p=0,012), il supporto dallo staff dialitico (96,12 vs 83,11; p=0,008) e la soddisfazione complessiva del trattamento (81,61 vs 71,47; p <0,005) [111]. Un maggiore sostegno dal personale sanitario così come una maggiore soddisfazione globale rispetto alla terapia dialitica venivano osservati anche nello studio di De Abreu et al. [112]. Evidenze, invece, che la PD si associ a un minore stress emotivo in confronto alla HD sono state fornite dal più recente lavoro di Griva et al. [113] e dalla metanalisi di Cameron [114].

In uno studio trasversale condotto su 736 pazienti con ESRD (PD n=256 e HD n=480), gli autori formulavano uno specifico questionario basato sugli elementi specifici che i pazienti stessi percepivano come più rilevanti per la loro QoL. Analizzando i risultati ottenuti, i pazienti in PD mostravano una soddisfazione per la terapia dialitica in corso superiore agli individui in HD anche quando il punteggio veniva corretto per multipli fattori quali l’età, l’etnia, lo stato lavorativo e familiare, la distanza dal centro dialitico e il tempo trascorso dall’inizio della dialisi [115].

La capacità di preservare l’attività lavorativa dopo l’inizio della terapia dialitica è un altro significativo aspetto della QoL del paziente in RRT [116]. A questo riguardo, numerosi studi hanno dimostrato che la PD offre maggiori possibilità di occupazione rispetto alla HD [43,116118]. In particolare, secondo i dati dello studio CHOICE la percentuale di pazienti occupati in PD era 27% mentre solo 8,6% in HD [43].

Dunque, alla luce delle evidenze disponibili in letteratura, i pazienti in PD mostrano una più elevata soddisfazione, un migliore benessere psicologico, un minore stress emotivo e una maggiore probabilità di mantenere la propria occupazione rispetto ai pazienti in HD.

 

Costo

La RRT cronica rappresenta certamente uno dei costi più rilevanti dei sistemi sanitari pubblici e privati di tutto il mondo. Attuali stime prevedono che la prevalenza della ESRD aumenterà ulteriormente nel prossimo futuro sia a causa dell’aumento dell’incidenza di patologie quali l’ipertensione, il diabete e l’obesità, sia per il progressivo invecchiamento della popolazione [119121].

A questo riguardo, il trapianto renale garantisce una migliore sopravvivenza e qualità di vita rispetto alla terapia dialitica a costi decisamente minori [25,122,123]. Tuttavia, la maggior parte dei candidati a KT trascorrono inevitabilmente una considerevole quantità di tempo in dialisi prima di ricevere un organo [124]. Dunque, i costi della terapia sostitutiva provenienti dai pazienti in lista di attesa non dovrebbero essere ignorati [121].

Numerosi studi sono stati concepiti per confrontare le spese sostenute dalle modalità dialitiche. In una revisione della letteratura pubblicata nel 2008, Just et al. [125] concludevano che l’HD era più costosa della PD nei paesi economicamente più sviluppati, mentre risultati contrastanti venivano osservati nell’analisi dei costi dei trattamenti dialitici in Asia e Africa [126,127]. Questi dati rispecchiano probabilmente l’impatto delle differenze geografiche, sociali e culturali che determinano le effettive spese legate alla RRT. A questo riguardo, recentemente Karopadi et al. [128] hanno valutato i costi della PD e della HD in 46 nazioni con differente sviluppo economico. I risultati venivano espressi come spesa media annuale per paziente in HD diviso la spesa media annuale per paziente in PD (rapporto HD/PD). Il valore di questo rapporto era compreso fra 1,25 e 2,35 in 22 paesi (17 a intenso sviluppo economico e 5 a basso sviluppo), tra 0,9 e 1,25 in 15 stati (2 a intenso sviluppo economico e 13 a basso sviluppo), e compreso fra 0,22 e 0,9 in 9 nazioni (1 a intenso sviluppo economico e 8 a basso sviluppo). Globalmente, questi dati confermano l’evidenza che negli stati economicamente sviluppati la PD è meno costosa dell’HD, mentre nei paesi a minore sviluppo economico la PD può essere considerata un’opzione finanziariamente vantaggiosa solo nel caso in cui si crei un’economia di scala con una produzione locale del materiale di dialisi o si instaurino bassi costi di importo [128].

Analizzando le informazioni presenti nell’USRDS 2020 Annual Data Report [7], è possibile notare che la spesa del Medicare (corretta per l’inflazione totale) per paziente con ESRD è aumentata dal 2009 al 2018 di più del 2%, passando da 40,9 a 49,2 bilioni di dollari americani (USD). L’HD con i suoi 93.191 USD per persona/anno rimane la modalità di RRT più costosa seguita dai 78.741 USD della PD e dai 37.304 USD del trapianto renale. È stato, tuttavia, obbiettato che essendo relativamente breve la sopravvivenza della metodica peritoneale, dovrebbero essere presi in considerazione anche i costi legati al passaggio alla HD. In ogni caso i dati a disposizione sembrano suggerire un risparmio annuale di circa 15.000 USD/paziente e una spesa minore anche nei soggetti che vengono trasferiti dalla PD alla HD rispetto a coloro che sono trattati mediante HD [129,130].

Alla luce di questi risultati, è possibile osservare che la PD rappresenta una tecnica dialitica economicamente vantaggiosa in molti paesi. Questa conclusione è corroborata dal fatto che la maggior parte dei confronti fra le due metodiche non considerano numerosi costi indiretti della HD, come la perdita di produttività del paziente e dei suoi familiari e il costo legato ai trasporti. Infatti, come sottolineato in precedenza, la PD grazie alla flessibilità dello schema dialitico e la possibilità di eseguire gli scambi al domicilio permette più frequentemente la preservazione dell’attività lavorativa. Il mantenimento dell’occupazione è, infatti, un fattore di risparmio che raramente viene considerato.

Perciò, il vero rapporto HD/PD potrebbe essere perfino più elevato di quello riportato in quanto, scotomizzando i costi indiretti, tenderebbe a sottostimare il reale vantaggio economico della PD rispetto all’HD. Dunque, il costo legato alla metodica rappresenta sicuramente un ulteriore motivo per privilegiare la PD nei pazienti in attesa di trapianto renale.

 

Conclusioni

Storicamente, l’HD è stata considerata la metodica dialitica d’elezione per la maggior parte dei pazienti affetti da ESRD in attesa di trapianto renale. Nel corso degli anni, diversi studi hanno dimostrato, tuttavia, che l’ipotetico vantaggio dell’HD rispetto alla PD non era supportato da solide evidenze. Al contrario, un’analisi critica della letteratura mostra come la PD rappresenti la metodica sostitutiva di prima scelta per i pazienti in attesa di trapianto per i seguenti motivi (fig.1):

  • una migliore qualità di vita e sopravvivenza (perlomeno nel paziente giovane non diabetico);
  • una più lunga preservazione della diuresi residua, che permette di minimizzare l’incidenza delle complicanze urologiche e il tempo di cateterismo vescicale post-intervento;
  • una più bassa incidenza di ritardata ripresa funzionale dell’organo trapiantato;
  • un minore costo della tecnica.

Tuttavia, deve essere sempre perseguito un approccio integrato delle due modalità dialitiche, soppesando vantaggi e svantaggi di ogni trattamento alla luce delle peculiari caratteristiche di ogni singolo caso.

Figura 1: Sinossi dei vantaggi conferiti dalla dialisi peritoneale ai pazienti affetti da malattia renale cronica allo stadio terminale candidabili a trapianto di rene
Figura 1: Sinossi dei vantaggi conferiti dalla dialisi peritoneale ai pazienti affetti da malattia renale cronica allo stadio terminale candidabili a trapianto di rene

 

Bibliografia

  1. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999; 341:1725–30.
  2. Mcdonald SP, Russ GR. Survival of recipients of cadaveric kidney transplants compared with those receiving dialysis treatment in Australia and New Zealand, 1991 – 2001. Nephrol Dial Transpl 2002; 17:2212–9.
  3. Rao PS, Merion RM, Ashby VB, Port FK, Wolfe RA. Renal transplantation in elderly patients older than 70 Years of Age: results from the scientific registry of transplant recipients. Transplantation 2007; 83:1069–74.
  4. Kasiske BL, Snyder JONJ, Matas AJ, Ellison MD, Gill JS, Kausz AT. Preemptive kidney transplantation: the advantage and the advantaged. J Am Soc Nephrol 2002; 13:1358–64.
  5. Meier-Kriesche H-U, Kaplan B. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis. Transplantation 2002; 74:1377–81.
  6. Mange KC, Joffe MM, Feldman HI. Effect of the use or nonuse of long-term dialysis on the subsequent survival of renal transplants from living donors. N Engl J Med 2001; 344:726–31.
  7. United States Renal Data System. 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2020. https://adr.usrds.org/2020
  8. Scribner BH, Caner JE, Buri R, Quinton W. The technique of continous hemodialysis. Trans Am Soc Artif Intern Organs 1960; 6:88–103.
  9. Quinton W, Dillard D, Scribner BH. Cannulation of blood vessels for prolonged hemodialysis. Trans Am Soc Artif Intern Organs 1960; 6:104–13.
  10. Tenckhoff H, Schechter H. A bacteriologically safe peritoneal access device. Trans Am Soc Artif Intern Organs 1968; 14:181–7.
  11. Popovich RP, Moncrief JW, Nolph KD. Continuous ambulatory peritoneal dialysis. Artif Organs 1978; 2:84–6.
  12. Guillou PJ, Will EJ. CAPD-a risk factor in renal transplantation? Br J Surg 1984; 71:878–80.
  13. Passalacqua JA, Wiland AM, Fink JC, Bartlett ST, Evans DA, Keay S. Increased incidence of postoperative infections associated with peritoneal dialysis in renal transplant recipients. Transplantation 1999; 68:535–40.
  14. Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 1992; 12:14–27.
  15. Scalamogna A, Nardelli L, Zanoni F, Messa P. Double purse-string around the inner cuff of the peritoneal catheter: a novel technique for an immediate initiation of continuous peritoneal dialysis. Int J Artif Organs 2020; 43:365–71.
  16. Nardelli L, Scalamogna A, Messa P. The impact of the superficial cuff position on the exit site and tunnel infections in CAPD patients. J Nephrol 2021; 34:493–501.
  17. Blake PG. Integrated end-stage renal disease care: the role of peritoneal dialysis. Nephrol Dial Transpl 2001; 16:61–6.
  18. Van Biesen W, Vanholder R, Veys N, Dhondt A, Lameire N. An evaluation of an integrative care approach for end-stage renal disease patients. J Am Soc Nephrol 2000; 11:116–25.
  19. Vonesh E, Snyder JJ, Foley RN, Collins AJ. The differential impact of risk factors on mortality in hemodialysis and peritoneal dialysis. Kidney Int 2004; 66:2389–401.
  20. Heaf JG, Løkkegaard H, Madsen M. Initial survival advantage of peritoneal dialysis relative to haemodialysis. Nephrol Dial Transpl 2002; 17:112–7.
  21. Fenton SSA, Schaubel DE, Desmeules M, Morrison HI, Mao Y, Copleston P, et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis 1997; 30:334–42.
  22. Liem YS, Wong JB, Hunink MGM, Charro F De, Winkelmayer WC. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int 2007; 71:153–8.
  23. Weinhandl ED, Foley RN, Gilbertson DT, Arneson TJ, Snyder JJ, Collins AJ. Propensity-matched mortality comparison of incident hemodialysis and peritoneal dialysis patients. J Am Soc Nephrol 2010; 21:499–506.
  24. Oniscu GC, Brown H, Forsythe JLR. Impact of cadaveric renal transplantation on survival in patients listed for transplantation. J Am Soc Nephrol 2005; 16:1859–65.
  25. Laupacis A, Keown P, Pus N, Krueger H, Ferguson B, Wong C, et al. A study of the quality of life and cost-utility of renal transplantation. Kidney Int 1996; 50:235–42.
  26. Kaplan B, Meier-Kriesche H-U. Death after graft loss: an Important late study endpoint in kidney transplantation. Am J Transpl 2002; 2:970–4.
  27. Gill JS, Abichandani R, Kausz AT, Pereira BJG. Mortality after kidney transplant failure: the impact of non-immunologic factors 2002; 62:1875–83.
  28. Rao PS, Schaubel DE, Jia X, Li S. Survival on dialysis post–kidney transplant failure: results. AJKD 2007; 49:294–300.
  29. Donoghue DO, Manos J, Pearson R, Scott P, Bakran A, Johnson R, et al. Continuous ambulatory peritoneal dialysis and renal transplantation: a ten-year experience in a single center. Perit Dial Int 1992; 12:242–9.
  30. Cosio FG, Alamir A, Yim S, Pesavento TE, Falkenhain ME, Henry ML, et al. Patient survival after renal transplantation: I.The impact of dialysis pre-transplant. Kidney Int 1998; 53:767–72.
  31. Binaut R, Hazzan M, Pruvot FR, Dracon M, Lelievre G, Noel C. Comparative study of chronic ambulatory peritoneal dialysis versus hemodialysis patients after kidney transplantation: clinical and financial assessment. Transpl Proc 1997; 29:2428.
  32. Joseph JT, Jindal RM. Influence of dialysis on post-transplant events. Clin Transpl 2002; 16:18–23.
  33. Snyder JJ, Kasiske BL, Gilbertson DT, Collins AJ. A comparison of transplant outcomes in peritoneal and hemodialysis patients. Kidney Int 2002; 62:1423–30.
  34. Goldfarb-rumyantzev AS, Hurdle JF, Scandling JD, Baird BC, Cheung AK, Al GET. The Role of pretransplantation renal replacement therapy modality in kidney allograft and recipient survival. Am J Kidney Dis 2005; 46:537–49.
  35. Yang Q, Zhao S, Chen W, Mao H, Huang F, Zheng Z, et al. Influence of dialysis modality on renal transplant complications and outcomes. Clin Nephrol 2009; 72:62–8.
  36. Caliskan Y, Yazici H, Gorgulu N, Yelken B, Emre T, Turkmen A, et al. Effect of pre-transplant dialysis modality on kidney transplantation outcome. Perit Dial Int 2009; 29 Suppl 2:117–22.
  37. Freitas C, Fructuoso M, Martins LS, Almeida M, Pedroso S, Dias L, et al. Posttransplant outcomes of peritoneal dialysis versus hemodialysis patients. Transpl Int 2011; 43:113–6.
  38. Resende L, Guerra J, Santana A, Abreu F, Costa AG. Influence of dialysis duration and modality on kidney transplant outcomes. Transpl Proc 2009; 41:837–9.
  39. Sharma A, Teigeler TL, Behnke M, Cotterell A, Fisher R, King A, et al. The mode of pretransplant dialysis does not affect postrenal transplant outcomes in african americans. J Transplant 2012; 2012:303596.
  40. López-Oliva MO, Rivas B, Pérez-Fernández E, Ossorio M, Ros S, Chica C, et al. Pretransplant peritoneal dialysis relative to hemodialysis improves long-term survival of kidney transplant patients: a single-center observational study. Int Urol Nephrol 2014; 46:825–32.
  41. Schwenger V, Döhler B, Morath C, Zeier M, Opelz G. The role of pretransplant dialysis modality on renal allograft outcome 2011; 26:3761–6.
  42. Molnar MZ, Mehrotra R, Duong U, Bunnapradist S, Lukowsky LR, Krishnan M. Dialysis modality and outcomes in kidney transplant recipients. Clin J Am Soc Nephrol 2012; 7:332–41.
  43. Miskulin DC, Meyer KB, Athienites N V, Martin AA, Terrin N, Marsh J V, et al. Comorbidity and other factors associated with modality selection in incident dialysis patients: the CHOICE study. Am J Kidney Dis 2002; 39:324–36.
  44. Stack AG. Determinants of modality selection among incident US dialysis patients: results from a national Study. Clin J Am Soc Nephrol 2002; 2:1279–87.
  45. Xue JL, Chen S-C, Ebben JP, Constantini EG, Everson SE, Frazier ET, et al. Peritoneal and hemodialysis: I. Differences in patient characteristics at initiation. Kidney Int 2002; 61:734–40.
  46. Helal I, Abderrahim E, Hamida F Ben, Zouaghi K, Ounissi M, Barbouche S, et al. Impact of dialysis modality on posttransplantation results in kidney transplantation. Transpl Proc 2007; 2549:2547–9.
  47. Kramer A, Jager KJ, Fogarty DG, Ravani P, Finne P, Pérez-panadés J, et al. Association between pre-transplant dialysis modality and patient and graft survival after kidney transplantation. Nephrol Dial Transpl 2012; 27:4473–80.
  48. Van Biesen W, Vanholder R, Loo A Van, Vennet M Van Der, Lameire N. Peritoneal dialysis favorably influences early graft function after renal transplantation compared to hemodialysis. Transplantation 2000; 27:508–14.
  49. Yarlagadda SG, Coca SG, Jr RNF, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transpl 2009; 24:1039–47.
  50. Pérez-Fontán M, Rodríquez-Carmona A, Bouza P, Falcón TG, Moncalián J, Oliver J, et al. Outcome of grafts with long-lasting delayed function after renal transplantation. Transplantation 1996; 62:42–7.
  51. Nicholson ML, Wheatley TJ, Horsburgh T, Edwards CM, Veitch PS, Bell PRE, et al. The relative influence of delayed graft function and acute rejection on renal transplant survival. Transpl Int 1996; 9:415–9.
  52. Cosio FG, Pelletier RP, Falkenhain ME, Henry ML, Elkhammas EA, Davies EA, et al. Impact of acute rejection and early allograft function on renal allograft survival. Transplantation 1997; 63:1611–5.
  53. Leggat Jr J, Ojo AO, Leichtman AB, Port FK, Wolfe RA, Turenne MN, et al. Long-term renal allograft survival: prognostic implication of the timing of acute rejection episodes. Transplantation 1997; 63:1268–72.
  54. Giral-Classe M, Hourmant M, Cantarovich D, Dantal J, Blancho G, Daguin P, et al. Delayed graft function of more than six days strongly decreases long-term survival of transplanted kidneys. Kidney Int 1998; 54:972–8.
  55. Troppmann C, Gillingham KJ, Benedetti E, Almond PS, Gruessner RW, Najarian JS, et al. Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. The multivariate analysis. Transplantation 1995; 59:962–8.
  56. Favi E, James A, Puliatti C, Whatling P, Ferraresso M, Rui C. Utility and safety of early allograft biopsy in adult deceased donor kidney transplant recipients. Clin Exp Nephrol 2020; 24:356–68.
  57. Vanholder R, Heering P, Loo A Van, Biesen W Van, Lambert M, Hesse U, et al. Reduced Incidence of acute renal graft failure in patients treated with peritoneal dialysis compared with hemodialysis. Am J Kidney Dis 1999; 33:934–40.
  58. Issad B, Mouquet C, Bitker MO, Allouache M, Baumelou A, Rottembourg J, et al. Is overhydration in CAPD patients a contraindication to renal transplantation? Adv Perit Dial 1994; 10:68–72.
  59. Bleyer AJ, Burkart JM, Russell GB, Adams PL. Dialysis modality and delayed graft function after cadaveric renal transplantation. J Am Soc Nephrol 1999; 10:154–9.
  60. Sezer S, Karakan S, Acar FNÖ, Haberal M. Dialysis as a bridge therapy to renal transplantation: comparison of graft outcomes according to mode of dialysis treatment. Transpl Proc 2011; 43:485–7.
  61. Martin X, Aboutaieb R, Soliman S, Essawy A el, Dawahra M, Lefrancois N. The use of long-term defunctionalized bladder in renal transplantation: is It safe ? Eur urol 1999; 36:450–3.
  62. Inoue T, Satoh S, Saito M, Numakura K, Tsuruta H, Obara T, et al. Correlations between pretransplant dialysis duration, bladder capacity, and prevalence of vesicoureteral reflux to the graft. Transplantation 2011; 92:311–5.
  63. Chen J, Lee M, Kuo H. Reduction of cystometric bladder capacity and bladder compliance with time in patients with end-stage renal disease. J Formos Med Assoc 2012; (4):209–13.
  64. Silva DM, Prudente AC, Mazzali M, Borges CF, Ancona CD. Transplantation in nonurologic disease: is it necessary ? Urology 2014; 83:406–10.
  65. Song M, Park J, Hoon Y. Bladder capacity in kidney transplant patients with end‑stage renal disease. Urology 2015; 47:101–6.
  66. Hotta K, Miura M, Wada Y, Fukuzawa N, Iwami D, Sasaki H, et al. Atrophic bladder in long-term dialysis patients increases the risk for urological complications after kidney transplantation. Int J Urol 2017; 24:314–9.
  67. Tillou X, Lee-Bion A, Ligny BH de, Orczyk C, Gal S Le, Desmonts A, et al. Does daily urine output really matter in renal transplantation? Ann Transpl 2013; 18:716–20.
  68. Rottembourg J, Issad B, Gallego JL, Degoulet P, Aime F, Gueffaf B, et al. Evolution of residual renal function in patients undergoing maintenance haemodialysis or continuous ambulatory peritoneal dialysis. Proc Eur Dial Transpl Assoc 1983; 19:397–403.
  69. Moist LM, Port FK, Orzol SM, Young EW, Ostbye T, Wolfe RA, et al. Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol 2000; 11:556–64.
  70. Lysaght MJ, Vonesh EF, Gotch F, Ibels L, Keen M, Lindholm B, et al. The influence of dialysis treatment modality on the decline of remaining renal function. ASAIO Trans 1991; 37:598–604.
  71. Misra M, Vonesh E, Stone JC Van, Moore HL, Prowant B, Nolph KD. Effect of cause and time of dropout on the residual GFR: a comparative analysis of the decline of GFR on dialysis. Kidney Int 2001; 59:754–63.
  72. Lang SM, Bergner A, Töpfer M, Schiffl H. Preservation of residual renal function in dialysis patients: effects of dialysis-technique-related factors. Perit Dial Int 2001; 21:52–7.
  73. Jansen MAM, Hart AAM, Korevaar JC, Dekker FW, Boeschoten EW, Raymond T Krediet. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int 2002; 62:1046–53.
  74. Termorshuizen F, Korevaar JC, Dekker FW, Manen JG Van, Boeschoten EW, Krediet RT, et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis 2003; 41(6):1293–302.
  75. Fischbach M, Terzic J, Menouer S, Soulami K, Dangelser C, Helmstetter A, et al. Effects of automated peritoneal dialysis on residual daily urinary volume in children. Adv Perit Dial 2001; 17:269–73.
  76. McKane W, Chandna SM, Tattersall JE, Greenwood RN, Farrington K. Identical decline of residual renal function in high-flux biocompatible hemodialysis and CAPD. Kidney Int 2002; 61:256–65.
  77. Lameire NH. The impact of residual renal function on the adequacy of peritoneal dialysis. Nephron 1997; 77:13–28.
  78. Maiorca R, Brunori G, Zubani R, Cancarini GC, Manili L, Camerini C, et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. A longitudinal study. Nephrol Dial Transpl 1995; 10:2295–305.
  79. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1996; 7:198–207.
  80. Diaz-buxo JA, Lowrie EG, Lew NL, Zhang SMH, Zhu X, Lazarus JM. Associates of mortality among peritoneal dialysis patients with special reference to peritoneal transport rates and solute clearance. Am J Kidney Dis 1999; 33:523–34.
  81. Rocco M, Soucie JM, Pastan S, McClellan WM. Peritoneal dialysis adequacy and risk of death. Kidney Int 2000; 58:446–57.
  82. Szeto C, Uk M, Lai K, Wong TYH, Uk M, Law M, et al. Independent effects of residual renal function and dialysis adequacy on nutritional status and patient outcome in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1999; 34:1056–64.
  83. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA Study. J Am Soc Nephrol 2001; 12:2158–62.
  84. Paniagua N, Amato D, Vonesh E. Effects of Increased Peritoneal Clearances on Mortality Rates in Peritoneal Dialysis: ADEMEX, a Prospective, Randomized, Controlled Trial. J Am Soc Nephrol 2002; 1307–20.
  85. Marrón B, Remón C, Pérez-Fontán M, Quirós P, Ortíz A. Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int Suppl 2008; 108:S42-51.
  86. Shemin D, Bostom AG, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis 2001; 38:85–90.
  87. Menon MK, Naimark DM, Bargman JM, Vas SI, Oreopoulos DG. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transpl 2001; 16:2207–13.
  88. Wang AY, Woo J, Wang M, Sea MM, Sanderson JE, Lui S, et al. Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function. Nephrol Dial Transpl 2005; 20:396–403.
  89. Wang AY-M, Wang M, Woo J, Law M-C, Chow K-M, Li PK-T, et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int 2002; 62:639–47.
  90. Wang AY, Wang MEI, Woo J, Lam CW, Lui S, Li PK, et al. Inflammation, residual kidney function, and cardiac hypertrophy are Interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J Am Soc Nephrol 2004; 15:2186–94.
  91. Morduchowlcz G, Winkler J, Zabludowski JIL, Boner G. Effects of residual renal function in haemodialysis Patients. Int Urol Nephrol 1994; 26:125–31.
  92. Ateş K, Nergizoğlu G, Keven K, Sen A, Kutlay S, Ertürk S, et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 2001; 60:767–76.
  93. Konings CJAM, Kooman JP, Schonck M, Struijk DG, Gladziwa U, Hoorntje SJ, et al. Fluid status in CAPD patients is related to peritoneal transport and residual renal function: evidence from a longitudinal study. Nephrol Dial Transpl 2003; 797–803.
  94. Mistry CD, O’Donoghue DJ, Nelson S, Gokal R, Ballardie FW. Kinetic and clinical studies of beta 2-microglobulin in continuous ambulatory peritoneal dialysis: influence of renal and enhanced peritoneal clearances using glucose polymer. Nephrol Dial Transpl 1990; 5:513–9.
  95. Montenegro J, Martínez I, Saracho R, González R. Beta 2 microglobulin in CAPD. Adv Perit Dial 1992; 8:369–72.
  96. Suda T, Hiroshige K, Ohta T, Watanabe Y, Iwamoto M, Ohtani A, et al. The contribution of residual renal function to overall nutritional status in chronic haemodialysis patients. Nephrol Dial Transpl 2000; 396–401.
  97. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y, Dis K. Time profiles of peritoneal and renal Clearances of different uremic solutes in incident peritoneal dialysis patients. Am J Kidney Dis 2005; 46:512–9.
  98. Wang AY, Sea MM, Ip R, Law M, Chow K, Lui S, et al. Independent effects of residual renal function and dialysis adequacy on actual dietary protein, calorie, and other nutrient intake in patients on continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 2001; 12:2450–7.
  99. Pecoits-filho R, Heimbu O, Ba P, Suliman M, Fehrman-ekholm I, Lindholm B, et al. Associations between circulating inflammatory markers and residual renal function in CRF Patients. Am J Kidney Dis 2003; 41:1212–8.
  100. Gao H, Lew SQ, Ronco C, Mishkin GJ, Bosch JP. The impact of residual renal function and total body water volume on achieving adequate dialysis in CAPD. J Nephrol 1999; 12:184–9.
  101. Pagé DE, Knoll GA, Cheung V. The relationship between residual renal function, protein catabolic rate, and phosphate and magnesium levels in peritoneal dialysis patients. Perit Dial Int 2002; 18:189–91.
  102. Kagan A, Elimalech E, Lemer Z, Fink A, Bar-Khayim Y. Residual renal function affects lipid profile in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 1997; 17:243–9.
  103. Czyżewski L, Sańko-Resmer J, Wyzgał J, Kurowski A. Assessment of health-related quality of life of patients after kidney transplantation in comparison with hemodialysis and peritoneal dialysis. Ann Transpl 2014; 19:576–85.
  104. Kostro JZ, Hellmann A, Kobiela J. Quality of life after kidney transplantation: a prospective Study. Transpl Proc 2016; 48:50–4.
  105. Report attività annuale rete nazionale trapianti. 2020. https://www.trapianti.salute.gov.it/trapianti/archivioDatiCnt.jsp
  106. Hays ID, Kallich JD. Development of the Kidney Disease Quality of Life (KDQOL) Instrument. Qual Life Res 1994; 3:329–38.
  107. Korevaar JC, Merkus MP, Jansen MAM, Dekker FW, Boeschoten EW, Krediet RT. Validation of the KDQOL-SF: a dialysis-targeted health measure. Qual Life Res 2002; 11:437–47.
  108. Lacson E, Xu J, Lin S, Dean SG, Lazarus JM, Hakim RM. A Comparison of SF-36 and SF-12 composite scores and subsequent hospitalization and mortality risks in long- term dialysis patients. Clin J Am Soc Nephrol 2010; 5:252–60.
  109. Wu AW, Fink NE, Cagney KA, Bass EB, Rubin HR, Meyer KB, et al. Developing a health-related quality-of-life measure for end-stage renal disease: the CHOICE health experience questionnaire. Am J Kidney Dis 2001; 1:11–21.
  110. Wakeel J Al, Harbi A Al, Bayoumi M, Al-Suwaida K, Ghonaim M Al, Mishkiry A. Quality of life in hemodialysis and peritoneal dialysis patients in Saudi Arabia. Ann Saudi Med 2012; 32:570–4.
  111. Gonçalves FA, Dalosso IF, Borba JMC, Bucaneve J, Valerio NMP, Okamoto CT, et al. Quality of life in chronic renal patients on hemodialysis or peritoneal dialysis: a comparative study in a referral service of Curitiba-PR. J Bras Nefrol 2015; 37:467–74.
  112. De Abreu MM, Walker DR, Sesso RC, Ferraz MB. Health-related quality of life of patients recieving hemodialysis and peritoneal dialysis in São Paulo, Brazil: A longitudinal study. JVAL 2011; 14:S119–21.
  113. Griva K, Kang AW, Yu ZL, Mooppil NK, Foo M, Chan CM, et al. Quality of life and emotional distress between patients on peritoneal dialysis versus community-based hemodialysis. Qual Life Res 2013; 23:57–66.
  114. Cameron JI, Whiteside C, Katz J, Devins GM. Differences in quality of life across renal replacement therapies: a meta-analytic comparison. Am J Kidney Dis 2000; 35:629–37.
  115. Rubin HR, Fink NE, Plantinga LC, Sadler JH, Kliger AS, Powe NR. Patient ratings of dialysis care with peritoneal dialysis vs hemodialysis. JAMA 2004; 291:697–703.
  116. Kutner NG, Zhang R, Huang Y, Johansen KL. Depressed mood, usual activity level, and continued employment after starting dialysis. Clin J Am Soc Nephrol 2010; 5:2040–5.
  117. Muehrer RJ, Schatell D, Witten B, Gangnon R, Becker BN, Hofmann RM. Factors Affecting Employment at Initiation of Dialysis. Clin J Am Soc Nephrol 2011; 6:489–96.
  118. Hirth RA, Chernew ME, Turenne MN, Pauly M V, Orzol SM, Held PJ. Chronic illness, treatment choice and workforce participation. Int J Heal Care Financ Econ 2003; 3:167–81.
  119. Jha V, Garcia-garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013; 382:260–72.
  120. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 2095–128.
  121. White SL, Chadban SJ, Jan S, Chapman R, Cass A. How can we achieve global equity in provision of renal replacement therapy? Bull World Heal Org 2008; 86:229–37.
  122. Axelrod DA, Schnitzler MA, Xiao H, Irish W, Chang ETS, Alhamad T, et al. An economic assessment of contemporary kidney transplant practice. Am J Transpl 2018; 18:1168–76.
  123. Cavallo MC, Sepe V, Conte F, Abelli M, Ticozzelli E, Bottazzi A, et al. Cost-effectiveness of kidney transplantation from DCD in Italy. Transpl Proc 2014; 46:3289–96.
  124. Hart A, Lentine KL, Smith JM, Miller JM, Skeans MA, Prentice M, et al. OPTN/SRTR 2019 Annual Data Report : Kidney. Am J Transpl 2021; 21 Suppl:21–137.
  125. Just PM, Riella MC, Tschosik EA, Noe LL, Bhattacharyya SK, Charro F de. Economic evaluations of dialysis treatment modalities. Health Policy (New York) 2008; 86:163–80.
  126. Li PK, Chow KM. The cost barrier to peritoneal dialysis in the developing world-an Asian perspective. Perit Dial Int 2001; 21:S307–S313.
  127. Abu-aisha H, Elamin S, Program D. Peritoneal dialysis in africa. Perit Dial Int 2010; 30:23–8.
  128. Karopadi AN, Mason G, Ronco C. Cost of peritoneal dialysis and haemodialysis across the world. Nephrol Dial Transpl 2013; 28:2553–69.
  129. Chui BK, Manns B, Pannu N, Dong J, Wiebe N, Jindal K, et al. Health care costs of peritoneal dialysis technique failure and dialysis modality switching. Am J Kidney Dis 2013; 61:104–11.
  130. Neil N, Guest S, Wong L, Inglese G, Bhattacharyya SK, Gehr T, et al. The financial implications for Medicare of greater use of peritoneal dialysis. Clin Ther 2009; 31:880–8.

 

Emodialisi domiciliare: una esperienza condivisa

Abstract

La domiciliarità dei trattamenti dialitici rappresenta un obiettivo primario del Ministero della Salute, obiettivo ben espresso attraverso il Piano Nazionale Cronicità ed il Documento di Indirizzo per Malattia Renale Cronica: nel paziente uremico la Emodialisi Domiciliare (EDD) e la dialisi Peritoneale (DP) rappresentano le due principali modalità di esecuzione dei trattamenti eseguibili a domicilio del paziente. La EDD è una metodica già utilizzata in passato, che ha trovato recentemente nuova applicazione attraverso innovative e più semplici tecnologie. L’autonomia del paziente e la necessità di presenza di caregiver in corso di seduta ne rappresentano ancora i principali fattori limitanti.

In questo studio osservazionale multicentrico sono stati arruolati 7 pazienti, sottoposti per 24 mesi a sei sedute emodialitiche settimanali di 180’ ciascuna: visite mediche ed esami ematochimici erano eseguiti mensilmente e le valutazioni di controllo erano effettuate ai tempi 3, 6, 12, 18 e 24 mesi. Già dopo 3-6 mesi di EDD e per tutto il periodo dello studio si è assistito ad un miglioramento nel controllo del metabolismo calcio-fosforo (decremento della fosforemia (p <0.01) con decremento del numero di chelanti del fosforo utilizzati (p <0.02)), una riduzione del paratormone (p <0.01), un miglioramento del controllo pressorio (con riduzione del numero di farmaci ipotensivi p <0.02) e una riduzione non significativa della dose di eritropoietina. La EDD, anche se applicabile ad una percentuale ridotta di pazienti (5%), ha migliorato il controllo della pressione arteriosa, il metabolismo calcio-fosforo e la anemia con una ridotta necessità di rhEPO.

Parole chiave: malattia renale cronica, dialisi domiciliare, emodialisi

Introduzione

Il mondo della cronicità rappresenta un’area in progressiva crescita che richiede continuità assistenziale per periodi di lunga durata, comporta un notevole impegno di risorse e richiede una forte integrazione dei servizi sanitari con quelli sociali: si crea pertanto la necessità di implementare servizi e percorsi residenziali/territoriali finora non sufficientemente sviluppati.

La gestione della cronicità rappresenta perciò una sfida importante per la sostenibilità del Servizio Sanitario Nazionale (SSN). A tal proposito il Ministero della Salute ha individuato gruppi di patologie da regolamentare sia per peso epidemiologico, assistenziale ed economico che per la difficoltà di accesso alle cure ed ha emanato, in condivisione con le Regioni, nel settembre 2016, il “Piano Nazionale della Cronicità” (PNC) [1] e quindi nel marzo 2017 il “Documento di Indirizzo per la Malattia Renale Cronica (MRC)” [2]. Questi documenti si pongono come obiettivo principale l’ottimizzazione della gestione del paziente cronico e in particolare (nel secondo caso) quello con MRC, attraverso le evidenze scientifiche emergenti, l’appropriatezza delle prestazioni e la condivisione dei Percorsi Diagnostici e Terapeutici Assistenziali (PDTA) [1]. A questo proposito, fra le principali criticità sono evidenziate una carente offerta per la dialisi peritoneale (DP) e l’emodialisi domiciliare (EDD) [1,2].

Obiettivo primario della gestione della cronicità è quello di mantenere la persona malata all’interno del suo contesto di vita quotidiana e impedire, o ridurre al minimo, il rischio di istituzionalizzare il paziente in sedi comunitarie (ospedale, strutture residenziali territoriali). C’è poi quello di ridurre i costi dei trasporti dei pazienti dal domicilio alla struttura sanitaria e viceversa: alla luce della recente epidemia di Sars-Cov2 tali indicazioni appaiono ulteriormente rafforzate [3].

La personalizzazione della terapia dialitica deve tenere conto delle caratteristiche del paziente adottando quindi la dialisi domiciliare (EDD o PD) non solo per il paziente autosufficiente al domicilio, ma anche per il paziente anziano autosufficiente presso centri diurni o RSA. Nel caso del paziente non autosufficiente dovrebbe essere sempre prevista all’interno del domicilio del paziente la presenza di un caregiver ben addestrato e/o di validi supporti di teledialisi [4].

Questo studio osservazionale multicentrico ha avuto l’obiettivo di osservare le variazioni nel tempo delle condizioni cliniche e delle variabili biochimiche dei pazienti inseriti in un programma di EDD. I due centri partecipanti hanno condiviso un protocollo comune di identificazione, arruolamento e follow-up dei pazienti.

 

Materiali e metodi

Dopo averne appurato l’idoneità (Tabella I) è stata proposta ai pazienti la EDD. Tra i criteri di selezione, erano di particolare rilevanza il grado di autonomia e lo svolgimento di eventuale attività lavorativa. Il caregiver era rappresentato dal coniuge in tutti i casi (Tabella I).

Motivazione del paziente ad eseguire EDD
Karnofksy Score ≥60
Presenza di un caregiver durante la seduta
Pregressa esperienza di emodialisi in centro
Accesso vascolare ben funzionante (Qb ≥300 mL/min) e (se FAV) ben pungibile
Stabilità cardiovascolare in corso di seduta emodialitica
Valutazione del grado di apprendimento di paziente e caregiver durante il training
Aderenza corretta alla terapia dialitica e farmacologica
Verifica della idoneità logistica domiciliare all’esecuzione di EDD
Tabella I: Criteri di selezione del paziente da inserire in un piano di emodialisi domiciliare

Dopo l’informazione al paziente ed al caregiver, ed il conseguente assenso al trattamento, veniva firmato il modulo del consenso [5] e si iniziava quindi il training in centro per il paziente ed un caregiver (per un totale di almeno 5 sedute), in affiancamento ad un infermiere dedicato ed allo “specialist” del dializzatore. Successivamente, paziente e caregiver proseguivano i trattamenti presso il proprio domicilio, sempre in affiancamento con un infermiere dedicato: in tale occasione venivano meglio valutati gli aspetti logistici. Una volta verificato il grado di apprendimento, paziente e caregiver proseguivano il trattamento in autonomia. Era garantito un servizio diurno di consulenza (ore 8-20) da parte del centro e, in caso di problematiche tecniche insorte dopo tale ora, il paziente era invitato ad interrompere il trattamento e ad afferire al centro nella giornata successiva.

Il monitor da emodialisi utilizzato era Nx Stage One-Pro (USA Lawrence Massachusetts®) che comprende un dispositivo portatile compatto (dimensioni di 38x38x46 cm, peso circa 34 kg), elettromeccanico, contenente pompe, sistemi di controllo, sensori di sicurezza e di acquisizione dati, comandi semplificati e ben visibili posti sul frontale. Le connessioni idrauliche e la presa elettrica sono semplici e standard per minimizzare l’impatto sull’abitazione. NxStage è dotata di filtro e linee montate in una cartuccia “drop in” ed incorpora un sistema volumetrico di gestione del dialisato premiscelato in sacche sterili da cinque litri; utilizza infatti bassi volumi di dialisato, solitamente 15-30 litri, a seconda dei parametri antropometrici del paziente, somministrati con valori di flusso dialisato di circa 1/3 rispetto a quelli del flusso sangue.

Sono stati arruolati nello studio 7 pazienti (5 M, 2 F) con età media di 51 (±7) anni, anzianità dialitica di 81 ±12 mesi: come accesso vascolare 5 pazienti utilizzavano la FAV (in 3 casi si effettuava autopuntura, in 2 casi la FAV era punta dal caregiver sempre con ago tagliente), mentre 2 pazienti utilizzavano un catetere venoso centrale a permanenza gestito dal caregiver. Il periodo di follow-up è stato di 24 mesi (dal 1° dicembre 2017 al 30 novembre 2019). Venivano prescritte 6 sedute di bicarbonato dialisi settimanali di 150’-180’ ciascuna (15-18 ore settimana) sulla base del peso del paziente. Le visite di follow-up, la valutazione del Kt/v [6] e gli esami ematochimici erano eseguiti mensilmente, mentre le valutazioni relative allo studio erano effettuate ai tempi 0, 3, 6, 12 e 24 mesi.

Analisi statistica

Le variabili continue sono presentate come media e deviazione standard, le variabili categoriche come percentuale. Il trend delle variabili nel tempo è stato analizzato con l’ANOVA per dati ripetuti. L’analisi statistica è stata eseguita utilizzando il software NCSS 2007 (Gerry Hintze, Kaysville, UT, USA). Il valore di P <0.05 è stato considerato statisticamente significativo.

 

Risultati

Le caratteristiche dei pazienti arruolati sono descritte nella Tabella II. Il Kt/v eseguito mensilmente era sempre maggiore/uguale a 0,5 per tutti i pazienti.

N° Paziente Età (anni) M/F Vintage dialitico

(mesi)

Accesso vascolare Karnofsky score kT/V Mensile N° Ricoveri /anno
Paz 1 62 M 234 FAV 60 0.68 0
Paz 2 48 M 62 FAV 80 0.74 0
Paz 3 50 M 37 FAV 70 0.84 0
Paz 4 51 F 45 FAV 70 0.86 0.5
Paz. 5 53 M 118 CVC Long-term 70 0.59 0
Paz. 6 52 F 32 CVC Long Term 60 0.75 0
Paz. 7 47 M 39 FAV 70 0.85 0.5
Media/Ds 51±7 5/2 81±12   68±5 0.75±14 0.14±2
Tabella II: Caratteristiche dei pazienti
Visita basale 3 mesi 6 mesi 12 mesi 18 mesi 24 mesi P-value
Emoglobina, g/dL 11.3 ±1.7 11.7 ±1.5 11.5 ±1.5 11.3 ±0.9 11.1 ±0.4 11.9 ±0.6 0.73
Albumina, g/dL 4.0 ±0.5 4.0 ±0.3 4.1 ±0.1 4.0 ±0.2 3.8 ±0.1 3.9 ±0.1 0.60
Calcio, mg/dL 8.6 ±0.5 8.7 ±0.7 9.2 ±0.7 9.2 ±0.6 9.1 ±0.7 9.1 ±0.2 0.10
Ferritina, ng/dL 361 ±271 219 ±139 178 ±106 207 ±90 236 ±104 222 ±66 0.03
Fosfati, mg/dL 7.0 ±0.6 6.1 ±0.8 5.8 ±0.3 5.9 ±0.4 5.6 ±0.5 5.6 ±1.0 <0.01
Paratormone, pg/mL 504 ±147 368 ±142 333 ±90 244 ±56 204 ±52 151 ±16 <0.01
Potassio, mEq/L 5.3 ±0.8 5.0 ±0.8 5.4 ±0.7 5.4 ±0.9 5.0 ±0.6 5.4 ±0.6 0.14
PCR, mg/dL 1.1 ±1.4 0.5 ±0.4 0.3 ±0.1 0.7 ±0.5 0.5 ±0.1 0.5 ±0.1 0.17
Farmaci antipertensivi, n 2.1 ±1.2 1.6 ±1.3 1.0 ±1.0 1.6 ±1.0 1.6 ±1.0 1.0 ±0.6 0.02
Chelanti del fosforo, n 2.6 ±1.0 2.3 ±0.8 2.0 ±1.2 1.6 ±0.8 1.1 ±0.9 1.3 ±1.1 0.02
Eritropoietina, UI/sett 7714 ±7158 6000 ±4472 6571 ±4429 7429 ±6803 5714 ±2928 4571 ±3409 0.16
Tabella III. Principali dati alla visita basale e ai controlli

I dati rilevati ai tempi 3, 6, 12, 18 e 24 mesi (Tabella III) evidenziavano un miglioramento nel controllo del metabolismo calcio-fosforo con riduzione della fosforemia da un lato (7.0 ±0.6 mg/dl [basale] vs 5.6 ±1.0 mg/dl [fine studio] p <0.01), del numero di chelanti del fosforo utilizzati (2.6 ±1.0 vs 1.3 ±1.1 p <0.02) e dei livelli del paratormone (504 ±147 [basale] vs 151 ±16 pg/mL [fine studio] p <0.01) dall’altro, nonché un miglioramento del controllo pressorio con riduzione del numero di farmaci antiipertensivi (2.1 ±1.2 [basale] vs 1.0 ±0.6 [fine studio] p <0.02). I livelli di ferritina risultavano sensibilmente ridotti (361 ±271 [basale] vs 222 ±66 ng/dl [fine studio] p= 0.03) così come i valori della PCR (1.1 ±1.4 [basale] vs 0.5 ±0.1 mg/dl [fine studio] p= 0.17). L’anemia era controllata tramite un ridotto consumo di eritropoietina ricombinante umana [rhEPO] (7714 ±7158 U/sett alla visita basale vs 4571 ±3409 UI/sett al termine dello studio) sebbene non significativo (p = 0.16). Non sono state osservate differenze significative nei livelli di calcemia, potassio, albumina ed emoglobina al temine dell’osservazione (Figg. 1,2,3). I pazienti arruolati risultavano essere tutti anurici e con una funzione renale residua trascurabile (velocità di filtrazione glomerulare inferiore ai 3 ml/min).

Durante lo studio si segnalano due ricoveri per problematiche inerenti l’accesso vascolare (trombosi della FAV), risolte chirurgicamente. Non si sono registrati drop-out dopo l’invio a domicilio.

Andamento di eritropoietina, emoglobina, ferritina e proteina C-reattiva durante il follow-up di 24 mesi.
Figura 1: Andamento di eritropoietina, emoglobina, ferritina e proteina C-reattiva durante il follow-up di 24 mesi. I dati sono riportati come media ed errore standard
Andamento di albumina, calcio (Ca), fosfati (P) e paratormone (PTH) durante il follow-up di 24 mesi.
Figura 2: Andamento di albumina, calcio (Ca), fosfati (P) e paratormone (PTH) durante il follow-up di 24 mesi. I dati sono riportati come media ed errore standard
Andamento di potassio (K), numero di farmaci antipertensivi e chelanti del fosforo durante il follow-up di 24 mesi.
Figura 3: Andamento di potassio (K), numero di farmaci antipertensivi e chelanti del fosforo durante il follow-up di 24 mesi. I dati sono riportati come media ed errore standard

 

Discussione

Nei nostri ambulatori di pre-dialisi le tecniche extra ed intracorporee, sia ospedaliere che domiciliari, vengono sempre proposte tra le diverse opzioni terapeutiche accanto al trapianto e alla terapia conservativa.

Questo studio, dedicato alla sola valutazione clinico laboratoristica e senza dubbio limitato in termini numerici, ha mostrato risultati interessanti soprattutto in termini di controllo del metabolismo calcio-fosforo, della pressione arteriosa e della anemia; tali dati non sono sorprendenti se confrontati con quelli dei principali studi sull’argomento [6,7]. Il monitor Nx-Stage utilizzato nello studio si è dimostrato affidabile, di facile utilizzo e non sono state registrate particolari difficoltà nell’apprendimento della metodica. I principali svantaggi sono rappresentati dalla necessità di utilizzare circa 5 sacche di dialisato da 5 litri per ogni seduta dialitica, dalla inadeguatezza della metodica per il trattamento di pazienti con elevata massa corporea e dall’elevata quantità di rifiuti speciali [8].

La prima EDD è stata eseguita in Giappone nel 1961 utilizzando un filtro immerso nella vasca di una lavatrice per uso domestico [9]. Studi successivi furono effettuati sul finire degli anni 60’ presso la University of California Los Angeles (UCLA) su un gruppo di 7 pazienti sottoposti a 5-6 sessioni settimanali di 5 ore ciascuna: le principali problematiche emerse furono ipotensioni intradialitiche e ipertensione arteriosa. La tecnica fu poi abbandonata per motivi strettamente legati alla rimborsabilità [10]. Stessa sorte accomunò altre esperienze [5], tanto che nei decenni successivi si assistette alla progressiva scomparsa di questa metodica, sia nel continente americano che in Europa, di concerto alla incrementale diffusione dei centri dialisi [10].

La ragione del declino della EDD deve essere ricercata principalmente nella scarsità del numero di pazienti idonei (con limitazioni legate ad età, patologie concomitanti, aumento del numero dei pazienti diabetici e affetti da patologie cardiovascolari), ma anche nella progressiva perdita di esperienza e interesse da parte dei centri dialisi, la maggior parte dei quali non prevede un programma di EDD, e nella diffusa paura della gestione autonoma degli aspetti tecnici (infissione aghi, gestione monitor, etc) nella convinzione che sia necessaria la presenza di un infermiere specializzato durante la seduta dialitica [10].

Stante quanto appena esposto, è noto che gli schemi dialitici ad alta frequenza, realizzabili pressoché solo con EDD, determinano miglioramento degli outcomes, miglior controllo della PA e della fosforemia, miglior qualità di vita, miglior opportunità di riabilitazione, miglior rapporto costo/efficacia [10]. Si tratta degli aspetti “vincenti” di un programma di EDD. Lo studio FHN (Frequent Hemodialysis Network) ha confrontato la dialisi più frequente (2-3 ore per sessione, 5-6 volte a settimana) con la modalità dialitica standard (4 ore tre volte a settimana) in uno studio della durata di 12 mesi. La dialisi più frequente sembra apportare notevoli benefici sia nell’incremento della massa del ventricolo sinistro, dei livelli di fosforo e dei valori pressori pre-dialitici e un miglioramento nella qualità della vita; è però associata ad un numero più elevato di ricoveri per problematiche inerenti l’accesso vascolare [11].

Diversi lavori hanno invece analizzato i principali fattori responsabili di drop-out dalla dialisi domiciliare. In tal senso, il diabete con molteplici complicanze, una non completa conoscenza della metodica da parte del paziente, l’assenza di un centro di riferimento a breve distanza e una abitazione inadeguata sembrano essere preponderanti rispetto al tipo di accesso vascolare, alla scolarità e alla età del paziente [12,13,14]. Analizzando per Diagnosis Related Groups (DRG) i costi diretti (personale, manutenzione, apparecchiature, service, farmaci ed esami) e quelli indiretti (servizi di trasporto, servizi alberghieri, etc) e sociali (costo derivante dalla perdita di ore lavorative paziente/caregiver), la PD e la EDD sono nettamente meno costose della HD ospedaliera, con DRG addirittura inferiore per la EDD sulla PD in alcune regioni [9,15,16].

 

Conclusioni

In questa piccola e breve esperienza, la EDD, seppur applicabile ad una percentuale ridotta di pazienti in dialisi extracorporea (<5%), si è dimostrata una proposta valida, in grado di incidere positivamente sul controllo della pressione arteriosa, sul metabolismo calcio-fosforo e sul consumo di chelanti del fosforo. Ha inoltre permesso un miglior controllo della anemia con una ridotta necessità di rhEPO.

I risultati appaiono in linea con principali studi sull’argomento; tuttavia, la esigua numerosità del campione ed il breve periodo di valutazione non permettono di esprimere ulteriori considerazioni.

La EDD sembra rappresentare un valido strumento nel recupero sociale e psicologico del paziente uremico e potrebbe trovare spazio nei pazienti autosufficienti e motivati in drop-out dalla PD. Al fine di incentivarne l’uso è indispensabile investire nella ricerca di nuove tecnologie, implementare i progetti di teledialisi, progettare validi modelli organizzativi “ad hoc”, stanziare fondi regionali incentivanti e snellire il percorso burocratico di acquisizione.

 

Bibliografia

  1. Ministero della Salute, Piano Nazionale della Cronicità. 2016. http://www.salute.gov.it/imgs/C_17_pubblicazioni_2584_allegato.pdf
  2. Ministero della Salute, Documento di Indirizzo per la Malattia Renale Cronica. http://www.salute.gov.it/imgs/C_17_pubblicazioni_2244_allegato.pdf
  3. Shen Q, Wang Mo, Che R, et al. Consensus recommendations for the care of children receiving chronic dialysis in association with the COVID-19 epidemic. Pediatr Nephrol 2020; 35(7): 1351-7. https://doi.org/10.1007/s00467-020-04555-x
  4. Kane-Gill S, Rincon F. Expansion of Telemedicine Services: Telepharmacy, Telestroke, Teledialysis, Tele-Emergency Medicine. Crit Care Clin 2019 Jul; 35(3):519-33. https://doi.org/10.1016/j.ccc.2019.02.007
  5. Fiorini F, Granata A. Consenso informato: aspetti deotologici e giuridici. G Ita Nefrol 2011; 28(1):89-94. https://giornaleitalianodinefrologia.it/wp-content/uploads/sites/3/pdf/storico/2011/1/pp.089-094.pdf
  6. Gotch FA. The current place of urea kinetic modelling with respect to different dialysis modalities. Nephrol Dial Transplant 1998; 13(S6):10-14. https://doi.org/10.1093/ndt/13.suppl_6.10
  7. Weinhandl ED, Liu jI, Gilbertson TD, et al. Survival in Daily Home Hemodialysis and Matched Thrice-Weekly In-Center Hemodialysis Patients. J Am Soc Nephrol 2012; 23:895-904. https://doi.org/10.1681/asn.2011080761
  8. Piccoli GB, Ferraresi M, Caputo F, et al. Dialisi Domiciliare sì, ma quale? Emodialisi Domiciliare e dialisi peritoneale a confronto: una controversia non controversa. G Ital Nefrol 2012; 29(2):148-59. https://giornaleitalianodinefrologia.it/wp-content/uploads/sites/3/pdf/storico/2012/2/p. 148-159 PICCOLI proecontro.pdf
  9. Curtis FK, Cole JJ, Tyler LL, et al. Hemodialysis in the home. Trans Am Soc Artif Intern Organs 1965; 11:7-10. https://doi.org/10.1097/00002480-196504000-00003
  10. Kjellstrand CM, Ing T. Daily Hemodialysis History and revival of a superior Dialysis Method. ASAIO J 1998; 44(3):117-22.
  11. Susantitaphong P, Koulouridis I, Balk EM, at al. Effect of Frequent or Extended Hemodialysis on Cardiovascular Parameters: A Meta-analysis. Am J Kidney Dis 2012; 59(5):689-99. https://doi.org/10.1053/j.ajkd.2011.12.020
  12. United Kingdom Renal Registry (UKRR). https://www.renalreg.org/
  13. Mc Laughlin, et al. Why patients with ESRD do not select self-care dialysis as a treatment option? Am J Kid Dis 2003; 41(2):380-5. https://doi.org/10.1053/ajkd.2003.50047
  14. FHN Trial Group, Chertow GM, Levin NW, Beck GJ, Depner TA, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010; 363(24):2287-300. https://doi.org/10.1056/NEJMoa1001593 (Erratum in: N Engl J Med 2011; 364(1):93.
  15. Schachter ME, Tennankore KK, Chan CT. Determinants of training and technique failure in home hemodialysis. Hemodial Int 2013;1 7(3):421-6. https://doi.org/10.1111/hdi.12036
  16. Hager D, Ferguson TW, Komenda P. Cost Controversies of a “Home Dialysis First” Policy. Can J Kidney Health Dis 2019; 6:2054358119871541. https://doi.org/10.1177/2054358119871541