Infezione da West Nile Virus e malattia renale: descrizione di due pazienti in dialisi peritoneale e revisione della letteratura

Abstract

Il virus del Nilo occidentale (WNV), un arbovirus a RNA, è trasmesso dagli uccelli selvatici e veicolato da zecche e zanzare. Ha avuto un’ampia diffusione in tutto il mondo e non si trasmette da uomo a uomo. Può dare sintomi clinici solo in una minoranza di soggetti infetti come febbre, mal di testa, stanchezza muscolare, disturbi visivi, sonnolenza, convulsioni e paralisi muscolare; nei casi più gravi anche un’encefalite potenzialmente fatale. In letteratura sono presenti pochi casi di infezione da WNV in pazienti con malattie renali: qui riportiamo la nostra esperienza su due pazienti in dialisi peritoneale infetti da WNV con una revisione della letteratura.

Parole chiave: infezione da West Nile virus, malattia renale cronica, end-stage kidney failure, dialisi peritoneale, trapianto rene

Introduzione

Il virus del Nilo occidentale (West Nile VirusWNV) (Figura 1), un arbovirus a RNA, fu isolato per la prima volta in Uganda nel 1937 e in seguito si è diffuso in Europa, Asia e Australia. Nel 1996, la prima grande epidemia europea si è verificata in Romania, seguita successivamente da diverse epidemie in vari paesi dell’Eurasia, dove i virus sono attualmente endemici. Nel 1999, il WNV ha raggiunto il continente nordamericano, dove negli USA si è diffuso rapidamente diventando endemico con circa 3 milioni di individui infetti nel 2010 (780.000 che hanno manifestato la malattia) [1, 2].

Il WNV si manifesta in due distinti gruppi, l’1 e il 2, con ceppi diversi, ed è ospite di uccelli selvatici; è veicolato da zecche e zanzare e non si trasmette da uomo a uomo.

La potenziale trasmissione per via orale in un uccello predatore può spiegare la diffusione relativamente rapida del WNV, così come di altri flavivirus caratterizzati da modelli di trasmissione simili [3].

In meno dell’1% dei casi, il WNV può provocare manifestazioni neurologiche, caratterizzate da una mortalità del 10% con meningite, encefalite, paralisi flaccida acuta simile alla poliomielite e sindrome simile a Guillain-Barré. I fattori di rischio associati a peggior prognosi sono la malattia renale cronica (MRC), il cancro, l’abuso di alcol, l’ipertensione, il diabete, l’età avanzata e l’immunosoppressione [4].

Il WNV può essere trovato dopo l’infezione in vari tessuti quali cervello, linfonodi, milza e reni: il virus è stato costantemente rilevato nelle urine di pazienti durante l’infezione acuta, persistendo per un tempo più lungo rispetto al sangue. La presenza di antigeni WNV è stata rilevata anche nel rene nelle autopsie di pazienti trapiantati colpiti da WNV [5]. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Un trapianto renale in una paziente altamente sensibilizzata trattata con imlifidase

Abstract

Attraverso un caso clinico descriveremo le difficoltà dell’accesso al trapianto dei pazienti che presentano un elevato grado di immunizzazione. Focalizzeremo, quindi, l’attenzione sulle nuove terapie desensibilizzanti e i loro effetti con il conseguente miglioramento dell’outcome clinico. Verranno, inoltre, discusse le strategie desensibilizzanti utilizzate e le principali prospettive terapeutiche future.

Parole chiave: imlifidase, trapianto renale, pazienti iperimmuni

Introduzione

Il numero di pazienti affetti da malattia renale allo stadio terminale è in forte aumento in tutto il mondo, sia nei paesi sviluppati che in quelli in via di sviluppo [1]. Tra questi molti risultano idonei al trapianto di rene, opzione che rispetto alla dialisi si associa a una qualità di vita e una sopravvivenza significativamente migliori. La presenza di un quadro di sensibilizzazione e il conseguente sviluppo di anticorpi rivolti contro antigeni leucocitari umani (HLA) di classe I e/o II rendono difficile trovare un aplotipo compatibile in caso di trapianto. Elevati livelli di anticorpi donatore specifici (HLA DSA) sono correlati con un maggiore rischio di rigetto iperacuto che può essere ulteriormente incrementato in seguito a numerosi eventi come: emotrasfusioni, pregressi aborti o gravidanze [24]. Per questo motivo, nonostante un marcato aumento del numero di allotrapianti da donatore vivente (DLA), molti potenziali riceventi con donatori idonei sono relegati nelle liste di attesa per la presenza di anticorpi anti antigene leucocitario umano preformati. Per rilevare rapidamente la presenza di anticorpi nel siero del ricevente rivolti contro linfociti isolati dal sangue del donatore, sono state sviluppate procedure di crossmatch (CM) che consentono un’efficace valutazione della sopravvivenza a breve termine degli alloinnesti renali.  La valutazione dello stato di pre-sensibilizzazione di un paziente in lista d’attesa per trapianto, avviene o tramite la tecnica di citotossicità complemento-mediata (CDC) o attraverso tecniche di fase solida (SPI) [5]. Indipendentemente dalla tecnica utilizzata, la percentuale di sensibilizzazione di un paziente nei confronti delle molecole HLA viene stimata attraverso il PRA (Panel Reactive Antibody), un test di fissazione del complemento attraverso cui viene testata la capacità del siero del ricevente di lisare un pannello di cellule T da un gruppo di potenziali donatori.

La tecnica CDC, elaborata da Terasaki e Mc Clelland nel 1964 [6], viene eseguita utilizzando un pannello di linfociti T a tipizzazione nota; pochi laboratori utilizzano anche i linfociti B, che permettono di identificare non solo anticorpi diretti contro molecole di classe I ma anche anticorpi specifici per molecole di classe II. Sono note diverse varianti della metodica originale che ne aumentano la sensibilità; quella più utilizzata nei laboratori italiani è la tecnica “long incubation”.

Le tecniche in fase solida (solid‐phase immunoassay ‒ SPI) prevedono che il siero in studio venga incubato in microsfere di lattice ricoperte di molecole HLA purificate o ricombinanti rappresentative di tutte le specificità HLA antigeniche note nonché, in alcuni casi, di una o più specificità alleliche di una particolare molecola HLA [7]. Dopo incubazione con un anticorpo fluorescinato anti-human-IgG (o IgM) le sfere vengono analizzate con un citofluorimetro classico (FlowPRA screening/FlowPRA Single Antigen beads) o con un citofluorimetro dedicato (Luminex® Screening e Single Antigen beads) permettendo l’identificazione di tutti gli anticorpi anti-HLA presenti nel siero in studio. Il test Luminex® si basa su microsfere e mediante PCR un oligonucleotide a sequenza specifica (SSO) consente il rilevamento simultaneo di un massimo di 100 diversi analiti da una provetta velocizzando notevolmente il processo di tipizzazione [8]. La tecnologia Luminex® è quella maggiormente utilizzata nei laboratori italiani [9] e l’analisi attraverso metodiche SPI rappresenta il “gold standard” nello studio della sensibilizzazione anti-HLA nel trapianto [10]. Il problema dell’iperimmunizzazione nei pazienti in lista di attesa è stato affrontato negli Stati Uniti già nel 2014 attraverso l’attivazione del sistema di allocazione renale (KAS) che ha determinato un notevole miglioramento dei tassi di trapianto anche nei pazienti sensibilizzati [11]. Nonostante l’attivazione di questo programma, attraverso un’analisi condotta da Schinstock e collaboratori su 1791 pazienti, è stato evidenziato come i tassi di trapianto nei soggetti che presentano iperimmunizzazione (ovvero anticorpi reattivi del pannello calcolati [cPRA] > 99,9%) non siano stati influenzati significativamente, pertanto tali pazienti presentavano maggiori probabilità di morire o essere rimossi dalle liste di attesa rispetto ai pazienti meno sensibilizzati [12].

Analizzando i dati forniti dall’Eurotransplant è possibile evidenziare, anche nel nostro continente, una tendenza simile alla casistica statunitense, infatti circa il 19% di 10.320 pazienti è considerato sensibilizzato, e di questi il 30% rientra nella categoria altamente sensibilizzata con un cPRA > 85% [13]. Le strategie di desensibilizzazione rappresentano la sfida principale per favorire sia l’incremento del numero dei potenziali riceventi che indirettamente la sopravvivenza degli organi trapiantati. Il rigetto cronico del trapianto renale (CKTR) è spesso un processo immunitario allogenico clinicamente silente, ma progressivo, che porta a lesioni cumulative del graft con deterioramento della funzione d’organo. Il rigetto cronico può essere suddiviso in linfocita T mediato (TCMR) e anticorpo mediato (ABMR) e secondo i criteri revisionati nel 2017 della classificazione di Banff, tali alterazioni possono coesistere [1416]. Gli attuali protocolli di desensibilizzazione consistono principalmente in immunoglobuline per via endovenosa (IVIG), rituximab, plasmaferesi o immunoadsorbimento e la loro efficacia è stata evidenziata in vari studi [17, 18]. Tuttavia, la rimozione incompleta degli anticorpi specifici del donatore (DSA) o un possibile rebound di DSA post-trapianto possono aumentare il rischio di rigetto anticorpo mediato [19, 20]. Pertanto, sono necessari nuovi farmaci o protocolli terapeutici che agendo su specifici target immunologici possano migliorare la desensibilizzazione anticorpale e garantire il successo del trapianto. Come evidenziato nella figura sottostante, le proteasi di derivazione batterica come l’imlifidase si inseriscono come trattamento desensibilizzante aggiuntivo con azione mirata sugli anticorpi anti HLA.

Figura1. Siti di azione dei vari agenti desensibilizzanti (tratto da Noble J [21]).
Figura1. Siti di azione dei vari agenti desensibilizzanti (tratto da Noble J [21]).

Caso clinico

Descriviamo il caso clinico di una donna caucasica di 43 anni di nazionalità rumena, seguita presso l’ospedale San Giovanni Battista di Foligno per CKD secondaria a glomerulonefrite post-infettiva e in trattamento emodialitico trisettimanale che ha ricevuto un trapianto renale previo trattamento desensibilizzante con imlifidase. All’anamnesi patologica remota: pregresso trapianto renale eseguito nel 2003, all’età di 22 anni allocato in fossa iliaca sinistra, presso il paese d’origine, complicato con un episodio di rigetto acuto trattato con boli di metilprednisolone. A partire dal 2008 si registravano diversi episodi infettivi, a giugno si documentava un’infezione delle vie urinarie (IVU) sostenuta da E. Coli complicata da setticemia e trattata con antibioticoterapia mirata, mentre a luglio 2008 si osservava la positivizzazione del CMV-DNA e dell’EBV-DNA trattati con ganciclovir. Successivamente per un quadro di epatopatia cronica HCV relata (genotipo 1 b), si avviava trattamento con interferone e ribavirina fino alla completa guarigione documentata tramite negativizzazione dell’RNA virale. A causa del progressivo peggioramento degli indici di funzione renale, si rendeva necessario rivalutare tramite biopsia sul graft le condizioni dell’organo, che mostrava la presenza di un “infiltrato infiammatorio interstiziale associato a focale glomerulopatia cronica e moderata fibrosi interstiziale”.

Nel gennaio 2009 per nuovo episodio di rigetto del graft, si provvedeva ad espianto dell’organo e ripresa del trattamento emodialitico con frequenza trisettimanale. All’inizio del marzo 2009, in seguito a episodio di edema polmonare acuto non responsivo a terapia medica si provvedeva al ricovero urgente in terapia intensiva e all’avvio di cicli di CVVHDF. La degenza era complicata da un episodio di anemizzazione trattato tramite emotrasfusioni con emazie concentrate. Nel dicembre 2011, ricovero presso l’Ospedale di Foligno per polmonite lobare destra, associata a versamento pleurico massivo omolaterale risolto tramite il posizionamento di drenaggio pleurico. In corso di degenza si riscontrava un quadro di cardiomiopatia dilatativa ipocinetica associata ad insufficienza mitralica ed ipertensione polmonare. A partire dall’inizio del 2012, per la comparsa di numerosi episodi di metrorragia sintomatica, si ricorreva a numerose emotrasfusioni. Dal medesimo anno fino al trapianto, si verificavano numerosi eventi immunizzanti come emotrasfusioni e poliabortività, inoltre per progressivo esaurimento dei siti disponibili, si osservava una crescente difficoltà nel mantenimento degli accessi vascolari. Dapprima infatti, si rendeva necessario un intervento di superficializzazione della vena basilica destra, mentre nel 2014 si provvedeva al posizionamento di protesi nel medesimo arto e nel 2016 si verificava una stenosi della succlavia destra secondaria all’utilizzo di questa vena per il posizionamento di CVC. Per la presenza di progressiva ipersensibilizzazione, secondaria agli eventi immunizzanti intercorsi negli anni, si procedeva, dal luglio del medesimo anno, a programma di desensibilizzazione tipo Jordan (rituximab + IVIG) per eventuale nuovo trapianto.

Nel 2022 la paziente veniva inserita nel programma nazionale iperimmuni (PNI) per la presenza di immunizzazione del 100% in classe I e del 95% in classe II. A novembre del medesimo anno, si ricoverava presso l’Azienda Ospedaliera di Padova per essere sottoposta a trapianto di rene da donatore deceduto, previa desensibilizzazione con imlifidase. All’ingresso in reparto, veniva eseguita valutazione del titolo degli anticorpi anti-HLA pre-trapianto con riscontro di DSA rivolti contro gli antigeni di classe I A32, A29 e di classe II DRB1* 11, DR 52, DRB1*07:01, DQB1*03:01, DQB1*02.

Si procedeva, quindi, secondo protocollo, all’infusione di imlifidase 13 mg pre-trapianto e alla successiva rivalutazione del titolo DSA; come evidenziato nelle figure sottostanti, si riduceva drammaticamente nelle ore successive all’infusione.

Figura 2. Andamento titolo anticorpale evidenziato tramite mean fluorescent intensity MFI in classe I e II.
Figura 2. Andamento titolo anticorpale evidenziato tramite mean fluorescent intensity MFI in classe I e II.

Al termine degli accertamenti pre-operatori, si eseguiva intervento di trapianto renale singolo da donatore deceduto, un uomo di 68 anni di razza caucasica. Il Kidney Donor Profile Index (KDPI) era del 71%, compatibile con un funzionamento atteso del graft di almeno nove anni, mentre il Kidney Donor Risk Index (KDRI), ovvero il rischio di fallimento del trapianto sulla base delle caratteristiche del donatore, era di 1,22. Il trapianto veniva eseguito in data 02/11/2022 e il graft veniva allocato in fossa iliaca destra. Il tempo di ischemia fredda è stato di sette ore. Come da protocollo, si avviava dapprima una terapia immunosoppressiva con metilprednisolone e successivamente una tripla associazione costituita da tacrolimus, acido micofenolico e corticosteroidi. Il successivo decorso clinico post operatorio si caratterizzava per pronta ripresa della diuresi e progressiva riduzione della creatinina sierica con normalizzazione degli indici di funzione renale. Durante la degenza si eseguiva monitoraggio quotidiano del titolo di anticorpi DSA e si eseguiva infusione di siero antilifocitario (timoglobuline di coniglio) per tre giorni consecutivi (ovvero in quarta, quinta e sesta giornata post operatoria) per un totale di 4 mg/kg, cui faceva seguito in settima giornata l’infusione di 1 g di rituximab; contestualmente si iniziava vaccinazione anti meningococcica contro i gruppi A, C, W-135 e Y. In ottava giornata, per un peggioramento della funzionalità renale e anuria associati a rialzo della temperatura corporea fino a 38,4 C°, la paziente veniva sottoposta a biopsia del graft suggestiva per rigetto anticorpo mediato come evidenziato dalla presenza di capillarite con infiltrato granulocitario associato, positività per Cd4 e C5b9 (Figure 3A e 3B).

Figure 3A e 3B. Biopsia eseguita sul graft della paziente.
Figure 3A e 3B. Biopsia eseguita sul graft della paziente.

Si procedeva dapprima alla somministrazione di eculizumab (1200 mg) e all’infusione di tre dosi di timoglobuline (75 mg), quindi all’esecuzione di sedute di plasmaferesi associando, al termine di ciascuna seduta, l’infusione di eculizumab a dosaggio di mantenimento (600 mg). In seguito alle misure intraprese, si osservava risoluzione del quadro clinico ed un rapido miglioramento degli indici di funzione renale (creatinina 1,13 mg/dl). A completamento diagnostico si eseguiva ecografia del rene trapiantato che risultava nella norma sia in termini morfologici che di vascolarizzazione. La paziente veniva dimessa in buone condizioni cliniche e inviata presso il centro territoriale di competenza (A.O. di Perugia) per la gestione della terapia post-trapianto. In data 02/12/2022 in considerazione del miglioramento clinico e del mantenimento di una adeguata funzione del graft, si procedeva alla rimozione CVC tunnellizzato per dialisi. Attualmente la paziente appare in buone condizioni cliniche generali e prosegue regolari follow-up ambulatoriali. Agli ultimi esami ematochimici eseguiti nel giugno 2023 si evidenzia la persistenza di una lieve anemia associata a deficit marziale (Hb 10 g/dl MCV 89 fl TSAT 13%) in trattamento con epoetina  zeta 8000UI 1fl a settimana, una funzione renale compatibile con un’insufficienza renale cornica lieve-moderata (Crs 1,3 mg/dl EGFR 45 ml/min con MDRD), un iperparatiroidismo secondario normocalcemico in fase di correzione (PTH 187 pg/ml, Ca++ 9,6 mg/dl, P- 2,4 mg/dl) e un lieve deficit di vitamina D (14,3 ng/ml). Indici di flogosi negativi. Al momento non si registra inoltre riattivazione virale risultando negativa la ricerca per BK, CMV EBV. Si riportano nel grafico sottostante i livelli sierici di creatininemia (espessa in μmol/l) e di tacrolemia nei cinque mesi successivi al trapianto (Figura 4).

Figura 4. Andamento della creatinina e della tacrolemia nei 5 mesi successivi al trapianto.
Figura 4. Andamento della creatinina e della tacrolemia nei 5 mesi successivi al trapianto.

L’attuale terapia immunosoppressiva della paziente risulta costituita da tacrolimus (1mg + 0,5 mg die), micofenolato (360 mg 1 cpr × 2) e metilprednisolone 16 mg 1/2 cpr die.

 

Discussione

L’imlifidase è una cisteina proteasi di 35 kDa individuata inizialmente nello streptococcus pyogenes e prodotta tramite DNA ricombinante in E. Coli, che possiede la capacità di scindere tutte le sottoclassi di IgG umane in modo altamente specifico. L’inibizione delle IgG dura circa 1-2 settimane, ovvero fino a quando non diventa rilevabile una nuova sintesi di immunoglobuline [22]. L’azione dell’imlifidase si realizza tramite idrolisi a livello dell’aminoacido Gly236 localizzato nella regione cerniera inferiore delle catene pesanti delle IgG umane [23] (Figura 5).

Figura 5. Meccanismo di azione dell’imlifidase (tratto da: www.ema.europa.eu  riferimento [24]).
Figura 5. Meccanismo di azione dell’imlifidase (tratto da: www.ema.europa.eu  riferimento [24]).
 La scissione in questo sito è critica, poiché la regione del frammento cristallizzabile (Fc) delle IgG interagisce con i recettori Fcγ localizzati sulle cellule immunitarie, pertanto l’idrossilazione delle molecole di IgG con rimozione dei frammenti Fc inibisce la citotossicità complemento dipendente (CDC) e la citotossicità cellulare anticorpo mediata (ADCC), processi indispensabili per l’avvio e il mantenimento del rigetto anticorpo mediato (AMR) [25]. L’importanza dell’eliminazione delle IgG e del potenziale effetto nei pazienti trapiantati sono noti già nel 2015, attraverso uno studio randomizzato condotto da Winstet e coll. [26] su venti volontari sani. È stato documentato come l’enzima sia in grado di scindere, con la medesima efficacia, sia proteine libere che legate ai rispettivi antigeni o complessate con i recettori dei linfociti B(BCR) [27]. La rilevanza di questa caratteristica appare evidente se si considera l’importanza del complesso BCR nell’attivazione linfocitaria in seguito all’interazione antigene-anticorpo. La porzione che interagisce con il ligando è costituita da un Ab con un dominio transmembrana la cui porzione di segnalazione è costituita da un eterodimero chiamato Ig-α/Ig-β (CD79a/CD79b). Le proteine ​​CD79 attraversano la membrana plasmatica e possiedono una coda citoplasmatica che presenta un’attivazione immunorecettoriale tirosino-mediata (ITAM). In seguito all’attivazione recettoriale, l’ITAM viene fosforilato da una chinasi (LYN) che recluta la tirosina chinasi portando alla formazione di un complesso di segnalazione associato alla membrana plasmatica, chiamato signalosoma, che assembla molecole di segnalazione, come fosfolipasi-Cγ2 (PLC-γ2), PI3K, tirosina chinasi di Bruton, VAV1 e molecole adattatrici con conseguente attivazione cellulare [28, 29]. Alcuni intermedi fondamentali che appartengono alla cascata di segnalazione generata nel processo di attivazione, sono rappresentati da BCR, PLC-γ2 e PI3K, che attraverso la generazione di secondi messaggeri chiave attivano la chinasi IκB e ERK1/2 (alias MAPK3 e MAPK1) regolando di fatto il destino delle cellule B determinandone quindi proliferazione, sopravvivenza, differenziazione ed eventuale apoptosi [30]. Sulla base di queste evidenze, è stato osservato come in seguito al trattamento con imlifidase, i linfociti B non siano più in grado di attivare correttamente la cascata di segnalazione mediata dall’interazione dell’anticorpo con BCR, con conseguente riduzione sia delle cellule B di memoria che della produzione di IgG [26]. L’imlifidase è quindi in grado di negativizzare un cross match in un paziente positivo ma a differenza dei metodi di desensibilizzazione esistenti, come la plasmaferesi o le immunoglobuline, riesce ad eseguire tale operazione in tempi molto rapidi [31]. Un aspetto apparentemente limitativo del farmaco è rappresentato dal rebound anticorpale che si verifica generalmente in un periodo compreso tra i tre giorni e le due settimane, tuttavia questo svantaggio viene ampliamente superato dal fatto che fino all’89,5% dei pazienti trattati con imlifidase ha dimostrato la conversione del crossmatch da positivo a negativo entro 24-48 ore dal trattamento [32].

Oltre all’utilizzo per la desensibilizzazione nel ricevente di trapianto renale, il farmaco è stato impiegato con successo in un caso di trapianto polmonare [33] e uno studio in vitro, effettuato su topi, ne ha dimostrato il potenziale utilizzo nei riceventi il trapianto di midollo osseo [34].

L’azione inibitoria, esercitata dall’imlifidase, ha aperto ulteriori possibilità di utilizzo per questo farmaco anche nelle patologie immunomediate resistenti alle comuni terapie immunosoppressive. L’utilizzo del farmaco appare possibile non solo per patologie renali, come la malattia della membrana basale anti-glomerulare, la vasculite IgA mediata, la nefrite lupica o la crioglobulinemia, ma anche in ambito ematologico come nell’emofilia congenita A (PwHA) [3537], sebbene siano necessari ulteriori studi prima di una conferma definitiva. In considerazione del meccanismo d’azione dell’imlifidasi e della conseguente soppressione dei livelli di IgG per un periodo compreso tra due settimane e un mese, esiste la possibilità di un incremento del rischio infettivo nei pazienti in cui viene utilizzato. Come riportato dall’European Medicine Agency (EMA) è stato osservato un rischio aumentato di infezioni specie polmonari e delle vie urinarie in questi pazienti, inoltre l’utilizzo del farmaco è stato precluso ai soggetti affetti da porpora trombotica trombocitopenica o da gravi infezioni non eradicabili [24]. Oltre all’imlifidase, la ricerca si è orientata verso altri target immunitari e sono stati proposti numerosi siti alternativi su cui agire per ottenere una rapida desensibilizzazione. Si riportano nella Figura 6 gli attuali target oggetto di studio.

Figura 6. Possibili siti di azione per farmaci desensibilizzanti (tratto da Choi AY et al [38]).
Figura 6. Possibili siti di azione per farmaci desensibilizzanti (tratto da Choi AY et al [38]).
Un sito alternativo è rappresentato dal recettore Fc neonatale (FcRn), espresso nelle cellule endoteliali, presentanti l’antigene (monociti/macrofagi), dendritiche e nei linfociti B [39, 40]. Il blocco del recettore FcRn ottenuto tramite l’anticorpo monoclonale rozanolixizumab [41, 42], inizialmente sviluppato contro malattie IgG mediate come miastenia gravis e trobocitopenia immune [43], sembra avere un ruolo sia nella riduzione delle IgG circolanti totali che nel miglioramento del cross match, sebbene non sia stata evidenziata né riduzione delle IgM totali circolanti né dei DSA [44].

Diversi autori hanno proposto l’utilizzo degli inibitori del proteasoma in funzione desensibilizzante. Everley et al. [45] hanno proposto l’uso del bortezomib per il trattamento dell’AMR e dell’ACR nei riceventi di trapianto renale, mentre Mulder e collaboratori [46] hanno evidenziato il ruolo del farmaco nell’inibizione delle cellule B e nell’induzione di apoptosi in quelle già attivate. L’utilizzo del bortezomib in ottica desensibilizzante è da attribuirsi a Woodle che attraverso un trial condotto su 44 persone ha ottenuto, tramite un’associazione tra bortezomib, plasmaferesi e rituximab, una riduzione dei DSA nell’86% dei casi, una percentuale di successo del trapianto nei pazienti altamente sensibilizzati pari al 43,2% e una percentuale dell’89,5% di graft funzionali ad un follow-up mediano di 436 giorni [47]. Risultati simili sono stati ottenuti da Jeong et al. utilizzando una combinazione costituita da alte dosi di IVIG, rituximab e bortezomib [48]. L’uso di inibitori del proteasoma di seconda generazione (carfilzomib, ixazomib) ha dato buoni risultati in termini di efficacia e migliorato la tollerabilità al trattamento [38].

L’anticorpo monoclonale umanizzato anti-CD19 inebilizumab appare molto promettente nella desensibilizzazione nei pazienti iperimmuni candidati al trapianto renale e attualmente è in corso un trial randomizzato di fase II per valutarne l’efficacia [49]. Anche il tocilizumab, un anticorpo monoclonale umanizzato rivolto verso il recettore dell’IL6, appare un buon candidato nelle strategie di desensibilizzazione poiché agisce sul pathway infiammatorio, sulla maturazione dei linfociti T helper e sulla differenziazione dei linfociti B [50]. Inoltre l’efficacia dell’associazione tra tocilizumab e IVIG appare confermata [51]. Anche gli agenti inibitori del fattore di attivazione delle cellule B (BAFF) potrebbero rivestire un ruolo nelle strategie desensibilizzanti. Il fattore di attivazione delle cellule B (BAFF) è un omotrimero e membro della famiglia del fattore di necrosi tumorale (TNF) che si trova sulla superficie cellulare come proteina transmembrana oppure è rilasciato in forma solubile dopo scissione [52] il cui ruolo è fondamentale per la maturazione e proliferazione delle cellule B [53]. Il blocco di questa molecola può essere importante nella modulazione linfocitaria e nella produzione anticorpale. L’anticorpo monoclonale belimumab (Benlysta®), è stato il primo farmaco biologico che presenta una specifica azione contro BAFF proposto, in monoterapia, per la desensibilizzazione nel trapianto renale [54, 55].

 

Conclusioni

Possiamo affermare che il trattamento con l’imlifidase appare ben tollerato e con un elevato tasso di risposta valutata in termini di negativizzazione del cross match. Nei pazienti in cui tale farmaco è stato utilizzato per ottenere una desensibilizzazione non si sono osservati risultati differenti rispetto a quanto osservato utilizzando i protocolli standard di desensibilizzazione. In questa popolazione ad alto rischio, infatti, si è osservata una relativa stabilità della funzione dell’allotrapianto e un profilo di sicurezza a lungo termine senza incrementi significativi dei tassi di infezione o di malignità. Sebbene ulteriori studi possano definire l’utilizzo ottimale di questo nuovo agente, l’imlifidase costituisce un importante opzione per consentire il trapianto tra quei pazienti per i quali la dialisi a vita e la relativa morbilità possono essere l’unica alternativa. Al momento persistono dubbi circa il profilo di sicurezza del farmaco nel lungo periodo sebbene non siano evidenti particolari fenomeni di criticità. Tale limitazione deriva dal fatto che il numero dei pazienti indagati è basso e per tale motivo sono necessari ulteriori studi in tal senso. Ulteriori target terapeutici sono in fase di studio e rappresenteranno un valido strumento da affiancare alle terapie desensibilizzanti attualmente in uso. Si evidenzia, comunque, la necessità di una attenta valutazione dei candidati al trattamento con imlifidase, in considerazione degli effetti sistemici del farmaco e delle possibili complicanze.

 

Bibliografia

  1. Robinson BM, Akizawa T, Jager KJ, Kerr PG, Saran R, Pisoni RL. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. 2016;388(10041):294-306. https://doi.org/10.1016/S0140-6736(16)30448-2.
  2. Kissmeyer-Nielsen F, Olsen S, Petersen VP, Fjeldborg O. Hyperacute Rejection of Kidney Allografts, Associated with Pre-existing Humoral Antibodies against Donor Cells. Lancet (1966) 2(7465):662–5. https://doi.org/10.1016/s0140-6736(66)92829-7.
  3. Dausset J, Nenna A, Brecy H. Leukoagglutinins. Blood (1954) 9:696–720. https://doi.org/10.1182/blood.v9.7.696.696.
  4. Van Rood JJ, Eernisse JG, Van Leeuwen A. Leucocyte Antibodies in Sera from Pregnant Women. Nature (1958) 181(4625):1735–6. https://doi.org/10.1038/1811735a0.
  5. Saito PK, Yamakawa RH, Pereira LC, da Silva WV Jr, Borelli SD. Complement-dependent cytotoxicity (CDC) to detect Anti-HLA antibodies: old but gold. J Clin Lab Anal. 2014 Jul;28(4):275-80. https://doi.org/1002/jcla.21678.
  6. Terasaki PI, McClelland JD. Microdroplet assay of human serum cytotoxin. 1964 Dec 5; 204:998-1000. https://doi.org/10.1038/204998b0.
  7. Koefoed-Nielsen P, Møller BK. Donor-specific anti-HLA antibodies by solid phase immunoassays: advantages and technical concerns. Int Rev Immunol. 2019;38(3):95-105. https://doi.org/10.1080/08830185.2018.1525367.
  8. Muro M, Llorente S, Gonzalez-Soriano MJ, et al. Pre-formed donor-specific alloantibodies (DSA) detected only by luminex technology using HLA-coated microspheres and causing acute humoral rejection and kidney graft dysfunction, Clin Transpl, 2006, vol. 26 (pg. 379-383).
  9. Picascia A, Infante T, Napoli C. Luminex and antibody detection in kidney transplantation. Clin Exp Nephrol. 2012 Jun;16(3):373-81. https://doi.org/10.1007/s10157-012-0635-1.
  10. Colombo MB, Haworth SE, Poli F, et al. Luminex technology for anti-HLA antibody screening: evaluation of performance and of impact on laboratory routine, Cytometry Part B (Clinical Cytometry), 2007, vol. 72 (pg. 465-471) https://doi.org/1002/cyto.b.20353.
  11. Stewart DE, Kucheryavaya AY, Klassen DK, Turgeon NA, Formica RN, Aeder MI. Changes in Deceased Donor Kidney Transplantation One Year After KAS Implementation. Am J Transplant. 2016; 16:1834‐1847. https://doi.org/10.1111/ajt.13770.
  12. Schinstock CA, Smith BH, Montgomery RA, Jordan SC, Bentall AJ, Mai M, Khamash HA, Stegall MD. Managing highly sensitized renal transplant candidates in the era of kidney paired donation and the new kidney allocation system: Is there still a role for desensitization? Clin Transplant. 2019 Dec;33(12): e13751. https://doi.org/10.1111/ctr.13751.
  13. Statistics Report Library. Available at http://statistics.eurotransplant.org/. Accessed February 21, 2020.
  14. Lai X, Zheng X, Mathew JM, Gallon L, Leventhal JR, Zhang ZJ. Tackling Chronic Kidney Transplant Rejection: Challenges and Promises. Front Immunol. 2021 May 20; 12:661643. https://doi.org/10.3389/fimmu.2021.661643.
  15. Haas M, Loupy A, Lefaucheur C, Roufosse C, Glotz D, Seron D, Nankivell et al. The Banff 2017 Kidney Meeting Report: Revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am J Transplant. 2018 Feb;18(2):293-307. https://doi.org/10.1111/ajt.14625.
  16. Tsuji T, Iwasaki S, Makita K, Imamoto T, Ishidate N, Mitsuke A, et al. Preceding T-Cell-Mediated Rejection Is Associated with the Development of Chronic Active Antibody-Mediated Rejection by de Novo Donor-Specific Antibody. Nephron (2020) 144 :13–7. https://doi.org/10.1159/000512659.
  17. Vo AA, Petrozzino J, Yeung K, et al. Efficacy, outcomes, and cost-effectiveness of desensitization using IVIG and rituximab. 2013;95:852–858. https://doi.org/10.1097/TP.0b013e3182802f88.
  18. Sethi S, Choi J, Toyoda M, et al. Desensitization: overcoming the immunologic barriers to transplantation. J Immunol Res.2017;2017:6804678. https://doi.org/1155/2017/6804678.
  19. Jordan SC, Bunnapradist S, Bromberg JS, et al. Donor-derived cell-free DNA identifies antibody-mediated rejection in donor specific antibody positive kidney transplant recipients. Transplant Direct.2018;4: e379. https://doi.org/1097/TXD.0000000000000821.
  20. Kim IK, Choi J, Vo A, et al. Risk factors for the development of antibody-mediated rejection in highly sensitized pediatric kidney transplant recipients. Pediatr Transplant. 2017;21. https://doi.org/1111/petr.13042.
  21. Noble J, Jouve T, Malvezzi P, Rostaing L. Desensitization in Crossmatch-positive Kidney Transplant Candidates. 2023 Feb 1;107(2):351-360. https://doi.org/10.1097/TP.0000000000004279.
  22. Rostaing L, Noble J, Malvezzi P, Jouve T. Imlifidase therapy: exploring its clinical uses. Expert Opin Pharmacother. 2023 Feb;24(2):259-265. https://doi.org/10.1080/14656566.2022.2150965.
  23. Brezski RJ, Vafa O, Petrone D, Tam SH, Powers G, Ryan MH, Luongo JL, Oberholtzer A, Knight DM, Jordan RE. Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17864-9. https://doi.org/10.1073/pnas.0904174106.
  24. https://www.ema.europa.eu/en/documents/assessment-report/idefirix-epar-public-assessment-report_en.pdf.
  25. Jordan SC, Lorant T, Choi J, Kjellman C, Winstedt L, et al. IgG Endopeptidase in Highly Sensitized Patients Undergoing Transplantation. N Engl J Med. 2017 Aug 3;377(5):442-453. https://doi.org/10.1056/NEJMoa1612567. Erratum in: N Engl J Med. 2017 Oct 26;377(17):1700.
  26. Winstedt L, Järnum S, Nordahl EA, Olsson A, Runström A, Bockermann R, Karlsson C, Malmström J, Palmgren GS, Malmqvist U, Björck L, Kjellman C. Complete Removal of Extracellular IgG Antibodies in a Randomized Dose-Escalation Phase I Study with the Bacterial Enzyme IdeS–A Novel Therapeutic Opportunity. PLoS One. 2015 Jul 15;10(7):e0132011. https://doi.org/10.1371/journal.pone.0132011.
  27. Järnum S, Bockermann R, Runström A, Winstedt L, Kjellman C. The Bacterial Enzyme IdeS Cleaves the IgG-Type of B Cell Receptor (BCR), Abolishes BCR-Mediated Cell Signaling, and Inhibits Memory B Cell Activation. J Immunol. 2015 Dec 15;195(12):5592-601. https://doi.org/10.4049/jimmunol.1501929.
  28. Reth M, Wienands J. Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol. 1997; 15:453-79. https://doi.org/10.1146/annurev.immunol.15.1.453.
  29. Kurosaki T. Regulation of B-cell signal transduction by adaptor proteins. Nat Rev Immunol. 2002 May;2(5):354-63. https://doi.org/10.1038/nri801.
  30. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. 2002 Dec 6;298(5600):1911-2. https://doi.org/10.1126/science.1072682.
  31. Mamode N, Bestard O, Claas F, Furian L, Griffin S, Legendre C, Pengel L, Naesens M. European Guideline for the Management of Kidney Transplant Patients With HLA Antibodies: By the European Society for Organ Transplantation Working Group. Transpl Int. 2022 Aug 10; 35:10511. https://doi.org/10.3389/ti.2022.10511.
  32. Jordan SC, Legendre C, Desai NM, Lorant T, Bengtsson M, et al. Imlifidase Desensitization in Crossmatch-positive, Highly Sensitized Kidney Transplant Recipients: Results of an International Phase 2 Trial (Highdes). 2021 Aug 1;105(8):1808-1817. https://doi.org/10.1097/TP.0000000000003496.
  33. Roux A, Bunel V, Belousova N, Messika J, Tanaka S et al. First use of imlifidase desensitization in a highly sensitized lung transplant candidate: a case report. Am J Transplant. 2023 Feb;23(2):294-297. https://doi.org/10.1016/j.ajt.2022.11.025.
  34. Lin J, Boon L, Bockermann R, Robertson AK, Kjellman C, Anderson CC. Desensitization using imlifidase and EndoS enables chimerism induction in allosensitized recipient mice. Am J Transplant. 2020 Sep;20(9):2356-2365. https://doi.org/10.1111/ajt.15851.
  35. Shin JI, Geetha D, Szpirt WM, Windpessl M, Kronbichler A. Anti-glomerular basement membrane disease (Goodpasture disease): From pathogenesis to plasma exchange to IdeS. Ther Apher Dial. 2022 Feb;26(1):24-31. https://doi.org/10.1111/1744-9987.13718.
  36. Bou-Jaoudeh M, Delignat S, Daventure V, Astermark J, Lévesque H, Dimitrov JD, Deligne C, Proulle V, Lacroix-Desmazes S. The IgG-degrading enzyme, Imlifidase, restores the therapeutic activity of FVIII in inhibitor-positive hemophilia A mice. Haematologica. 2023 Jan 19. https://doi.org/10.3324/haematol.2022.281895.
  37. Kronbichler A, Bajema I, Geetha D, Säemann M. Novel aspects in the pathophysiology and diagnosis of glomerular diseases. Ann Rheum Dis. 2022 Dec 19: annrheumdis-2022-222495. https://doi.org/10.1136/ard-2022-222495.
  38. Choi AY, Manook M, Olaso D, Ezekian B, Park J, Freischlag K, Jackson A, Knechtle S, Kwun J. Emerging New Approaches in Desensitization: Targeted Therapies for HLA Sensitization. Front Immunol. 2021 Jun 11; 12:694763. https://doi.org/10.3389/fimmu.2021.694763.
  39. Latvala S, Jacobsen B, Otteneder MB, Herrmann A, Kronenberg S. Distribution of FcRn Across Species and Tissues. J Histochem Cytochem (2017) 65(6):321–33. https://doi.org/1369/0022155417705095.
  40. Zhu X, Meng G, Dickinson BL, Li X, Mizoguchi E, Miao L, et al.. MHC Class I-related Neonatal Fc Receptor for IgG is Functionally Expressed in Monocytes, Intestinal Macrophages, and Dendritic Cells. J Immunol (Baltimore Md 1950) (2001) 166(5):3266–76. https://doi.org/4049/jimmunol.166.5.3266.
  41. Ling LE, Hillson JL, Tiessen RG, Bosje T, van Iersel MP, Nix DJ, et al.. M281, an Anti-FcRn Antibody: Pharmacodynamics, Pharmacokinetics, and Safety Across the Full Range of IgG Reduction in a First-in-Human Study. Clin Pharmacol Ther (2019) 105(4):1031–9. https://doi.org/1002/cpt.1276.
  42. Smith B, Kiessling A, Lledo-Garcia R, Dixon KL, Christodoulou L, Catley MC, et al.. Generation and Characterization of a High Affinity Anti-Human FcRn Antibody, Rozanolixizumab, and the Effects of Different Molecular Formats on the Reduction of Plasma IgG Concentration. MAbs(2018) 10(7):1111–30. https://doi.org/1080/19420862.
  43. Robak T, Kaźmierczak M, Jarque I, Musteata V, Treliński J, Cooper N, et al.. Phase 2 Multiple-Dose Study of an FcRn Inhibitor, Rozanolixizumab, in Patients With Primary Immune Thrombocytopenia. Blood Adv (2020) 4(17):4136–46. https://doi.org/1182/bloodadvances.2020002003.
  44. Manook M, Flores WJ, Schmitz R, Fitch Z, Yoon J, et al. Measuring the Impact of Targeting FcRn-Mediated IgG Recycling on Donor-Specific Alloantibodies in a Sensitized NHP Model. Front Immunol. 2021 Jun 2;12:660900. https://doi.org/10.3389/fimmu.2021.660900.
  45. Everly MJ, Everly JJ, Susskind B, Brailey P, Arend LJ, Alloway RR, et al. Bortezomib Provides Effective Therapy for Antibody- and Cell-Mediated Acute Rejection. Transplantation (2008) 86:1754–61. https://doi.org/10.1097/TP.0b013e318190af83
  46. Mulder A, Heidt S, Vergunst M, Roelen DL, Claas FH. Proteasome Inhibition Profoundly Affects Activated Human B Cells. Transplantation (2013) 95:1331–7. https://doi.org/1097/TP.0b013e3182911739.
  47. Woodle ES, Shields AR, Ejaz NS, Sadaka B, Girnita A, Walsh RC, et al.. Prospective Iterative Trial of Proteasome Inhibitor-Based Desensitization. Am J Transplant (2015) 15:101–18. https://doi.org/10.1111/ajt.13050.
  48. Jeong JC, Jambaldorj E, Kwon HY, Kim MG, Im HJ, Jeon HJ, In JW, Han M, Koo TY, Chung J, Song EY, Ahn C, Yang J. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation. Medicine (Baltimore). 2016 Feb;95(5): e2635. https://doi.org/10.1097/MD.0000000000002635.
  49. Frampton JE. Inebilizumab: First Approval. Drugs. 2020 Aug;80(12):1259-1264. https://doi.org/10.1007/s40265-020-01370-4.
  50. Chavele KM, Merry E, Ehrenstein MR. Cutting Edge: Circulating Plasmablasts Induce the Differentiation of Human T Follicular Helper Cells Via IL-6 Production. J Immunol (2015) 194:2482–5. https://doi.org/4049/jimmunol.1401190.
  51. Vo AA, Choi J, Kim I, Louie S, Cisneros K, Kahwaji J, et al. A Phase I/Ii Trial of the Interleukin-6 Receptor-Specific Humanized Monoclonal (Tocilizumab) + Intravenous Immunoglobulin in Difficult to Desensitize Patients. Transplantation (2015) 99:2356–63. https://doi.org/1097/TP.0000000000000741.
  52. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, et al.. BAFF, a Novel Ligand of the Tumor Necrosis Factor Family, Stimulates B Cell Growth. J Exp Med (1999) 189:1747–56. https://doi.org/1084/jem.189.11.1747.
  53. Mackay F, Browning JL. BAFF: A Fundamental Survival Factor for B Cells. Nature Reviews. Immunology (2002) 2:465–75. https://doi.org/1038/nri844.
  54. Dubey AK, Handu SS, Dubey S, Sharma P, Sharma KK, Ahmed QM. Belimumab: First Targeted Biological Treatment for Systemic Lupus Erythematosus. J Pharmacol Pharmacotherapeutics (2011) 2:317–9. https://doi.org/4103/0976-500X.85930.
  55. Desensitization With Belimumab in Sensitized Patients Awaiting Kidney Transplant. https://clinicaltrials.gov/ct2/show/NCT01025193.

Onconefrologia nel paziente portatore di trapianto di rene: una sfida per il nefrologo trapiantologo

Abstract

L’onconefrologia, un ambito emergente nella medicina moderna, riveste crescente importanza grazie alla sua capacità di affrontare le intricate sfide che intersecano patologie tumorali e renali.
L’incidenza crescente di tumori nei pazienti trapiantati richiede strategie preventive e di monitoraggio accurato. Lo screening pre-trapianto si rivela cruciale, evidenziando la necessità di una valutazione ottimale prima di sottoporre al trapianto soggetti con precedenti oncologici. Il follow-up post-trapianto deve essere personalizzato, con piani di screening su misura che tengano conto della storia oncologica individuale.
La terapia immunosoppressiva, sebbene fondamentale per prevenire il rigetto dell’organo trapiantato, rappresenta un equilibrio delicato tra il controllo della risposta immunitaria al graft e la gestione del rischio oncologico. Gli inibitori dei checkpoint immunitari emergono come una prospettiva affascinante per la terapia oncologica, ma il loro utilizzo nei pazienti trapiantati richiede cautela ed ulteriori ricerche che ne valutino attentamente la sicurezza e l’efficacia, bilanciando i potenziali benefici con il reale rischio di rigetto.
In sintesi, l’onconefrologia è un campo in crescita che richiede un approccio interdisciplinare e una costante ricerca, mirata ad affrontare con successo le complesse sfide connesse alle malattie oncologiche nei pazienti nefropatici e trapiantati.

Parole chiave: Onconefrologia, Trapianto di rene, Terapia immunodepressiva, Inibitori del checkpoint immunitario

Introduzione: l’onconefrologia e le sue prospettive

L’onconefrologia sta emergendo come una disciplina chiave nella medicina moderna, richiedendo specialisti in grado di gestire le complessità delle patologie tumorali e renali.

L’addestramento specifico è limitato, e c’è un’urgenza crescente di formare più onconefrologi per far fronte alla domanda in crescita. L’integrazione di onconefrologi in squadre multidisciplinari è fondamentale per affrontare le innumerevoli sfide legate ai pazienti oncologici con malattia renale, inclusi coloro che hanno ricevuto un trapianto di rene.

La precisione nell’applicazione delle terapie oncologiche richiede una formazione continua specifica, e l’onconefrologia deve essere inclusa nei programmi di formazione specialistica, per mantenere aggiornati i professionisti sulle cure nei pazienti oncologici nel complicato setting della nefrologia.

L’onconefrologia deve anche affrontare sfide come la mancanza di linee guida adeguate e lo sviluppo di nuovi strumenti diagnostici, inoltre la comunicazione tra oncologi e nefrologi risulta essenziale per migliorare i risultati dei pazienti e la gestione delle lesioni renali acute e croniche.

Le sfide poste da questa particolare categoria di pazienti possono essere superate attraverso la collaborazione interdisciplinare precoce e l’uso di criteri di classificazione universali. In definitiva, l’onconefrologia rappresenta un campo in evoluzione che richiede attenzione, formazione e collaborazione per affrontare efficacemente le complessità della gestione delle malattie oncologiche nei pazienti nefropatici e portatori di trapianto di rene.

 

Epidemiologia, mortalità e fattori di rischio del tumore nel paziente portatore di trapianto di rene

Il tumore è una delle principali cause di morte nei pazienti sottoposti a trapianto di rene [1, 2].

Negli studi internazionali, la popolazione dei trapiantati mostra un tasso standardizzato di incidenza (SIR) di neoplasia di 2-4 volte in più rispetto alla popolazione generale, seppur con enormi variabilità in base alla neoplasia considerata [3-9].

L’incidenza all’interno della popolazione trapiantata mostra poi un prevedibile incremento con il passare degli anni, arrivando ad oscillare tra il 10% ed il 15% a circa 15 anni dal trapianto [3, 4].

Risultati simili sono stati riscontrati anche nella popolazione italiana [5, 6]. Questi numeri sono destinati a crescere, anche in considerazione dell’aumento dell’aspettativa di vita dei pazienti trapiantati e della maggiore efficacia delle terapie antirigetto, che permette un incremento della vita media del trapianto e quindi della durata totale di immunosoppressione.

Come è prevedibile, il rischio di mortalità in questi pazienti è più elevato rispetto alla popolazione generale. I dati osservazionali hanno difatti dimostrato che i tassi di mortalità standardizzati sono almeno 1,8-2,5 volte più elevati rispetto alla popolazione generale corrispondente per età e sesso [10, 11]. Questo vale soprattutto per quanto riguarda i linfomi non Hodgkin, i tumori urogenitali ed il melanoma, patologie che mostrano un rischio complessivo di morte che supera di cinque-dieci volte quello di coloro che non hanno ricevuto un trapianto di rene [10].

Diversi fattori di rischio per malattia oncologica sono stati identificati nel paziente trapiantato. Questi possono riguardare il paziente (età anagrafica, etnia, stile di vita e fumo, malattia renale di base, storia di neoplasia, storia di abuso di analgesici, suscettibilità alle infezioni virali, fattori genetici) o possono essere fattori più propriamente trapiantologici (grado di compatibilità immunologica, valore di vPRA, terapia immunosoppressiva) [12-24].

La trasmissione di malignità dal donatore è un evento raro, con un’incidenza stimata tra lo 0,01% e lo 0,05%. Questo rischio varia in base al tipo di neoplasia [25-27]. Tuttavia bisogna evidenziare come il rischio di mortalità sia, in caso di trasmissione, particolarmente elevato, verificandosi in circa il 20% dei soggetti colpiti [26, 27], per cui una scrupolosa valutazione del potenziale donatore d’organo è essenziale per ridurre al minimo questo rischio.

 

Screening pre trapianto e timing di trapianto nel paziente con storia oncologica

Un accurato screening prima del trapianto è fortemente raccomandato dalle principali linee guida, considerando il maggior rischio oncologico evidenziato anche nei pazienti con ESRD, specialmente se sottoposti a terapia dialitica e per alcuni istotipi specifici [28-32].

In aggiunta, non è sempre del tutto chiaro quale sia il momento opportuno per sottoporre al trapianto renale coloro che hanno una storia oncologica, e questo è tuttora motivo di dibattito nella letteratura medica. Infatti, anche se il tumore è stato adeguatamente trattato, il beneficio di un trapianto deve essere bilanciato ad un rischio di una eventuale recidiva, da considerare specialmente in corso di immunodepressione. Diverse linee guida, come ad esempio quelle della KDIGO [28] o quelle di recente formulazione da parte di Al-Adra e colleghi [33], hanno cercato di mettere luce sulla questione.

Le linee guida di Al-Adra e colleghi sono state sviluppate attraverso un consensus conference nel 2019, che ha coinvolto specialisti trapiantologi ed oncologi.

La valutazione del rischio oncologico nel lavoro di Al-Adra si basa sulla stadiazione TNM (tumore, coinvolgimento dei linfonodi regionali, metastasi) unitamente a strumenti di recente sviluppo, come l’analisi dei marcatori tumorali e l’epigenetica.

In generale, i tempi di attesa dalla guarigione sono stati decisi in base alla stadiazione, alle caratteristiche biologiche del tumore e alla probabilità di recidiva. Di conseguenza, sono stati suggeriti tempi di attesa che variano dall’assenza di attesa a 2 anni per i tumori a basso grado, fino a 5 anni per quelli ad alto grado. Per procedere all’eventuale trapianto si è deciso di considerare come cut-off un tasso di sopravvivenza almeno del 80% a 5 anni.

Benché non esaustive, queste raccomandazioni trattano le patologie tumorali più comuni, offrendo così un orientamento al trapiantologo clinico. È importante però ricordare che tali indicazioni si basano principalmente su dati provenienti dalla popolazione generale, vista la limitata disponibilità di evidenze sulle popolazioni trapiantate.

 

Screening nel paziente già sottoposto a trapianto di rene

Come già detto, dopo il trapianto di rene il rischio di tumore è come minimo raddoppiato rispetto alla popolazione generale. Per tale ragione, lo screening in senso oncologico è di vitale importanza. Le raccomandazioni [34, 35] variano tra diverse società, ma in generale lo screening dovrebbe almeno seguire le indicazioni già formulate per la popolazione generale, con alcune importanti eccezioni.

Nello specifico, per i tumori della pelle e delle labbra (tumori cutanei non melanoma), il rischio è considerevolmente elevato [36-43], e la maggior parte degli autori consiglia una valutazione dermatologica annuale, in aggiunta ad un costante e scrupoloso automonitoraggio.

Per quanto riguarda i tumori urologici, non esistono linee guida chiare per lo screening del carcinoma a cellule renali nei reni nativi dopo il trapianto. Tuttavia, si suggerisce di sottoporre i pazienti con malattia cistica acquisita, pregresso carcinoma a cellule renali o abuso di analgesici a controlli ecografici periodici ogni 1-3 anni dopo il trapianto. Inoltre, i pazienti con ematuria di recente insorgenza dovrebbero essere valutati per escludere una eventuale neoplasia urologica.

Altri tumori che meritano un follow-up specifico rispetto alla popolazione generale sono i tumori associati alla relazione tra immunodepressione e virus oncogeni, specialmente HPV, EBV, HHV-8. Tra questi ricordiamo il carcinoma della cervice, il carcinoma anale, la sindrome linfoproliferativa post trapianto (PTLD), il sarcoma di Kaposi ed il già menzionato tumore cutaneo non melanoma.

Nella Tabella I è schematizzato il programma di monitoraggio oncologico del paziente adulto portatore di trapianto di rene adottato dalla Rete Nefrologica Piemonte – Valle d’Aosta e dal Centro trapianti di rene “A. Vercellone” della Città della salute e della scienza di Torino.

Il rapporto costo-efficacia di queste raccomandazioni è comunque oggetto di discussione [8, 43], soprattutto in Paesi che adottano politiche sanitarie differenti dalle nostre.

Infine, al di là delle raccomandazioni generali, è ruolo del nefrologo trapiantologo identificare i pazienti a maggior rischio, ed impostare uno screening oncologico adattato sul singolo paziente. Una rete integrata ed interdisciplinare è necessaria per assicurare una corretta gestione dei casi complessi, ed è in grado di ridurre la morbilità e la mortalità in questi pazienti.

Nella Figura 1 è schematizzata la rete interdisciplinare di assistenza al paziente adulto portatore di trapianto di rene della Città della Salute e della Scienza di Torino.

Tipo di Neoplasia

Accertamenti proposti

Mammella

Mammografia annuale/biennale.

 Cervice 

Citologico cervice ed esame pelvico annuale.

Prostata

Visita annuale (DRE) e PSA in >50 anni.

 Stomaco/Colon-retto

SOF annuale; se positivo: colonscopia; se colonscopia negativa: EGDS.

Epatocellulare (Cirrosi HCV/HBV relata o da altra causa)

ETG semestrale; a-FP semestrale.

Cute

Autoesame mensile; visita dermatologica annuale.

 Kaposi Sarcoma

Autoesame mensile; visita dermatologica annuale, HHV-8 DNA nei soggetti a rischio per regione geografica.

PTLD

EBV-DNA ogni 6-12 mesi, se viremia in incremento progressivo: valutazione ematologica (+ ETG stazioni linfonodali).

Renale (reni nativi)                        

ETG semestrale/annuale. Nei pazienti ADPKD: TC addome mdc biennale/RM senza mdc.

 Polmone

Rx torace annuale.

 Tiroide

ETG tiroide al II anno; successivamente triennale.

Tabella I. Programma di monitoraggio oncologico del paziente adulto portatore di trapianto di rene adottato dalla rete nefrologica Piemonte – Valle d’Aosta.
Figura 1. Rete interdisciplinare adottata dalla Città della Salute e della Scienza di Torino per l’assistenza al paziente adulto portatore di trapianto di rene.
Figura 1. Rete interdisciplinare adottata dalla Città della Salute e della Scienza di Torino per l’assistenza al paziente adulto portatore di trapianto di rene.

 

La terapia Immunosoppressiva

Il principale fattore oncogeno nel paziente portatore di trapianto è rappresentato dall’immunosoppressione [18], intesa come intensità, durata e carico cumulativo [19, 21, 44].

Questa aumenta il rischio tumorale riducendo la sorveglianza immunitaria, compromettendo i meccanismi di difesa contro virus oncogeni e cellule neoplastiche ed anche attraverso vie molecolari specifiche [20, 22-24].

L’importanza del carico totale di immunosoppressione nel rischio oncologico è stata inizialmente evidenziata da dati storici che hanno suggerito come i pazienti sottoposti a trapianto cardiaco mostravano una maggiore incidenza di tumori rispetto ai pazienti sottoposti a trapianto di rene [21, 44]. Studi simili hanno suggerito un rischio maggiore di malignità, in particolare di disturbi linfoproliferativi post-trapianto (PTLD), nei pazienti che hanno ricevuto terapia depletiva linfocitaria [45], ma non è chiaro se il rischio aumenti con l’aumentare delle dosi utilizzate all’induzione [46, 47].

Gli inibitori delle calcineurine, come il tacrolimus e la ciclosporina, sono associati a un aumento del rischio di malignità. Questi farmaci sembrano agire attraverso la produzione aumentata di citochine come il fattore di crescita trasformante (TGF)-beta, il fattore di crescita endoteliale vascolare (VEGF) e IL-6 [20, 22, 23, 48]. Inoltre, questi inibitori riducono la capacità di riparare i danni al DNA indotti dalle radiazioni, evento importante soprattutto nella patogenesi dei tumori della pelle [49]. Alcuni studi evidenziano come dosi di farmaco maggiori siano direttamente correlati ad un maggior rischio di tumore [50, 51].

Gli antimetaboliti come l’azatioprina sono stati implicati nello sviluppo di malignità post-trapianto, in particolare dei tumori della pelle non melanoma [18]. Questo trova le sue motivazioni nella capacità mutagena di questa molecola e soprattutto nella sua capacità di ridurre l’attività di riparazione delle mutazioni del DNA indotte dalle radiazioni contribuendo all’aumento dello sviluppo di instabilità del DNA microsatellite [52, 53]. A differenza dell’azatioprina, gli analoghi del micofenolato (Micofenolato Mofetile, MMF, e Acido Micofenolico, MPA) sembrano associarsi a un rischio di malignità post-trapianto inferiore, con possibili effetti antiproliferativi dovuti all’inibizione dell’enzima inosine monophosphate dehydrogenase [18, 54]. Tuttavia, studi di popolazione suggeriscono che la riduzione del rischio oncologico potrebbe ricondursi almeno in parte alla minor incidenza di rigetto acuto e alla conseguente minore necessità di aumentare le dosi di immunosoppressori [55].

L’utilizzo degli inibitori del mTOR sembra invece ridurre l’incidenza di malignità post-trapianto rispetto ad altri regimi immunosoppressori. Anche se è stato osservato un tasso di mortalità più elevato nei pazienti in trattamento con inibitori di mTOR (prevalentemente per infezioni ed eventi cardiovascolari [56, 57]), il rischio di malignità sembra diminuire con questi farmaci, probabilmente per la loro attività antiproliferativa ed anti-angiogenetica, attività particolarmente evidente contro i tumori cutanei non melanoma [5, 23, 56-65]. In effetti l’everolimus è utilizzato anche per trattare il tumore mammario recettore ormonale-positivo, i tumori neuroendocrini e il carcinoma a cellule renali. Tuttavia, è importante notare che tali farmaci sono associati a un aumento del rischio di rigetto rispetto agli inibitori delle calcineurine [65, 66].

Infine, il belatacept è stato associato a un rischio elevato di disturbi linfoproliferativi post-trapianto, specialmente con coinvolgimento del sistema nervoso centrale. Molti di questi casi si sono verificati in pazienti che erano sieronegativi per il virus di Epstein-Barr, motivo per cui il suo utilizzo in tali individui è sconsigliato [67, 68]. Un piccolo studio monocentrico sembra suggerire una riduzione del rischio oncogeno per quanto riguarda i tumori cutanei [69].

In caso di elevato rischio neoplastico o di effettiva diagnosi oncologica la riduzione della terapia immunodepressiva è quindi una delle prime contromisure che possono essere adottate. La riduzione dei livelli ematici target degli inibitori delle calcineurine, l’eventuale introduzione di un mTOR inibitore, la riduzione o la sospensione dei farmaci antimetaboliti (tra i quali bisognerebbe preferire il micofenolato mofetile o l’Acido micofenolico rispetto alla Azatioprina), la riduzione o la sospensione della terapia corticosteroidea, sono alcune delle contromisure che possono essere adottate. Casi particolarmente gravi potrebbero meritare riduzioni della terapia immunosoppressiva particolarmente aggressive, fino alla completa sospensione. Le principali linee guida internazionali rimangono tuttavia molto vaghe su come modificare la terapia immunodepressiva [34, 70], è ruolo del trapiantologo scegliere lo schema terapeutico ideale per il rischio oncologico del singolo paziente, sia in senso di prevenzione che in corso di terapia oncologica.

 

Inibitori del Checkpoint immunitario nel paziente portatore di trapianto di rene

Gli inibitori dei checkpoint immunitari (ICIs) hanno profondamente rivoluzionato l’approccio alla terapia oncologica, e le indicazioni per il loro utilizzo sono destinate ad estendersi ulteriormente [71]. Tuttavia, rimane ancora poco chiara la sicurezza e l’efficacia di questi farmaci nei pazienti sottoposti a trapianto di organo solido.

Il meccanismo d’azione di questi anticorpi monoclonali prevede infatti una stimolazione dell’attività immunitaria cellulo-mediata, al fine di eliminare le cellule neoplastiche. L’utilizzo di inibitori dei checkpoint immunitari nei pazienti con tumori avanzati che hanno ricevuto un trapianto potrebbe portare a miglioramenti nei risultati terapeutici, ma questo è evidentemente correlato ad un elevato rischio di rigetto [72-74].

Per i pazienti che hanno necessitato di terapie immunosoppressive, alcuni studi suggeriscono che l’efficacia degli inibitori dei checkpoint immunitari (ICI) non risulti eccessivamente influenzata [74-77]. Tuttavia, altri lavori indicano che l’uso precoce di corticosteroidi o l’adozione di terapie immunosoppressive insieme ai corticosteroidi siano associati ad esiti di sopravvivenza più sfavorevoli [78, 79]. Inoltre, nel valutare la possibilità di un nuovo trattamento con immunoterapia per pazienti che abbiano sperimentato eventi avversi immunomediati (irAE), l’uso simultaneo di terapie immunosoppressive è collegato a una ridotta efficacia dell’ICI. Per questo è comune pratica quella di ridurre o sospendere totalmente la terapia immunodepressiva in corso di terapia con questi farmaci, conferendo quindi un netto incremento del rischio di rigetto dell’allotrapianto.

Risultano in corso al momento attuale diversi trial clinici indirizzati proprio a chiarire la sicurezza e l’efficacia di questi farmaci nei pazienti portatori di trapianto di organo solido, alcuni dei quali mirano a valutarne gli outcome in seguito al mantenimento della terapia ID invariata (ACTRN12617000741381, NCT03816332, NCT04339062, NCT03966209, NCT04721132).

 

Conclusione

Non è un compito semplice quello di trovare il giusto equilibrio tra grado efficace di immunosoppressione e basso rischio oncologico. Questa è una sfida quotidiana per il nefrologo trapiantologo, che spesso deve adottare delle scelte terapeutiche di grande peso clinico in assenza di chiare indicazioni da parte delle linee guida. Sono quindi indispensabili ulteriori studi specificatamente rivolti alla popolazione trapiantata, che permettano una migliore comprensione del problema.

 

Bibliografia

  1. Riella LV. Understanding the causes of mortality post-transplantation – there is more than meets the eye. J Bras Nefrol. 2018 Apr-Jun;40(2):102-104. https://doi.org/10.1590/2175-8239-jbn-2018-0002-0003.
  2. Ying T, Shi B, Kelly PJ, et al. Death after Kidney Transplantation: An Analysis by Era and Time Post-Transplant. J Am Soc Nephrol. 2020 Dec;31(12):2887-2899. https://doi.org/10.1681/ASN.2020050566.
  3. Krynitz B, Edgren G, Lindelöf B, et al. Risk of skin cancer and other malignancies in kidney, liver, heart and lung transplant recipients 1970 to 2008–a Swedish population-based study. Int J Cancer. 2013 Mar 15;132(6):1429-38. https://doi.org/10.1002/ijc.27765.
  4. Kasiske BL, Snyder JJ, Gilbertson DT, et al. Cancer after kidney transplantation in the United States. Am J Transplant. 2004 Jun;4(6):905-13. https://doi.org/10.1111/j.1600-6143.2004.00450.x.
  5. Piselli P, Serraino D, Segoloni GP, et al. Immunosuppression and Cancer Study Group. Risk of de novo cancers after transplantation: results from a cohort of 7217 kidney transplant recipients, Italy 1997-2009. Eur J Cancer. 2013 Jan;49(2):336-44. https://doi.org/10.1016/j.ejca.2012.09.013.
  6. Piselli P, Serraino D, Cimaglia C, et al. Italian Transplant and Cancer Cohort Study. Variation in Post-Transplant Cancer Incidence among Italian Kidney Transplant Recipients over a 25-Year Period. Cancers (Basel). 2023 Feb 20;15(4):1347. https://doi.org/10.3390/cancers15041347.
  7. Engels EA, Pfeiffer RM, Fraumeni JF Jr, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011 Nov 2;306(17):1891-901. https://doi.org/10.1001/jama.2011.1592.
  8. Asch WS, Bia MJ. Oncologic issues and kidney transplantation: a review of frequency, mortality, and screening. Adv Chronic Kidney Dis. 2014 Jan;21(1):106-13. https://doi.org/10.1053/j.ackd.2013.07.003.
  9. Dahle DO, Skauby M, Langberg CW, et al. Renal Cell Carcinoma and Kidney Transplantation: A Narrative Review. Transplantation. 2022 Jan 1;106(1):e52-e63. https://doi.org/10.1097/TP.0000000000003762.
  10. Au EH, Chapman JR, Craig JC, et al. Overall and Site-Specific Cancer Mortality in Patients on Dialysis and after Kidney Transplant. J Am Soc Nephrol. 2019 Mar;30(3):471-480. https://doi.org/10.1681/ASN.2018090906
  11. Acuna SA, Fernandes KA, Daly C, et al. Cancer Mortality Among Recipients of Solid-Organ Transplantation in Ontario, Canada. JAMA Oncol. 2016 Apr;2(4):463-9. https://doi.org/10.1001/jamaoncol.2015.5137.
  12. Webster AC, Craig JC, Simpson JM, et al. Identifying high risk groups and quantifying absolute risk of cancer after kidney transplantation: a cohort study of 15,183 recipients. Am J Transplant. 2007 Sep;7(9):2140-51. https://doi.org/10.1111/j.1600-6143.2007.01908.x.
  13. Kliem V, Thon W, Krautzig S, et al. High mortality from urothelial carcinoma despite regular tumor screening in patients with analgesic nephropathy after renal transplantation. Transpl Int. 1996;9(3):231-5. https://doi.org/10.1007/BF00335391.
  14. Kanaan N, Hassoun Z, Raggi C, et al. Long-term Outcome of Kidney Recipients Transplanted for Aristolochic Acid Nephropathy. Transplantation. 2016 Feb;100(2):416-21. https://doi.org/10.1097/TP.0000000000000941.
  15. Dantal J, Hourmant M, Cantarovich D, et al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet. 1998 Feb 28;351(9103):623-8. https://doi.org/10.1016/S0140-6736(97)08496-1.
  16. Lim WH, Chapman JR, Wong G. Peak panel reactive antibody, cancer, graft, and patient outcomes in kidney transplant recipients. Transplantation. 2015 May;99(5):1043-50. https://doi.org/10.1097/TP.0000000000000469.
  17. Hussain SK, Makgoeng SB, Everly MJ, et al. HLA and Risk of Diffuse Large B cell Lymphoma After Solid Organ Transplantation. Transplantation. 2016 Nov;100(11):2453-2460. https://doi.org/10.1097/TP.0000000000001025.
  18. Buell JF, Gross TG, Woodle ES. Malignancy after transplantation. Transplantation. 2005 Oct 15;80(2 Suppl):S254-64. https://doi.org/10.1097/01.tp.0000186382.81130.ba.
  19. Caforio AL, Fortina AB, Piaserico S, et al. Skin cancer in heart transplant recipients: risk factor analysis and relevance of immunosuppressive therapy. Circulation. 2000 Nov 7;102(19 Suppl 3):III222-7. https://doi.org/10.1161/01.cir.102.suppl_3.iii-222.
  20. Hojo M, Morimoto T, Maluccio M, et al. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999 Feb 11;397(6719):530-4. https://doi.org/10.1038/17401.
  21. Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet. 1993 Dec 18-25;342(8886-8887):1514-6. https://doi.org/10.1016/s0140-6736(05)80084-4.
  22. Shihab FS, Bennett WM, Isaac J, et al. Nitric oxide modulates vascular endothelial growth factor and receptors in chronic cyclosporine nephrotoxicity. Kidney Int. 2003 Feb;63(2):522-33. https://doi.org/10.1046/j.1523-1755.2003.00757.x.
  23. Guba M, Graeb C, Jauch KW, et al. Pro- and anti-cancer effects of immunosuppressive agents used in organ transplantation. Transplantation. 2004 Jun 27;77(12):1777-82. https://doi.org/10.1097/01.tp.0000120181.89206.54.
  24. Imao T, Ichimaru N, Takahara S, et al. Risk factors for malignancy in Japanese renal transplant recipients. Cancer. 2007 May 15;109(10):2109-15. https://doi.org/10.1002/cncr.22636.
  25. Myron Kauffman H, McBride MA, et al. Transplant tumor registry: donor related malignancies. Transplantation. 2002 Aug 15;74(3):358-62. https://doi.org/10.1097/00007890-200208150-00011.
  26. Desai R, Collett D, Watson CJ, et al. Cancer transmission from organ donors-unavoidable but low risk. Transplantation. 2012 Dec 27;94(12):1200-7. https://doi.org/10.1097/TP.0b013e318272df41.
  27. Xiao D, Craig JC, Chapman JR, et al. Donor cancer transmission in kidney transplantation: a systematic review. Am J Transplant. 2013 Oct;13(10):2645-52. https://doi.org/10.1111/ajt.12430.
  28. Chadban SJ, Ahn C, Axelrod DA, et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation. 2020 Apr;104(4S1 Suppl 1):S11-S103. HTTPS://DOI.ORG/10.1097/tp.0000000000003136.
  29. Wong G, Staplin N, Emberson J, et al. Chronic kidney disease and the risk of cancer: an individual patient data meta-analysis of 32,057 participants from six prospective studies. BMC Cancer. 2016 Jul 16;16:488. https://doi.org/10.1186/s12885-016-2532-6.
  30. Shebl FM, Warren JL, Eggers PW, et al. Cancer risk among elderly persons with end-stage renal disease: a population-based case-control study. BMC Nephrol. 2012 Jul 26;13:65. https://doi.org/10.1186/1471-2369-13-65.
  31. Vajdic CM, McDonald SP, McCredie MR, et al. Cancer incidence before and after kidney transplantation. JAMA. 2006 Dec 20;296(23):2823-31. https://doi.org/10.1001/jama.296.23.2823.
  32. Inamoto H, Ozaki R, Matsuzaki T, et al. Incidence and mortality patterns of malignancy and factors affecting the risk of malignancy in dialysis patients. Nephron. 1991;59(4):611-7. https://doi.org/10.1159/000186652.
  33. Al-Adra DP, Hammel L, Roberts J, et al. Pretransplant solid organ malignancy and organ transplant candidacy: A consensus expert opinion statement. Am J Transplant. 2021 Feb;21(2):460-474. https://doi.org/10.1111/ajt.16318.
  34. Kasiske BL, Zeier MG, Chapman JR, et al; Kidney Disease: Improving Global Outcomes. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary. Kidney Int. 2010 Feb;77(4):299-311. https://doi.org/10.1038/ki.2009.377.
  35. Kasiske BL, Vazquez MA, Harmon WE, et al. Recommendations for the outpatient surveillance of renal transplant recipients. American Society of Transplantation. J Am Soc Nephrol. 2000 Oct;11 Suppl 15:S1-86.
  36. Ulrich C, Kanitakis J, Stockfleth E, et al. Skin cancer in organ transplant recipients–where do we stand today? Am J Transplant. 2008 Nov;8(11):2192-8. https://doi.org/10.1111/j.1600-6143.2008.02386.x.
  37. Park CK, Fung K, Austin PC, et al. Incidence and Risk Factors of Keratinocyte Carcinoma After First Solid Organ Transplant in Ontario, Canada. JAMA Dermatol. 2019 Sep 1;155(9):1041-1048. https://doi.org/10.1001/jamadermatol.2019.0692.
  38. Iannacone MR, Sinnya S, Pandeya N, et al; STAR Study. Prevalence of Skin Cancer and Related Skin Tumors in High-Risk Kidney and Liver Transplant Recipients in Queensland, Australia. J Invest Dermatol. 2016 Jul;136(7):1382-1386. https://doi.org/10.1016/j.jid.2016.02.804.
  39. Garrett GL, Blanc PD, Boscardin J, et al. Incidence of and Risk Factors for Skin Cancer in Organ Transplant Recipients in the United States. JAMA Dermatol. 2017 Mar 1;153(3):296-303. https://doi.org/10.1001/jamadermatol.2016.4920. Erratum in: JAMA Dermatol. 2017 Mar 1;153(3):357.
  40. Mittal A, Colegio OR. Skin Cancers in Organ Transplant Recipients. Am J Transplant. 2017 Oct;17(10):2509-2530. https://doi.org/10.1111/ajt.14382. Epub 2017 Sep 14.
  41. Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med. 2003 Apr 24;348(17):1681-91. https://doi.org/10.1056/NEJMra022137.
  42. Greenberg JN, Zwald FO. Management of Skin Cancer in Solid-organ Transplant Recipients: A Multidisciplinary Approach. Dermatol Clin. 2011 Apr;29(2):231-41, ix. https://doi.org/10.1016/j.det.2011.02.004.
  43. Wong G, Chapman JR, Craig JC. Cancer screening in renal transplant recipients: what is the evidence? Clin J Am Soc Nephrol. 2008 Mar;3 Suppl 2(Suppl 2):S87-S100. https://doi.org/10.2215/CJN.03320807.
  44. Mihalov ML, Gattuso P, Abraham K, et al. Incidence of post-transplant malignancy among 674 solid-organ-transplant recipients at a single center. Clin Transplant. 1996 Jun;10(3):248-55.
  45. Cherikh WS, Kauffman HM, McBride MA, et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. Transplantation. 2003 Nov 15;76(9):1289-93. https://doi.org/10.1097/01.TP.0000100826.58738.2B.
  46. Bustami RT, Ojo AO, Wolfe RA, et al. Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients. Am J Transplant. 2004 Jan;4(1):87-93. https://doi.org/10.1046/j.1600-6135.2003.00274.x.
  47. Marks WH, Ilsley JN, Dharnidharka VR. Post-transplantation lymphoproliferative disorder in kidney and heart transplant recipients receiving thymoglobulin: a systematic review. Transplant Proc. 2011 Jun;43(5):1395-404. https://doi.org/10.1016/j.transproceed.2011.03.036.
  48. Maluccio M, Sharma V, Lagman M, et al. Tacrolimus enhances transforming growth factor-beta1 expression and promotes tumor progression. Transplantation. 2003 Aug 15;76(3):597-602. https://doi.org/10.1097/01.TP.0000081399.75231.3B.
  49. Herman M, Weinstein T, Korzets A, et al. Effect of cyclosporin A on DNA repair and cancer incidence in kidney transplant recipients. J Lab Clin Med. 2001 Jan;137(1):14-20. https://doi.org/10.1067/mlc.2001.111469.
  50. Dantal J, Hourmant M, Cantarovich D, et al. Effect of long-term immunosuppression in kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet. 1998 Feb 28;351(9103):623-8. https://doi.org/10.1016/S0140-6736(97)08496-1.
  51. Dharnidharka VR, Ho PL, Stablein DM, et al. Mycophenolate, tacrolimus and post-transplant lymphoproliferative disorder: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Transplant. 2002 Oct;6(5):396-9. https://doi.org/10.1034/j.1399-3046.2002.00021.x.
  52. Swann PF, Waters TR, Moulton DC, et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science. 1996 Aug 23;273(5278):1109-11. https://doi.org/10.1126/science.273.5278.1109.
  53. Offman J, Opelz G, Doehler B, et al. Defective DNA mismatch repair in acute myeloid leukemia/myelodysplastic syndrome after organ transplantation. Blood. 2004 Aug 1;104(3):822-8. https://doi.org/10.1182/blood-2003-11-3938.
  54. O’Neill JO, Edwards LB, Taylor DO. Mycophenolate mofetil and risk of developing malignancy after orthotopic heart transplantation: analysis of the transplant registry of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2006 Oct;25(10):1186-91. https://doi.org/10.1016/j.healun.2006.06.010.
  55. Robson R, Cecka JM, Opelz G, et al. Prospective registry-based observational cohort study of the long-term risk of malignancies in renal transplant patients treated with mycophenolate mofetil. Am J Transplant. 2005 Dec;5(12):2954-60. https://doi.org/10.1111/j.1600-6143.2005.01125.x.
  56. Dantal J, Morelon E, Rostaing L, et al; TUMORAPA Study Group. Sirolimus for Secondary Prevention of Skin Cancer in Kidney Transplant Recipients: 5-Year Results. J Clin Oncol. 2018 Sep 1;36(25):2612-2620. https://doi.org/10.1200/JCO.2017.76.6691.
  57. Knoll GA, Kokolo MB, Mallick R, et al. Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ. 2014 Nov 24;349:g6679. https://doi.org/10.1136/bmj.g6679.
  58. Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002 Feb;8(2):128-35. https://doi.org/10.1038/nm0202-128.
  59. Huber S, Bruns CJ, Schmid G, et al. Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int. 2007 Apr;71(8):771-7. https://doi.org/10.1038/sj.ki.5002112.
  60. Campistol JM, Eris J, Oberbauer R, et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol. 2006 Feb;17(2):581-9. https://doi.org/10.1681/ASN.2005090993.
  61. Campistol JM, Gutierrez-Dalmau A, Torregrosa JV. Conversion to sirolimus: a successful treatment for posttransplantation Kaposi’s sarcoma. Transplantation. 2004 Mar 15;77(5):760-2. https://doi.org/10.1097/01.tp.0000115344.18025.0b.
  62. Kahan BD, Yakupoglu YK, Schoenberg L, et al. Low incidence of malignancy among sirolimus/cyclosporine-treated renal transplant recipients. Transplantation. 2005 Sep 27;80(6):749-58. https://doi.org/10.1097/01.tp.0000173770.42403.f7.
  63. Yanik EL, Siddiqui K, Engels EA. Sirolimus effects on cancer incidence after kidney transplantation: a meta-analysis. Cancer Med. 2015 Sep;4(9):1448-59. https://doi.org/10.1002/cam4.487.
  64. Yanik EL, Gustafson SK, Kasiske BL, et al. Sirolimus use and cancer incidence among US kidney transplant recipients. Am J Transplant. 2015 Jan;15(1):129-36. https://doi.org/10.1111/ajt.12969.
  65. Lim WH, Eris J, Kanellis J, et al. A systematic review of conversion from calcineurin inhibitor to mammalian target of rapamycin inhibitors for maintenance immunosuppression in kidney transplant recipients. Am J Transplant. 2014 Sep;14(9):2106-19. https://doi.org/10.1111/ajt.12795.
  66. Lim LM, Kung LF, Kuo MC, Huang AM, Kuo HT. Timing of mTORI usage and outcomes in kidney transplant recipients. Int J Med Sci. 2021 Jan 9;18(5):1179-1184. https://doi.org/10.7150/ijms.53655.
  67. Vincenti F, Charpentier B, Vanrenterghem Y, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010 Mar;10(3):535-46. https://doi.org/10.1111/j.1600-6143.2009.03005.x.
  68. Vincenti F, Rostaing L, Grinyo J, et al. Belatacept and Long-Term Outcomes in Kidney Transplantation. N Engl J Med. 2016 Jan 28;374(4):333-43. https://doi.org/10.1056/NEJMoa1506027. Erratum in: N Engl J Med. 2016 Feb 18;374(7):698.
  69. Wang M, Mittal A, Colegio OR. Belatacept reduces skin cancer risk in kidney transplant recipients. J Am Acad Dermatol. 2020 Apr;82(4):996-998. https://doi.org/10.1016/j.jaad.2019.09.070.
  70. Bia M, Adey DB, Bloom RD, et al. KDOQI US commentary on the 2009 KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Kidney Dis. 2010 Aug;56(2):189-218. https://doi.org/10.1053/j.ajkd.2010.04.010.
  71. Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol. 2021 Jan 24;16:223-249. https://doi.org/10.1146/annurev-pathol-042020-042741.
  72. Cui X, Yan C, Xu Y, et al. Allograft rejection following immune checkpoint inhibitors in solid organ transplant recipients: A safety analysis from a literature review and a pharmacovigilance system. Cancer Med. 2023 Mar;12(5):5181-5194. https://doi.org/10.1002/cam4.5394.
  73. Manohar S, Thongprayoon C, Cheungpasitporn W, et al. Systematic Review of the Safety of Immune Checkpoint Inhibitors Among Kidney Transplant Patients. Kidney Int Rep. 2019 Dec 7;5(2):149-158. https://doi.org/10.1016/j.ekir.2019.11.015.
  74. Rünger A, Schadendorf D, Hauschild A, et al. Immune checkpoint blockade for organ-transplant recipients with cancer: A review. Eur J Cancer. 2022 Nov;175:326-335. https://doi.org/10.1016/j.ejca.2022.08.010.
  75. Horvat TZ, Adel NG, Dang TO, et al. Immune-Related Adverse Events, Need for Systemic Immunosuppression, and Effects on Survival and Time to Treatment Failure in Patients With Melanoma Treated With Ipilimumab at Memorial Sloan Kettering Cancer Center. J Clin Oncol. 2015 Oct 1;33(28):3193-8. https://doi.org/10.1200/JCO.2015.60.8448.
  76. Murakami N, Mulvaney P, Danesh M, et al; Immune Checkpoint Inhibitors in Solid Organ Transplant Consortium. A multi-center study on safety and efficacy of immune checkpoint inhibitors in cancer patients with kidney transplant. Kidney Int. 2021 Jul;100(1):196-205. https://doi.org/10.1016/j.kint.2020.12.015.
  77. Carroll RP, Boyer M, Gebski V, et al. Immune checkpoint inhibitors in kidney transplant recipients: a multicentre, single-arm, phase 1 study. Lancet Oncol. 2022 Aug;23(8):1078-1086. https://doi.org/10.1016/S1470-2045(22)00368-0.
  78. Bai X, Hu J, Betof Warner A, et al. Early Use of High-Dose Glucocorticoid for the Management of irAE Is Associated with Poorer Survival in Patients with Advanced Melanoma Treated with Anti-PD-1 Monotherapy. Clin Cancer Res. 2021 Nov 1;27(21):5993-6000. https://doi.org/10.1158/1078-0432.CCR-21-1283.
  79. van Not OJ, Verheijden RJ, van den Eertwegh AJM, et al. Association of Immune-Related Adverse Event Management With Survival in Patients With Advanced Melanoma. JAMA Oncol. 2022 Dec 1;8(12):1794-1801. https://doi.org/10.1001/jamaoncol.2022.5041.

Candidato al trapianto di rene con cancro: come procedere?

Abstract

L’incidenza dei pazienti con insufficienza renale end stage hanno un rischio aumentato di sviluppare alcune neoplasie. Questo rischio è proporzionale al livello di compromissione funzionale. Una incidenza aumentata di tumori si ha anche nei pazienti in trattamento dialitico. È interessante notare che, dopo un periodo iniziale successivo al trapianto di rene, si osserva un calo nel numero di decessi legati a neoplasie. Tuttavia, una visione a lungo termine rivela un progressivo aumento del rischio di sviluppare tumori anche nel paziente portatore di trapianto renale. Il processo di valutazione della candidatura al trapianto è approfondito e tiene conto di diversi fattori, tra cui l’anamnesi neoplastica del soggetto e le implicazioni della terapia immunosoppressiva. La terapia immunosoppressiva è uno strumento a doppio taglio nella gestione delle complicanze post-trapianto, poiché può favorire ambienti che facilitano la crescita della neoplasia. È fondamentale rivalutare, con l’ausilio di un parere oncologico, il tempo di attesa che intercorre tra la guarigione del cancro e l’inserimento nella lista per il trapianto di rene, sulla base dei dati clinici e del follow-up. Indipendentemente dal tipo di tumore, la necessità di trattare e ottenere la remissione ritarda il processo di inserimento nell’elenco, allungando di conseguenza il tempo trascorso con la malattia renale allo stadio terminale e sottoposto a dialisi. Questi fattori sono correlati ad un aumento della mortalità, ad un aumento del rischio di malattie cardiovascolari e alla perdita del trapianto.

Parole chiave: trapianto renale, tumore, terapia immunosoppressiva

Rischio oncologico nel paziente con malattia renale

I pazienti che soffrono di malattia renale terminale si trovano di fronte ad un incremento significativo del rischio di sviluppare neoplasie, in confronto a individui con una funzione renale normale, trovandosi più esposti ad alcuni specifici tipi di tumori.

Un contributo significativo a questa area di studio proviene da un’analisi condotta da William T. Lowrance e collaboratori, basata su un ampio campione retrospettivo di oltre un milione di adulti seguiti dal 2000 al 2008. In questa ricerca, emerge chiaramente come il rischio associato ad alcune neoplasie cresca parallelamente al progredire della malattia renale cronica, evidenziando come una diminuzione del tasso di filtrazione glomerulare (eGFR) sia correlata ad un aumento del rischio di neoplasia renale e, a valori inferiore di 30 ml/min per 1,73 m², anche ad un rischio maggiore di cancro uroteliale. D’altro canto, non è stata riscontrata una correlazione significativa con altri tipi di tumori, tra cui quelli della prostata, del seno e del polmone [1].

Rivolgendo lo sguardo alla popolazione in dialisi, notiamo come diversi registri nazionali abbiano contribuito a delineare lo scenario attuale. Un dato interessante emerge da uno studio taiwanese pubblicato su “PLOS ONE”, dove la popolazione in dialisi mostra un’incidenza di neoplasie significativamente superiore rispetto a un gruppo di controllo abbinato per età e sesso, con un hazard ratio di 3,43. Questo rischio si concentra principalmente sul rene e sull’apparato urinario [2].

Focalizzandoci sul contesto italiano, grazie ad uno studio recente condotto da Taborelli e collaboratori, possiamo confermare una tendenza simile, con un incremento del rischio neoplastico tra i pazienti in dialisi. Tra questi, si osserva una presenza più marcata di tumori della pelle, delle mucose e del rene. Inoltre, non sono rare neoplasie tipiche dei pazienti trapiantati, come il sarcoma di Kaposi e il mieloma multiplo [3].

In una ricerca pubblicata su JASN da Eric H. Au e collaboratori, viene messa in luce una dinamica interessante: se nei primi anni dall’inizio della dialisi si riscontra un aumento dell’incidenza di morte per neoplasia, questo trend si inverte nel post-trapianto. Con il passare degli anni, infatti, il rischio di morte per tumore cresce progressivamente. È interessante notare come il panorama delle neoplasie mortali muti sensibilmente: mentre nel paziente in dialisi predominano il mieloma multiplo, il tumore del polmone e il tumore renale, nel paziente trapiantato si riscontrano più frequentemente linfoma non-Hodgkin, tumore del polmone e tumore del colon-retto [4].

Il confronto con la popolazione generale svela un rapporto di mortalità standardizzato (SMR) pari a 2,6 per tutti i tipi di tumori nei pazienti in dialisi, un dato che cresce ulteriormente nei casi correlati direttamente alla malattia renale terminale. In modo simile, anche i pazienti trapiantati mostrano un SMR elevato, legato soprattutto ai tumori indotti dalla terapia immunosoppressiva.

Una riflessione attenta richiede anche l’analisi delle cause di morte post-trapianto: i tumori rappresentano la seconda causa di morte, paragonabile alle infezioni, e seguono gli eventi cardiovascolari, manifestandosi mediamente dopo circa 8,2 anni dal trapianto. È importante sottolineare che, con il passare del tempo, tanto l’incidenza di diagnosi di neoplasia quanto la mortalità per tale causa aumentano, in linea con la crescita della mortalità per tutte le altre cause [5, 6].

Guardando alla popolazione di pazienti anziani trapiantati, un gruppo in crescita costante, notiamo come le neoplasie si attestino come seconda causa di morte, superando le malattie cardiovascolari e posizionandosi subito dopo le infezioni [7].

 

Valutazione candidato a trapianto renale con storia di neoplasia

Nella valutazione per l’inserimento in lista per trapianto renale di un paziente con anamnesi positiva per neoplasia, sono da considerare alcuni aspetti, divisibili in 4 gruppi [8]. Per quanto riguarda la priorità, a differenza di altri trapianti quali ad esempio il cuore o fegato, è difficile che si presenti un’urgenza che richieda il trapianto di rene che prescinda una valutazione dello stadio del tumore o del follow-up libero da malattia neoplastica, quale la mancanza totale di accesso per dialisi.

Il secondo gruppo di fattori riguarda quelli legati alla neoplasia. È importante valutare la risposta al trattamento, l’andamento del follow-up, eventuali recidive, lo stadio e l’aggressività del tumore, il tempo trascorso dalla completa remissione.
Il terzo gruppo riguarda invece i fattori legati al paziente, al suo stile di vita, fattori modificabili o non modificabili nel post trapianto e l’aspettativa di vita in termini anche etici di ottimizzazione e gestione delle risorse disponibili oltre all’obiettivo di apporre un beneficio concreto rispetto alla permanenza in dialisi.

L’ultimo gruppo di aspetti da considerare è quello legato alla terapia immunosoppressiva. Infatti bisogna ragionare sugli effetti che la terapia può esercitare nel determinare una recidiva, se ci sono delle differenze organo-specifiche dell’immunosoppressione e anche in questo caso il tempo che passa dal momento del completamento del trattamento antineoplastico che il paziente potrebbe aver eseguito.

La terapia immunosoppressiva determina un’alterazione della funzionalità e del fenotipo del sistema immunitario, con relativa riduzione dell’efficienza nel monitoraggio e prevenzione dell’evoluzione in senso tumorale delle cellule. Le cellule dendritiche e le natural killer si riducono di numero e aumenta il numero delle cellule T senescenti e dei Treg.

In particolare, l’utilizzo degli inibitori della calcineurina, ampiamente utilizzati per l’apporto significativo che hanno dato in termini di riduzione del rigetto e il conseguente aumento della sopravvivenza del graft, determina una riduzione della capacità di riparazione del DNA, oltre a un ambiente citochinico che favorisce lo sviluppo del tumore.
Si verifica un aumento del VEGF, del TGFbeta, del segnale RAS-RAF, dell’IL-6.

Questi portano rispettivamente ad un aumento della neoangiogenesi tumorale, della crescita del tumore, dello sviluppo del carcinoma a cellule renali e dei disordini linfoproliferativi post-trapianto mediante proliferazione delle cellule B.

Lo stato di immunosoppressione porta inoltre all’aumento della replicazione di virus intracellulari o comunque associati ad alterazioni del DNA come l’epstein Barr, l’Herpes virus 8, il Papilloma virus, i virus dell’epatite B e C, il polioma virus delle cellule di Merkel  che determinano un aumento dell’incidenza di alcune neoplasie quali, rispettivamente, le malattie linfoproliferative post-trapianto, il sarcoma di Kaposi e il linfoma primitivo effusivo, tumori di testa e collo, della pelle e dell’apparato genitale, il carcinoma epatocellulare e il carcinoma a cellule di Merkel [9].

 

Outcome post-trapianto dei pazienti con storia di neoplasia

Dagli anni ’90 a oggi il numero di pazienti con storia di neoplasia sottoposti a trapianto di rene è cresciuto costantemente, fino a decuplicare, costituendo nel 2016 l’8,3% della popolazione trapiantata negli Stati Uniti  rispetto allo 0,9% del 1994 [10].
Questo riguardava in particolare i pazienti con storia di tumore solido o tumore cutaneo non-melanoma.
In un lavoro di Acuna S. e colleghi del 2016, analizzati più studi in merito, si considera quanto la storia pregressa di neoplasia sia un fattore di rischio di mortalità  post trapianto non solo per quanto riguarda il rischio di morte per neoplasia, con un rapporto di rischio (hazard ratio, HR) pari a 3,13 rispetto a trapiantati senza storia pre-trapianto di neoplasia, ma anche per tutte le cause di morte (HR 1,51) [11].

Due anni più tardi, nel 2018, sempre Acuna approfondisce questo tema, analizzando i pazienti sottoposti a trapianto di organo solido nel ventennio dal 1991 al 2010 in Ontario: i pazienti con storia pregressa di neoplasia presentavano un rischio dell’85% per la mortalità cancro-specifica e del 29% della mortalità per tutte le cause rispetto a chi non aveva storia di neoplasia.

Ma se si approfondisce dal punto di vista clinico, si evince che il rischio si stratifica a seconda del grado di malignità della neoplasia. I pazienti con storia di neoplasia considerata ad alto rischio presentavano un rischio di mortalità maggiore. Il divario si appiana se si pongono a confronto pazienti senza storia pre-trapianto di neoplasia e pazienti con storia di neoplasie considerate a basso rischio (ad esempio il tumore mammario e renale).

Questo risulta fondamentale nella valutazione pre-trapianto dei pazienti, richiedendo inoltre un confronto multidisciplinare con la figura dell’oncologo al fine di meglio valutare il tempo propizio per l’inserimento in lista.

Fino ad ora le Linee Guida, seppur non mandatorie ma indicative, hanno posto uno spartiacque di attesa per l’inserimento in lista di almeno 5 anni dalla diagnosi di neoplasie considerate a più alto rischio nei pazienti in remissione dal tumore.
Questo atteggiamento, corretto o meno, ha portato ad una aumentata mortalità per neoplasia o per tutte le cause post trapianto (HR 2,32 e 1,53 rispettivamente) rispetto ai pazienti senza storia di neoplasia e comunque maggiore rispetto ai pazienti con storia di neoplasia considerata a basso rischio come già analizzato in precedenza.

Ciò pone l’interrogativo se l’aumentata mortalità sia condizionata dal tempo di permanenza con un quadro di malattia terminale in attesa di trapianto piuttosto che dalla malignità della neoplasia.

Da questo quesito risulta critico il tempo di inserimento in lista trapianto, soppesando il rischio di recidiva e la gestione chemioterapica in concomitanza con la terapia immunosoppressiva dagli effetti di una insufficienza d’organo sull’outcome.
Analizzando poi gli outcome dei pazienti trapiantati dopo cinque anni dalla diagnosi di neoplasia, emerge che poco meno di 1 paziente su 6 è deceduto senza presentare recidiva. L’incidenza cumulativa della recidiva è stata del 14,4% che stratificata per neoplasia ad alto e basso rischio è rispettivamente del 21,1% e del 9,2% [12].

Prendendo in considerazione la popolazione dialitica, come si evince da lavori italiani, anche in dialisi vi è un rischio neoplastico. In particolare, l’incidenza cumulativa di sviluppare una neoplasia dall’inizio della dialisi è del 9,8% a 5 anni e del 13,9% a 10 anni. Tale rischio si riscontra maggiormente nella popolazione dialitica più giovane, soprattutto rispetto alla controparte della popolazione generale [13].

 

Timing di inserimento in lista trapianto renale

Considerando le linee guida KDIGO per il candidato a trapianto renale, si pone l’accento e si ribadisce quanto già analizzato: l’inserimento in lista d’attesa e quindi il trapianto dopo remissione della neoplasia dopo terapia dipende dal tipo di tumore e lo stadio.

Questa valutazione necessita del supporto dello specialista oncologo, oltre ad altre figure professionali che accompagnano il follow-up e la gestione nefrologica. Test molecolari, studi sulla genomica possono essere di aiuto nel paziente oncologico ai fini prognostici. Per alcuni tumori, sulla base dello stadio, il trapianto risulta controindicato (ad esempio il melanoma invasivo, il tumore anaplastico della tiroide).

Considerando piuttosto che anche il paziente dializzato presenta un rischio neoplastico superiore alla popolazione generale, così come di mortalità per tutte le cause, sarebbe opportuno, nella valutazione per inserimento in lista, valutare quelli che sono i benefici del trapianto a seguito del recupero della funzione renale in termini non solo di qualità di vita, ma anche di aspettativa di vita, indipendentemente dalla eventuale storia pregressa di neoplasia.

Infatti, la mortalità per infezione in dialisi è pari a 30,5 persone per mille/anno rispetto alle 6,8 in trapianto mentre, il tasso di mortalità per neoplasia del paziente dializzato è di 14 persone per mille/anno rispetto al 4,6 dopo il trapianto renale [13].

Un tempo di attesa di 2 anni tra il trattamento del tumore e il trapianto di rene è consigliato per la maggior parte delle neoplasie.  Nessun tempo di attesa è richiesto per: riscontro incidentale di carcinoma renale, carcinomi in situ, neoplasie focali e isolate, tumore vescicale di basso grado, carcinoma a cellule basali della cute. Per neoplasie quali la maggior parte dei melanomi, carcinomi mammari e colorettali è richiesto un tempo di attesa maggiore di 2 anni [12].

 

Conclusioni

L’outcome di pazienti con storia di neoplasia pre-trapianto considerata a basso rischio risulta sovrapponibile a quello di pazienti senza precedente storia di tumore. D’altro canto, i pazienti con storia precedente di neoplasia considerata ad alto rischio hanno presentato un outcome peggiore, indipendentemente dal tempo intercorso dalla diagnosi di tumore e il trapianto. Il rischio di recidiva neoplastica pare dunque essere condizionato dal tipo di tumore piuttosto che dal tempo che intercorre dalla guarigione. È opportuno riconsiderare sulla base dei dati clinici e del follow-up, con l’ausilio di un parere oncologico, il tempo di attesa tra la guarigione dal tumore e l’inserimento in lista per trapianto renale. Prescindendo dal tipo di tumore, la necessità di trattare e portare a remissione la neoplasia determina un ritardo nell’inserimento in lista attiva e dunque a un aumento del tempo trascorso con una malattia renale terminale e in dialisi. Questi aspetti sono associati, tra i fattori che determinano un’aumentata mortalità, ad un aumentato rischio di malattia cardiovascolare e perdita del graft.

 

Bibliografia

  1. Lowrance, W. T., Ordoñez, J., Udaltsova, N., Russo, P., & Go, A. S. (2014). CKD and the risk of incident cancer. Journal of the American Society of Nephrology, 25(10), 2327–2334. https://doi.org/10.1681/ASN.2013060604
  2. Lin, M. Y., Kuo, M. C., Hung, C. C., Wu, W. J., Chen, L. T., Yu, M. L., Hsu, C. C., Lee, C. H., Chen, H. C., & Hwang, S. J. (2015). Association of dialysis with the risks of cancers. PLoS ONE, 10(4). https://doi.org/10.1371/journal.pone.0122856
  3. Taborelli, M., Toffolutti, F., del Zotto, S., Clagnan, E., Furian, L., Piselli, P., Citterio, F., Zanier, L., Boscutti, G., Serraino, D., Shalaby, S., Petrara, R., Burra, P., Zanus, G., Zanini, S., Rigotti, P., Rendina, M., di Leo, A., Schena, F. P., di Cicco, M. (2019). Increased cancer risk in patients undergoing dialysis: A population-based cohort study in North-Eastern Italy. BMC Nephrology, 20(1). https://doi.org/10.1186/s12882-019-1283-4
  4. Au, E. H., Chapman, J. R., Craig, J. C., Lim, W. H., Teixeira-Pinto, A., Ullah, S., McDonald, S., & Wong, G. (2019). Overall and site-specific cancer mortality in patients on dialysis and after kidney transplant. Journal of the American Society of Nephrology, 30(3), 471–480. https://doi.org/10.1681/ASN.2018090906
  5. Van de Wetering, J., Roodnat, J. I., Hemke, A. C., Hoitsma, A. J., & Weimar, W. (2010). Patient survival after the diagnosis of cancer in renal transplant recipients: A nested case-control study. Transplantation, 90(12), 1542–1546. https://doi.org/10.1097/TP.0b013e3181ff1458
  6. Villeneuve, P. J., Schaubel, D. E., Fenton, S. S., Shepherd, F. A., Jiang, Y., & Mao, Y. (2007). Cancer incidence among Canadian kidney transplant recipients. American Journal of Transplantation, 7(4), 941–948. https://doi.org/10.1111/j.1600-6143.2007.01736.x
  7. S So et al. Kidney International Reports (2021) 6, 727-736
  8. Al-Adra, D. P., Hammel, L., Roberts, J., Woodle, E. S., Levine, D., Mandelbrot, D., Verna, E., Locke, J., D’Cunha, J., Farr, M., Sawinski, D., Agarwal, P. K., Plichta, J., Pruthi, S., Farr, D., Carvajal, R., Walker, J., Zwald, F., Habermann, T., … Watt, K. D. (2021). Pretransplant solid organ malignancy and organ transplant candidacy: A consensus expert opinion statement. In American Journal of Transplantation (Vol. 21, Issue 2, pp. 460–474). Blackwell Publishing Ltd. https://doi.org/10.1111/ajt.16318
  9. Livingston-Rosanoff, D., Foley, D. P., Leverson, G., & Wilke, L. G. (2019). Impact of Pre-Transplant Malignancy on Outcomes After Kidney Transplantation: United Network for Organ Sharing Database Analysis. Journal of the American College of Surgeons, 229(6), 568–579. https://doi.org/10.1016/j.jamcollsurg.2019.06.001
  10. Acuna, S. A., Fernandes, K. A., Daly, C., Hicks, L. K., Sutradhar, R., Kim, S. J., & Baxter, N. N. (2016). Cancer mortality among recipients of solid-organ transplantation in Ontario, Canada. JAMA Oncology, 2(4), 463–469. https://doi.org/10.1001/jamaoncol.2015.5137
  11. Acuna, S. A., Sutradhar, R., Kim, S. J., & Baxter, N. N. (2018). Solid Organ Transplantation in Patients with Preexisting Malignancies in Remission: A Propensity Score Matched Cohort Study. Transplantation, 102(7), 1156–1164. https://doi.org/10.1097/TP.0000000000002178
  12. Chadban SJ, Ahn C, Axelrod DA, Foster BJ, Kasiske BL, Kher V, Kumar D, Oberbauer R, Pascual J, Pilmore HL, Rodrigue JR, Segev DL, Sheerin NS, Tinckam KJ, Wong G, Knoll GA. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation. 2020 Apr;104(4S1 Suppl 1):S11-S103. https://doi.org/10.1097/TP.0000000000003136.
  13. Vogelzang, J. L., van Stralen, K. J., Noordzij, M., Diez, J. A., Carrero, J. J., Couchoud, C., Dekker, F. W., Finne, P., Fouque, D., Heaf, J. G., Hoitsma, A., Leivestad, T., de Meester, J., Metcalfe, W., Palsson, R., Postorino, M., Ravani, P., Vanholder, R., Wallner, M. Jager, K. J. (2015). Mortality from infections and malignancies in patients treated with renal replacement therapy: Data from the ERA-EDTA registry. Nephrology Dialysis Transplantation, 30(6), 1028–1037. https://doi.org/10.1093/ndt/gfv007

Immunosuppressive therapy reduction and early post-infection graft function in kidney transplant recipients with COVID-19

Abstract

Background: Kidney transplant (KT) recipients with COVID-19 are at high risk of poor outcomes due to the high burden of comorbidities and immunosuppression. The effects of immunosuppressive therapy (IST) reduction are unclear in patients with COVID-19.
Methods: A retrospective study on 45 KT recipients followed at the University Hospital of Modena (Italy) who tested positive for COVID-19 by RT-PCR analysis.
Results: The median age was 56.1 years (interquartile range,[IQR] 47.3-61.1), with a predominance of males (64.4%). Kidney transplantation vintage was 10.1 (2.7-16) years, and 55.6 % of patients were on triple IST before COVID-19. Early immunosuppression minimization occurred in 27 (60%) patients (reduced-dose IST group) and included antimetabolite (88.8%) and calcineurin inhibitor withdrawal (22.2%). After SARS-CoV-2 infection, 88.9% of patients became symptomatic and 42.2% required hospitalization. One patient experienced irreversible graft failure. There were no differences in serum creatinine level and proteinuria in non-hospitalized patients before and post-COVID-19, whereas hospitalized patients experienced better kidney function after hospital discharge (P=0.019). Overall mortality was 17.8%. without differences between full- and reduced-dose IST. Risk factors for death were age (odds ratio [OR]: 1.19; 95%CI: 1.01-1.39), and duration of kidney transplant (OR: 1.17; 95%CI: 1.01-1.35). One KT recipient developed IgA glomerulonephritis and two ones experienced symptomatic COVID-19 after primary infection and SARS-CoV-2 mRNA vaccine, respectively.
Conclusions: Despite the reduction of immunosuppression, COVID-19 affected the survival of KT recipients. Age of patients and time elapsed from kidney transplantation were independent predictors of death . Early kidney function was favorable in most survivors after COVID-19.

Keywords: COVID-19, kidney transplant, immunosuppressive therapy, graft function, proteinuria, mortality, transplant, SARS-COV-2, reinfection

Ci spiace, ma questo articolo è disponibile soltanto in inglese.

Introduction

Since SARS CoV-2 infection was first identified in December 2019, the pandemic spread quickly around the world, with a disruptive impact on social and economic life. This virus yielded several new challenges to our healthcare systems that had to cope with an increased rate of morbidity and mortality among the most vulnerable populations [1]. Kidney transplant (KT) recipients are a subset of the population at high risk of severe COVID-19 due to the high burden of comorbidities and the cumulative side effects of immunosuppressive therapy (IST) [2]. Data collected so far show that transplant recipients are extremely susceptible to the SARS-CoV-2 infection, much more than the general population [3, 4]. The causes are multiple, but principally revolve around the use of long-term IST.

Despite the great emphasis on early IST reduction to face the potentially lethal consequences of COVID-19, no confirming data supports its beneficial effect in terms of survival or clinical manifestations. Additional uncertainty arises from the recent literature reporting that a tempered immune response is thought to prevent COVID‐19–induced systemic inflammatory syndrome. To date, data regarding early graft outcomes after COVID-19 are scarce [5]. It is worth noting that graft survival may be threatened by non-reversible episodes of kidney injury [6, 7]. Lastly, a concerning issue may be the hyporesponsiveness to anti-SARS-CoV-2 vaccination [8, 9]. Numerous studies have confirmed that KT recipients have a blunted immune response to mRNA vaccines [10]. Only 48% of patients were able to develop a protective serologic response to SARS-CoV-2 [11]. Caillard et al [12] reported that about one-third of kidney transplant patients had severe manifestations, including a fatal outcome, despite COVID-19 vaccination. This group of patients is therefore expected to remain vulnerable to the severe complications of COVID-19 until new strategies will be implemented to reduce the susceptibility of these subjects.

Considering all the uncertainties in the management of KT recipients and the high risk of severe COVID-19 manifestations within this cohort of patients, we report our experience in managing KT recipients with COVID-19. In particular, we focus on the impact of early IST reduction, and early graft function after the resolution of the infection.

 

Material and methods

Kidney transplant outpatient clinic

This kidney transplant outpatient clinic follows more than 500 KT recipients, including combined liver and pancreas-kidney transplantation. Outpatient service was delivered by a senior nephrologist with experience in kidney transplantation, one fellow and three nurses. A 24-h, 7/7 days per week service was available for KT recipients in case of kidney-related pathologic processes (anuria, fluid overload) or infections. This service was also offered to the subjects transplanted in our Center but living far away from it.

During COVID-19 all the patients were instructed to call the clinic in case of COVID-19 symptoms. Despite the reduction of non-essential healthcare services, our outpatient clinic continued to deliver care to KT recipients, adopting all the containment measures (triage at entry, masking, social distancing and hands hygiene) to prevent COVID-19 diffusion. A telephonic triage was performed for all patients before reaching the hospital to intercept paucisymptomatic patients.

Patients with symptoms were invited to perform nasal swabs using RT-PCR and were visited in a dedicated room to assess vital parameters and clinical conditions. According to the severity of the symptoms, patients were sent home or to the emergency room. To reduce the workload of the emergency room, patients were managed as outpatients unless they developed severe symptoms that required hospital admission. The monitoring of noncritical patients was mostly performed via phone calls and emails.

According to our internal protocol and taking into account the opinions of European experts [13, 14], immunosuppression was modulated as follow:

  • for asymptomatic or mild COVID-19 patients (i.e., mild upper respiratory and/or gastrointestinal symptoms, temperature <38°C without dyspnea) in triple therapy (calcineurin-inhibitors [CNI] + mycophenolate acid [MPA]/azathioprine [AZA] + steroids), MPA or AZA was withdrawn, and a dual therapy (CNI + steroid) was continued. If the patients were on dual therapy (CNI + mammalian target of rapamycin inhibitor [mTOR-i] or CNI + MPA), MPA/mTOR was withdrawn and replaced with a low dose of steroids (i.e., methylprednisolone 4 or 8 mg once-daily).
  • for moderate (signs and symptoms of lower respiratory disease or saturation of oxygen [SpO2] ≥94% on room air at sea level) and severe COVID-19 (SpO2 <94% on room air at sea level, a ratio of arterial partial pressure of oxygen to fraction of inspired oxygen [PaO2/FiO2] <300 mm Hg, respiratory frequency >30 breaths per minute, or lung infiltrates >50%) all immunosuppressors, but steroids, were stopped. The prescription of anti-inflammatory and immunomodulant steroid therapy for symptomatic COVID-19 patients (dexamethasone at a dose of 6 mg once daily for up to 10 days) was not part of the anti-rejection therapy and was administered by COVID-19 experts.

COVID-19 population

The study population was comprised of kidney transplant recipients with COVID-19 with a complete follow-up, including death or discharge from hospital.

We retrospectively reviewed the electronic charts of all KT recipients with COVID-19 from March 7, 2020, to June 25, 2021. During this period we performed 144 nasopharyngeal swabs. The diagnosis of COVID-19 was performed through reverse transcriptase-polymerase chain reaction (RT-PCR) assay on a nasopharyngeal swab. We excluded patients aged <18 years. Kidney function was estimated by glomerular fraction rate (eGFR) using the CKD-EPI equation. Occasionally, some data were missing for patients admitted to a hospital located far from our Center.

This study has been authorized by the local Ethical Committee of Emilia Romagna (n. 839/2020). The study protocol complies with the guidelines for human studies and includes evidence that the research was conducted ethically in accordance with the World Medical Association Declaration of Helsinki.

Statistical analysis

Baseline characteristics were described using median (interquartile range [IQR]) or frequencies, as appropriate. The chi-square or Fisher’s test, and student’s t-test were used to compare categorical and continuous variables between groups, respectively. Univariate and multivariate logistic regressions were performed to test the association between mortality and baseline patient characteristics. Variables that were significant on univariate analysis (P=<0.05) were entered into the multivariate model to identify independent predictors. Results were expressed as odds ratios (OR) and 95% confidence intervals (CI). Univariate and multivariate logistic regression analysis determined risk factors for death. A P value of <0.05 was considered statistically significant. All statistical analyses were performed using SPSS® statistical software.

 

Results

Characteristics of COVID-19 population

From the beginning of the COVID-19 pandemic in Italy, 45 KT recipients followed in our center contracted COVID-19. The demographic and clinical characteristics of these patients are detailed in Table I. This group of patients included two (4.4%) combined liver-kidney and one (2.2%) heart-kidney transplant recipient. Seven (15.5%) patients were hospitalized in another structure because they lived far from our Center.

Variable All patients
(n.=45)
Reduced-dose IST
(n.=27)
Full-dose IST
(n.=18)
p-value
Age, year 56.1 (47.3-61.1) 55.9 (47.6-61.2) 56.1 (44.4-62) 0.85
Range 19.2-83.5 19.2-79.8 28.1-83.5
Males, n. (%) 29 (64.4) 18 (66.7) 110 (61.1) 0.75
Race/ethnicity 0.61
White, n. (%) 41 (91.1) 26 (92.6) 16 (88.9
Black, n. (%) 4 (8.9) 2 (7.4) 2 (11.1)
Transplant vintage, year 10.1 (2.7-16.01) 7.8 (2.4-15.2) 11.1 (4.7-21.1) 0.29
sCr pre-COVID-19, mg/dl 1.45 (1.18-1.84) 1.44 (1.18-1.81) 1.28 (1.14-1.82) 0.68
eGFR pre-COVID-19, ml/min 48.4 (36-64) 47.7 (35-64) 49.5 (38.6-67.9) 0.83
24-h proteinuria, mg/dl 87.4 (0.52-188.5) 72 (0.25-183) 145.5 (6.2-205) 0.69
Immunosuppressive therapy, n. (%)
CNI 39 (86.7) 24 (88.9) 15 (83.3) 0.67
mTOR-i 8 (17.8) 4 (14.8) 4 (22.2) 0.69
MPA 31 (68.9) 24 (88.9) 7 (38.9) 0.01
Steroid 36 (80) 23 (85.2) 13 (72.2) 0.44
IS regimen 0.001
Triple therapy 25 (55.6) 21 (77) 4 (22.2)
Double therapy 19 (42.2) 6 (22.2) 13 (72.2)
Monotherapy 1 (2.2) 0 (0) 1 (5.6)
Reduction IS therapy, n. (%) 27 (60) 27 (100) 0 (0) N/A
MPA withdrawal 24 (53.3) 24 (88.9) 0 (0) N/A
CNI or mTOR-i withdrawal 6 (13.3) 6 (22.2) 0 (0) N/A
Increase steroid 9 (5,4) 8 (29.6) 1 (5.6) 0.064
Comorbidities, n. (%)
HIV, HCV or HBV 6 (13.3) 3 (11.1) 3 (16.7) 0.65
Diabetes 5 (11.1) 4 (14.8) 1 (5.6) 0.63
Neoplasia 10 (22.2) 7 (25.9) 3 (16.7) 0.71
Graft rejection 4 (8.9) 1 (3.7) 3 (16.7) 0.13
CVD 12 (26.7) 7 (25.9) 4 (22.2) 77
Autoimmune disease 4 (8.9) 1 (3.7) 3 (16.7) 0.13
Previous severe infection 13 (28.9) 8 (29.6) 5 (27.7) 1
Symptomatic COVID-19, n. (%) 40 (88.9) 27 (100) 13 (72.2) 0.45
Hospitalization, n. (%) 19 (42.2) 14 (51.9) 5 (27.8) 0.13
Graft failure, n. (%) 1 (2.2) 1 (3.7) 0 (0) 1
ICU admission, n. (%) 9 (20) 4 (14.8) 5 (27.8) 0.28
Mortality, n (%) 8 (17.8) 4 (14.8) 4 (22.2) 0.69
Post-COVID-19 follow-up, day 70.5 (51-109) 76  (50.5-116.5) 69 (66-76) 0.57
Notes: eGFR denotes estimated glomerular filtration rate; CNI, calcineurin inhibitor; CVD, cardiovascular disease; HCV, hepatitis C; HBV, hepatitis B; IST, immunosuppressive therapy; MPA, mycophenolate acid; mTOR-I, mammalian target of rapamycin inhibitor; sCr, serum creatinine.
Table I:Demographics and clinical characteristics of KT recipients

The age of patients ranged from 19.2 to 83.5 years and the median was 56.1 (IQR, 47.3-61.1) years. COVID-19 was more prevalent in males than in females (64.4% vs 35.6%) and occurred after a median of 10.1 (2.7-16.01) years from transplantation.

Before the COVID-19 infection, serum creatine (sCr) was 1.45 (IQR 1.1-1.8) mg/dl corresponding to a median eGFR of 48.4 (IQR 36-64) ml/min. At the time of the COVID-19 diagnosis, more than half of the patients were in triple standard IST. Forty patients (88.9%) developed symptoms of COVID-19 and 19 of them (42.2%) required hospitalization. One patient returned to dialysis following acute kidney injury. Overall, nine patients (20%) were admitted to ICU for severe manifestations of COVID-91 and eight (17.8%) died.

Reduced- vs full-dose IST group

The entire population was subdivided into two groups: reduced-dose (n.=27; 60%) and full-dose IST (n.=18; 40%). There were no significative statistical differences in terms of demographic and clinical characteristics between the two groups. Statistical analysis detected significant differences in the prescription of IST. Patients who underwent reduction of immunosuppression (reduced-dose IST) were treated with a higher dose of IST before COVID-19; indeed, the rate of prescribed triple-drug IST was higher in this group than in full-dose IST patients (77% vs. 22.2%; P=<0.001).

In the reduced-dose IST group, MPA (88.8%) and CNI or mTOR-i (22.2%) were the most frequent discontinued agents. Conversely, the dose of steroids was increased in a third of patients and, in all of them, the administration of steroids changed from alternate days (methylprednisolone 2/0 or 4/0) to a daily regimen.

Hospitalization, ICU admission and death rate in patients who underwent IST reduction were 51.8%, 14.8% and 14.8%, respectively. However, despite IST reduction, hospitalization (P=0.13), ICU admission (P=0.28) and death (P=0.69) rates were not different from those of the full-dose IST group.

Outcomes of KT recipients with COVID-19

Univariate and multivariate logistic regression was performed to detect predictors of mortality (Table II). Multivariate analysis found that age (OR=1.19 [95%CI 1.01-1.39]; P=0.034) and years spent on immunosuppressive therapy (OR=1.17 [95%CI 1.01-1.35]; P=0.040) were associated with mortality in this group of patients.

Univariate Multivariate
Variable OR CI (95%) p-value OR CI (95%) p-value
Sex
Male 4.40 0.78 24.81 0.09  
Age (1-yr increase) 1.11 1.02 1.22 0.016 1.19 1.01 1.39 0.034
KT vintage (1-yr increase) 1.10 1.00 1.21 0.053 1.17 1.01 1.35 0.040
Steroid-based IST 1.93 0.21 18.08 0.56
Reduction IST 1.33 0.26 6.869 0.74
Increase of steroid 0.52 0.06 4.85 0.56
Triple IST 0.51 0.10 2.620 0.42
Double IST 1.96 0.38 10.026 0.42
GFR 0.99 0.95 1.026 0.57
GFR< 45ml/min 1.47 0.32 6.80 0.62
GFR 45-59 ml/min 0.68 0.15 3.16 0.62
sCr 1,33 0,26 6.87 0.73
Graft rejection 1.52 0.14 16.91 0.73
Autoimmune disease 0.00 0.00 0.99
HIV/HCV/HBV 2.58 0.38 17.43 0.33
Previous sever infection 0,73 0.13 4.19 0.72
Diabetes 1.11 0.11 11.49 0.93
Neoplasm 1.12 0.19 6.70 0.89
Cardiovascular disease 1.73 0.34 8.76 0.50
Notes: eGFR denotes estimated glomerular filtration rate; HCV, hepatitis C; HBV, hepatitis B; IST, immunosuppressive therapy; MPA, mycophenolate acid; mTOR-I, mammalian target of rapamycin inhibitor; sCr, serum creatinine.
Table II: Univariate and multivariate predictors of mortality through logistic regression analysis

Among the survivors (82.2%), one patient with a CKD stage 4 (GFR=20 ml/min) before SARS-CoV-2 infection developed irreversible graft failure requiring HD. One patient (2.7%) manifested de-novo proteinuria (4100 mg/die) after the resolution of COVID-19 and graft biopsy revealed IgA glomerulonephritis (the lack of data on the cause of CKD did not allow us to classify these histological findings as either de-novo or recurrent IgA glomerulonephritis). Lastly, one patient experienced symptomatic COVID-19 reinfection after the primary infection and another one following the SARS-CoV-2 mRNA vaccine. Early post-COVID-19 follow-up of 25 out of the 37 survivors showed that pre- and post-COVID variations of sCr, eGFR and 24-hour proteinuria were not statistically significant in outpatients after the resolution of COVID-19. A significantly lower sCr level (P=0.019) and eGFR (P=0.028) were measured after hospital discharge in hospitalized patients. No differences were noted in the level of daily proteinuria (Table III). The early follow-up of KT recipients after COVID-19 resolution did not show any new episodes of graft rejection.

Non-hospitalized patients Hospitalized patients
Pre-COVID-19 Post-COVID-19 p-value Pre-COVID-19 Post-COVID-19 p-value
sCr, mg/dl 1.31 (1.2-1.76) 1.33 (1.08- 1.7) 0.85 1.49 (1.1-1.8) 1.21 (0.9-2.1) 0.019
eGFR, ml/min 48.8 (40.5-62.1) 56.7 (41.5-67) 0.25 46.7 (36-64) 56.7 (41.5-67) 0.028
24-h proteinuria, mg/die 102 (6.2-205) 89.4 (37.2-246.4) 0.08 13(2.5-183) 44.7 (10.8-1141) 0.29
Notes: eGFR, estimated glomerular filtration rate; sCr, serum creatinine.
Table III: Early graft function post-COVID-19 in hospitalized and non-hospitalized KT recipients

 

Discussion

Numerous reports have alerted the scientific community regarding the unfavorable outcome of COVID-19 in patients with a reduced immune response [1, 15]. The results of this study confirmed that COVID-19 poses KT recipients at high risk of severe consequences.

In our cohort of KT recipients, COVID-19 carried with it a higher rate of symptoms, hospitalization and mortality compared to the general population [16, 17]. We found that in this cohort (45 KT recipients with COVID-19, median age 56.1), 40% of patients developed severe symptoms requiring hospitalization. Overall mortality was 17.8%, higher than the mortality reported in the general population, which ranges between 0.1-19.2% around the world and accounts for about 2.02% globally [18].

In an attempt to reconstitute the immune system against SAR-CoV-2 infection, we minimized the burden of IST in these patients. All KT recipients who communicated their COVID-19 positivity to our center, were advised to discontinue the antimetabolite agents (i.e., MFA or AZA) (88.9%) and CNI or m-TOR-i (22.2%). In the hospitalized patients, IST was further reduced or suspended, according to the clinical conditions of the patient. Nevertheless, hospitalization and death rates in the reduced-dose IST group were not dissimilar from the full-dose IST group.

At first glance, these results show that the reduction of immunosuppression did not confer any advantage in terms of patient survival. However, some considerations should be considered before drawing firm conclusions. Most patients who underwent IST reduction carried a significantly higher burden of IST compared to KT recipients whose therapy was left unmodified. The higher prevalence of triple-drug immunosuppressive regimen in patients who underwent IST minimization (77% vs. 22.2%; P=<0.001) has probably increased the vulnerability to COVID-19. Conversely, patients with a full-dose IST spent more time (11.2 vs 7.8 years) on kidney transplantation compared to the reduced-dose IST group. Lastly, we believe that the slight increase of steroid therapy (from alternate days to a daily administration) in the reduced-dose IST group (P=0.064) was too small to mitigate the inflammatory response driven by COVID-19.

Although the reduction of IST did not lead to a favorable outcome, it is worth mentioning that the overall mortality in our cohort was tendentially lower than that reported in other studies, where this approached up to 32.5% [1926]. Our results are in line with the population-based data on 1013 KT recipients affected by COVID-19 collected by the French and Spanish national registries, which reported a 28-day mortality of 20% [27]. In Italy, Bossini et al. [24] reported a higher overall mortality rate (28%) during the first wave of COVID-19 in the city of Brescia. Similarly to our therapeutic strategy, they discontinued immunosuppression in all hospitalized patients and introduced or increased the dose of steroids. The causes underlying these different mortality rates are unknown. The different timing of enrollment made the two cohorts not perfectly comparable. All patients in the Brescia cohort were enrolled during the first wave of COVID-19 in Europe, in an overwhelmed and unprepared hospital setting, within a timespan characterized by a high rate of experimental regimens and relative side effects [28, 29]. Lastly, a lower median age (56.1 vs. 60 years) in our cohort of patients probably contributed to the better prognosis.

Multivariate analysis showed that the predictors of death were age and time elapsed on IST, in line with previous studies. Age is widely associated with COVID-19 severity and death in KT recipients [30, 31] as well as in the general population [32]. The Centers for Disease Control (CDC) claims that 8 out 10 COVID-19 deaths in the U.S. occurred in adults over 65 and that the risk of hospitalization and death increases enormously with age [33].

The effect of immunosuppression is still controversial in KT recipients [34]. Immunosuppression is known to dysregulate innate and adaptive immunity, exposing the patients to severe infections. On the other hand, severe COVID-19 infection has been associated with a dysregulated inflammatory response (IL-6, IL-1, and chemokines) leading to ARDS and sepsis. The new insights support a promising role of immunosuppressants (i.e., tocilizumab, steroid) in tempering the immune response of patients with severe manifestations of COVID-19 [35].

Lastly, we report a short-term good graft function in patients who survived COVID-19. These data indicate a stable early graft function (sCr and 24-hour proteinuria) in outpatients who were not hospitalized. Conversely, hospitalized KT recipients had a statistically significant improvement in renal function. As stated also by Dacina et al. [5], we speculate that lower sCr after SARS-CoV-2 is due to the minimization or withdrawn of CNI, a ‘drug holiday’ apparently without dire consequences in terms of graft rejection.

Finally, the limitations of the study should be enumerated. It is a retrospective study, with a small sample size and a short follow-up after COVID-19. The small number of patients and the short observation period may have reduced the probability to observe an underlying difference between these two groups. Long-term follow-up is required to verify if the early improvement of kidney function after COVID-19 is maintained in the survivors. Furthermore, we cannot exclude that, in some cases, the reduction of IST occurred with a short delay after the diagnosis of COVID-19; however, all patients with symptoms underwent nasopharyngeal swabs as fast as possible in an ambulatory setting.

 

Conclusion

In our cohort of patients, the reduction of immunosuppression did not decrease the risk of severe COVID-19 or death. COVID-19 was associated with hospitalization (42%), graft failure (2.2%), IgA glomerulonephritis (2.2%) and death (17.8%). Age and time elapsed from kidney transplantation were independent predictors of death in our patients. Short-term follow-up after COVID-19 showed an excellent graft function in most survivors. Primary infection or vaccination did not exclude the risk of SARS-CoV-2 infection in KT recipients.

 

Authorship credit

Conception: Gaetano Alfano and Francesca Damiano

Collection of data: Camilla Ferri, Francesco Giaroni, Andrea Melluso, Martina Montani, Niccolò Morisi, Lorenzo Tei, Jessica Plessi

Analysis and interpretation of data: Gaetano Alfano, Francesco Giaroni, Francesca Damiano

Drafting the article: Gaetano Alfano, Francesco Fontana, Silvia Giovanella, Giulia Ligabue, Giacomo Mori

Intellectual Contribution: Francesco Fontana Gianni Cappelli, Giovanni Guaraldi

Revising the article: Gianni Cappelli, Giovanni Guaraldi

Approval of the version to be published: all authors

 

Acknowledgments

Special thanks are due to Marco Ballestri, Elisabetta Ascione, Roberto Pulizzi and Francesca Facchini, skilled and experienced nephrologists involved in the “Kidney Transplant Program”, and to Laura Bonaretti and all nurses of the “Kidney Transplantation Outpatient Clinic” at the University Hospital of Modena for their precious support in managing KT recipients.

 

Bibliography

  1. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020; 584:430-436. https://doi.org/10.1038/s41586-020-2521-4
  2. Khairallah P, Aggarwal N, Awan AA, et al. The impact of COVID-19 on kidney transplantation and the kidney transplant recipient – One year into the pandemic. Transpl Int Off J Eur Soc Organ Transplant 2021; 34:612–621. https://doi.org/10.1111/tri.13840
  3. Caillard S, Chavarot N, Francois H, et al. Is COVID-19 infection more severe in kidney transplant recipients? Am J Transplant 2021; 21:1295-1303. https://doi.org/10.1111/ajt.16424
  4. Fisher AM, Schlauch D, Mulloy M, et al. Outcomes of COVID-19 in hospitalized solid organ transplant recipients compared to a matched cohort of non-transplant patients at a national healthcare system in the United States. Clin Transplant 2021; 35. https://doi.org/10.1111/ctr.14216
  5. Elec AD, Oltean M, Goldis P, et al. COVID-19 after kidney transplantation: Early outcomes and renal function following antiviral treatment. Int J Infect Dis 2021; 104:426-432. https://doi.org/10.1016/j.ijid.2021.01.023
  6. Bajpai D, Deb S, Bose S, et al. Recovery of kidney function after AKI due to COVID-19 in kidney transplant recipients. Transpl Int Off J Eur Soc Organ Transplant 2021. https://doi.org/10.1111/tri.13886
  7. Alfano G, Giovanella S, Fontana F, et al. AKI in hospitalized patients with COVID-19: a single-center experience. G Ital Nefrol 2021; 38(5): 38-05-2021-02. https://giornaleitalianodinefrologia.it/2021/10/38-05-2021-02/
  8. Benotmane I, Gautier-Vargas G, Cognard N, et al. Weak anti–SARS-CoV-2 antibody response after the first injection of an mRNA COVID-19 vaccine in kidney transplant recipients. Kidney Int 2021; 99:1487-1489. https://doi.org/10.1016/j.kint.2021.03.014
  9. Alfano G, Fontana F, Mori G, et al. Seroconversion after COVID-19 vaccine in a dialysis patient on immunosuppressants. Clin Kidney J 2021. https://doi.org/10.1093/ckj/sfab065
  10. Boyarsky BJ, Werbel WA, Avery RK, et al. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid Organ Transplant Recipients. JAMA 2021; 325:2204. https://doi.org/10.1001/jama.2021.7489
  11. Benotmane I, Gautier-Vargas G, Cognard N, et al. Low immunization rates among kidney transplant recipients who received 2 doses of the mRNA-1273 SARS-CoV-2 vaccine. Kidney Int 2021; 99:1498-1500. https://doi.org/10.1016/j.kint.2021.04.005
  12. Caillard S, Chavarot N, Bertrand D, et al. Occurrence of severe COVID-19 in vaccinated transplant patients. Kidney Int 2021. https://doi.org/10.1016/j.kint.2021.05.011
  13. Tsalouchos A, Salvadori M. La pandemia del nuovo coronavirus 2019 ed il trapianto renale. G Clin Nefrol E Dialisi 2020; 32:60-63. https://doi.org/10.33393/gcnd.2020.2133
  14. Maggiore U, Abramowicz D, Crespo M, et al. How should I manage immunosuppression in a kidney transplant patient with COVID-19? An ERA-EDTA DESCARTES expert opinion. Nephrol Dial Transplant 2020; 35:899-904. https://doi.org/10.1093/ndt/gfaa130
  15. Myint PK, Carter B, Barlow-Pay F, et al. Routine use of immunosuppressants is associated with mortality in hospitalised patients with COVID-19. Ther Adv Drug Saf 2021; 12:2042098620985690. https://doi.org/10.1177/2042098620985690
  16. Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In: StatPearls. StatPearls Publishing, Treasure Island (FL): 2021.
  17. Mappe Coronavirus. https://mappe.protezionecivile.gov.it/it/mappe-emergenze/mappe-coronavirus (accessed 5 Jun 2021).
  18. COVID-19 Map. In: Johns Hopkins Coronavirus Resour. Cent. https://coronavirus.jhu.edu/map.html (accessed 1 Nov 2021).
  19. Pérez-Sáez MJ, Blasco M, Redondo-Pachón D, et al. Use of tocilizumab in kidney transplant recipients with COVID-19. Am J Transplant 2020; 20(11):3182-3190. https://doi.org/10.1111/ajt.16192
  20. Aziz H, Lashkari N, Yoon YC, et al. Effects of Coronavirus Disease 2019 on Solid Organ Transplantation. Transplant Proc 2020; 52:2642-2653. https://doi.org/10.1016/j.transproceed.2020.09.006
  21. Coll E, Fernández-Ruiz M, Sánchez-Álvarez JE, et al. COVID-19 in transplant recipients: The Spanish experience. Am J Transplant 2021; 21:1825-1837. https://doi.org/10.1111/ajt.16369
  22. Akalin E, Azzi Y, Bartash R, et al. Covid-19 and Kidney Transplantation. N Engl J Med 2020. https://doi.org/10.1056/NEJMc2011117
  23. Fernández-Ruiz M, Andrés A, Loinaz C, et al. COVID-19 in solid organ transplant recipients: A single-center case series from Spain. Am J Transplant 2020; 20:1849-1858. https://doi.org/10.1111/ajt.15929
  24. Bossini N, Alberici F, Delbarba E, et al. Kidney transplant patients with SARS‐CoV‐2 infection: the brescia renal COVID task force experience. Am J Transplant 2020. https://doi.org/10.1111/ajt.16176
  25. Cravedi P, Mothi SS, Azzi Y, et al. COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium. Am J Transplant 2020; 20:3140-3148. https://doi.org/10.1111/ajt.16185
  26. Nair V, Jandovitz N, Hirsch JS, et al. COVID‐19 in kidney transplant recipients. Am J Transplant 2020. https://doi.org/10.1111/ajt.15967
  27. Jager KJ, Kramer A, Chesnaye NC, et al. Results from the ERA-EDTA Registry indicate a high mortality due to COVID-19 in dialysis patients and kidney transplant recipients across Europe. Kidney Int 2020; 98:1540-1548. https://doi.org/10.1016/j.kint.2020.09.006
  28. Gérard A, Romani S, Fresse A, et al. “Off-label” use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine in COVID-19: A survey of cardiac adverse drug reactions by the French Network of Pharmacovigilance Centers. Therapies 2020; 75:371-379. https://doi.org/10.1016/j.therap.2020.05.002
  29. Izcovich A, Siemieniuk RA, Bartoszko JJ, et al. Adverse effects of remdesivir, hydroxychloroquine, and lopinavir/ritonavir when used for COVID-19: systematic review and meta-analysis of randomized trials. Infectious Diseases (except HIV/AIDS) 2020. https://doi.org/10.1101/2020.11.16.20232876
  30. Coll E, Fernández-Ruiz M, Sánchez-Álvarez JE, et al. COVID-19 in transplant recipients: The Spanish experience. Am J Transplant 2021; 21:1825-1837. https://doi.org/10.1111/ajt.16369
  31. Oto OA, Ozturk S, Turgutalp K, et al. Predicting the outcome of COVID-19 infection in kidney transplant recipients. BMC Nephrol 2021; 22:100. https://doi.org/10.1186/s12882-021-02299-w
  32. Levin AT, Hanage WP, Owusu-Boaitey N, et al. Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications. Eur J Epidemiol 2020; 35:1123-1138. https://doi.org/10.1007/s10654-020-00698-1
  33. Centers for Disease Control and Prevention. COVID-19 and Your Health. 2020. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/older-adults.html (accessed 27 May 2021).
  34. Chavarot N, Gueguen J, Bonnet G, et al. COVID‐19 severity in kidney transplant recipients is similar to nontransplant patients with similar comorbidities. Am J Transplant 2021; 21:1285-1294. https://doi.org/10.1111/ajt.16416
  35. Pérez-Sáez MJ, Blasco M, Redondo-Pachón D, et al. Use of tocilizumab in kidney transplant recipients with COVID-19. Am J Transplant 2020; 20:3182-3190. https://doi.org/10.1111/ajt.16192

La dialisi peritoneale rappresenta la tecnica sostitutiva di prima scelta per i pazienti candidabili al trapianto di rene?

Abstract

Il trapianto di rene è ampiamente riconosciuto come il trattamento sostitutivo d’elezione della malattia renale terminale. È stato, infatti, dimostrato che sottoporre il paziente a trapianto di rene ancor prima dell’inizio della terapia dialitica garantisce sia la migliore sopravvivenza del soggetto che dell’organo trapiantato. Tuttavia, a causa della considerevole discrepanza fra il numero di donatori e i soggetti in lista di attesa, la maggior parte dei candidati a trapianto di rene necessita di un lungo periodo di terapia dialitica prima di ricevere un organo.

Per molti anni la dialisi peritoneale e l’emodialisi sono state considerate terapie sostitutive contrastanti. Recentemente questa visione dualistica è stata messa in discussione da dati emergenti a supporto dell’idea che l’approccio più appropriato sia quello personalizzato. Infatti, passaggi di metodica dialitica accuratamente pianificati e coscienziosamente determinati sulla base delle particolari esigenze del singolo paziente nello specifico momento permettono di ottenere i risultati più soddisfacenti.

Degno di nota è il fatto che le attuali evidenze favoriscono nei pazienti candidabili a trapianto di rene l’utilizzo della metodica peritoneale. In questa specifica popolazione i vantaggi della dialisi peritoneale sono rappresentati, infatti, da un più lungo mantenimento della funzione renale residua, una superiore qualità di vita, una minore incidenza di ritardata ripresa funzionale dell’organo trapiantato, una migliore sopravvivenza e una riduzione dei costi associati alla metodica.

Parole chiave: dialisi peritoneale, trapianto di rene, emodialisi, terapia sostitutiva renale, lista di attesa, funzione renale residua, qualità di vita, ritardata ripresa funzionale

Introduzione

Il trapianto di rene (KT) è ampiamente riconosciuto come la terapia renale sostitutiva (RRT) d’elezione per la malattia renale terminale (ESRD) [13]. Idealmente, sottoporre il paziente a KT prima dell’inizio della terapia dialitica è la strategia che permette di ottenere i risultati più soddisfacenti [46]. Tuttavia, a causa della limitata disponibilità di donatori, la maggior parte dei soggetti candidati a KT necessita di un lungo periodo di trattamento dialitico prima di ricevere un organo [7]. Per molti anni l’emodialisi (HD) ha rappresentato l’unica opzione per i pazienti in lista di trapianto [8,9]. Negli anni ‘80 l’avvento della dialisi peritoneale (PD) nella pratica clinica ha sollevato la questione di quale fosse la terapia dialitica da preferire nei pazienti candidabili a KT [10,11].

Le preoccupazioni maggiori concernenti l’uso della PD sono rappresentate dalla possibile creazione di leakage/aderenze peritoneali, dal rischio di infezioni peri-trapianto e dalla convinzione che la metodica sia correlata ad una maggiore incidenza di episodi di rigetto acuto [1216].

Sebbene diversi studi abbiano dimostrato che la PD non influenza negativamente il numero di complicanze chirurgiche e mediche precoci, molti nefrologi sono ancora riluttanti a proporre la PD come terapia sostituiva iniziale nei pazienti candidabili a KT. Questa tendenza è alquanto discutibile poiché l’HD e la PD non devono essere considerate tecniche dialitiche competitive, quanto piuttosto strategie complementari finalizzate a ottenere i migliori risultati prima e dopo il trapianto di rene [17].

Infatti, la tecnica dialitica dovrebbe essere personalizzata sulla base delle particolari caratteristiche e esigenze del singolo paziente tenendo in considerazione la loro variabilità nel tempo. Dunque, trasferimenti accuratamente pianificati fra le diverse tecniche di terapia renale sostitutiva dovrebbero essere accuratamente considerati nelle specifiche circostanze [18].

A questo riguardo, sempre maggiori evidenze sembrano suggerire che nei pazienti candidabili a trapianto di rene la PD permette di ottenere migliori risultati rispetto all’HD. In particolare, i vantaggi della PD sono rappresentati da un più lungo mantenimento della funzione renale residua, da una superiore qualità di vita, una minore incidenza di ritardata ripresa funzionale dell’organo trapiantato (DGF), una migliore sopravvivenza e una riduzione dei costi associati alla metodica. Il presente lavoro si prefigge, dunque, lo scopo di discutere i vantaggi teorici della “PD-first policy” nell’ambito del paziente candidabile a KT.

 

Sopravvivenza del paziente durante la terapia dialitica

I pazienti affetti da ESRD presentano un’elevata prevalenza di malattie cardiovascolari, un più alto rischio di eventi cardiovascolari maggiori e un’aumentata mortalità rispetto alla popolazione generale [7]. Questi fattori, purtroppo, possono ridurre in modo significativo la possibilità di rimanere in lista attiva di trapianto e inficiano tanto la sopravvivenza dell’organo quanto quella del ricevente dopo KT. Dunque, la terapia renale sostitutiva in grado di garantire la minore mortalità e la più bassa incidenza di comorbidità è certamente da preferire.

In uno studio condotto su 398.940 pazienti che hanno iniziato la terapia sostitutiva fra il 1995 e il 2000, Vonesh et al. [19] mostrarono che la sopravvivenza dei pazienti in PD e HD variava secondo specifiche caratteristiche legate al paziente, quali la causa dell’insufficienza renale, l’età e le comorbidità. In particolare, gli autori osservarono che, eccetto per i pazienti anziani con diabete in cui la PD presentava uno svantaggio di sopravvivenza, in tutti gli altri sottogruppi la mortalità fra i pazienti era simile o perfino migliore in PD. Uno studio danese basato su 4568 pazienti in HD e 2443 in PD evidenziava che i pazienti in PD possedevano un vantaggio in termini di sopravvivenza nei primi due anni di RRT [20]. In modo simile, un’analisi eseguita su una coorte di pazienti dializzati canadesi dimostrava che negli individui giovani e non affetti da diabete la sopravvivenza in PD era superiore rispetto all’HD e, sebbene di minore entità, questo vantaggio si confermava anche negli altri sottogruppi [21].

Liem et al., analizzando il registro olandese di malattia renale terminale (16.643 pazienti), osservavano che la sopravvivenza differiva fra le due metodiche dialitiche a seconda della presenza o meno di diabete e dall’età del paziente all’inizio della dialisi [22]. In particolare, gli autori concludevano che il vantaggio della PD sull’HD diminuiva con l’aumento dell’età del paziente e in presenza di diabete.

Degno di rilevanza è il risultato proveniente da uno studio di confronto (PD vs HD) includente 6637 coppie di pazienti accoppiate secondo il metodo del propensity score in cui i pazienti trattati con PD mostravano un rischio di mortalità complessivo inferiore dell’8% rispetto ai pazienti che iniziavano l’HD [23].

Dunque, considerando globalmente le evidenze a disposizione in letteratura, i pazienti giovani e non diabetici trattati con PD presentano un vantaggio in termini di sopravvivenza rispetto ai soggetti sottoposti a HD, in particolare nei primi anni di trattamento.

 

Sopravvivenza del paziente e dell’organo dopo trapianto di rene

Rispetto alla terapia dialitica, il trapianto di rene garantisce sia una migliore qualità che una più lunga aspettativa di vita [24,25]. Inoltre, il rientro in dialisi dopo il fallimento di un primo trapianto è caratterizzato da una maggiore mortalità in confronto al periodo di trattamento dialitico pre-trapianto [2628]. Dunque, la preservazione della funzione del trapianto è un requisito fondamentale al fine di ottimizzare la sopravvivenza del paziente.

Diversi studi hanno indagato l’impatto del tipo di metodica dialitica intrapresa dal paziente prima di essere sottoposto a trapianto sulla sopravvivenza dell’organo e del ricevente ottenendo, però, risultati divergenti.

Nei primi anni 90 uno studio includente 500 pazienti sottoposti a un primo trapianto di rene non mostrava né una differente percentuale di sopravvivenza a 5 anni dei soggetti (HD 88% vs PD 87%), né dell’organo (HD 67% vs PD 66%) confrontando i pazienti trattati precedentemente con HD o PD [29]. Simili valori sia di sopravvivenza dei pazienti che del trapianto venivano osservati in altri studi dall’Università dell’Ohio, dal CHRU di Lille e dall’Università di Glasgow su popolazioni più ridotte [3032], così come in una vasta analisi retrospettiva del database Medicare condotta su 22.776 soggetti [33].

Al contrario, Goldfarb-Rumyantzev et al. [34], utilizzando i dati provenienti dall’ U.S. Renal Data System (USRDS), osservavano che la PD era associata a una riduzione del rischio di fallimento del trapianto e di mortalità, pari al 3% in confronto al 6% dell’HD.

La maggior parte degli studi successivi non rilevavano, invece, la superiorità di una metodica rispetto all’altra, specialmente nel breve e medio termine [3539]. Tuttavia, estendo il follow-up a 10 anni, Lopez-Oliva et al. [40] riuscivano a dimostrare che la PD era associata a una minore mortalità rispetto all’HD [HR=2,62 (1,01–6,8); p=0,04], nonostante una sopravvivenza del trapianto pressoché sovrapponibile [HR=0,68 (0,41–1,10); p=0,12].

Allo stesso modo Schwenger et al. [41], utilizzando il vasto database dell’International Collaborative Transplant Study Group comprensivo di 60.008 riceventi, osservavano nei pazienti precedentemente trattati mediante PD una migliore sopravvivenza associata ad un’equivalente probabilità di fallimento dell’organo. L’analisi multivariata secondo il modello di Cox rivelava, infatti, che i pazienti in PD (n=11.664) mostravano una mortalità per tutte le cause del 10% inferiore (p=0,014) rispetto ai pazienti in HD (n=45.651) e una simile sopravvivenza del trapianto (p=0,39). Questa differenza in termini di mortalità appariva essere la conseguenza di una significativa riduzione di morte con organo funzionante secondaria a evento cardiovascolare nei pazienti che avevano ricevuto l’organo da un donatore a criteri espansi.

Valutando i risultati provenienti da tutti i riceventi di trapianto renale presenti nel Scientific Registry of Transplant Recipients, anche Molnar et al. [42] dimostravano che i pazienti in trattamento dialitico peritoneale prima del trapianto possedevano un minore tasso di mortalità (21,9/1000 paziente-anni, 95% intervallo di confidenza: 18,1–26,5) rispetto ai pazienti emodializzati (32,8/1000 paziente-anni, 95% intervallo di confidenza: 30,8–35,0). La PD pre-trapianto era associata ad una riduzione del 43% della mortalità corretta per diversi fattori confondenti e a un 66% di decremento della mortalità per evento cardiovascolare. Interessante è il fatto che la PD era, inoltre, associata a una riduzione del rischio di fallimento dell’organo trapiantato del 17% rispetto all’HD.

Nonostante la positività di queste evidenze, alcuni autori hanno riferito il vantaggio della PD in termini di risultati post-trapiantato a un possibile bias di selezione, in quanto i pazienti candidabili alla PD risulterebbero più sani rispetto a coloro che intraprendono la HD [4345]. Per smentire questa ipotesi, sono stati adoperati diversi modelli statistici con risultati alterni [33,34,36,46]. A riguardo, significativo è lo studio di Kramer et al. [47] che, utilizzando il metodo delle variabili strumentali al fine di minimizzare i potenziali bias derivanti da fattori confondenti non misurati, valutava i dati di 29.088 pazienti provenienti da registri regionali e nazionali europei. L’analisi standard corretta per l’età, il sesso, la malattia renale di base, la tipologia di donatore, la durata della dialisi e l’età del trapianto mostrava che la PD, come terapia sostitutiva prima del trapianto, era associata a una migliore sopravvivenza sia del ricevente [hazard ratio (HR) 95% CI = 0,83 (0,76–0,91)] che dell’organo trapiantato [(HR 95% CI 0,90 (0,84–0,96)] rispetto all’HD. Tuttavia, il metodo delle variabili strumentali dimostrava che la PD non correlava né con la sopravvivenza post-trapianto del paziente [HR (95% CI = 1,00 (0,97–1,04)], né con la sopravvivenza dell’organo [HR (95% CI) = 1,01 (0,98–1,04)].

Dunque, le evidenze disponibili suggeriscono che la PD come terapia sostitutiva pre-trapianto, a differenza dell’HD, possiede un effetto favorevole sulla sopravvivenza post trapianto del paziente, sebbene siano ancora mancanti solidi dati a lungo termine.

 

Ripresa funzionale ritardata

La DGF viene comunemente definita come la necessità di terapia dialitica durante la prima settimana successiva al trapianto o l’assenza di diminuzione della creatinina sierica di un valore pari o superiore del 50% (T Scr) alla terza giornata post-trapianto [48].

La DGF è stata considerata comunemente un surrogato di risultati a lungo termine, quali la sopravvivenza del paziente e dell’organo trapiantato [49], in quanto è un accertato fattore di rischio per il rigetto acuto, le complicanze peri-operatorie e la perdita precoce del trapianto [5053].

Giral-Classe et al. [54] dimostravano che la durata della DGF rappresenta un fattore predittivo indipendente di sopravvivenza a lungo termine dell’organo trapiantato. In particolare, gli autori identificavano un elevato rischio di fallimento del trapiantato nei pazienti con una DGF uguale o superiore a 6 giorni. Inoltre, Troppmann et al. [55] osservavano che la sopravvivenza dell’organo era ampiamente inferiore per i pazienti che manifestavano una DGF associata a rigetto. È stato, inoltre, dimostrato che il rigetto è più frequente nei casi in cui la biopsia venga eseguita per un mancato miglioramento della funzione renale (valore sierico di creatininemia stabile o decremento minore <10% per tre giorni consecutivi) [56].

L’influenza della modalità dialitica prima del trapianto sull’incidenza e la durata della DGF è stata oggetto di diversi studi. In particolare, Perez-Fontan et al. [50] valutarono l’incidenza e i fattori di rischio per il verificarsi della DGF confrontando i pazienti che erano stati trattati prima del trapianto mediante PD (n=92) rispetto con HD (n=587). Gli autori osservarono che la percentuale di DGF nel gruppo PD era pari a 22,5% mentre raggiungeva il 39,5% nel gruppo HD e che la modalità dialitica rappresentava il fattore predisponente più significativo per l’incidenza di DGF. Inoltre, stabilivano che una durata di DGF maggiore di 3 settimane si associava a una minore sopravvivenza dell’organo e ad un’aumentata mortalità.

In uno studio caso-controllo, 117 riceventi trattati in precedenza con PD venivano accoppiati per età, sesso, tempo in dialisi, compatibilità degli HLA e tempi di ischemia calda e fredda con altrettanti riceventi sottoposti a HD prima del trapianto renale [57]. La DGF si verificava nel 23,1% dei pazienti in trattamento con PD rispetto al 50,4% dei pazienti in HD (p=0,0001), mentre il sT1/2 Scr era pari a 5,0 ± 6,6 giorni nel gruppo PD in confronto a 9,8 ± 11,5 giorni del gruppo HD (p<0,0001).

Al contrario Caliskan et al., impiegando un simile metodo statistico non osservarono differenze in termini di incidenza di DGF fra i due gruppi [36].

Si specula che la più bassa incidenza di DGF descritta generalmente nei riceventi esposti in precedenza alla PD sia dovuto ad un bilancio idrico peri-operatorio più favorevole rispetto ai pazienti trattati con HD. A questo proposito, Issad et al [58] hanno dimostrato che i candidati al trapianto in PD possedevano una pressione arteriosa polmonare media pari a 21,1 mmHg e maggiore di 25 mmHg in più del 50% dei pazienti. Queste rilevazioni sembrano supportare la tesi che i pazienti in trattamento peritoneale siano spesso iper-idratati.

Tuttavia, analizzando i dati provenienti da soggetti sottoposti a primo trapianto di rene da donatore deceduto, un gruppo di ricercatori della università di Gent ha dimostrato che la PD come modalità dialitica pre-trapianto, così come l’ottimizzazione del bilancio dei liquidi pre-operatorio, rappresentavano due fattori predittivi indipendenti di immediata ripresa funzionale [48]. Questa osservazione suggerisce che gli effetti positivi della PD in termini di minore incidenza di DGF non dipendano unicamente dallo stato di idratazione del paziente.

Un’ulteriore evidenza che la PD riduca il rischio di DGF rispetto alla HD proviene dallo studio di Bleyer et al. [59] che, sfruttando l’archivio dati dello United Network of Organ Sharing, analizzavano i risultati precoci dopo trapianto di rene nei pazienti in PD e HD. In particolare, gli autori osservarono che la probabilità di manifestare oliguria nelle prime 24 ore post-trapianto era 1,49 (1,28–1,74) volte maggiore nei pazienti in HD. Questa differenza risultava perfino più pronunciata nei pazienti di etnia afroamericana.

Simili risultati sono stati descritti da lavori più recenti a conferma dell’ipotesi che la tecnica dialitica pre-trapianto può influenzare gli esiti post-intervento [32,33,42,60]. Diverse teorie sono state avanzate per spiegare la più bassa incidenza di DGF osservata nei pazienti in precedente trattamento con PD tra cui, oltre a un miglior equilibrio volemico, un ridotto stato di stress-ossidativo e una superiore funzione renale residua al momento del trapianto di rene.

 

Funzione renale residua

Nei pazienti affetti da malattia renale cronica si assiste ad una progressiva riduzione del valore di filtrazione glomerulare (GFR) associato nello stadio terminale a una riduzione graduale del volume urinario giornaliero. Questo fenomeno può, infine, determinare una riduzione della capacità vescicale, un’iperattività detrusoriale e un alterato svuotamento vescicale [6167].

È stato ampiamente documentato che i riceventi di trapianto renale con vescica atrofica o disfunzionale possiedono un elevato rischio di prolungato cateterismo vescicale, di complicanze urologiche precoci e di reflusso vescicoureterale [61,62,66]. È stata, inoltre, osservata una stretta correlazione tra la perdita della funzione renale residua (RRF) e specifici esiti post-trapianto, quali le complicanze urologiche post-intervento e la sopravvivenza dell’organo a breve termine [67].

Dunque, la preservazione della RRF nei pazienti in trattamento dialitico è fondamentale per minimizzare le complicanze urologiche precoci, il periodo di cateterismo vescicale post-procedurale e le infezioni urinarie. Ad oggi la durata della RRT rappresenta il fattore predittivo maggiormente associato all’atrofia vescicale e all’esaurimento della RRF [61,62,66,67]. Tuttavia, numerose evidenze suggeriscono che anche la tecnica dialitica pre-trapianto giochi un ruolo significativo nel rallentare la perdita della RRF.

La prima segnalazione della migliore preservazione della RRF nei pazienti in PD risale al 1983 [68]. Successivamente, diversi lavori hanno dimostrato la superiorità della PD rispetto alla HD nel mantenere la RRF con una riduzione relativa della perdita di GFR compresa fra il 20 e l’80% a seconda degli studi considerati [6973].

Nello studio prospettico NECOSAD-2 (prospective study Netherlands Cooperative Study on the Adequacy of Dialysis phase 2) venivano valutati per 12 mesi i valori di GFR di 522 pazienti in terapia dialitica. I risultati mostravano che la PD garantiva una migliore preservazione della RRF rispetto alla HD, anche dopo correzione per il GFR basale, l’età, la malattia renale di base, le comorbidità, l’indice di massa corporea, la pressione sanguigna sistemica, l’uso di farmaci antipertensivi e la causa di fallimento della metodica [74].

Inoltre, qualche studio ha valutato l’impatto dei nuovi regimi emodialitici. Come osservato precedentemente, la velocità di diminuzione della RRF risultava minore nei pazienti in PD, nonostante l’impiego di tecniche emodiafiltrative finalizzate alla minimizzazione dell’instabilità emodinamica [72,75,76].

La PD può favorire la preservazione della RRF attraverso multipli meccanismi. La metodica garantisce, infatti, minori squilibri volemici così come ridotte fluttuazioni della pressione osmotica rispetto alla HD diminuendo gli eventi di instabilità emodinamica transitoria [70]. Questo effetto è probabilmente associato sia ad una pressione glomerulare più stabile, sia a un valore di filtrazione più costante. L’assenza di rapidi cambiamenti del volume circolante e dell’osmolarità plasmatica può anche prevenire eventuali episodi di ischemia parenchimale [73]. Lo stato di modesto sovraccarico idrico frequentemente osservato nei pazienti in PD potrebbe giocare un ruolo nel mantenimento della RRF [77].

È interessante notare che esistono molteplici evidenze a supporto dell’influenza positiva della RRF sia nei pazienti in trattamento peritoneale [74,7885] che emodialitico [74,86]. Il contributo relativo della RRF e della clearance peritoneale nei confronti della sopravvivenza del paziente in PD è stato oggetto di numerose indagini. In particolare, lo studio NECOSAD-2 [74] e lo studio ADEMEX [84] hanno mostrato una riduzione della mortalità del 12 e dell’11%, rispettivamente, per ogni 10 litri/settimana/1,73 m2 di incremento di clearance della creatinina, mentre non si osservava una relazione fra la sopravvivenza del paziente e la dose di PD o il valore totale di rimozione delle piccole molecole. Inoltre, l’analisi multivariata, condotta su pazienti dell’Andalusia (n=402) incidenti in PD negli anni compresi fra il 1999 e il 2005, dimostrava che una RRF al di sotto del valore mediano (4,33 ml/min) era un fattore di rischio indipendente di mortalità [85].

Ulteriori benefici derivanti dalla preservazione della RRF sono rappresentati dalla diminuzione della pressione sistemica [87], dalla protezione dall’ipertrofia ventricolare sinistra [8890], dall’incremento della rimozione del sodio [91,92], da un più adeguato equilibrio volemico [92,93], da una maggiore clearance di b2-microglobulina [9497], da più elevati valori di emoglobina sierica [88,89], da un più adeguato stato nutrizionale [83,88,96,98], e dalla riduzione della quantità di molecole infiammatorie circolanti [99]. Inoltre, la RRF facilita il raggiungimento degli obbiettivi depurativi [74,75,81,82,86,88,100] e aiuta a controllare i livelli di fosfato/acido urico [88,91,101], bicarbonato [96] e colesterolo [102].

Dunque, il mantenimento a lungo termine della RRF rappresenta probabilmente il vantaggio più significativo della PD rispetto alla HD nei primi anni di RRT per i pazienti candidabili a trapianto.

 

Qualità di vita

Il trapianto renale garantisce una migliore qualità di vita (QoL) rispetto alla terapia dialitica [25,103,104]. Il tempo trascorso dai pazienti in lista trapianto varia a seconda della nazione considerata. Tuttavia, durante questo periodo una quota significativa dei candidati viene rimosso dalla lista o va incontro a decesso ancora prima di ricevere un organo.

Per esempio, analizzando i più recenti dati italiani del Centro Nazionale Trapianti, nel corso del 2020 2843 dei 7941 (circa 36%) pazienti in lista di attesa al 31 dicembre 2019 sono usciti di lista: 1623 per trapianto, 239 per decesso e 980 per inidoneità temporanea o definitiva. Inoltre, il tempo mediano di attesa prima di ricevere un organo era pari a circa 3 anni e 3 mesi [105].

Lo stadio terminale della malattia renale associato alla necessità di terapia dialitica cronica può inficiare diversi aspetti della vita del paziente influenzando negativamente il benessere fisico, psichico, sociale ed economico. Dunque, nei candidati al KT il mantenimento di una elevata qualità di vita anche durante l’attesa in lista rappresenta un obbiettivo di vitale importanza.

A differenza dell’HD, la metodica dialitica peritoneale può essere eseguita a domicilio dal paziente indipendentemente o con il supporto di un familiare/badante. Inoltre, il breve tempo richiesto per effettuare uno scambio, permette di stilare uno schema dialitico flessibile concedendo al paziente di viaggiare e di partecipare ad attività ricreative.

Come per i risultati clinici, il confronto della QoL sperimentata dai pazienti in HD rispetto ai soggetti in PD è un compito di non semplice realizzazione. A questo scopo, lo strumento maggiormente impiegato per la valutazione della QoL dei pazienti in trattamento dialitico è rappresentato dal questionario “Kidney Disease Quality of Life” (KDQOL) [106]. Successivamente, sono state proposte multiple versioni di questo score, quali la KDQOL-Short Form Version 1.3 [107], la KDQOL-Short Form 36 e la Short Form-12 [108]. Un altro questionario frequentemente utilizzato è il CHOICE Health Experience Questionnaire (CHEQ), formulato nello studio “Choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE)”. Il CHEQ permette di integrare lo SF-36, essendo stato progettato per rilevare differenze più sottili fra la HD e la PD [109].

Tramite lo score KDQOL-SF 1.3, Wakeel et al. [110] confrontavano la QoL di 200 pazienti in HD o PD in Arabia Saudita. Dopo aver escluso i pazienti con difetti cognitivi, deficit neurologici e patologie psichiatriche, gli autori dimostravano che la PD era associata ad un punteggio più elevato in quasi tutti i domini esplorati. In un altro lavoro riguardante più di 300 pazienti, attraverso l’utilizzo del KDQOL-SF36, si evidenziava che i pazienti in PD possedevano un punteggio più alto nei domini inerenti allo stato lavorativo (25,00 vs 14,64; p=0,012), il supporto dallo staff dialitico (96,12 vs 83,11; p=0,008) e la soddisfazione complessiva del trattamento (81,61 vs 71,47; p <0,005) [111]. Un maggiore sostegno dal personale sanitario così come una maggiore soddisfazione globale rispetto alla terapia dialitica venivano osservati anche nello studio di De Abreu et al. [112]. Evidenze, invece, che la PD si associ a un minore stress emotivo in confronto alla HD sono state fornite dal più recente lavoro di Griva et al. [113] e dalla metanalisi di Cameron [114].

In uno studio trasversale condotto su 736 pazienti con ESRD (PD n=256 e HD n=480), gli autori formulavano uno specifico questionario basato sugli elementi specifici che i pazienti stessi percepivano come più rilevanti per la loro QoL. Analizzando i risultati ottenuti, i pazienti in PD mostravano una soddisfazione per la terapia dialitica in corso superiore agli individui in HD anche quando il punteggio veniva corretto per multipli fattori quali l’età, l’etnia, lo stato lavorativo e familiare, la distanza dal centro dialitico e il tempo trascorso dall’inizio della dialisi [115].

La capacità di preservare l’attività lavorativa dopo l’inizio della terapia dialitica è un altro significativo aspetto della QoL del paziente in RRT [116]. A questo riguardo, numerosi studi hanno dimostrato che la PD offre maggiori possibilità di occupazione rispetto alla HD [43,116118]. In particolare, secondo i dati dello studio CHOICE la percentuale di pazienti occupati in PD era 27% mentre solo 8,6% in HD [43].

Dunque, alla luce delle evidenze disponibili in letteratura, i pazienti in PD mostrano una più elevata soddisfazione, un migliore benessere psicologico, un minore stress emotivo e una maggiore probabilità di mantenere la propria occupazione rispetto ai pazienti in HD.

 

Costo

La RRT cronica rappresenta certamente uno dei costi più rilevanti dei sistemi sanitari pubblici e privati di tutto il mondo. Attuali stime prevedono che la prevalenza della ESRD aumenterà ulteriormente nel prossimo futuro sia a causa dell’aumento dell’incidenza di patologie quali l’ipertensione, il diabete e l’obesità, sia per il progressivo invecchiamento della popolazione [119121].

A questo riguardo, il trapianto renale garantisce una migliore sopravvivenza e qualità di vita rispetto alla terapia dialitica a costi decisamente minori [25,122,123]. Tuttavia, la maggior parte dei candidati a KT trascorrono inevitabilmente una considerevole quantità di tempo in dialisi prima di ricevere un organo [124]. Dunque, i costi della terapia sostitutiva provenienti dai pazienti in lista di attesa non dovrebbero essere ignorati [121].

Numerosi studi sono stati concepiti per confrontare le spese sostenute dalle modalità dialitiche. In una revisione della letteratura pubblicata nel 2008, Just et al. [125] concludevano che l’HD era più costosa della PD nei paesi economicamente più sviluppati, mentre risultati contrastanti venivano osservati nell’analisi dei costi dei trattamenti dialitici in Asia e Africa [126,127]. Questi dati rispecchiano probabilmente l’impatto delle differenze geografiche, sociali e culturali che determinano le effettive spese legate alla RRT. A questo riguardo, recentemente Karopadi et al. [128] hanno valutato i costi della PD e della HD in 46 nazioni con differente sviluppo economico. I risultati venivano espressi come spesa media annuale per paziente in HD diviso la spesa media annuale per paziente in PD (rapporto HD/PD). Il valore di questo rapporto era compreso fra 1,25 e 2,35 in 22 paesi (17 a intenso sviluppo economico e 5 a basso sviluppo), tra 0,9 e 1,25 in 15 stati (2 a intenso sviluppo economico e 13 a basso sviluppo), e compreso fra 0,22 e 0,9 in 9 nazioni (1 a intenso sviluppo economico e 8 a basso sviluppo). Globalmente, questi dati confermano l’evidenza che negli stati economicamente sviluppati la PD è meno costosa dell’HD, mentre nei paesi a minore sviluppo economico la PD può essere considerata un’opzione finanziariamente vantaggiosa solo nel caso in cui si crei un’economia di scala con una produzione locale del materiale di dialisi o si instaurino bassi costi di importo [128].

Analizzando le informazioni presenti nell’USRDS 2020 Annual Data Report [7], è possibile notare che la spesa del Medicare (corretta per l’inflazione totale) per paziente con ESRD è aumentata dal 2009 al 2018 di più del 2%, passando da 40,9 a 49,2 bilioni di dollari americani (USD). L’HD con i suoi 93.191 USD per persona/anno rimane la modalità di RRT più costosa seguita dai 78.741 USD della PD e dai 37.304 USD del trapianto renale. È stato, tuttavia, obbiettato che essendo relativamente breve la sopravvivenza della metodica peritoneale, dovrebbero essere presi in considerazione anche i costi legati al passaggio alla HD. In ogni caso i dati a disposizione sembrano suggerire un risparmio annuale di circa 15.000 USD/paziente e una spesa minore anche nei soggetti che vengono trasferiti dalla PD alla HD rispetto a coloro che sono trattati mediante HD [129,130].

Alla luce di questi risultati, è possibile osservare che la PD rappresenta una tecnica dialitica economicamente vantaggiosa in molti paesi. Questa conclusione è corroborata dal fatto che la maggior parte dei confronti fra le due metodiche non considerano numerosi costi indiretti della HD, come la perdita di produttività del paziente e dei suoi familiari e il costo legato ai trasporti. Infatti, come sottolineato in precedenza, la PD grazie alla flessibilità dello schema dialitico e la possibilità di eseguire gli scambi al domicilio permette più frequentemente la preservazione dell’attività lavorativa. Il mantenimento dell’occupazione è, infatti, un fattore di risparmio che raramente viene considerato.

Perciò, il vero rapporto HD/PD potrebbe essere perfino più elevato di quello riportato in quanto, scotomizzando i costi indiretti, tenderebbe a sottostimare il reale vantaggio economico della PD rispetto all’HD. Dunque, il costo legato alla metodica rappresenta sicuramente un ulteriore motivo per privilegiare la PD nei pazienti in attesa di trapianto renale.

 

Conclusioni

Storicamente, l’HD è stata considerata la metodica dialitica d’elezione per la maggior parte dei pazienti affetti da ESRD in attesa di trapianto renale. Nel corso degli anni, diversi studi hanno dimostrato, tuttavia, che l’ipotetico vantaggio dell’HD rispetto alla PD non era supportato da solide evidenze. Al contrario, un’analisi critica della letteratura mostra come la PD rappresenti la metodica sostitutiva di prima scelta per i pazienti in attesa di trapianto per i seguenti motivi (fig.1):

  • una migliore qualità di vita e sopravvivenza (perlomeno nel paziente giovane non diabetico);
  • una più lunga preservazione della diuresi residua, che permette di minimizzare l’incidenza delle complicanze urologiche e il tempo di cateterismo vescicale post-intervento;
  • una più bassa incidenza di ritardata ripresa funzionale dell’organo trapiantato;
  • un minore costo della tecnica.

Tuttavia, deve essere sempre perseguito un approccio integrato delle due modalità dialitiche, soppesando vantaggi e svantaggi di ogni trattamento alla luce delle peculiari caratteristiche di ogni singolo caso.

Figura 1: Sinossi dei vantaggi conferiti dalla dialisi peritoneale ai pazienti affetti da malattia renale cronica allo stadio terminale candidabili a trapianto di rene
Figura 1: Sinossi dei vantaggi conferiti dalla dialisi peritoneale ai pazienti affetti da malattia renale cronica allo stadio terminale candidabili a trapianto di rene

 

Bibliografia

  1. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999; 341:1725–30.
  2. Mcdonald SP, Russ GR. Survival of recipients of cadaveric kidney transplants compared with those receiving dialysis treatment in Australia and New Zealand, 1991 – 2001. Nephrol Dial Transpl 2002; 17:2212–9.
  3. Rao PS, Merion RM, Ashby VB, Port FK, Wolfe RA. Renal transplantation in elderly patients older than 70 Years of Age: results from the scientific registry of transplant recipients. Transplantation 2007; 83:1069–74.
  4. Kasiske BL, Snyder JONJ, Matas AJ, Ellison MD, Gill JS, Kausz AT. Preemptive kidney transplantation: the advantage and the advantaged. J Am Soc Nephrol 2002; 13:1358–64.
  5. Meier-Kriesche H-U, Kaplan B. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: a paired donor kidney analysis. Transplantation 2002; 74:1377–81.
  6. Mange KC, Joffe MM, Feldman HI. Effect of the use or nonuse of long-term dialysis on the subsequent survival of renal transplants from living donors. N Engl J Med 2001; 344:726–31.
  7. United States Renal Data System. 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2020. https://adr.usrds.org/2020
  8. Scribner BH, Caner JE, Buri R, Quinton W. The technique of continous hemodialysis. Trans Am Soc Artif Intern Organs 1960; 6:88–103.
  9. Quinton W, Dillard D, Scribner BH. Cannulation of blood vessels for prolonged hemodialysis. Trans Am Soc Artif Intern Organs 1960; 6:104–13.
  10. Tenckhoff H, Schechter H. A bacteriologically safe peritoneal access device. Trans Am Soc Artif Intern Organs 1968; 14:181–7.
  11. Popovich RP, Moncrief JW, Nolph KD. Continuous ambulatory peritoneal dialysis. Artif Organs 1978; 2:84–6.
  12. Guillou PJ, Will EJ. CAPD-a risk factor in renal transplantation? Br J Surg 1984; 71:878–80.
  13. Passalacqua JA, Wiland AM, Fink JC, Bartlett ST, Evans DA, Keay S. Increased incidence of postoperative infections associated with peritoneal dialysis in renal transplant recipients. Transplantation 1999; 68:535–40.
  14. Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int 1992; 12:14–27.
  15. Scalamogna A, Nardelli L, Zanoni F, Messa P. Double purse-string around the inner cuff of the peritoneal catheter: a novel technique for an immediate initiation of continuous peritoneal dialysis. Int J Artif Organs 2020; 43:365–71.
  16. Nardelli L, Scalamogna A, Messa P. The impact of the superficial cuff position on the exit site and tunnel infections in CAPD patients. J Nephrol 2021; 34:493–501.
  17. Blake PG. Integrated end-stage renal disease care: the role of peritoneal dialysis. Nephrol Dial Transpl 2001; 16:61–6.
  18. Van Biesen W, Vanholder R, Veys N, Dhondt A, Lameire N. An evaluation of an integrative care approach for end-stage renal disease patients. J Am Soc Nephrol 2000; 11:116–25.
  19. Vonesh E, Snyder JJ, Foley RN, Collins AJ. The differential impact of risk factors on mortality in hemodialysis and peritoneal dialysis. Kidney Int 2004; 66:2389–401.
  20. Heaf JG, Løkkegaard H, Madsen M. Initial survival advantage of peritoneal dialysis relative to haemodialysis. Nephrol Dial Transpl 2002; 17:112–7.
  21. Fenton SSA, Schaubel DE, Desmeules M, Morrison HI, Mao Y, Copleston P, et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis 1997; 30:334–42.
  22. Liem YS, Wong JB, Hunink MGM, Charro F De, Winkelmayer WC. Comparison of hemodialysis and peritoneal dialysis survival in The Netherlands. Kidney Int 2007; 71:153–8.
  23. Weinhandl ED, Foley RN, Gilbertson DT, Arneson TJ, Snyder JJ, Collins AJ. Propensity-matched mortality comparison of incident hemodialysis and peritoneal dialysis patients. J Am Soc Nephrol 2010; 21:499–506.
  24. Oniscu GC, Brown H, Forsythe JLR. Impact of cadaveric renal transplantation on survival in patients listed for transplantation. J Am Soc Nephrol 2005; 16:1859–65.
  25. Laupacis A, Keown P, Pus N, Krueger H, Ferguson B, Wong C, et al. A study of the quality of life and cost-utility of renal transplantation. Kidney Int 1996; 50:235–42.
  26. Kaplan B, Meier-Kriesche H-U. Death after graft loss: an Important late study endpoint in kidney transplantation. Am J Transpl 2002; 2:970–4.
  27. Gill JS, Abichandani R, Kausz AT, Pereira BJG. Mortality after kidney transplant failure: the impact of non-immunologic factors 2002; 62:1875–83.
  28. Rao PS, Schaubel DE, Jia X, Li S. Survival on dialysis post–kidney transplant failure: results. AJKD 2007; 49:294–300.
  29. Donoghue DO, Manos J, Pearson R, Scott P, Bakran A, Johnson R, et al. Continuous ambulatory peritoneal dialysis and renal transplantation: a ten-year experience in a single center. Perit Dial Int 1992; 12:242–9.
  30. Cosio FG, Alamir A, Yim S, Pesavento TE, Falkenhain ME, Henry ML, et al. Patient survival after renal transplantation: I.The impact of dialysis pre-transplant. Kidney Int 1998; 53:767–72.
  31. Binaut R, Hazzan M, Pruvot FR, Dracon M, Lelievre G, Noel C. Comparative study of chronic ambulatory peritoneal dialysis versus hemodialysis patients after kidney transplantation: clinical and financial assessment. Transpl Proc 1997; 29:2428.
  32. Joseph JT, Jindal RM. Influence of dialysis on post-transplant events. Clin Transpl 2002; 16:18–23.
  33. Snyder JJ, Kasiske BL, Gilbertson DT, Collins AJ. A comparison of transplant outcomes in peritoneal and hemodialysis patients. Kidney Int 2002; 62:1423–30.
  34. Goldfarb-rumyantzev AS, Hurdle JF, Scandling JD, Baird BC, Cheung AK, Al GET. The Role of pretransplantation renal replacement therapy modality in kidney allograft and recipient survival. Am J Kidney Dis 2005; 46:537–49.
  35. Yang Q, Zhao S, Chen W, Mao H, Huang F, Zheng Z, et al. Influence of dialysis modality on renal transplant complications and outcomes. Clin Nephrol 2009; 72:62–8.
  36. Caliskan Y, Yazici H, Gorgulu N, Yelken B, Emre T, Turkmen A, et al. Effect of pre-transplant dialysis modality on kidney transplantation outcome. Perit Dial Int 2009; 29 Suppl 2:117–22.
  37. Freitas C, Fructuoso M, Martins LS, Almeida M, Pedroso S, Dias L, et al. Posttransplant outcomes of peritoneal dialysis versus hemodialysis patients. Transpl Int 2011; 43:113–6.
  38. Resende L, Guerra J, Santana A, Abreu F, Costa AG. Influence of dialysis duration and modality on kidney transplant outcomes. Transpl Proc 2009; 41:837–9.
  39. Sharma A, Teigeler TL, Behnke M, Cotterell A, Fisher R, King A, et al. The mode of pretransplant dialysis does not affect postrenal transplant outcomes in african americans. J Transplant 2012; 2012:303596.
  40. López-Oliva MO, Rivas B, Pérez-Fernández E, Ossorio M, Ros S, Chica C, et al. Pretransplant peritoneal dialysis relative to hemodialysis improves long-term survival of kidney transplant patients: a single-center observational study. Int Urol Nephrol 2014; 46:825–32.
  41. Schwenger V, Döhler B, Morath C, Zeier M, Opelz G. The role of pretransplant dialysis modality on renal allograft outcome 2011; 26:3761–6.
  42. Molnar MZ, Mehrotra R, Duong U, Bunnapradist S, Lukowsky LR, Krishnan M. Dialysis modality and outcomes in kidney transplant recipients. Clin J Am Soc Nephrol 2012; 7:332–41.
  43. Miskulin DC, Meyer KB, Athienites N V, Martin AA, Terrin N, Marsh J V, et al. Comorbidity and other factors associated with modality selection in incident dialysis patients: the CHOICE study. Am J Kidney Dis 2002; 39:324–36.
  44. Stack AG. Determinants of modality selection among incident US dialysis patients: results from a national Study. Clin J Am Soc Nephrol 2002; 2:1279–87.
  45. Xue JL, Chen S-C, Ebben JP, Constantini EG, Everson SE, Frazier ET, et al. Peritoneal and hemodialysis: I. Differences in patient characteristics at initiation. Kidney Int 2002; 61:734–40.
  46. Helal I, Abderrahim E, Hamida F Ben, Zouaghi K, Ounissi M, Barbouche S, et al. Impact of dialysis modality on posttransplantation results in kidney transplantation. Transpl Proc 2007; 2549:2547–9.
  47. Kramer A, Jager KJ, Fogarty DG, Ravani P, Finne P, Pérez-panadés J, et al. Association between pre-transplant dialysis modality and patient and graft survival after kidney transplantation. Nephrol Dial Transpl 2012; 27:4473–80.
  48. Van Biesen W, Vanholder R, Loo A Van, Vennet M Van Der, Lameire N. Peritoneal dialysis favorably influences early graft function after renal transplantation compared to hemodialysis. Transplantation 2000; 27:508–14.
  49. Yarlagadda SG, Coca SG, Jr RNF, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transpl 2009; 24:1039–47.
  50. Pérez-Fontán M, Rodríquez-Carmona A, Bouza P, Falcón TG, Moncalián J, Oliver J, et al. Outcome of grafts with long-lasting delayed function after renal transplantation. Transplantation 1996; 62:42–7.
  51. Nicholson ML, Wheatley TJ, Horsburgh T, Edwards CM, Veitch PS, Bell PRE, et al. The relative influence of delayed graft function and acute rejection on renal transplant survival. Transpl Int 1996; 9:415–9.
  52. Cosio FG, Pelletier RP, Falkenhain ME, Henry ML, Elkhammas EA, Davies EA, et al. Impact of acute rejection and early allograft function on renal allograft survival. Transplantation 1997; 63:1611–5.
  53. Leggat Jr J, Ojo AO, Leichtman AB, Port FK, Wolfe RA, Turenne MN, et al. Long-term renal allograft survival: prognostic implication of the timing of acute rejection episodes. Transplantation 1997; 63:1268–72.
  54. Giral-Classe M, Hourmant M, Cantarovich D, Dantal J, Blancho G, Daguin P, et al. Delayed graft function of more than six days strongly decreases long-term survival of transplanted kidneys. Kidney Int 1998; 54:972–8.
  55. Troppmann C, Gillingham KJ, Benedetti E, Almond PS, Gruessner RW, Najarian JS, et al. Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. The multivariate analysis. Transplantation 1995; 59:962–8.
  56. Favi E, James A, Puliatti C, Whatling P, Ferraresso M, Rui C. Utility and safety of early allograft biopsy in adult deceased donor kidney transplant recipients. Clin Exp Nephrol 2020; 24:356–68.
  57. Vanholder R, Heering P, Loo A Van, Biesen W Van, Lambert M, Hesse U, et al. Reduced Incidence of acute renal graft failure in patients treated with peritoneal dialysis compared with hemodialysis. Am J Kidney Dis 1999; 33:934–40.
  58. Issad B, Mouquet C, Bitker MO, Allouache M, Baumelou A, Rottembourg J, et al. Is overhydration in CAPD patients a contraindication to renal transplantation? Adv Perit Dial 1994; 10:68–72.
  59. Bleyer AJ, Burkart JM, Russell GB, Adams PL. Dialysis modality and delayed graft function after cadaveric renal transplantation. J Am Soc Nephrol 1999; 10:154–9.
  60. Sezer S, Karakan S, Acar FNÖ, Haberal M. Dialysis as a bridge therapy to renal transplantation: comparison of graft outcomes according to mode of dialysis treatment. Transpl Proc 2011; 43:485–7.
  61. Martin X, Aboutaieb R, Soliman S, Essawy A el, Dawahra M, Lefrancois N. The use of long-term defunctionalized bladder in renal transplantation: is It safe ? Eur urol 1999; 36:450–3.
  62. Inoue T, Satoh S, Saito M, Numakura K, Tsuruta H, Obara T, et al. Correlations between pretransplant dialysis duration, bladder capacity, and prevalence of vesicoureteral reflux to the graft. Transplantation 2011; 92:311–5.
  63. Chen J, Lee M, Kuo H. Reduction of cystometric bladder capacity and bladder compliance with time in patients with end-stage renal disease. J Formos Med Assoc 2012; (4):209–13.
  64. Silva DM, Prudente AC, Mazzali M, Borges CF, Ancona CD. Transplantation in nonurologic disease: is it necessary ? Urology 2014; 83:406–10.
  65. Song M, Park J, Hoon Y. Bladder capacity in kidney transplant patients with end‑stage renal disease. Urology 2015; 47:101–6.
  66. Hotta K, Miura M, Wada Y, Fukuzawa N, Iwami D, Sasaki H, et al. Atrophic bladder in long-term dialysis patients increases the risk for urological complications after kidney transplantation. Int J Urol 2017; 24:314–9.
  67. Tillou X, Lee-Bion A, Ligny BH de, Orczyk C, Gal S Le, Desmonts A, et al. Does daily urine output really matter in renal transplantation? Ann Transpl 2013; 18:716–20.
  68. Rottembourg J, Issad B, Gallego JL, Degoulet P, Aime F, Gueffaf B, et al. Evolution of residual renal function in patients undergoing maintenance haemodialysis or continuous ambulatory peritoneal dialysis. Proc Eur Dial Transpl Assoc 1983; 19:397–403.
  69. Moist LM, Port FK, Orzol SM, Young EW, Ostbye T, Wolfe RA, et al. Predictors of loss of residual renal function among new dialysis patients. J Am Soc Nephrol 2000; 11:556–64.
  70. Lysaght MJ, Vonesh EF, Gotch F, Ibels L, Keen M, Lindholm B, et al. The influence of dialysis treatment modality on the decline of remaining renal function. ASAIO Trans 1991; 37:598–604.
  71. Misra M, Vonesh E, Stone JC Van, Moore HL, Prowant B, Nolph KD. Effect of cause and time of dropout on the residual GFR: a comparative analysis of the decline of GFR on dialysis. Kidney Int 2001; 59:754–63.
  72. Lang SM, Bergner A, Töpfer M, Schiffl H. Preservation of residual renal function in dialysis patients: effects of dialysis-technique-related factors. Perit Dial Int 2001; 21:52–7.
  73. Jansen MAM, Hart AAM, Korevaar JC, Dekker FW, Boeschoten EW, Raymond T Krediet. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int 2002; 62:1046–53.
  74. Termorshuizen F, Korevaar JC, Dekker FW, Manen JG Van, Boeschoten EW, Krediet RT, et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands Cooperative Study on the Adequacy of Dialysis (NECOSAD)-2. Am J Kidney Dis 2003; 41(6):1293–302.
  75. Fischbach M, Terzic J, Menouer S, Soulami K, Dangelser C, Helmstetter A, et al. Effects of automated peritoneal dialysis on residual daily urinary volume in children. Adv Perit Dial 2001; 17:269–73.
  76. McKane W, Chandna SM, Tattersall JE, Greenwood RN, Farrington K. Identical decline of residual renal function in high-flux biocompatible hemodialysis and CAPD. Kidney Int 2002; 61:256–65.
  77. Lameire NH. The impact of residual renal function on the adequacy of peritoneal dialysis. Nephron 1997; 77:13–28.
  78. Maiorca R, Brunori G, Zubani R, Cancarini GC, Manili L, Camerini C, et al. Predictive value of dialysis adequacy and nutritional indices for mortality and morbidity in CAPD and HD patients. A longitudinal study. Nephrol Dial Transpl 1995; 10:2295–305.
  79. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1996; 7:198–207.
  80. Diaz-buxo JA, Lowrie EG, Lew NL, Zhang SMH, Zhu X, Lazarus JM. Associates of mortality among peritoneal dialysis patients with special reference to peritoneal transport rates and solute clearance. Am J Kidney Dis 1999; 33:523–34.
  81. Rocco M, Soucie JM, Pastan S, McClellan WM. Peritoneal dialysis adequacy and risk of death. Kidney Int 2000; 58:446–57.
  82. Szeto C, Uk M, Lai K, Wong TYH, Uk M, Law M, et al. Independent effects of residual renal function and dialysis adequacy on nutritional status and patient outcome in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1999; 34:1056–64.
  83. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA Study. J Am Soc Nephrol 2001; 12:2158–62.
  84. Paniagua N, Amato D, Vonesh E. Effects of Increased Peritoneal Clearances on Mortality Rates in Peritoneal Dialysis: ADEMEX, a Prospective, Randomized, Controlled Trial. J Am Soc Nephrol 2002; 1307–20.
  85. Marrón B, Remón C, Pérez-Fontán M, Quirós P, Ortíz A. Benefits of preserving residual renal function in peritoneal dialysis. Kidney Int Suppl 2008; 108:S42-51.
  86. Shemin D, Bostom AG, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis 2001; 38:85–90.
  87. Menon MK, Naimark DM, Bargman JM, Vas SI, Oreopoulos DG. Long-term blood pressure control in a cohort of peritoneal dialysis patients and its association with residual renal function. Nephrol Dial Transpl 2001; 16:2207–13.
  88. Wang AY, Woo J, Wang M, Sea MM, Sanderson JE, Lui S, et al. Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function. Nephrol Dial Transpl 2005; 20:396–403.
  89. Wang AY-M, Wang M, Woo J, Law M-C, Chow K-M, Li PK-T, et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int 2002; 62:639–47.
  90. Wang AY, Wang MEI, Woo J, Lam CW, Lui S, Li PK, et al. Inflammation, residual kidney function, and cardiac hypertrophy are Interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. J Am Soc Nephrol 2004; 15:2186–94.
  91. Morduchowlcz G, Winkler J, Zabludowski JIL, Boner G. Effects of residual renal function in haemodialysis Patients. Int Urol Nephrol 1994; 26:125–31.
  92. Ateş K, Nergizoğlu G, Keven K, Sen A, Kutlay S, Ertürk S, et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 2001; 60:767–76.
  93. Konings CJAM, Kooman JP, Schonck M, Struijk DG, Gladziwa U, Hoorntje SJ, et al. Fluid status in CAPD patients is related to peritoneal transport and residual renal function: evidence from a longitudinal study. Nephrol Dial Transpl 2003; 797–803.
  94. Mistry CD, O’Donoghue DJ, Nelson S, Gokal R, Ballardie FW. Kinetic and clinical studies of beta 2-microglobulin in continuous ambulatory peritoneal dialysis: influence of renal and enhanced peritoneal clearances using glucose polymer. Nephrol Dial Transpl 1990; 5:513–9.
  95. Montenegro J, Martínez I, Saracho R, González R. Beta 2 microglobulin in CAPD. Adv Perit Dial 1992; 8:369–72.
  96. Suda T, Hiroshige K, Ohta T, Watanabe Y, Iwamoto M, Ohtani A, et al. The contribution of residual renal function to overall nutritional status in chronic haemodialysis patients. Nephrol Dial Transpl 2000; 396–401.
  97. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y, Dis K. Time profiles of peritoneal and renal Clearances of different uremic solutes in incident peritoneal dialysis patients. Am J Kidney Dis 2005; 46:512–9.
  98. Wang AY, Sea MM, Ip R, Law M, Chow K, Lui S, et al. Independent effects of residual renal function and dialysis adequacy on actual dietary protein, calorie, and other nutrient intake in patients on continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 2001; 12:2450–7.
  99. Pecoits-filho R, Heimbu O, Ba P, Suliman M, Fehrman-ekholm I, Lindholm B, et al. Associations between circulating inflammatory markers and residual renal function in CRF Patients. Am J Kidney Dis 2003; 41:1212–8.
  100. Gao H, Lew SQ, Ronco C, Mishkin GJ, Bosch JP. The impact of residual renal function and total body water volume on achieving adequate dialysis in CAPD. J Nephrol 1999; 12:184–9.
  101. Pagé DE, Knoll GA, Cheung V. The relationship between residual renal function, protein catabolic rate, and phosphate and magnesium levels in peritoneal dialysis patients. Perit Dial Int 2002; 18:189–91.
  102. Kagan A, Elimalech E, Lemer Z, Fink A, Bar-Khayim Y. Residual renal function affects lipid profile in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 1997; 17:243–9.
  103. Czyżewski L, Sańko-Resmer J, Wyzgał J, Kurowski A. Assessment of health-related quality of life of patients after kidney transplantation in comparison with hemodialysis and peritoneal dialysis. Ann Transpl 2014; 19:576–85.
  104. Kostro JZ, Hellmann A, Kobiela J. Quality of life after kidney transplantation: a prospective Study. Transpl Proc 2016; 48:50–4.
  105. Report attività annuale rete nazionale trapianti. 2020. https://www.trapianti.salute.gov.it/trapianti/archivioDatiCnt.jsp
  106. Hays ID, Kallich JD. Development of the Kidney Disease Quality of Life (KDQOL) Instrument. Qual Life Res 1994; 3:329–38.
  107. Korevaar JC, Merkus MP, Jansen MAM, Dekker FW, Boeschoten EW, Krediet RT. Validation of the KDQOL-SF: a dialysis-targeted health measure. Qual Life Res 2002; 11:437–47.
  108. Lacson E, Xu J, Lin S, Dean SG, Lazarus JM, Hakim RM. A Comparison of SF-36 and SF-12 composite scores and subsequent hospitalization and mortality risks in long- term dialysis patients. Clin J Am Soc Nephrol 2010; 5:252–60.
  109. Wu AW, Fink NE, Cagney KA, Bass EB, Rubin HR, Meyer KB, et al. Developing a health-related quality-of-life measure for end-stage renal disease: the CHOICE health experience questionnaire. Am J Kidney Dis 2001; 1:11–21.
  110. Wakeel J Al, Harbi A Al, Bayoumi M, Al-Suwaida K, Ghonaim M Al, Mishkiry A. Quality of life in hemodialysis and peritoneal dialysis patients in Saudi Arabia. Ann Saudi Med 2012; 32:570–4.
  111. Gonçalves FA, Dalosso IF, Borba JMC, Bucaneve J, Valerio NMP, Okamoto CT, et al. Quality of life in chronic renal patients on hemodialysis or peritoneal dialysis: a comparative study in a referral service of Curitiba-PR. J Bras Nefrol 2015; 37:467–74.
  112. De Abreu MM, Walker DR, Sesso RC, Ferraz MB. Health-related quality of life of patients recieving hemodialysis and peritoneal dialysis in São Paulo, Brazil: A longitudinal study. JVAL 2011; 14:S119–21.
  113. Griva K, Kang AW, Yu ZL, Mooppil NK, Foo M, Chan CM, et al. Quality of life and emotional distress between patients on peritoneal dialysis versus community-based hemodialysis. Qual Life Res 2013; 23:57–66.
  114. Cameron JI, Whiteside C, Katz J, Devins GM. Differences in quality of life across renal replacement therapies: a meta-analytic comparison. Am J Kidney Dis 2000; 35:629–37.
  115. Rubin HR, Fink NE, Plantinga LC, Sadler JH, Kliger AS, Powe NR. Patient ratings of dialysis care with peritoneal dialysis vs hemodialysis. JAMA 2004; 291:697–703.
  116. Kutner NG, Zhang R, Huang Y, Johansen KL. Depressed mood, usual activity level, and continued employment after starting dialysis. Clin J Am Soc Nephrol 2010; 5:2040–5.
  117. Muehrer RJ, Schatell D, Witten B, Gangnon R, Becker BN, Hofmann RM. Factors Affecting Employment at Initiation of Dialysis. Clin J Am Soc Nephrol 2011; 6:489–96.
  118. Hirth RA, Chernew ME, Turenne MN, Pauly M V, Orzol SM, Held PJ. Chronic illness, treatment choice and workforce participation. Int J Heal Care Financ Econ 2003; 3:167–81.
  119. Jha V, Garcia-garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013; 382:260–72.
  120. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 2095–128.
  121. White SL, Chadban SJ, Jan S, Chapman R, Cass A. How can we achieve global equity in provision of renal replacement therapy? Bull World Heal Org 2008; 86:229–37.
  122. Axelrod DA, Schnitzler MA, Xiao H, Irish W, Chang ETS, Alhamad T, et al. An economic assessment of contemporary kidney transplant practice. Am J Transpl 2018; 18:1168–76.
  123. Cavallo MC, Sepe V, Conte F, Abelli M, Ticozzelli E, Bottazzi A, et al. Cost-effectiveness of kidney transplantation from DCD in Italy. Transpl Proc 2014; 46:3289–96.
  124. Hart A, Lentine KL, Smith JM, Miller JM, Skeans MA, Prentice M, et al. OPTN/SRTR 2019 Annual Data Report : Kidney. Am J Transpl 2021; 21 Suppl:21–137.
  125. Just PM, Riella MC, Tschosik EA, Noe LL, Bhattacharyya SK, Charro F de. Economic evaluations of dialysis treatment modalities. Health Policy (New York) 2008; 86:163–80.
  126. Li PK, Chow KM. The cost barrier to peritoneal dialysis in the developing world-an Asian perspective. Perit Dial Int 2001; 21:S307–S313.
  127. Abu-aisha H, Elamin S, Program D. Peritoneal dialysis in africa. Perit Dial Int 2010; 30:23–8.
  128. Karopadi AN, Mason G, Ronco C. Cost of peritoneal dialysis and haemodialysis across the world. Nephrol Dial Transpl 2013; 28:2553–69.
  129. Chui BK, Manns B, Pannu N, Dong J, Wiebe N, Jindal K, et al. Health care costs of peritoneal dialysis technique failure and dialysis modality switching. Am J Kidney Dis 2013; 61:104–11.
  130. Neil N, Guest S, Wong L, Inglese G, Bhattacharyya SK, Gehr T, et al. The financial implications for Medicare of greater use of peritoneal dialysis. Clin Ther 2009; 31:880–8.

 

Diagnosi di amartomatosi biliare in paziente con ADPKD trapiantato di rene

Abstract

L’amartoma dei dotti biliari (AB) è una rara malformazione benigna caratterizzata dall’ectasia dei dotti biliari e causata da errori di sviluppo della lamina duttale, la struttura embrio-fetale da cui derivano i dotti biliari intraepatici . Gli AB sono in genere asintomatici, ma in qualche caso possono favorire la comparsa di ittero, epigastralgia e febbre. Esistono chiare evidenze scientifiche su comuni basi patogenetiche dell’AB con la malattia del rene policistico autosomico dominante (ADPKD). Pur essendo lesioni benigne, presentano rischio di trasformazione neoplastica, che aumenta nei casi di associazione con l’ADPKD e con stati di immunosoppressione. All’imaging, gli AB pongono problemi di diagnosi differenziale e possono risultare di difficile individuazione nell’ambito dell’ADPKD. Presentiamo il caso clinico di un paziente di 54 anni affetto da ADPKD e trapiantato di rene, in cui l’amartomatosi biliare, sino ad allora mai rilevata ai periodici esami ecografici, è stata sospettata all’ecografia 4 anni dopo il trapianto e successivamente confermata dalla RM. La demodulazione dei segnali proliferativi indotta dalla terapia immunosoppressiva, in particolare dagli inibitori delle calcineurine, potrebbe averne favorito la crescita, aumentandone il rischio di trasformazione neoplastica. Questo caso suggerisce l’importanza della ricerca periodica degli AB nei pazienti con ADPKD, specie se trapiantati con metodiche a maggiore sensibilità rispetto alla semplice ecografia, quali la CEUS e la RM.

Parole chiave: amartomatosi biliare, trapianto renale, malattia del rene policistico

Introduzione

Gli amartomi biliari (AB), anche conosciuti come complessi di von Meyenburg, sono rare malformazioni benigne dei dotti biliari di piccolo calibro che, senza predilezione di sesso, vengono riscontrati nel 5.6% delle autopsie e rappresentano un reperto ancor più raro nella analisi istologica delle biopsie epatiche (0.6%) (1). 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.