Iperuricemia della malattia renale cronica: trattare o non trattare?

Abstract

Numerosi studi hanno dimostrato come l’iperuricemia (HU) costituisca un fattore di rischio indipendente per lo sviluppo della malattia renale cronica (CKD) e di eventi patologici cardiovascolari. Pur tuttavia, benché alcune evidenze sembrino attribuire all’acido urico (UA) un ruolo non solo predittivo, ma anche causale nei confronti degli eventi sopra citati, una robusta e definitiva dimostrazione di ciò continua tuttora a mancare.
Inoltre, a dispetto di quello che parrebbe un logico razionale a sostegno dell’impiego della cosiddetta “urate-lowering therapy” (ULT) a scopo nefroprotettivo nel paziente iperuricemico con CKD, studi e meta-analisi al riguardo, peraltro talora gravati da limiti che potrebbero averne inficiato i risultati, hanno sinora fornito risultati tra loro assai divergenti lasciando incertezza circa la possibilità che una riduzione farmaco- indotta dell’uricemia possa davvero consentire di rallentare la progressione della CKD e prevenirne le complicanze cardiovascolari.
Il presente articolo riassume le attuali conoscenze sul metabolismo dell’UA e sui farmaci che con esso interferiscono, illustra le teorie sui possibili plurimi meccanismi patogenetici che sarebbero alla base del danno renale HU-correlato e passa in rassegna risultati e limiti dei più recenti studi che hanno sostenuto o negato il ruolo nefroprotettivo della ULT nella CKD alimentando una controversia scientifica che tuttora si protrae.

Parole chiave: Acido urico, iperuricemia asintomatica, gotta, malattia renale cronica, urate-lowering therapy.

Introduzione

I rapporti tra iperuricemia (HU) e malattia renale cronica (CKD) sono complessi e di difficoltosa interpretazione per la presenza di fattori confondenti legati alla duplice potenzialità della prima di poter essere sia conseguenza, sia causa della seconda. Da un lato infatti la riduzione del filtrato glomerulare (GFR) che si verifica nella CKD comporta una ridotta escrezione urinaria di acido urico (UA) che può innalzarne i livelli serici, il concomitante impiego di diuretici aggrava tale difetto e le principali cause di CKD, cioè diabete ed ipertensione, sono spesso già di per sé condizioni iperuricemiche(1-3). D’altra parte, ormai assodato che l’HU costituisca un fattore predittivo indipendente per lo sviluppo della CKD e di eventi cardiovascolari patologici, il suo possibile ruolo causale in tali situazioni resta incerto: in particolare, per quanto attiene quello relativo al danno renale, esso risulta meglio provato nella forma da deposito di cristalli di urato, ma meno definito, anche se con crescenti indizi a suo suffragio, nelle conseguenze ascritte all’azione dell’UA solubile. Analogamente rimane ancora controverso, a causa dei contrastanti risultati sinora forniti da studi e meta-analisi sull’argomento, il possibile ruolo nefroprotettivo dalla cosiddetta urate-lowering therapy (ULT)(4-5).
Nella trattazione che segue esamineremo gli studi più recenti e le motivazioni che sono alla base di differenti punti di vista rispetto alle sopra descritte diatribe.

 

Fisiologia

L’acido urico o C5H4N4O3 o 2,6,8-triossi-1H-purina, composto organico eterociclico con massa molecolare pari a 168,11 unità di massa atomica, è un acido debole che nel comparto extracellulare, al pH fisiologico, è presente al 98-99% nella forma ionizzata di urato monosodico (MSU).
La sintesi dell’UA, prodotto finale del catabolismo delle purine esogene (da cui derivano quotidianamente circa 100-200 mg di UA) ed endogene (da cui derivano ulteriori 600-700 mg/die di UA) avviene nel fegato ad opera dell’enzima xantina ossidoreduttasi (XOR), mentre l’eliminazione dell’UA è per 1/3 gastrointestinale, poi seguita da uricolisi batterica, e per 2/3 renale. In quest’ultima sede il 95% dell’UA viene filtrato dal glomerulo (la restante quota non filtrata è quella legata alle proteine), poi riassorbito al 99% nel tratto S1 del tubulo prossimale e successivamente secreto nel tratto S2, in entrambi i casi ad opera di trasportatori di membrana specifici per ciascuna delle due direzioni e situati in parte sul versante apicale (URAT1 o SLC22A12, OAT4 o SLC22A11, OAT10 o SLC22A13, GLUT9 o SLC2A9 deputati al riassorbimento e ABCG2, ABCC2 o MRP2, ABCC4 o MRP4, NPT1 o SLC17A1, NPT4 o SLC17A3 deputati alla secrezione) ed in parte sul versante baso-laterale (GLUT9 o SLC2A9 deputato al riassorbimento e OAT1 o SLC22A6, OAT2 o SLC22A7, OAT3 o SLC22A8 deputati alla secrezione) della cellula epiteliale del tubulo; alla fine del processo la quota di UA eliminata con le urine rappresenta circa il 10% di quella filtrata(6-10).

 

Definizione, cause e conseguenze della HU

Negli esseri umani i livelli plasmatici di UA sono più elevati rispetto a quelli degli animali dotati di attività uricasica che permette loro di trasformarlo in allantoina (rispettivamente 3-7 mg/dl contro 1-2 mg/dl), e sono inferiori nella donna rispetto all’uomo per effetto dell’attività uricosurica propria degli estrogeni.
La mutazione responsabile della perdita dell’uricasi (o urato ossidasi) da parte dell’uomo e dei primati superiori sarebbe avvenuta nel Miocene, tra 25 e 12 milioni di anni fa, comportando almeno quattro rilevanti vantaggi in termini evoluzionistici: il rimpiazzo dell’attività antiossidante conseguente alla perdita della capacità di sintesi della vitamina C, importante per la longevità e la neuro-protezione; la stimolazione mentale dovuta ad analogie strutturali con la caffeina, importante per lo sviluppo dell’intelligenza; la stimolazione del sistema renina-angiotensina-aldosterone (RAAS) per il mantenimento di un adeguato regime pressorio in concomitanza con l’assunzione della stazione eretta nonostante un’alimentazione all’epoca povera di sodio; l’incremento delle capacità di accumulare grasso in risposta alla ridotta disponibilità di frutti causata dal raffreddamento della terra(7,11).
Nella seconda metà del secolo scorso, nei paesi economicamente avanzati, i livelli medi di uricemia della popolazione sono progressivamente saliti con il progredire del benessere(12) e l’incremento dell’assunzione di cibi ricchi in purine (soprattutto proteine animali, crostacei, birra, vino, e bevande alcooliche) e fruttosio (bevande zuccherate).
Benché da lungo tempo siano considerati valori di uricemia patologici quelli superiori a 7.0 mg/dl nell’uomo e a 6.0 mg/dl nella donna, alcuni invitano a considerare l’uricemia normale per entrambi soltanto fino a 6.0-6.4 mg/dl poiché questi sono i limiti di solubilità del MSU rispettivamente a 35° e 37°(13-14); al momento questo orientamento non sembra tuttavia trovare ancora il completo accordo di tutti gli esperti.
Cause acquisite o congenite di aumentata introduzione (dieta iperpurinica) o di aumentata produzione di UA (malatttie mielo-linfoproliferative, neoplasie, chemioterapia, psoriasi, sindrome di Lesch-Nyhan, iperattività della fosforibosilpirofosfato sintetasi), ma soprattutto (90% dei casi) di ridotta eliminazione dell’UA (ipovolemia, CKD, farmaci, saturnismo, tubulopatia autosomica dominante uromodulina-associata) inducono HU, condizione a rischio per il successivo sviluppo di patologie. Come già anticipato in premessa, queste conseguono alla formazione di cristalli di MSU e alla loro successiva precipitazione intra- tissutale (gotta articolare, nefropatia gottosa cronica, AKI da massiva precipitazione intra- tubulare acuta) o nelle vie urinarie (calcolosi), ma potenzialmente anche ad effetti emodinamici e cellulari attribuiti alla forma solubile di UA: questi ultimi comprendono attivazione del RAAS (ipertensione arteriosa), ma anche infiammazione e stress ossidativo con risvolti sia renali (disfunzione endoteliale, glomerulosclerosi, fibrosi tubulo-interstiziale) che sistemici (danno cardiovascolare, aumentata resistenza all’insulina, sindrome metabolica)(15). Va infatti considerato il ruolo ambiguo dell’UA che ha proprietà antiossidanti quando circolante nell’ambiente idrofilo extracellulare, ma ha effetti pro- ossidanti che sarebbero alla base del danno cardio-nefro-metabolico nell’ambiente idrofobico intracellulare(16).

 

Epidemiologia della HU e della gotta

Nel paziente adulto con GFR normale la prevalenza di iperuricemia asintomatica (aHU) è circa del 20%, mentre quella della gotta oscilla tra lo 0.7 e il 3.9%, con trend complessivo in crescita, ampia variabilità nelle diverse aree geografiche ed etnie, e valori anche superiori nella parte più anziana della popolazione. Nel paziente affetto da CKD la prevalenza di aHU sale fino all’80% e quella della gotta fino al 32% e ciò avviene in modo direttamente proporzionale alla severità della malattia renale. Inoltre, in modo quasi speculare, anche nei pazienti iperuricemici e gottosi si osserva un incremento della prevalenza di CKD dal 6-12% fino al 50% ed al 70% rispettivamente(4,8,17).

 

Esiste davvero il danno renale cronico da UA?

Come già detto, la patologia da cristalli comprende, oltre al danno renale acuto (AKI) da precipitazione intra-tubulare massiva di cristalli di MSU, e alla calcolosi da precipitazione di MSU nelle vie urinarie, anche la nefropatia da deposizione intra-parenchimale cronica di MSU. Quest’ultima è istologicamente caratterizzata da deposizione focale di cristalli di MSU nei tubuli, flogosi interstiziale evolvente verso la fibrosi dell’interstizio e l’atrofia tubulare, glomerulosclerosi ed arteriolosclerosi di grado variabile, mentre si manifesta clinicamente dapprima con un deficit della capacità di concentrazione delle urine e successivamente con una graduale riduzione del GFR(6).
Benché assai ben descritta già in un lontano passato, la reale esistenza di questa forma cronica di nefropatia è stata tuttavia rimessa in discussione verso la fine del XX secolo prima di essere nuovamente riaffermata. Come riporta un antico testo scientifico(18), infatti, già verso la metà del XIX secolo Robert Bentley Todd, irlandese divenuto professore al King’s College di Londra, descriveva il quadro del rene gottoso come caratterizzato dalla presenza di “linee bianche di materiale simile al gesso nella porzione piramidale del rene che prendono la direzione dei tubuli retti e che risultano cristallizzate in forma di prismi quando osservate al microscopio e costituite da urato di soda quando sottoposte ai test chimici”. L’identità di tale riscontro, poi confermato in ampie casistiche, autoptiche e non, della metà del XX secolo(19-20), venne successivamente confutata negli anni ottanta con la pubblicazione di alcuni articoli(21-23) che formulavano le seguenti obiezioni: il riscontro bioptico di una focale deposizione di cristalli di MSU, peraltro osservabile anche in soggetti senza malattia renale, non può spiegare la diffusa presenza di cicatrici renali; il concomitante danno vascolare renale sembra dipendere da altre più rilevanti cause di nefropatia, quali ad esempio la coesistente ipertensione arteriosa; il danno interstiziale può anche conseguire al largo impiego di antiinfiammatori non steroidei (FANS) nel paziente gottoso. Così, per un certo periodo, l’UA non venne più considerato come possibile causa di CKD e l’HU venne ritenuta piuttosto una mera conseguenza della ridotta escrezione di UA dovuta alla riduzione del GFR(2).
Nuovi elementi a suffragio della possibilità di un nesso causale tra UA e CKD giunsero dall’evidenza che ratti con CKD, se resi iperuricemici, avevano una progressione più rapida della malattia anche in assenza di deposizione intrarenale di cristalli (24): ciò riaprì la ricerca e la discussione sul possibile ruolo nefrolesivo dell’UA non solo nella sua forma cristallina, ma anche nella sua forma solubile.
Dopo un appello di alcuni ad adoperare maggior cautela prima di estrapolare conclusioni valide per l’uomo da studi condotti su roditori dotati di attività uricasica, cioè abituati a uricemie ben inferiori a quelle umane e resi severamente iperuricemici in via sperimentale(25), successive ricerche evidenziarono reali effetti pro-infiammatori e di immuno-attivazione dell’UA solubile nei confronti rispettivamente delle cellule dell’epitelio tubulare e delle cellule mesangiali umane(26-27).
Nuovi studi effettuati nel corrente secolo e qui di seguito descritti, sono poi giunti a identificare la HU come fattore indipendente di rischio cardiovascolare e renale nella CKD. Nel 2012 Kanbay e coll. hanno pubblicato i risultati di uno studio condotto su 303 pazienti con CKD e follow-up medio di 39 mesi che mostravano una significativa associazione tra HU ed eventi cardiovascolari fatali e non in maniera indipendente da altri fattori di rischio(28).
Nel 2014 Zhu e coll. hanno dimostrato, in una meta-analisi di 15 studi di coorte che avevano complessivamente arruolato oltre 99.000 individui, un’associazione positiva tra livelli di UA e sviluppo di CKD, con un rischio relativo di 1.22 per ogni mg/dl di incremento dell’uricemia e in maniera indipendente da altri fattori di rischio(29).

Nel 2018 Srivastava e coll. hanno confermato il suddetto riscontro evidenziando una curva conformata a “J” tra livelli di uricemia e rischio di morte per ogni causa (30).
Più recentemente i risultati del progetto URRAH, uno studio osservazionale multicentrico retrospettivo italiano su una coorte di 26.971 soggetti, hanno evidenziato un’associazione indipendente tra livelli di UA e mortalità cardiovascolare e globale, con soglie di uricemia predittive di mortalità anche inferiori a quello che viene attualmente ritenuto il cut off di normalità dell’uricemia(31), oltre che una prevalenza di HU crescente con il decrescere del GFR e maggiore nei pazienti con macroalbuminuria rispetto a quelli con micro e normoalbuminuria(17).
Anche una meta-analisi condotta da Autori brasiliani su 24 studi osservazionali riguardanti oltre 400.000 pazienti, pubblicata nel 2022(32), ha documentato una significativa correlazione tra uricemie inferiori e minor sviluppo e progressione di CKD.
Uno studio prospettico multicentrico osservazionale del gruppo di studio francese CKD- REIN(33), condotto su 2.781 pazienti con CKD in stadio 3-5 seguiti mediamente per oltre 3 anni, dopo aver pianificato l’esecuzione di una determinazione basale e di almeno 5 successive determinazioni dell’UA per ciascun paziente, ha confrontato in modo longitudinale il rapporto tra uricemia e rischio di insufficienza renale e di morte: ne è emerso che il rischio di insufficienza renale aumenta con il crescere dell’uricemia, con un plateau tra i 6 ed i 10 mg/dl ed un brusco incremento al di sopra degli 11 mg/dl, mentre il rischio di morte palesa una curva conformata ad “U” in cui, al di sotto dei 3 mg/dl (forse per il venir meno dell’azione anti-ossidante dell’UA) e al di sopra degli 11 mg/dl, esso è doppio rispetto a quello osservato con valori di uricemia attorno ai 5 mg/dl. Ne è altresì emerso che analoghe curve, costruite solo in funzione delle uricemie basali, non sono in grado di fornire i medesimi risultati: ciò potrebbe spiegare perché alcuni precedenti lavori non abbiano trovato correlazione tra livelli di UA e insufficienza renale.
Schwartz e coll.(34), in uno studio longitudinale su 693 bambini o adolescenti con CKD ad eziologia glomerulare e non glomerulare, hanno trovato un’importante correlazione tra livelli di UA e rischio di progressione della nefropatia: la perdita annuale di GFR in tre fasce pre-definite (<5.5 mg/dl, 5.5-7.5 mg/dl e >7.5 mg/dl) di uricemia basale era infatti rispettivamente -1,4%, -7,7% e -14,7% nelle glomerulopatie e -1,4%, -4,1% e -8,6% nelle nefropatie ad eziologia non glomerulare. Esaminando poi la perdita di GFR osservata per ogni successivo mg/dl di incremento dell’UA nei pazienti che al controllo basale appartenevano alle prime due fasce si evinceva una significativa perdita del GFR, di -5,7% e -4,3% nelle glomerulopatie e di -5,1% e -3,3% nelle nefropatie non glomerulari.
Assodato il ruolo dell’UA come fattore di rischio per lo sviluppo della nefropatia, sono in molti a ritenere plausibile un suo ruolo attivo e non solo predittivo in tal senso, ipotizzando differenti e coesistenti meccanismi lesivi per la sua forma cristallina e per quella solubile. Da un lato la precipitazione a livello tubulare di cristalli di MSU in grado di indurre flogosi interstiziale. Dall’altro una duplice possibilità, immunologica la prima, non immunologica la seconda, che l’UA solubile, identificato come sostanza pericolosa dai recettori dell’immunità innata, inneschi una risposta infiammatoria evolvente verso la fibrosi, ma anche che, attraverso l’attivazione del RAAS e l’avvio di stress ossidativo, induca vasocostrizione, disfunzione endoteliale e proliferazione delle cellule muscolari lisce vascolari alle quali conseguono glomerulosclerosi e fibrosi interstiziale (9,15,35,36).

Una recente divergente osservazione sostiene invece la possibilità che la forma solubile dell’UA abbia effetti soppressivi, e non stimolanti, sull’immunità innata e che sia implicata, insieme ad altri fattori, nello sviluppo della cosiddetta immunodeficienza secondaria alla malattia renale (SIDKD), tipica dell’uremia in fase avanzata, che si caratterizza per alterate difese nei confronti dei patogeni, scarsa risposta ai vaccini e attenuazione delle patologie infiammatorie croniche non infettive(37). Questo contrasta con gli studi citati in precedenza conferendo invece all’UA solubile effetti anti-infiammatori e anti-ossidanti e avvalorando l’ipotesi che la produzione di specie reattive dell’ossigeno (ROS) e il rilascio di citochine pro-infiammatorie non derivino dalla HU, bensì dalla contestuale attivazione della XOR(5).
Per quanto attiene invece la patologia da cristalli, i noti limiti della biopsia renale nei riguardi dell’identificazione della nefropatia gottosa, difficoltosa soprattutto nelle fasi iniziali di malattia perché il prelievo di tessuto renale avviene perlopiù in sede corticale mentre la patologia ha prevalente estrinsecazione midollare, ed anche perché alcuni fissativi causano la dissoluzione dei cristalli stessi(15), sembrano oggi superabili grazie alla Dual-energy computed tomography (DECT) e/o all’impiego combinato dell’ultrasonografia B-mode e Power Doppler-mode. La DECT è infatti in grado di fornire immagini dei depositi di MSU consentendo di applicare loro un codice colore che li distingua dalle calcificazioni, mentre con l’ultrasonografia l’iperecogenicità midollare apprezzabile in B-mode
corrisponde alla presenza di artefatti scintillanti all’indagine in modalità Power Doppler (38- 39).

 

Il possibile ruolo della XOR

La XOR è un enzima del peso molecolare di 300 kDa regolato a più livelli e dotato di due forme, la xantina deidrogenasi (XDH) presente nell’ambiente intracellulare e la xantina ossidasi (XO) che deriva dalla conversione della precedente quando rilasciata a livello plasmatico. La sua struttura è composta da due sub-unità identiche, ciascuna delle quali costituita da un duplice gruppo Fe/S all’estremo N-terminale, da un cofattore flavin- adenina dinucleotide (FAD) dotato di attività NADH-ossidasica nella porzione intermedia e da un cofattore molibdopterinico all’estremo C-terminale responsabile delle attività enzimatiche xantino-deidrogenasica, xantino-ossidasica e nitrito/nitrato-reduttasica.

La XOR provvede al catabolismo delle purine trasformando l’ipoxantina in xantina e quest’ultima in UA. Essa è inoltre in grado di interferire sullo stato ossido-riduttivo e sulla dinamica dei segnali dell’ambiente cellulare mediante la produzione di ROS e di specie reattive dell’azoto (RNS). Ne deriva che un’eventuale inadeguata attivazione della XOR possa indurre danni tissutali sia di tipo ossidativo che di tipo infiammatorio, assumendo dunque un ruolo patogenetico nelle fasi iniziali della CKD e nelle altre patologie HU- correlate (ipertensione arteriosa, obesità, resistenza all’insulina) che potrebbero quindi anche conseguire più all’iperattività della XOR che non alla HU di per sé.
In questa differente prospettiva, il trattamento con farmaci inibitori della XOR (XORi) quali allopurinolo e febuxostat, oltre a ridurre l’uricemia prevenendo la deposizione tissutale di cristalli di MSU, ridurrebbe la produzione di ROS indotta dalla XOR prevenendo il danno ossidativo tissutale. In aggiunta, gli XORi non competitivi (febuxostat), attraverso l’azione della ipoxantina-guanina-fosforibosil-transferasi (HGPRT) del cosiddetto “purine salvage pathway”, promuoverebbero il riutilizzo dell’ipoxantina, convertita in inosin-monofosfato (IMP) utilizzabile per incrementare la produzione di ATP. Quest’ultima azione potrebbe anche spiegare gli eventi cardiaci sfavorevoli, descritti in alcuni pazienti al momento della sospensione della terapia con febuxostat, come conseguenti ad un disturbo della conduzione e della contrazione da improvvisa ridotta disponibilità di ATP(40-41).

 

L’approccio terapeutico alla HU sintomatica nel paziente con CKD

L’approccio terapeutico alla HU sintomatica(6,9,10,42,43) deve sempre innanzitutto prevedere l’analisi delle sue possibili cause, l’adozione di appropriate variazioni dello stile di vita e dell’alimentazione (incoraggiamento dell’attività fisica e del calo ponderale; eliminazione di birra, vino, alcoolici e bevande zuccherate; riduzione dell’apporto di proteine animali; mantenimento di un adeguato apporto di fluidi, frutta e verdura), nonché la ricerca e il governo di eventuali altri fattori di rischio concomitanti (fumo, ipertensione, iperglicemia, dislipidemia, obesità). Poiché queste prime obbligatorie misure possono non essere sufficienti, si rende spesso poi necessario anche il ricorso anche alla ULT che può contare sull’esistenza di farmaci appartenenti a tre distinte categorie: XORi, uricosurici e uricasi ricombinanti. Una recente review di Jenkins e coll.(43) ha censito l’esistenza di 36 sostanze ipouricemizzanti, 10 delle quali approvate da una o più organizzazioni nazionali di controllo del farmaco (allopurinolo, febuxostat, topiroxostat, benzbromarone, lesinurad, dotinurad, probenecid, sulfinpirazone, pegloticase, rasburicase) e 26 in studio; di particolare interesse tra queste ultime nuove forme di uricasi ricombinante a minor immunogenicità e farmaci con duplice meccanismo d’azione.
Tra i farmaci finora approvati, gli XORi restano al momento la prima scelta per la buona efficacia nella riduzione dell’uricemia, la semplicità d’utilizzo e, nonostante tutto, la relativa buona sicurezza d’impiego se somministrati nel rispetto di alcune ben specificate cautele.
L’allopurinolo è un analogo purinico, inibitore competitivo non specifico di XOR, che agisce tramite il suo metabolita attivo ossipurinolo ad eliminazione renale. Oltre alla nota interferenza con il metabolismo di altri farmaci (azatioprina, warfarin, diuretici), la sua complicanza più temibile è la sindrome da ipersensibilità all’allopurinolo (AHS): essa è legata alla presenza dell’allele HLA-B*58.01, peraltro più frequente nelle popolazioni asiatica e afro-americana, le sole per le quali ha indicazione il test genetico per ricercarlo, mentre si riscontra solo nello 0.7% dei soggetti di razza bianca. Anche il supposto ruolo della CKD nel favorire la AHS è oggi ridimensionato e ritenuto limitato ai casi di avvio del trattamento a dosi troppo alte, più che non alla necessità di adeguare al GFR la successiva dose di mantenimento. Nella CKD è pertanto indicato iniziare con 100 mg/die se il GFR è 30-60 ml/min e con 50 mg/die se il GFR è <30 ml/min, salendo con gradualità ogni 2-5 settimane fino alla dose che consente di raggiungere il target di uricemia <6 mg/dl, e potendo arrivare anche sino a 300 mg/die finché il GFR resta >15 ml/min. Nel paziente in trattamento sostitutivo occorre ricordare che la dialisi rimuove l’UA, ma che, mentre la dialisi peritoneale lo fa in modo continuo, l’emodialisi lo fa ad intermittenza, con una modalità che potrebbe da sola non essere sufficiente nelle forme di gotta severa; a questo proposito va quindi tenuto presente che l’eventuale assunzione dell’allopurinolo deve avvenire dopo la seduta dialitica perché l’emodialisi rimuove il suo metabolita attivo(9,10,43).

Il febuxostat è un inibitore selettivo non purinico di XOR, più costoso dell’allopurinolo, per il quale occorre ricordare che, come quest’ultimo, interferisce con il metabolismo dell’azatioprina. Esso è anche in grado di inibire ABCG2 e di rallentare così l’eliminazione dei propri metaboliti senza tuttavia innalzare significativamente l’uricemia. Avendo un metabolismo prevalentemente epatico è utilizzabile nella CKD a 40 mg/die, ma probabilmente anche a dosi maggiori, con buon profilo di sicurezza, finché il GFR si mantiene >15 ml/min. Se l’avvio del trattamento avviene quando il paziente ha già GFR <30 ml/min, è opportuno farlo a posologia ridotta; in dialisi, pur con pochi dati al riguardo, dosi di 20-40 mg sembrano ben tollerate(9,10,43).
Il topiroxostat è un altro inibitore selettivo non purinico di XOR, approvato solo in Giappone e con profilo di sicurezza non dissimile dai precedenti, che si somministra alla dose di mantenimento di 60-80 mg due volte al dì (9,43).
Gli URICOSURICI sono farmaci ULT di seconda scelta che non funzionano se il GFR è inferiore a 20-30 ml/min, possono indurre nefrolitiasi e vengono generalmente impiegati, pur con tutti i limiti appena descritti, in caso di intolleranza agli XORi o in associazione a questi ultimi quando la monoterapia si rivela insufficiente.
Il probenecid è un inibitore non selettivo di URAT1, che in minor misura agisce anche su GLUT9, OAT1 e OAT3, del quale occorre tener presente la capacità di alterare la clearance di altri farmaci quali ad esempio penicilline, furosemide e methotrexate. Si somministra a una dose variabile da 0.5 a 2 g al giorno(43).
Il benzbromarone è un uricosurico non selettivo più potente del precedente, che agisce allo stesso modo e che può dare epatotossicità. Si somministra alla dose 50-200 mg al giorno(43).
Il lesinurad è un inibitore selettivo di URAT1 che si somministrava alla dose di 200 mg al giorno, ma del quale l’industria farmaceutica ha recentemente cessato la produzione(9,10,43). Il dotinurad è un inibitore selettivo di URAT1 in grado di inibire anche l’inflammasoma NLRP3 che si somministra alla dose di 0.5-4 mg al giorno(43).
Il sulfinpirazone è un altro uricosurico non selettivo in via di cessazione di produzione la cui dose quotidiana varia da 100 a 800 mg suddivisi in due somministrazioni(43).
Le URICASI RICOMBINANTI hanno potente attività ipouricemizzante derivante dalla loro capacità di trasformare l’UA in allantoina, ma sono gravate dalla necessità di somministrazione per via endovenosa, da costi elevati e soprattutto dalla loro immunogenicità.
La rasburicase è indicata nelle HU di origine tumorale e nella sindrome da lisi tumorale alla dose endovenosa di 2 mg/kg/die per 1-5 giorni. Non sono consigliati cicli di trattamento ripetuti in quanto può indurre sia reazioni anafilattiche, sia sviluppo di anticorpi anti-farmaco che ne compromettono l’efficacia(43).
La pegloticase è la forma peghilata della precedente utilizzabile nella gotta severa e non responsiva ai farmaci delle categorie precedentemente illustrate. Ha lunga emivita per cui è sufficiente una somministrazione endovenosa di 8 mg ogni 2 settimane e, nel paziente con CKD, non necessita di adeguamento della dose al GFR. Suoi limiti sono rappresentati dalla necessità di infusione della durata di almeno 2 ore, dal costo elevato, dalle frequenti reazioni infusionali, dal rischio di sviluppo di anticorpi anti-farmaco che ne compromettono l’efficacia e dalla controindicazione all’impiego nei pazienti con favismo nei quali può scatenare crisi emolitiche(43).
Occorre poi tenere presente che esistono svariati farmaci concepiti per altre scopi che possiedono anche un effetto ipouricemizzante mediato dall’inibizione di URAT1. La conoscenza di questa loro caratteristica può consentire di sfruttarli laddove, insieme alla patologia per la quale sono primariamente indicati, coesista anche una HU: tra essi il losartan, i calcio-antagonisti diidropiridinici, gli SGLT2-inibitori (soprattutto empaglifozin), il fenofibrato e l’atorvastatina, le alte dosi di aspirina, la leflunomide, alcuni FANS (indometacina e fenilbutazone), il desametasone e gli estrogeni(10,44).
Parimenti esistono farmaci e sostanze che inducono HU, sempre mediata dell’interazione con trasportatori dell’UA della parete tubulare, effetto collaterale del quale è opportuno essere a conoscenza: i diuretici tiazidici e dell’ansa, alcuni beta-bloccanti (propranololo, atenololo, metoprololo e sotalolo), alcuni antitubercolari (pirazinamide e etambutolo), gli inibitori delle calcineurine, le basse dosi aspirina (effetto peraltro trascurabile rispetto al beneficio cardiovascolare indubbiamente offerto dal farmaco), l’insulina, il testosterone e il lattato(44).

 

È plausibile che la somministrazione della ULT nella CKD possa esercitare anche un’azione nefroprotettiva?

Un piccolo trial randomizzato e controllato (RCT) del 2006 condotto a Hong Kong su 54 pazienti iperuricemici con CKD(45) documentava un rallentamento del calo del GFR rispetto ai controlli dopo 12 mesi di trattamento con allopurinolo.
Giungevano ad analoghe conclusioni, dopo 24 mesi di trattamento con allopurinolo, anche due studi spagnoli del 2010 e del 2015, peraltro non disegnati in doppio-cieco, rispettivamente su 113 e 107 pazienti con CKD(46-47).
Lo studio RENAAL, disegnato per valutare gli effetti antiipertensivi del losartan(48-49), evidenziava anche un effetto ipouricemizzante del farmaco che determinava una riduzione del 6% del rischio di progressione della CKD per ogni 0.5 mg/dl di riduzione dell’uricemia. Le linee guida KDIGO per la gestione della CKD, la cui stesura risale peraltro ormai al 2012, riportavano tuttavia l’inesistenza di sufficienti evidenze sia per supportare, sia per controindicare l’impiego della ULT allo scopo di rallentare la progressione della nefropatia nel paziente con CKD ed HU sintomatica o asintomatica(50), lasciando del tutto all’orientamento personale di ogni medico la scelta del comportamento da adottare di fronte a ciascun singolo caso. Purtroppo, anche l’ormai lunga serie di studi al riguardo successivi a quella data ha continuato a fornire dati non univoci e spesso criticabili.
Nel 2017 uno studio con 7 anni di follow up condotto con il criterio della randomizzazione mendeliana su 3.896 caucasici finnici affetti da diabete di tipo 1(51) concludeva che la HU è indipendentemente associata al calo del GFR, ma non con un rapporto causale.
Anche da una revisione a ombrello di precedenti meta-analisi di Li e coll. del 2017(52) emergeva un nesso causale tra livelli di UA e sviluppo di gotta o nefrolitiasi, ma non tra livelli di UA e ipertensione o CKD, la cui semplice associazione veniva ritenuta insufficiente ad autorizzare la prescrizione della ULT a scopo nefroprotettivo.
Un’altra meta-analisi cinese del 2017(53) su 16 RCT comprendenti 1.211 pazienti con CKD trovava invece un tasso di declino significativamente inferiore nei pazienti trattati con ULT.

I risultati dello studio FEATHER, un RCT di confronto tra febuxostat e placebo su 443 pazienti con HU asintomatica e CKD in stadio 3, pubblicati da Kimura e coll. nel 2018(54), non mostravano differenze significative nel tasso di riduzione del GFR tra i due gruppi, anche se emergeva invece un significativo beneficio in un sottogruppo di pazienti con malattia meno avanzata, cioè senza proteinuria e con creatininemia inferiore alla media complessiva.
Uno studio retrospettivo del 2018(55) su 12.751 pazienti con CKD stadio 2-4, confrontando quelli trattati con ULT fino a raggiungere un’uricemia inferiore a 6 mg/dl rispetto ai non trattati, concludeva che i primi avevano una significativa maggior probabilità di miglioramento del GFR, soprattutto negli stadi 2 e 3, ma non nello stadio 4.
Kojima e coll hanno pubblicato nel 2019 i risultati dello studio FREED(56), un RCT multicentrico giapponese con 3 anni di follow up su 1.070 anziani iperuricemici con ipertensione, diabete, CKD o patologia cardiovascolare, nell’ambito del quale l’andamento del gruppo di quelli trattati con febuxostat è stato confrontato con quello dei non trattati, dimostrando che il raggiungimento di un end-point composito, costituito dal tasso di eventi cerebrali, cardiovascolari, renali o mortali, era significativamente inferiore tra i primi. Una meta-analisi di studi condotti su pazienti di origine europea eseguita con il metodo della randomizzazione mendeliana e pubblicata nel 2019(57) dimostrava invece nuovamente, pur in presenza di un nesso causale tra livelli di UA e rischio di gotta, l’assenza di un analogo nesso rispetto al rischio di riduzione del GFR per cui gli Autori giudicavano improbabile un effetto nefroprotettivo da parte della ULT.
Due importanti studi pubblicati nel 2020(58-59), a seguito descritti, sui quali erano riposte le aspettative di molti per una definitiva dimostrazione della possibile utilità della ULT per rallentare il calo del GFR nella HU della CKD non hanno invece raggiunto questo traguardo. Lo studio PERL(58), RCT effettuato su 530 pazienti statunitensi e canadesi con diabete tipo 1 e CKD stadio 1-3a, non ha mostrato differenze significative nel tasso medio di declino del GFR tra il gruppo trattato con l’allopurinolo e quello trattato con il placebo. Lungo l’elenco delle successive osservazioni riguardanti i limiti che potrebbero aver inficiato le conclusioni di questo studio: casistica relativamente piccola, reclutamento pianificato per pazienti con uricemia >4.5 mg/dl (quindi anche con uricemia normale) ed attuato in soggetti con diabete mediamente di lunga durata, mal controllato e con nefropatia ad andamento fast- progressive(4,9,36,60).
Lo studio australiano e neozelandese CKD-FIX(59), RCT su 363 pazienti con CKD in stadio 3- 4 senza gotta, diabetici e non, trattati in parte con allopurinolo ed in parte con placebo e seguiti per 2 anni, ha ottenuto una riduzione delle uricemie nel braccio con allopurinolo senza ottenere differenze significative nel tasso annuo di riduzione del GFR rispetto al braccio con placebo. Anche in questo caso sono stati elencati svariati limiti che potrebbero aver inficiato le conclusioni dello studio: casistica relativamente piccola e comprendente pazienti con CKD già troppo avanzata, arruolamento avvenuto in modo incompleto (solo al 60% rispetto al numero preventivamente pianificato), elevata (17-30%) percentuale di interruzione della terapia senza conseguente esclusione di questi pazienti dalla casistica, eccessiva eterogeneità delle uricemie basali per mancata adozione tra i criteri di inclusione di un range ben definito(4,9,36,60).

Da segnalare a questo proposito anche altre non dirette e più generali osservazioni, valide per ottimizzare il disegno di eventuali futuri studi, sul fatto che i benefici del trattamento con ULT potrebbero anche variare in funzione dell’età(60), della durata(60) e della tipologia della nefropatia di base(35,61), oltre che del tipo, della dose e della durata(4) del trattamento ipouricemizzante.
Sempre nel 2020 Chen e coll.(62) hanno effettuato una revisione sistematica con meta- analisi di 28 RCT, tra i quali erano inclusi anche gli studi FEATHER, PERL e CKD-FIX e complessivamente riguardanti 3.934 pazienti, senza trovare benefici cardio-nefroprotettivi della ULT. Anche un successivo aggiornamento di questo studio, riportato nelle linee-guida CARI messe a punto in Australia e Nuova Zelanda nel 2022(63), nel quale sono stati selezionati 17 dei 28 RCT analizzati nel lavoro precedente, nello specifico quelli nei quali almeno il 66% dei soggetti reclutati risultasse affetto da CKD, e ne sono stati aggiunti 2 con analoghe caratteristiche, pur appurando che la ULT riduce gli attacchi gotta e non è meno sicura del placebo, ha confermato l’assenza di benefici cardionefroprotettivi e la non indicazione al suo impiego con questo scopo. Costituisce tuttavia un limite di entrambi questi studi il fatto che non tutti i pazienti avessero una HU e una CKD(4).
Nel 2022 Tien e coll. di Taiwan(64) hanno pubblicato una revisione sistematica con meta- analisi di 13 RCT riguardanti complessivamente 2.842 pazienti con aHU rilevando benefici nefroprotettivi della ULT rispetto al placebo, dove però raggiungevano la significatività quelli trattati con allopurinolo, ma non quelli trattati con febuxostat.
Un’altra revisione sistematica con meta-analisi di Tsukamoto e coll.(65) su 10 RCT che includevano 1.480 pazienti con CKD ha documentato una significativa azione nefroprotettiva del topiroxostat e del febuxostat nei pazienti con HU, ma non dell’allopurinolo e della pegloticase.
Al contrario, uno studio retrospettivo statunitense su 269.651 pazienti con GFR >60 ml/min e senza albuminuria non solo non mostrava benefici nefroprotettivi nell’avvio della ULT, ma addirittura rilevava un maggior rischio di insorgenza di CKD(66).
Sempre nel 2022, il trail randomizzato ALL-HEART ha arruolato 5.721 ultrasessantenni del Regno Unito con cardiopatia ischemica e senza gotta non trovando differenze nel raggiungimento di un endpoint composito, riguardante eventi cardiovascolari sfavorevoli, tra trattati anche con allopurinolo e trattati solo con le cure usuali(67).
Nel 2023 una meta-analisi, eseguita da Autori brasiliani(68) su 18 RCT complessivamente riguardanti 2.463 pazienti con CKD, ha documentato significativi effetti nefroprotettivi della ULT rispetto al placebo.
Ancora nel 2023 i risultati pubblicati da Yang e coll.(69), relativi ad un RCT multicentrico cinese su 100 pazienti con CKD in stadio 3-4 seguiti per 12 mesi, mostrano un rallentamento del declino del GFR nel gruppo trattato con febuxostat rispetto a quello trattato con placebo.
Per quanto attiene il confronto tra i diversi farmaci utilizzabili per la ULT nella CKD, sia in termini di sicurezza di impiego, sia in termini di maggior o minor efficacia cardionefroprotettiva, alcuni articoli di più recente pubblicazione forniscono indicazioni, anche anche in questo caso non tali da consentire di trarne univoche conclusioni.
Lo studio CARES del 2018(70), un RCT su 6.190 pazienti con gotta e patologia cardiovascolare, stratificati per livelli di GFR, dimostra la non inferiorità del febuxostat rispetto all’allopurinolo per tasso di eventi cardiovascolari avversi, ma ne palesa una maggior mortalità totale e cardiovascolare. I risultati di questo studio sono stati peraltro messi in discussione per l’alto tasso di sospensione del trattamento e di perdita al follow- up, la mancanza di un gruppo di controllo con placebo e l’insufficiente associata prescrizione di farmaci cardioprotettivi nei cardiopatici arruolati per lo studio(43).
Nel 2021 Pawar e coll., per rivalutare il problema della sicurezza cardiovascolare in un contesto reale, hanno esaminato retrospettivamente i dati relativi a 467.461 pazienti del sistema statunitense Medicare giungendo alla conclusione che il febuxostat non aumenta il rischio cardiovascolare rispetto all’allopurinolo(71).
La già citata revisione sistematica con meta-analisi di Tsukamoto e coll. del 2022(65) su studi relativi a pazienti con CKD documenta una significativa azione nefroprotettiva del topiroxostat e del febuxostat, ma non dell’allopurinolo e della pegloticase.
Altri 2 RCT cinesi pubblicati nel 2022 e condotti per 6 mesi rispettivamente su 100 e 120 pazienti con CKD mostrano nel primo caso(72) la superiorità del febuxostat rispetto all’allopurinolo sia come effetto nefroprotettivo, sia come sicurezza d’impiego, e nel secondo caso(73), la maggior nefroprotezione offerta delle basse dosi di febuxostat rispetto a quelle di allopurinolo (20 mg e 200 mg rispettivamente) con sicurezza d’impiego non inferiore.
Uno studio retrospettivo del 2023 condotto da Lai e coll.(74) su 13.661 pazienti di Taiwan con aHU in trattamento con ULT evidenzia minor rischio di sviluppare CKD con il benzbromarone che non con l’allopurinolo.
Un’analisi post-hoc del 2023 di Kohagura e coll.(75), riferita a 707 dei 1.070 pazienti dello studio FREED(56) che avevano un GFR <60 ml/min, evidenzia che il rischio relativo di sviluppo o peggioramento della macroalbuminuria era del 56% inferiore nel gruppo con febuxostat rispetto ai controlli.
In un altro studio randomizzato di Kohagura e coll. su 95 pazienti con ipertensione, HU e CKD in stadio 3(76) non sono emerse differenze nel declino del GFR fra quelli trattati con febuxostat e quelli trattati con benzbromarone. Il declino del GFR era peraltro significativamente inferiore con febuxostat nel sottogruppo con CKD in stadio 3a, ma non in quello in stadio 3b: tutto sommato una non trascurabile conferma che, anche i farmaci che mostrano un’efficacia nefroprotettiva nelle fasi più precoci della CKD, tendono a perderla nei pazienti con CKD in stadio più avanzato.
La già citata meta-analisi di Bignardi e coll.(68), che documenta l’utilità della ULT ai fini nefroprotettivi, non ha trovato differenze di efficacia in tal senso fra i tre XORi studiati. Va infine per completezza ricordato che, una recente ricognizione dello stato dell’arte sui rapporti tra HU e CKD anche nell’ambito del trapianto renale, riporta un analogo clima di incertezza caratterizzato dall’evidenza che la HU, presente nel 28% dei casi, costituisca un indubbio fattore di rischio indipendente per lo sviluppo di insufficienza del rene trapiantato, ma con rapporto di causalità e indicazioni all’impiego della ULT ancora oggetto di dubbi(77).
In conclusione, come ben dimostrato non solo dall’insieme dei risultati delle ricerche sin qui citate, ma anche dall’accesa diatriba consegnata alla Letteratura(78-80) da gruppi di Autori in dissenso su quali caratteristiche conferiscano maggiore o minore attendibilità agli studi (degne di menzione, a questo proposito, anche le critiche ai lavori nei cui gruppi di controllo non era avvenuta, come lecito attendersi, una significativa progressione della nefropatia), e come ben riporta il titolo di un’ampia revisione sull’argomento recentemente pubblicata(4), probabilmente molto resta ancora da fare.

 

Quali comportamenti clinici e quali future ricerche gli esperti suggeriscono di adottare alla luce dell’attuale stato delle conoscenze?

Alcuni Autori(4) suggeriscono di affrontare il problema del trattamento della HU nella CKD distinguendo i comportamenti da adottare nei pazienti con gotta da quelli nei pazienti con aHU: nel primo caso la ULT, che trova comunque indicazione per ridurre il rischio di ricorrenza degli attacchi artritici e di peggioramento del danno articolare perseguendo un target di uricemia <5-6 mg/dl(81-85), ha buona probabilità di interferire favorevolmente sulla patologia da deposito di cristalli che si sviluppa anche in sede extra-articolare (renale e vascolare)(4,39); nel secondo caso, poiché i controversi risultati delle meta-analisi si spiegherebbero anche con il fatto che alcuni sottogruppi di pazienti potrebbero giovarsi più di altri della ULT, sembra trovare crescenti consensi l’idea che la ricerca venga orientata verso l’individuazione di tali sottogruppi(4,9,36,60). In particolare, secondo Johnson e coll.4), potrebbero essere da tenere in maggior considerazione quelli con patologia tissutale da cristalli ancora silente, oggi meglio identificabili con le indagini ecografiche e DECT già in precedenza citate, quelli con cristalluria ricorrente e/o nefrolitiasi uratica e quelli con aumentati livelli intracellulari di UA, questi ultimi indirettamente individuabili attraverso il rilievo di un’incrementata attività plasmatica della XOR. Altri punti fondamentali da tenere presente nel disegnare futuri studi sono rappresentati: dal momento d’inizio della ULT (4,9,36,41), che dovrebbe essere quanto mai tempestivo e precoce perché il danno renale da UA solubile, una volta avviato, progredisce poi indipendentemente dai livelli di uricemia per l’iperfiltrazione e l’ipertensione glomerulare; dalla durata del trattamento(4) che sembra possa offrire benefici maggiori se protratto per almeno due anni; dalla verifica se il target di uricemia per ottenere l’effetto nefroprotettivo può essere o meno il medesimo adottato per la prevenzione della gotta(42).
Altri Autori(5,40,42) suggeriscono inoltre di chiarire fino a che punto gli effetti dei farmaci XORi dipendano in modo diretto dalla loro azione ipouricemizzante e non da altri effetti quali ad esempio l’azione anti-ossidante indotta dal blocco di altri substrati della XOR.

 

Conclusioni

E’ assodato che la HU costituisca un fattore di rischio indipendente per lo sviluppo della CKD con crescenti anche se non definitive dimostrazioni di causalità legate a possibili plurimi meccanismi patogenetici.
In considerazione delle differenze nel metabolismo delle purine tra una specie e l’altra va ricordato che, qualunque risultato ottenuto in proposito da esperimenti su animali dotati di attività uricasica, necessita comunque di essere riconfermato nell’uomo.
A dispetto della presenza di un logico razionale per l’impiego della ULT ai fini del rallentamento della progressione della nefropatia nei pazienti con HU e CKD, i risultati controversi e i limiti degli studi a ciò rivolti non hanno finora portato a robuste e definitive dimostrazioni di reale efficacia in tal senso.

Poiché il danno renale UA-correlato, una volta indotto e consolidato, sembrerebbe mantenuto da meccanismi indipendenti dai livelli di uricemia, resta da confermare se un precoce avvio della ULT nelle fasi iniziali della nefropatia abbia maggiori probabilità di fornire reale nefroprotezione. Analogamente occorre appurare se esistano altri specifici sottogruppi di pazienti che per età, sesso, tipologia di danno, nefropatia di base o altre caratteristiche abbiano maggiori probabilità di potersi giovare di tale trattamento.
Sono pertanto auspicabili futuri più ampi RCT che, adeguatamente disegnati, e dotati di criteri di inclusione tali da superare i limiti di alcuni di quelli sin qui prodotti, analizzino la risposta ai differenti farmaci somministrati in fase iniziale di malattia, per un tempo sufficiente e in dosi idonee al raggiungimento di un target di uricemia che va anch’esso meglio ridefinito.
Nel frattempo, nella pratica clinica quotidiana, è opportuno tenere sempre presente che quella dell’utilità della ULT a scopo nefroprotettivo nella CKD rimane una questione aperta e che tale terapia, per ora non raccomandata dalle linee guida per il protrarsi della mancanza di sicure evidenze, potrebbe in realtà essere di grande utilità almeno per alcuni dei nostri pazienti.

 

Bibliografia

  1. Kanbay M, Solak Y, Dogan E et al. Uric acid in hypertension and renal disease: the chicken or the egg? Blood Purif 2010;30(4):288-295. https://doi.org/ 10.1159/000321074.
  2. Johnson RJ, Nakagawa T, Jalal DI et al. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant 2013;28:2221-2228. https://doi.org/ 10.1093/ndt/gft029.
  3. Jalal DI. Hyperuricemia. The kidneys, and the spectrum of associated diseases: a narrative review. Curr Med Res Opin 2016 Nov;32(11):1863-1869. https://doi.org/ 10.1080/03007995.2016.1218840.
  4. Johnson RJ, Sanchez Lozada LG, Lanaspa M et al. Uric Acid and Chronic Kidney Disease: Still More to Do. Kidney Int Rep 2023;8(2):229-239. https://doi.org/ 10.1016/j.ekir.2022.11.016.
  5. Anders HJ, Li Q, Steiger S. Asymptomatic hyperuricaemia in chronic kidney disease: mechanisms and clinical implications. Clin Kidney J 2023;16(6):928-938. https://doi.org/ 10.1093/ckj/sfad006.
  6. Delbarba E, Terlizzi V, Dallera N et al. Iperuricemia e Gotta. G Ital Nefrol 2016;33(S68).PMID: 27960024.
  7. Zacchia M, Capolongo G, Rinaldi L et al. Fisiologia dell’handling renale dell’acido urico. G Ital Nefrol 2015;32(S62). PMID: 26005871.
  8. Dalbeth N, Gosling AI, Gaffo A et al. Gout. Lancet 2021 May 15;397(10287):1843-1855. https://doi.org/10.1016/S0140-6736(21)00569-9.
  9. Ponticelli C, Podestà MA, Moroni G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int 2020 Nov;98(5):1149-1159. https://doi.org/10.1016/j.kint.2020.05.056.
  10. Sun H, Wu Y, Bian H et al. Function of Uric Acid Transporters and Their Inhibitors in Hyperuricaemia. Front Pharmacol 2021 July;12:667753. https:// doi.org/ 10.3389/fphar.2021.667753.
  11. Kratzer JT, Lanaspa MA, Murphy MN et al. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Nat Acad Sci USA 2014 March 11;111(10):3763- 3768. https://doi.org/10.1073/pnas.1320393111.
  12. Glynn RJ, Campion EW, Silbert JE. Trends in serum uric acid levels 1961-1980. Arthritis Rheum 1983 Jan;26(1):87-93. https://doi.org/10.1002/art.1780260115.
  13. Desideri G, Castaldo G, Lombardi A et al. Is it time to revise the normal range of serum uric acid levels? Eur Rev Med Pharmacol Sci 2014;18:1296-1306. PMID: 24867507.
  14. Bardin T. Hyperuricemia starts at 360 micromoles (6 mg/dL). Joint Bone Spine 2015 May;82(3):141-143. https://doi.org/10.1016/j.jbspin.2015.01.002.
  15. Piani F, Johnson RJ. Does gouty nephropathy exist, and is it more common than we think? Kidney Int 2021;99:31-33. https://doi.org/10.1016/j.kint.2020.10.015.
  16. Chen C, Lu JM, Yao Q. Hyperuricemia-Related Diseases and Xanthine Oxidoreductase (XOR) Inhibitors: An Overview. Med Sci Monit 2016;22:2501-2512. https://doi.org/
  17. Russo E,Viazzi F, Pontremoli R et al. Association of uric acid with kidney function and albuminuria: the Uric Acid Right for heArt Health (URRAH) Project. J Nephrol 2022;35:211-221. https://doi.org/10.1007/s40620-021-00985-4.
  18. Garrod AB et al. The Nature and Treatment of Gout and Rheumatic Gout. Br Foreign Med Chir Rev 1860 Apr;25(50):419-435.
  19. Talbott JH, Terplan KL. The kidney in gout. Medicine (Baltimore) 1960 Dec;39:405-467. PMID: 13775026
  20. Barlow KA, Beilin LJ. Renal disease in primary gout. Q J Med 1968 Jan;37:79-96. PMID: 5657765.
  21. Reif MC, Constantiner A, Levitt MF. Chronic gouty nephropathy: a vanishing syndrome? New Engl J Med 1981 Feb;304:535-536. https://doi.org/10.1056/NEJM198102263040909.
  22. Porter GA. Gouty nephropathy: fact or fiction? Am J Kidney Dis 1983 Mar;2(5):553-554. https://doi.org/10.1016/s0272-6386(83)80099-7.
  23. Beck LH. Requiem for gouty nephropathy. Kidney Int 1986 Aug;30:280-287. https://doi.org/10.1038/ki.1986.179.
  24. Kang DH, Nakagawa T, Feng L et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol 2002;13:2888–2897. https://doi.org/10.1097/ 01.asn.0000034910.58454.fd.
  25. Moe OW. Posing the Question Again: Does Chronic Uric Acid Nephropathy Exist? J Am Soc Nephrol 2010;21:395-397. https://doi.org/10.1681/ASN.2008101115.
  26. Xiao J, Zhang X, Fu C et al. Soluble uric acid increases NALP3 inflammasome and interleukin-1β expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int J Mol Med 2015 May;35(5):1347-1354. https://doi.org/10.3892/ijmm.2015.2148.
  27. Xiao J, Fu C, Zhang X et al. Soluble monosodium urate, but not its crystals, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Mol Immunol 2015 Aug;66(2):310-318. https://doi.org/10.1016/j.molimm.2015.03.250.
  28. Kanbay M, Ylmaz MI, Sonmez A et al. Serum Uric Acid Independently Predicts Cardiovascular Events in Advanced Nephropathy. Am J Nephrol 2012;36:324-331. https://doi.org/10.1159/000342390.
  29. Zhu P, Liu Y, Han L et al. Serum Uric Acid is Associated with Incident Chronic Kidney Disease in Middle-Aged Populations: A Meta-Analysis of 15 Cohort Studies. PLoS One 2014 Jun 24;9(6):e100801. https://doi.org/10.1371/journal.pone.0100801.
  30. Srivastava A, Kaze AD, McMullan CJ et al. Uric Acid and the Risks of Kidney Failure and Death in Individuals With CKD. Am J Kidney Dis 2018 Mar;71(3):362-370. https://doi.org/10.1053/j.ajkd.2017.08.017.
  31. Del Pinto R, Viazzi F, Pontremoli R et al. The URRAH study. Panminerva Med. 2021 Dec;63(4):416-423. https://doi.org/10.23736/S0031-0808.21.04357-3.
  32. Gonçalves DLN, Moreira TR, da Silva LS. A systematic review and meta-analysis of the association between uric acid levels and chronic kidney disease. Sci Rep 2022 Apr 15;12(1):6251. https://doi.org/10.1038/s41598-022-10118-x.
  33. Prezelin-Reydit M, Combe C, Fouque D et al. Longitudinal uric acid has nonlinear association with kidney failure and mortality in chronic kidney disease. Sci Rep 2023 Mar 9;13(1):3952. https://doi.org/10.1038/s41598-023-30902-7.
  34. Schwartz GJ, Roem JL, Hooper SR et al. Longitudinal changes in uric acid concentration and their relationship with chronic kidney disease progression in children and adolescents. Pediatr Nephrol 2023 Feb;38(2):489-497. https://doi.org/10.1007/s00467- 022-05620-3.
  35. Tsukamoto SI, Wakui H, Tamura K. Effects of Uric Acid-Lowering Therapy on the Kidney (HTR-2023-0096.R2). Hypertens Res 2023 Jun;46(6):1447-1449. https://doi.org/ 10.1038/s41440-023-01252-8.
  36. Leoncini G, Barnini C, Manco L et al. Uric acid lowering for slowing CKD progression after the CKD-FIX trial: a solved question or still a dilemma? Clin Kidney J 2022;15(9):1666–1674. https://doi.org/10.1093/ckj/sfac075
  37. Steiger S, Rossaint J, Zarbock A et al. Secondary Immunodeficiency Related to Kidney Disease (SIDKD) – Definition, Unmet Need, and Mechanisms. J Am Soc Nephrol 2022 Feb;33(2):259-278. https://doi.org/10.1681/ASN.2021091257.
  38. Bardin T, Tran KM, Nguyen QD et al. Renal medulla in severe gout: typical findings on ultrasonography and dual-energy CT study in two patients. Ann Rheum Dis 2019 mar;78(3):433-434. https://doi.org/10.1136/annrheumdis-2018-214174.
  39. Bardin T, Nguyen QD, Tran KM et al. A cross-sectional study of 502 patients found a diffuse hyperechoic kidney medulla pattern in patients with severe gout. Kidney Int 2021;99:218-226. https://doi.org/10.1016/j.kint.2020.08.024.
  40. Furuhashi M. New insights into purine metabolism in metabolic diseases: role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab 2020 Nov;319(5):E827- E834. https://doi.org/10.1152/ajpendo.00378.2020.
  41. Polito L, Bortolotti M, Battelli MG et al. Chronic kidney disease: Which role for xanthine oxidoreductase activity. Pharmacol Res 2022 Oct; 184:106407. https://doi.org/ 10.1016/j.phrs.2022.106407.
  42. Vettoretti S, Pontremoli R, Messa P. Treatment of hyperuricemia in CKD. G Ital Nefrol 2015;32 Suppl 62:gin/32.S62.9. PMID: 26005876.
  43. Jenkins C, Hwang JH, Kopp JB et al. Review of Urate-Lowering Therapeutics: From the Past to the Future. Front Pharmacol 2022;13:925219. https://doi.org/ 10.3389/fphar.2022.925219.
  44. Leung N, Yip K, Pillinger MH et al. Lowering and Raising Serum Urate Levels: Off-Label Effects of Commonly Used Medications. Mayo Clin Proc. 2022 July;97(7):1345-1362. https://doi.org/10.1016/j.mayocp.2022.02.027.
  45. Siu YP, Leung KT Tong MKH et al. Use of Allopurinol in Slowing the Progression of Renal Disease Through Its Ability to Lower Serum Uric Acid Level. Am J Kidney Dis 2006; 47:51–59. https://doi.org/10.1053/j.ajkd.2005.10.006
  46. Goicoechea M, De Vinuesa SG, Verdalles U et al. Effect of Allopurinol in Chronic Kidney Disease Progression and Cardiovascular Risk. Clin J Am Soc Nephrol 2010;5:1388–1393. https://doi.org/10.2215/CJN.01580210
  47. Goicoechea M, De Vinuesa SG, Verdalles U et al. Allopurinol and Progression of CKD and Cardiovascular Events: Long-term Follow-up of a Randomized Clinical Trial. Am J Kidney Dis 2015;65:543–549. https://doi.org/10.1053/j.ajkd.2014.11.016.
  48. Miao Y, Ottenbros SA, Laverman GD et al. Effect of a Reduction in Uric Acid on Renal Outcomes During Losartan Treatment: A Post Hoc Analysis of the Reduction of Endpoints in Non-Insulin-Dependent Diabetes Mellitus With the Angiotensin II Antagonist Losartan Trial. Hypertension 2011, 58, 2–7. https://doi.org/ 10.1161/HYPERTENSIONAHA.111.171488.
  49. Smink PA, Bakker SJ, Laverman GD et al. An initial reduction in serum uric acid during angiotensin receptor blocker treatment is associated with cardiovascular protection: a post-hoc analysis of the RENAAL and IDNT trials. J Hypertens 2012;30:1022-28. https://doi.org/10.1097/HJH.0b013 e3283 5200f 9
  50. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3 1-150. https://doi.org/10.1038/kisup.2012.73
  51. Ahola AJ, Sandholm N, Forsblom C et al . The serum uric acid concentration is not causally linked to diabetic nephropathy in type 1 diabetes. Kidney Int2017 May;91(5):1178-1185. https://doi.org/10.1016/j.kint.2016.11.025.
  52. Li X, Meng X, Timofeeva M et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ 2017; 357:j2376. https://doi.org/ 10.1136/bmj.j2376.
  53. Su X, Xu B, Yan B et al. Effects of uric acid-lowering therapy in patients with chronic kidney disease: A meta-analysis. PLoS One 2017 Nov 2;12(11):e0187550. https:// doi.org/10.1371/journal.pone.0187550.
  54. Kimura K, Hosoya T, Uchida S et al. Febuxostat Therapy for Patients With Stage 3 CKD and Asymptomatic Hyperuricemia: A Randomized Trial. Am J Kidney Dis 2018;72(6):798- 810. https://doi.org/10.1053/j.ajkd.2018.06.028
  55. Levy G, Shi JM, Cheetham TC et al. Urate-lowering therapy in moderate to severe chronic kidney disease. Perm J 2018;22:17-142. https://doi.org/10.7812/TPP/17-142.
  56. Kojima S, Matsui K, Hiramitsu S et al. Febuxostat for Cerebral and CaRdiorenovascular Events PrEvEntion StuDy. Eur Heart J 2019;40:1778–1786. https://doi.org/ 10.1093/eurheartj/ehz119
  57. Jordan DM, Choi HK, Verbanck M et al. No causal effects of serum urate levels on the risk of chronic kidney disease: A Mendelian randomization study. PLoS Med 2019 Jan 15;16(1):e1002725. https:// doi.org/10.1371/journal.pmed.1002725.
  58. Doria A, Galecki AT, Spino C et al. Serum Urate Lowering with Allopurinol and Kidney Function in Type 1 Diabetes N Engl J Med. 2020 June 25; 382(26): 2493–2503. https://doi.org/10.1056/NEJMoa1916624.
  59. Badve SV, Pascoe EM, Biostat M et al. Effects of Allopurinol on the Progression of Chronic Kidney Disease. N Engl J Med 2020;382:2504-13. https://doi.org/ 10.1056/NEJMoa1915833
  60. Russo E, Verzola D, Leoncini G et al. Treating Hyperuricemia: The Last Word Hasn’t Been Said Yet. J Clin Med 2021;10:819-826. https://doi.org/10.3390/jcm10040819.
  61. Watanabe K, Nakayama M, Yamamoto T et al. Different clinical impact of hyperuricemia according to etiologies of chronic kidney disease: Gonryo Study. PLoSOne 2021;16(3):e0249240. https://doi. org/10.1371/journal.pone.0249240.
  62. Chen Q, Wang Z, Zhou J et al. Effect of Urate-Lowering Therapy on Cardiovascular and Kidney Outcomes: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol. 2020 Nov 6;15(11):1576-1586. https://doi.org/10.2215/CJN.05190420.
  63. Stanley IK, Phoon RKS, Toussaint ND et al. Caring for Australians and New Zealanders With Kidney Impairment Guidelines: Rapid Development of Urate Lowering Therapy Guidelines for People With CKD. Kidney Int Rep 2022 Oct 5;7(12):2563- 2574. https://doi.org/10.1016/j.ekir.2022.09.024.
  64. Tien YY, Shih MC, Tien CP et el. To Treat or Not to Treat? Effect of Urate-Lowering Therapy on Renal Function, Blood Pressure and Safety in Patients with Asymptomatic Hyperuricemia: A Systematic Review and Network Meta-Analysis. J AM Board Fam Med 2022;35:140-151. https://doi.org/10.3122/jabfm.2022.01.210273.
  65. Tsukamoto S, Okami N, Yamada T et al. Prevention of kidney function decline using uric acid-lowering therapy in chronic kidney disease patients: a systematic review and network meta-analysis. Clin Rheumatol 2022 Mar;41(3):911-919. https://doi.org/ 10.1007/s10067-021-05956-5.
  66. Hassan W, Shrestha P, Sumida K et al. Association of Uric Acid-Lowering Therapy With Incident Chronic Kidney Disease. JAMA Netw Open2022 Jun 1;5(6):e2215878. https://doi.org/10.1001/jamanetworkopen.2022.15878.
  67. Mackenzie IS, Hawkey CJ, Ford I et al. Allopurinol versus usual care in UK patients with ischaemic heart disease (ALL-HEART): a multicentre, prospective, randomised, open- label, blinded-endpoint trial. Lancet. 2022 Oct 8;400(10359):1195-1205. https://doi.org/ 10.1016/S0140-6736(22)01657-9.
  68. Bignardi PR, Ido DH, Lopes Garcia FA et al. Does uric acid-lowering treatment slow the progression of chronic kidney disease? A meta-analysis of randomized controller trials. Nefrologia 2023;43(2):167-181. https://doi.org/10.1016/j.nefroe.2022.04.005.
  69. Yang H, Li R, Li Q et al. Effects of febuxostat on delaying chronic kidney disease progression: a randomized trial in China. Int Urol Nephrol 2023 May;55(5):1343-1352.https://doi.org/10.1007/s11255-022-03437-5.
  70. White WB, Saag KG, Becker MA, et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med 2018;378:1200-1210. https://doi.org/0.813rem;”>10.1056/NEJMoa1710895.
  71. Pawar A, Desai RJ, Liu J et al. Updated Assessment of Cardiovascular Risk in Older Patients With Gout Initiating Febuxostat Versus Allopurinol. J Am Heart Assoc 2021;10:e020045. https://doi.org/10.1161/JAHA.120.020045
  72. Liao Z, Xu L, Wan B et al. Comparison of Febuxostat and Allopurinol in the Treatment of Patients with Chronic Kidney Disease Stage 3∼5 with Hyperuricemia. Emerg Med Int 2022 Oct 11;2022:1177946. https://doi.org/10.1155/2022/1177946.
  73. Yang N, Cao B. Low-dose febuxostat exhibits a superior renal-protective effect and non-inferior safety profile compared to allopurinol in chronic kidney disease patients complicated with hyperuricemia: A double-centre, randomized, controlled study. J Clin Pharm Ther. 2022 Dec;47(12):2214-2222. https://doi.org/10.1111/jcpt.13794.
  74. Lai SW, Liao KF, Kuo YH et al. Comparison of benzbromarone and allopurinol on the risk of chronic kidney disease in people with asymptomatic hyperuricemia. Eur J Intern Med 2023 Jul;113:91-97. https://doi.org/10.1016/j.ejim.2023.04.025.
  75. Kohagura K, Kojima S, Uchiyama K et al. Febuxostat and renal outcomes: post-hoc analysis of a randomized trial. Hypertension Res 2023;46:1417–1422. https://doi.org/ 10.1038/s41440-023-01198-x.
  76. Kohagura K, Satoh A, Kochi M et al. Urate-lowering drugs for chronic kidney disease with asymptomatic hyperuricemia and hypertension: a randomized trial. J Hypertens 2023 Sep 1;41(9):1420-1428. https://doi.org/10.1097/HJH.0000000000003484.
  77. Imasuen UJ,Swanson KJ, Parajuli S. Serum uric acid levels in kidney transplant recipients: A cause for concern? A review of recent literature. Transplant Rev 2023 Jul; 37(3):100775. https://doi.org/10.1016/j.trre.2023.100775.
  78. Sato Y, Feig DI, Stack AG et al. The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nat Rev Nephrol. 2019 Dec;15(12):767-775. https://doi.org/ 10.1038/s41581-019-0174-z.
  79. Steiger S, Ma Q, Anders HJ. The case for evidence-based medicine for the association between hyperuricaemia and CKD. Nat Rev Nephrol 2020 Jul;16(7):422. https://doi.org/ 10.1038/s41581-020-0288-3.
  80. Sato Y, Feig DI, Stack AG et al. Reply to ‘The case for evidence-based medicine for the association between hyperuricaemia and CKD’. Nat Rev Nephrol 2020 Jul;16(7):422-423. https://doi.org/10.1038/s41581-020-0289-2.
  81. FitzGerald JD, Dalbeth N, Mikuls T et al. 2020 American College of Rheumatology Guideline for the Management of Gout Arthritis Care Res (Hoboken)2020 Jun;72(6):744-760. https://doi.org/10.1002/acr.24180.
  82. Ughi N, Prevete I, Ramonda R et al. The Italian Society of Rheumatology clinical practice guidelines for the diagnosis and management of gout. Reumatismo 2019 Sep 23;71(S1):50-79. https://doi.org/10.4081/reumatismo.2019.1176.
  83. Afinogenova Y, Danvea A, Neogi T. Update on gout management: what is old and what is new. Curr Opin Rheumatol 2022, 34:118–124. https://doi.org/10.1097/ BOR.0000000000000861.
  84. Stamp LK, Farquhar H. Treatment advances in gout. Best Pract Res Clin Rheumatol 2021 Dec;35(4):101719. https://doi.org/10.1016/j.berh.2021.101719.
  85. Stamp LK, Farquhar H, Pisaniello HL et al. Management of gout in chronic kidney disease: a G-CAN Consensus Statement on the research priorities Nat Rev Rheumatol 2021 Oct;17(10):633-641. https://doi.org/10.1038/s41584-021-00657-4.

Pius X (1835-1914): the last gouty pope

Abstract

Gout is a common, complex, systemic and well-studied form of chronic inflammatory arthritis in adults. It is due to the deposition of sodium monourate crystals in peripheral joints and periarticular tissues driven by hyperuricemia. Gout is the oldest recorded inflammatory arthritis to affect humankind, with roots stretching back to 2460 BC. It is known as “the rich man’s disease”, “the patrician malady”, “a disease of plenty”, “disease of kings”, “disease of Western Society”, and also “a life-style disease”. Few studies have addressed the problem of gout among popes, affluent people who usually live longer than their contemporaries and are among the most scrutinized persons. Pius X (1835-1914) was the last pope with gout.

Gout seems to have affected 26 out of 265 popes (9.81%) from Saint Peter to Benedict XVI (34-2013 AD). The first was Gregory I Magnus, who was pope in the years 590-604, the last was Pius X, who reigned from 1903 to 1914 at age 79. Their age at death was 71.7 ±9.2 years (Mean ± SD). All popes were elderly men, some had voracious appetites and/or were wine drinkers. Several were sedentary and obese, while others were sober eaters, who took long walks or went riding. Chiragra (arthritic pain in the hands), podagra (arthritic pain in the big toe) and renal stone disease were among the most frequent disturbances.

The causes of death, due to CKD, strokes and infections are discussed along with the fact that gout disappeared from the Vatican Palace on August 22, 1914. However, in accordance with the Theory of Epidemiological Transition, gout seems likely to become a problem for the general population, increasingly adopting unhealthy lifestyle choices, in the absence of a correct education.

Keywords: gout, popes, Pius X, renal death, death due to infection, death due to stroke

Introduction

Gout is a chronic, painful, non-infectious, non-lethal disease associated with crystal deposition of uric acid, when uric acid concentration exceeds 6.8 mg/dl plasma. The kidneys may cause hyperuricemia – the prevalence of which increases in the old and very old, – but are also the target of hyperuricemia (renal stones, renal disease and its progression). Hyperuricemias are due to either renal overload, renal underexcretion or a combination of both; renal overload may be due to overproduction by dietary purines, endogenous purine synthesis, purine breakdown and purine salvage [16]. Gout, known also as the “patrician malady” and the “disease of distinction” [7,8] is the oldest recorded inflammatory arthritis to affect humankind, with roots stretching back to 2640 BC [9].

Popes by definition belong to the most affluent class and their lifespan is longer than their contemporaries. In fact, a total of 51 pontiffs reigning in the years 1493 to 2005 lived to a mean age of 63.9 years and died an average of 10.0 years after being enthroned [10]. We have studied the narratives around popes, from Saint Peter to Benedict XVI [1115], and demonstrated a high prevalence of gout. In a recent review [16] we identified a total of 25 gouty popes: 14 out of 25 (58%) had risk factors; 5 out of 25 (25%) had comorbidities; 21 out of 25 (84%) were unable to perform their duties; 8 out of 25 (32%) died of stroke; 12 of them (68%) had renal disease; 12 out of 17 (70.6%) underwent a renal death. Renal disease did not affect age at death [16].

This paper focuses on the last gouty pope, Pope Pius X. His death has been traditionally but wrongly attributed, even by us, to acute pneumonia. The present study now points out that his death was most likely linked to uremia, due to lasting gout, the final straw being acute pulmonary infection.

 

Historical case report – Pius X (1835-1914), Pope (8/4, 1903-8/22,1914)

Pius X (Figure 1), born Giuseppe Melchiorre Sarto on June 2, 1835 at Reise (Province of Treviso), was ordained priest in 1858 and, in the same year, became parish priest. Later he was nominated bishop of Mantua (1884), cardinal and patriarch of Venice (June 1893) and elected Pope on August 4, 1903; he reigned until August 22, 1914. A renowned orator, he is remembered for his expertise in sacred music and for hiring Lorenzo Perosi for the Choir of the Sistine Chapel, for his antimodernism and the refusal of science, for the letters sent to European powers to avoid the First World War, and for the wide pastoral care and the love for the poor. In his last will and testament wrote “born poor, lived poor, want to die poor”. Roger Aubert, the Belgian historian Roger Aubert (1914-2009) has defined Pius X as the greatest reformer of the internal life of the Church after the Council of Trent [17].

His health has been described as good until the end of his days and his death ascribed to “acute tracheitis, bronchitis, infection-inflammation of the lower left lung lobe”, a disease of acute onset followed by rapid worsening. He was under the care of Andrea Amici (1870-1920), archiater and chief of medical services in the Vatican, and of Ettore Marchiafava (1847-1935), professor of pathology at the University La Sapienza in Rome. His disease lasted from Saturday August 15 (he celebrated the last mass) to the night of August 20, 1920. The course was characterized by a worsening fever that, in his last hours, peaked at 40°C and was associated with dyspnea [18-20].

Figure 1: Picture of Pope Pius X (1835-1914), October 1903, from Herder Verlag, Freiburg im Breisgau: Die katholischen Missionen (digitally colored). Image in the public domain, https://commons.wikimedia.org/wiki/File:Pius_X,_by_Francesco_De_Federicis,_1903_(retouched,_colorized).tif

However, we now know that Giuseppe Sarto, since his early years of priesthood, had suffered from gout, which flared painfully from time to time and was tolerated by him. As a pope, for obvious state reasons, he was forced to frequent health checks and restrictive dietary impositions [21]. The disease flared up in August 1920 and was associated with chest pain, fever, nephritis (uncurable at that time). The disease extended to the bronchial tree and caused the pneumonia that killed him [22]. So, the diagnosis was pneumonia, heart failure, pericarditis and uremia due to gout.

He was beatified in 1951 by Pius XII. As far as we know, he was the last gouty pope and after him the disease was never again associated with the papacy.

 

Discussion

Recent studies have defined gout as a “papal disease” [16]. Pope Pius X is the last in the list of 26 gouty popes of the Catholic Church between the years 590-1914 (Table 1). Gout affected 9.77% of all popes and he was the 18th out of 26 (69.3%) gouty popes to die of a renal cause. The disease left him, like 22 out of 26 (84.6%) other popes, unable to perform his duties.

No. Popes Family name Start of pontificate End of pontificate Inhability to perform Renal/non renal death** Age of death
1 St Gregory I Anici 9/3, 590 3/12, 604 yes Non-renal 64
2 Sisinnius NK 1/15, 708 2/4, 708 yes Non-renal 58
3 Sergius II Sergio 1/2 844 1/17 847 yes Non-renal 57*
4 Boniface VI NK 4/5, 896 4/20 896 Non-renal NK
5 Honorius IV Giacomo Savelli 4/2, 1285 4/3, 1297 yes Non-renal 77*
6 Boniface VIII Benedetto Caetani 12/24, 1294 10/11, 1303 yes Non-renal 73
7 Clement VI Pierre Roger 5/7, 1342 12/6, 1352 Non-renal 62
8 Nicholas V Tommaso Parentucelli 3/6, 1447 3/24, 1455 yes Renal 58
9 Callistus III Alonso de Borja 4/8, 1455 8/6, 1458 yes Renal 80
10 Pius II Enea Silvio Piccolomini 8/19, 1458 8/15, 1464 yes Renal 66
11 Sixtus IV Francesco della Rovere 8/9, 1471 8/12, 1484 yes Renal 70*
12 Pius III Francesco Todeschini Piccolomini 9/22, 1503 10/18, 1503 yes Renal 64
13 Julius II Giuliano della Rovere 11/1, 1503 2/21, 1513 Non-renal 70
14 Julius III Giovanni Maria del Monte 2/7, 1550 3/23, 1555 yes Non-renal 68
15 Marcellus II Marcello Cervini degli Spannoni 4/1, 1555 4/30, 1555 yes Renal 54*
16 Pius IV Giovanni Angelo Medici di Marignano 12/25, 1559 12/9, 1565 yes Renal 66
17 Clement VIII Ippolito Aldobrandini 1/30, 1592 3/3, 1605 Renal 70*
18 Gregory XV Alessandro Ludovisi 2/9, 1621 7/8, 1623 yes Renal 69
19 Innocent X Camillo Pamphilj 10/4, 1644 1/7, 1655 yes Non-renal 80
20 Clement X Lorenzo Altieri 4/29, 1670 7/22, 1676 yes Non-renal 86
21 Innocent XI Benedetto Odescalchi 9/21, 1676 8/12, 1689 yes Renal 78
22 Innocent XII Antonio Pignatelli 7/12, 1691 9/28, 1700 yes Non-renal 85*
23 Clement XII Lorenzo Corsini 7/12, 1730 2/6, 1740 yes Renal 88*
24 Benedict XIV Prospero Lorenzo Lambertini 8/17, 1740 5/3, 1758 yes Renal 83*
25 Pius VIII Francesco Saverio Castiglioni 3/31, 1829 11/30, 1830 yes Non-renal 69
26 Pius X Giuseppe Melchiorre Sarto 8/4, 1903 8/20, 1914 yes Renal 79
All popes 84.6% 50% Renal 71.9 ±9.2#
Table I: Gouty popes (no. 26). Data for popes nos. 1-25 in reference no.16. (* affected by stroke; ** presumed Renal/Non Renal death; # Mean ±SD; NK = not known).

The mean age at death of the 26 popes listed in Table I was 71.7 ±9.7 years and no difference was found between the age at death of popes who died of a renal cause and those who died of a non-renal cause. Pius X died from an acute infectious disease, which is always a risk for a gouty person. In fact, compared to the general population, gout patients have an increased association with all-cause disease mortality, especially attributed to cardiovascular diseases, cancer, and infectious diseases [23].

In a study by Vargas-Santos et al. [24] enrolling 19,497 people with a new diagnosis of gout and 194,947 controls, a strong association was found between gout and risk of death due to renal disease. Furthermore, a study by Spaetgen et at. [25] investigated the risk of various types of infections (pneumonia and urinary tract infection), and infection-related mortality in patients with gout using data from the UK Clinical Practice Research Datalink. Their study was the first evaluating the risk of community-acquired infections in patients with gout versus matched controls. Gout was associated with a 34% increased risk of pneumonia. Also, in a national study across the United States [26], the most common infection was pneumonia (52%) in 1998-2000 and sepsis (52%) in 2015-2016. Older age was associated with a greater risk.

There is a strong suspicion, still to prove, of an association between lung infection and the lung dysfunction described in uremia for the first time in 1932 by Ehrich and McIntosh in 3 patients with Bright’s disease [27]. They believed that some toxic or metabolic factor resulted in edema and congestion with “formation of an exudate which failed to resorb and then went on to organization” [27], a dysfunction that has been extensively studied in recent years. A restrictive dysfunction, associated with gravity of CKD, was disclosed by Mukai et al. [28], whereas Zoccali et al. [29] have shown, by systematically applying chest ultrasound in ESRD patients, that hidden or clinically manifest lung congestion is exceedingly frequent in this population an may be detected at a preclinical stage.

Gout, probably the first known non-communicable disease, might not represent in principle the best candidate to be discussed in terms of “Theory of Epidemiologic Transition”. This theory was advanced in a landmark paper by Abdel R. Omran [30] after infectious diseases were conquered [31] after World War II and degenerative and “man-made diseases” started emerging. Using demographical tools, Omran analyzed the changing patterns of population age distribution in relation to changes in mortality, fertility, life expectancy, causes of death. He identified 3 ages in humankind: the age of famine and pestilence (life expectancy <30 years), the age of “receding pandemics” (life expectancy 30-50 years), and the “age of degenerative diseases and man-made disease” (life expectancy >50 year). The theory has been updated frequently, and finally poverty (initially neglected) has been taken into consideration along with incomes and education [3036].

This is relevant and makes the theory suitable to explain the high prevalence of gout in popes and the low, but slightly increasing, prevalence in the general population. The data shall be discussed in terms of lifestyles, income and education. It has been shown that affluent and educated people also adopt immoderate lifestyles causing non-communicable diseases associated with morbidity and mortality [3036]. However, these people, when made aware of the risks, often agree to modify their lifestyles choices, whereas poorer, uneducated people do not. Thus, the latter group tends to experience the morbidity and mortality of the disease (third transition phase) at the time when rich well-educated individuals achieve protection [36].

By applying the above concepts to gout (Figure 2), we can say that popes before 1915 had a high prevalence of gout due to lifestyles choices causing it. These were later corrected through education and gout disappeared. Thus, in 2021, gout has no room in the apostolic palaces. At the same time, poor people, because of undernutrition, working conditions, and frequent movements back and forth from the workplace, were “protected” from gout, and therefore, before 1915, the prevalence of gout was zero. After World War II the general population has become sedentary, while the availability of proteins and the abuse of spirits, wines and other alcoholic beverages, as well as beverages rich in glucose, has sharply increased. Therefore, in the USA, Italy and France, the blood concentration of uric acid has been slightly but steadily increasing; the prevalence of gout is still minimal, but increasing, and will continue to do as long as education fails to encourage healthier lifestyles.

Lifestyles causing and preventing gout
Figure 2: Lifestyles causing and preventing gout, and trends in the prevalence of gout in popes and general population before 1915 and in 2021

Acknowledgements

We thank for the English revision Joseph Sepe MD, Professor of Biological Sciences, University of Maryland Global Campus, USA and Adjunct Professor – Department of Mathematics and Physics University of Campania, Luigi Vanvitelli, Naples, Italy.

 

References

  1. Dalbeth N, Merriman TR, Stamp LK. Lancet 2016; 388(10055): 2039-52 https://doi.org/10.1016/s0140-6736(16)00346-9
  2. Ragab G, Elshahaly M, Bardin T. Gout: An old disease in new perspective – A review. J Adv Res 2017; 8:495-511. https://doi.org/10.1016/j.jare.2017.04.008
  3. Igel TF, Krasnokutsky S, Pillinger MH. Recent advances in understanding and managing gout. F1000Res 2017; 6:247. https://doi.org/10.12688/f1000research.9402.1
  4. Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez- Ruiz F, Stamp LK. Gout. Nature Reviews Disease Primers 2019; 5:69. https://doi.org/10.1038/s41572-019-0115-y
  5. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystaks activate the NALP3 inflammasome. Nature 2006; 440:237-41. https://doi.org/10.1038/nature04516
  6. McCarty DJ, Hollander JL. Identification of urate crystals in gouty synovial fluid. Ann Intern Med 1961; 54:45-64. https://doi.org/10.7326/0003-4819-54-3-452
  7. Porter R, Rousseau GS. Gout: The Patrician Malady. New Haven, Yale University Press: 1988.
  8. Savica V, Santoro D, Ricciardi B, Ricciardi CA, Calo LA, Bellinghieri G. Morbus dominorum: gout as the disease of lords. J Nephrol 2013; 26(S22):113-16. https://doi: 10.5301/jn.5000349
  9. McKeown T. The origins of human disease. Oxford, Blackwell: 1988.
  10. Retief FP, Cilliers L. Disease and causes of death among popes. Acta Theologica 2006; 26(2):S7. https://doi.org/10.4314/actat.v26i2.52576
  11. De Santo NG, Bisaccia C, De Santo Causes of death due to disease of the genito-urinary system and of the heart among 264 popes in the years 65-2005 AD: First approach. Nephrol Dial Transplant 2019; 34(S1): gfz103.SP804. https://doi.org/10.1093/ndt/gfz103.SP804
  12. De Santo NG, Bisaccia C, De Santo LS. Deaths caused by cardiorenal disease among 264 popes from St. Peter to St. John Paul II. Hellenic Nephrology 2019; 31:158.
  13. De Santo NG, Bisaccia C, De Santo LS. Papal deaths caused by cardiorenal disease. First Approach. Arch Hell Med 2020; 37(S2):177-81.
  14. Bisacccia C, De Santo LS, De Santo NG. Gout a papal disease: a study in 20 pontiffs (540-1830. Nephrol Dial Transplant 2020; 35(S3):gfaa144.P1836. https://doi.org/10.1093/ndt/gfaa144.P1836
  15. De Santo N, Bisaccia C, De Santo (2021). Renal stone disease in 193 pontiffs from Vigilius to Pius VIII (537-1830). Nephrol Dial Transplant 2021; 36(S1):gfab105.001. https://doi.org/10.1093/ndt/gfab105.001
  16. De Santo NG, Bisaccia C, De Santo LS. Gout: a papal disease-a historical review of 25 gouty popes (34-2005 AD). J Nephrol 2021; 34(5):1565-67. https://doi.org/10.1007/s40620-021-01117-8
  17. Aubert R. Documents relatifs au movement catholique italien sous le pontificat de S. P. X. ibid., XII (1958), pp. 202-43, 304-70. In: Pius X, Enciclopedia Treccani online. Accessed on December 9, 2021.
  18. Merry del Val R. San Pio X. Verona, Fede e Cultura: 2012.
  19. Occelli P. Il beato Pio X. Roma, ed. Paoline: 1951, p. 237.
  20. Siccardi C. San Pio X. Roma, San Paolo ed.: 2014, p. 369.
  21. dal Gal G. Pio X il papa santo. Firenze, Libreria Editrice: 1940, p. 283.
  22. Sanguinetti O. Pio X: Un pontefice santo alle soglie del secolo breve. Milano, Sugarco Edizioni: 2014, p. 283
  23. Disveld IJM, Zoakman S, Jansen TLTA, Rongen GA, Kienhorst LBE, Janssens HJEM, Fransen J, Janssen M. Crystal-proven gout patients have an increased mortality due to cardiovascular diseases, cancer, and infectious diseases especially when having tophi and/or high serum uric acid levels: a prospective cohort study. Clin Rheumatol 2019; 38(5):1385-91. https://doi.org/10.1007/s10067-019-04520-6
  24. Vargas-Santos AB, Neogi T, da Rocha Castelar-Pinheiro G, Kapetanovic MC, Turkiewicz A. Cause-Specific Mortality in Gout: Novel Findings of Elevated Risk of Non-Cardiovascular-Related Deaths. Arthritis Rheumatol 2019; 71(11):1935-42. https://doi.org/10.1002/art.41008
  25. Spaetgens B, de Vries F, Driessen JHM, Leufkens HG, Souverein PC, Boonen A, van der Meer JWM, Joosten LAB. Risk of infections in patients with gout: a population-based cohort study. Scientific Reports 2017; 7:1429. https://doi.org/10.1038/s41598-017-01588-5
  26. Singh JA, Cleveland JD. Serious Infections in Patients With Gout in the US: A National Study of Incidence, Time Trends, and Outcomes. Arthritis Care Res 2020; 73(6):898-908. https://doi.org/10.1002/acr.24201
  27. Ehrich W, McIntosh JF. The pathogenesis of bronchiolitis obliterans. Arch Path 1932; 13:69-76.
  28. Mukai H, Ming P, Lindholm B, Heimbürger O, Barany P, Anderstam B, Stenvinkel P, Qureshi AR. Restrictive lung disorder is common in patients with kidney failure and associates with protein-energy wasting, inflammation and cardiovascular disease. PLoS One 2018; 13(4):e0195585. https://doi.org/10.1371/journal.pone.0195585
  29. Zoccali C, Tripepi R, Torino C, Bellantoni M, Tripepi G, Mallamaci F. Lung congestion as a risk factor in end-stage renal disease. Blood Purif. 2013; 36(3-4):184-91. https://doi.org/10.1159/000356085
  30. Mc Keown R. The epidemiologic Transition: Changing Patterns of Mortality and Population Dynamics. Am J Lyfestyle Med 2009; 3(S1): 19S-26S. https://doi.org/10.1177/1559827609335350
  31. Omran AR. The epidemiologic transition. A theory of the Epidemiology of Population Change. Milbank Memorial Fund Quarterly 1971; 49(4):509-38.
  32. Caldwell JC. Population health in transition. Bull World Health Org 2001; 71(1):159-60.
  33. Pearson TA. Education and income: double edged swords in the epidemiologic transition of cardiovascular disease. Ethnicity & Disease 2003; 13(S2):158-63.
  34. Pearson TA. Socioeconomic status and cardiovascular disease in rural population. In Stamler J, Hazuda H (eds). Report on the conference on Socioeconomic Status and cardiovascular disease. Washingtoon DC, National Heart, Lung, and Blood Institute: 1995, pp. 101-08.
  35. Marmot MG, Smith GA, Stansfeld S, Patel C, et al. Health inequalities among British civil servants. Lancet 1991; 337:1387-93. https://doi.org/10.1016/0140-6736(91)93068-k
  36. Kaplan G, Keil J. Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation 1993; 88:1973-88. https://doi.org/10.1161/01.cir.88.4.1973

The use of Water for the treatment of Kidney Disorders

Abstract

The treatment of end stage renal failure is always based on the use of water. Both the artificial kidney machine and peritoneal dialysis use a huge amount of water, either in its pure condition (the RDT) or as the main ingredient in PD solutions. As these modalities are rather modern for an article on the history of the topic, we will skip them and proceed to the discussion of more ancient methods, correlating them with more recent times. Recent for us means from the 9th century onwards. The structure of this article was inspired by the Polka dance, originally a Czech dance and a genre of dance and music familiar throughout Europe and the Americas. It is still practiced in many countries and widely in Poland.
In this paper we present extracts from the works of Plato, Hippocrates, Aristophanes, Galen, Pliny the Elder, Paulus Aegineta, Rufus, Alexander, Avicenna with their views on mineral waters in general and their application on renal diseases. Gout and lithiasis figure prominently and were the more prominent indications for that mode of treatment. We followed the evolution of their ideas in time and compared them with the current use of hydrotherapy in various Spas with emphasis on the ones from Central and Eastern Europe.
We conclude that the popularity of hydrotherapy for treating kidney disorders was alternatively increasing and decreasing over centuries, resembling the Back and Forth steps of Polka

Keywords: Hydrotherapy, mineral waters, lithiasis, gout, Galen, Avicenna

Ci spiace, ma questo articolo è disponibile soltanto in inglese.

Introduction

The treatment of end stage renal failure is always based on the use of water. Both the artificial kidney machine and peritoneal dialysis use a huge amount of water, either in its pure condition (the RDT) or as the main ingredient in PD solutions. As these modalities are rather modern for an article on the history of the topic, we will skip them and proceed to the discussion of more ancient methods, correlating them with more recent times. Recent for us means from the 9th century onwards. The structure of this article was inspired by the Polka dance, originally a Czech dance and a genre of dance and music familiar throughout Europe and the Americas. It is still practiced in many countries and widely in Poland. Thus, let us consider this structure of the lecture as a tribute to our host country. Polka can be very bouncy and upbeat. Try going Back in the Past and Going Forth in squares, and Front and again. Similarly, we will present various practices and theories about the use of baths for renal ailments back in the past, we will follow their abandonment and then will we witness going forth to their revival.

Discussion

The article starts the discussion with a general view on the therapeutic properties of baths.

Back in the past:

As the use of water treatments combines mythical, religious, medical and social characteristics, it has been a point of discussion since antiquity. We read in Plato’s Cratylus that: “(…) and should be accepted one name only for the god (Apollo) being the god of music, or arching, oracles and of medicine (…) [as] the same tools are used by doctors and oracles like baths and sprinkling with water, as there is a common goal: A person’s soul and body purification” (1).

 

Going forth, the revival:

Today, ritual purification through water can be found in the religious ceremonies of Jews, Muslims, Christians, Buddhists, and Hindus. These ceremonies reflect the ancient belief in the healing and purifying properties of water. With time, various qualities of natural waters were considered, or advertised, as beneficial for health.

 

Back in the past:

Plutarch (1st cent. AD): “Which pain, which abstinence, which drug did solve any disease as quickly as a bath taken timely?” (2) Galen (1st/2nd cent. AD): “When there is an increase of impurities the best purgation is via phlebotomy, then baths and fasting (3) and when these are neglected many ailments appear”. (4) And further on: “Who doesn’t remember his (Kointos’) scorn of warm and cold and dry and wet baths, now he announces names of baths without which no treatment is achieved” (5). Rufus of Ephesus (1st/2nd cent. AD) repeats the above: “(…) if the patients suffer by an abundance of bad humours, they benefit from (…) warm baths (6).

Natural springs had been classified according to their physical properties. Hippocrates had already commented that: “The next worst will be those whose springs are from rocks–for they must be hard–or from earth where there are hot waters, or iron is to be found, or copper, or silver, or gold, or sulphur, or alum, or bitumen, or soda” (7). A more detailed classification was made by Pliny the Elder (1st cent. AD) in his famous Natural History. He himself was a fervent advocate for bathing as his nephew Pliny the Younger states “In the country, the only time he took from his work was for his bath, and by bath I mean his actual immersion, for while he was being rubbed down and dried he had a book read to him or dictated note” (8). Also Paulus Aegineta (7th cent. AD) elaborated on the topic (9). According to Galen, natural waters could also be classified in accordance to their temperature: “The so-called natural springs in some places have a pleasant temperature; in others these are boiling or lukewarm, while the cold ones are everywhere” (4).

 

Going forth, the revival:

Similarly, nowadays a variety of natural waters is widely advertised as good for health, as we can see from extracts of various pamphlets for spas in Central and Eastern Europe:

  1. The Yeisk resort, on the coast of the Azov Sea, is famous for its healing waters containing hydrogen sulphide (…). The main therapeutic factors of the resort are the unique and rare in the content of iron, mineral waters surpassing in some characteristics all known springs in the world (10).
  2. Carbonaceous: Naturally carbonated waters. Stimulate the appetite and digestion when drunk, increase the digestive secretions of the stomach, pancreas and intestines (11).
  3. Sulphur-containing water reduces gastric secretion, helps digestion, and treats lazy bowels. Less mineralized waters are used for treating calculus (kidney stones) and urinary tract infections (12).
    Apart of the variations of waters, baths and bathing always took place in beautiful scenic landscapes and in buildings with works of art.

 

Back in the past: 

Romans took this to the extreme, building huge imperial bath complexes full of mosaics, statues, paintings and other luxuries. In many ways, these were similar to community centers. Because the bathing process took so long, conversation was necessary. Many Romans would use the baths as a place to invite their friends to dinner parties, and many politicians would go to the baths to convince fellow Romans to join their causes. The thermae had many attributes in addition to the baths. There were libraries, rooms for poetry readings, and places to buy and eat food. The modern equivalent would be a combination of a library, art gallery, mall, restaurant, gym, and spa (13). Baths were a site for important sculptures; among the well-known pieces recovered from the Baths of Caracalla are the Farnese Bull and Farnese Hercules and the larger-than-life early 3rd century patriotic figures somewhat reminiscent of Soviet Socialist realism works (now in the Museo di Capodimonte, Naples). There were also famous artistic works in the baths of Constantinople (14, 15). Later, Avicenna in his Canon of Medicine in the 10th century elaborated on: The bath-rooms: Temperature of air in different rooms (temperate, warm, hot, and cool); mural decorations (16).

 

Going forth, the revival:

The use of public baths declined during the Middle Ages, partially revived in the 16th century and reached its peak in the 19th. To limit the search only to France, we quote six novels from Philip Albou’s article on “Taking waters in the French literature” (17). Namely, 1. Michel de Montaigne (1533 – 1592) who compares the particular manners of taking water in France, Germany and Italy in 16th century. 2. Gui Patin (1602 – 1672), the famous Senior of the Faculty of Medicine of Paris, declared to be very perplexed as to the effectiveness of water, going on to declare: “the waters make more cuckolds than they do cure patients!”; 3. The account of Madame de Sévigné (1626 – 1696), from her famous Letters, on taking waters in Vichy in 1676; 4. Thermal treatment (without effect…) of the extinction of voice of Nicolas Boileau (1636 – 1711) at Bourbon-l’Archambault in 1687; 5. The portrait of Irene (alias Madame de Montespan) found in the “Caractères” of Jean de la Buyère’s (1645 – 1696); and finally, 6. An extract of the novel Mont-Oriol by Guy de Maupassant where he evokes the cynical and financial aspects of the creation of a thermal place in the centre of France during the 19th century. The latter, though cynical, explains in part the frenzy of building huge hotels and other buildings in that era to accommodate the well-off’s desire for cure and recreation. Focusing on the subject of this article, we notice an echo of the bath decorations of the past in the modern trend of the last two decades, as more designers and operators recognize the healing benefits of positive distractions, natural views, and daylight within their care environments (18).
Having dealt in brief as an introduction with the general ideas of the benefits of bathing both in the past and in modern times, we will focus now on our central theme that is the use of waters for kidney problems.

 

Back in the past:

Hippocrates (5th cent. BC): The very cold water minimizes and eliminates the tumours and pain of gouty attacks. (19) He also commented on the impact of the quality of drinking water on stone formation: Men become affected with the stone, and are seized with diseases of the kidneys, strangury, sciatica, and become ruptured, when they drink all sorts of waters, and those from great rivers into which other rivulets run, or from a lake into which many streams of all sorts flow” (5) Galen: For renal diseases you should consume a light diet and very frequent baths. Because drinking too much water is contraindicated in renal disease while purification via the skin is desirable (20). Plutarch refers to the gouty attack of Sulla, the Roman general, who according to Strabo hurried himself to the medicinal waters of the Aedipsos Baths, at the island of Euboea in Central Greece (21). Paul of Aegina (5th cent. AD): “(…) for retention of urine: add a fifth part of heated oil to the water. Such a bath is highly anodyne” (9). Alexander warns on the over-prescription of hot or cold baths for treating renal problems and suggests moderation (22). Hydrotherapy in Byzantium was a strong therapeutic agent for many ailments, including acute nephritis and attacks of gout (23). Avicenna (10th cent. AD): “(…) On the presentations of the urinary stone. Know that when the stone enlarges in the kidney it hinders the urine, causes intolerable pain, and may lead to mental confusion from pain. Each occasion of the pain is called an episode (the pain is intermittent). During the episode of pain the patient should sit in a tub of warm water in which the leaves of cabbage…” (24).

Generally, in antiquity methods for alleviation of pain from kidney stones consisted of (…) baths and warm clysters that were sometimes medicated (25). Hence, even the comic play writer of the 5th cent BC Aristophanes has Dionysus suffer from kidney pains, because of overtiredness, to beg Zeus to permit him to run to the public bath for relief (26).

 

Going forth, the revival:

In The Principles and Practice of Medicine, William Osler (1849–1919) commented on the topic: “Many patients find benefit from a stay at Saratoga, Bedford, Poland or other mineral springs in this country, or at Vichy or Ems in Europe” (27). In Central and Eastern Europe today, bath treatments for kidney diseases flourish. We present indicatively a few such places:

1) Czech Spas – Treatment of kidney and urinary tract diseases has a long tradition in Marienbad with the use of the god-given effects of natural carbon dioxide. The curative springs, in particular, the hypotonic mineral waters in the drinking cure, are the foundation of therapies for urologic and kidney illnesses in children, adolescents, men and women. Due to the cooperation with the dialysis centre Fresenius in Marienbad, it is possible with advance arrangements, to treat patients requiring a dialysis program (sic!). A fine example of the combination between alternative and high tech treatments based on commercial goals (28).
Czech Spas.

2) The Royal Spa hotel in Mariánské Lázně specialises in kidney and urinary tract treatment. Natural mineral carbon dioxide treatment in the form of both water and dry baths helps the vascular system widen and become more flexible. Carbon dioxide, which is absorbed through the body surface, stimulates receptors of even the tiniest capillaries in our body. It is also suitable for curing cysts, kidney stones and sand (lithiasis) or kidney hypofunction in connection with other chronic diseases (29).

3) In the Carpathian Basin in Central Europe, where Hungary is located, the crust of the earth is very thin, so these waters right from the core of the earth rise to the surface very easily. There are more than 200 thermal spas (…) used to cure kidney diseases. Most Hungarian spa resorts use their hot springs complimentary to regular medicinal methods in many type of diseases and conditions like skin diseases, (…) kidney diseases, neurological problems, etc. depending on the composition of their waters. In Hungary, spa treatments are covered by the Hungarian medical insurance plan and regularly prescribed by Hungarian doctors as part of natural rehabilitation protocols (30).

4) There are more than 1300 mineral sources in Slovakia, used as curative waters for (….) renal diseases. There are 21 thermal spas built on these mineral springs, usually divided in three groups according to type: Balneological spas, Climatic spas, mixed spas. The main focus of the “cure” is often drinking water from the spring (it usually tastes like medicine), but all of the spas listed also offer soothing soaks, medicinal massages!) and other restorative therapies, as well as swimming and other recreational opportunities in beautiful natural settings (31).

5) The oldest balneological centres in Russia are the resorts of Caucasian Mineral Waters. The waters in Zheleznovodsk at Stavropol Krai can heal the digestive system, the pancreas, and kidneys. (11) In the same area, the Mashuk Aqua-Therm hosts the only monument in the world commemorating enemas, unveiled in June 2008 (Figure 1). The 770-pound bronze statue stands nearly five feet tall and was created by a local regional artist named Svetlana Avakova. The use of enemas for treating uraemia has been well established since antiquity.

6) Treatment descriptions – Pühajärve Spa & Holiday Resort (…) for heart diseases, high blood pressure and kidney diseases. The discovery of the mineral springs in 1876 marked the beginning of the history of Rymanow-Zdroj. It specializes in the treatment of children with kidney diseases (32).
The main ways in which baths are useful in treating renal failure were perspiration and toxic substance elimination via the skin, which acted as a kind of dialysis membrane.

 

Back in the past:

Hippocrates: “We should then abstain from the cathartic methods performed from below (that is, diuretic drugs and enemas). The best of all though is to provoke diuresis and perspiration and get the patient walking” (33).

Aristotle (4th cen. BC): “And soon this (alien substance) is separated and discharged. And the latter when is discharged from below is called urine whereas when it is eliminated through the skin is called perspiration. Both are saline for the same reason” (34).

Rufus: “because it is good for them to be able to perspire if diuresis stops. The best of all is a steam bath in a small vat with the head coming out from the top, so that, while the rest of the body is being heated, one can breathe cool air” (35).

 

Going forth, the revival:

A Clinical/Historical paper we wrote tried to explain the beneficial role of perspiration in renal failure: “(…) Each human kidney has approximately 1.2 million nephrons. In other words, humans have as many nephrons as sweat-glands (…). The role of the skin as an excretory organ is also demonstrated by the fact that the sweat glands as well as the kidneys have receptors for aldosterone and ADH (…). We found a difference of 16 mg/dl in average blood urea between winter and summer months (mean winter urea 182 mg/dl, mean summer urea 166 mg/dl). These differences were statistically very significant (p<10-27). There was no significant difference in patient body weight between winter and summer months” (36). The following articles back our thesis:

Sauna baths in the treatment of chronic renal failure. 

Snyder D, Merrill JP, Trans Am Soc Artif Intern Organs. 1966; 12:188-92.

Sweating treatment for chronic renal failure. 

Lacher JW, Schrier RW. Nephron. 1978; 21(5): 255-9. “This removal of urea, water and salt suggests that sweating could be used to treat uraemia in conjunction with charcoal hemoperfusion”;

Stimulated sweating in chronic renal failure

Man in ‘t Veld AJ, van Maanen JH, Schicht IM. Br Med J. 1978 Jul 15; 2(6131): 172-3. “With hot baths and/or saunas the urea and creatinine in RDT patient falls”

Hot bath for the treatment of chronic renal failure

Ting Ye, Weiping Tu & Gaosi Xu, Ren Fail. 2014 Feb; 36 (1):126-30: “(…) Therefore, it offers an adjuvant alternative renal replacement method”.

Local application of footbaths for gout has been also suggested.

Back in the past:

Rhazes (9th cent. AD) stated that: “Two factors are involved in gout management via application of water to the feet; the temperature of the water and the time of application. Some patients with gout are advised to use extremely cold water during acute episodes, while others need to apply tepid or hot water (37).

Going forth, the revival:

Claridge in the 19th cent wrote: “A king’s councilor had suffered for six years with the gout (…) repeated cold foot-baths, after some days, caused the inflammation and redness to disappear (38). The method has a modern interpretation: In Foot Bath Therapy, warm water can promote blood circulation, and blood flow after a footbath can increase to 10~18 times above normal, which can improve patient metabolism and Qi-blood circulation. Besides, Foot Bath Therapy can improve the skin functions of mucosa absorption and skin penetration, which can promote the medicine ingredients to be absorbed into the blood (39). Basically, hot therapy is applied when there is no inflammation while cold therapy where there is inflammation/swelling. Contrast Hydrotherapy (CH) has been used for treating and preventing gout besides daily hydration.
The most exotic treatment is via magnetized water. Its ancestor was mesmerism. Practitioners were often known as magnetizers, rather than mesmerists. For about 75 years from its beginnings in 1779, it was an important specialty in medicine, and continued to have some influence for about another 50 years. Hundreds of books were written on the subject between 1766 and 1925. Today it is almost entirely forgotten. Magnetism dressed up as magnetized water, is the new frenzy for treating kidney ailments: In a 19th cent Commentary on Avicenna’s Canon, there is an implication of the impact of the radiation of the soil over the medicinal waters: “His statement contains an important truth. Certain spas and health- resorts (Carlsbad, Bath, Droitwich, Baden, Bourbonne-les-Bams, Is ancy Wiesbaden) owe their virtue not merely to the chemical composition of the water which is taken by the patients, but also to the locality itself. The radiations which pass outwards at those parts of the earth produce a beneficent influence upon them as they walk over the ground” (17). In a more recent article on the efficacy of naturally magnetized water on kidney function, we read: “(…) a daily regimen of 16 ounces of naturally magnetized water was shown to be significant in lowering urine pH, and promoting excretion of acids and toxic mineral salts suggesting an increased ability of the kidneys to remove toxic wastes from the body …” (40). In another similar article: “They had their patients drink bi-polar (treated with both North and South poles) magnetized water. This simple treatment was very effective in breaking up kidney and gall bladder stones into small enough particles to be passed through urine without any pain or danger to the patient (41).

 

Conclusions

Ancient and medieval practices on the use of water are reincarnated today in the more general urge for alternative, traditional, mythical treatments. They are those who look and make steps Back in the Past  to follow them, there are those who sternly stand for the technological approach turning their back to the past Moving Forwards. Nevertheless, both groups in their contrary movements meet harmoniously in the middle like groups dancing the famous Polka dance Podhale (Figure 2).

 

References

  1. Plato (5th cent. BC) Cratylus. In: Burnet J (ed) Platonis opera, vol. 1, 2nd edn. Clarendon Press, Oxford:, 1900, Stephanus page 405, section b, line 2.
  2. Plutarchus (1st/2nd cent AD) Quaestiones Convivales (612c-748d), Stephanus page 662, section C, line 3. Available online at: http://data.perseus.org/citations/urn:cts:greekLit:tlg0007.tlg112.perseus-grc1:612c
  3. Galenus Med. (1st/2nd cent AD) De constitutione artis medicae ad Patrophilum. In: Kühn C (ed) Claudii Galeni Opera Omnia vol. I. Cnobloch, Leipzig, 1821, page 299, line 7.
  4. Galenus Med. De sanitate tuenda libri vi. In: Kühn C (ed) Claudii Galeni Opera Omnia, volume 6, Teubner, Leipzig, 1923, page 244, line 12.
  5. Galenus Med., De methodo medendi libri xiv. In: Kuhn C (ed) Opera Omnia. Volume 10. Cnobloch, Leipsig, 1822, page 467, line 8.
  6. Rufus Med., Quaestiones medicinales, Section 25, line 4 Gärtner H. Rufus von Ephesos: Die Fragen des Arztes an den Kranken. Corpus medicorum Graecorum. Akademie, Verlag, Berlin, 1962.
  7. Hippocrates (5th cent BC) De aere aquis et locis. In : Jones W (ed) Airs, waters places – Perseus Digital Library, section 7, p. 87.
  8. Radic B. (2003) The Letters of the Younger Pliny, Penguin Classics, UK.
  9. Adams Fr. (1844 -47) Paulus Med. Epitomae medicae libri septem. Book 1, Syndenham Society, London, chapter 52, section 1.
  10. About the resort of Zheleznovodsk / Plaza SPA Hotels. plazaspa.net.
  11. Carbonated (Sparkling) Water: Good or Bad? (2016) Healthline.
  12. Best Water for Kidney Stones – Water benefits health, www.waterbenefitshealth.com/best-water-for-kidney-stones.
  13. Fagan G. (1999). University of Michigan Press, Michigan.
  14. Kaldellis A (2007) Christodoros on the Statues of the Zeuxippos Baths: A New Reading of the Ekphrasis. Greek, Roman, and Byzantine Studies 47 361–383.
  15. Bassett S.G. (1996) Historiae custos: Sculpture and Tradition in the Baths of Zeuxippos. AJA 100: 491– 506 .
  16. Gonzalez C (1929) Avicenna’s Canon Of Medicine. AMS Press, New York. https://archive.org/stream/AvicennasCanonOfMedicine/ .
  17. Albou Ph. (2005) Taking the waters in the French literature. Book of Abstracts. 3rd Meeting of the ISHM, Patras, Greece.
  18. Di Nardo A. (2015) Healing Masterpiece | HCD Magazine.
  19. Hippocrates (5th cent BC) Aphorisms. Adams Fr (trans) Chapter 5, section 25, line 2.
  20. Galenus Med. De venae sectione adversus Erasistrateos Romae degentes. In : Kühn C (ed) Claudii Galeni. Оpera omnia. Vol. 11. Knobloch, Leipzig, 1826 page 240, line 7.
  21. Plutarchus. Sulla. Perrin, Bernadotte (ed) Harvard University Press, Harvard, 1916. Chapter 26, section 3, line 3.
  22. Alexander Med (6th cent AD) Therapeutics. In: Puschmann T. (ed) Alexander of Tralles, Volume 1, page 481, line 1.
  23. Diamandopoulos A. (1997) Hydrotherapy in Byzantium, Kathimerini Newspapaper June (in Greek).
  24. Ardalan M. et al (2007) Diseases of the kidney in medieval Persia—the Hidayat of Al-Akawayni. Nephrol Dial Transplant, 1.
  25. Touwaide A. et al. (2013) Healing kidney diseases in antiquity. Bios, Cosenza, 115–129.
  26. Aristophanis Ranae (5th cent BC) Ex recensione Guilielmi Dindorfii.
  27. Osler W (1892) The Principles and Practice of Medicine. Republished 1978. Classics of Medicine Library (publ) Birmingham.
  28. http://www.royalspa.cz/en/24928-kidney-and-urinary-tract- diseases.
  29. http://www.spaseurope.net/czech-spas-information.htm
  30. http://www.spashungary.com/hungarian-spa.htm
  31. http://www.slovak-republic.org/spa
  32. Spa Resorts Russia – Advantour.
  33. Hippocrates. On the Diet of Acute Diseases. In: The Greeks, (1992) Kaktos (pbl), Athens, p. 139.
  34. Aristotle (4th cent BC) Problemata. Bekker I (ed). Gruyter, Berlin,1960, sec 866.
  35. Rufus of Ephesus (1st cent AD) In : Hakkert (ed) De Renum et Vesicae Morbis, Ouevres de Rufus d’Ephese (1963). Amsterdam.
  36. Diamandopoulos A and Goudas P (2000) The substitution of renal function through skin catharsis, a clinicohistorical review. Kidney International 59: 1580 – 1589.
  37. Ashtiyani SnC et al (2012) Rhazes’ Prescriptions in Treatment of Gout. Iran Red Crescent Med J 14(2): 108–112.
  38. Claridge R T (1842) Hydropathy, or the Cold Water Cure. In: Cold Water Gout Cure | Cold Showers www.cold-showers.com/cold-water-gout-cure/, 11 Ιουλ 2012.
  39. Foot Bath Treats Kidney Disease or Kidney Failure – Kidney Disease. Available online at:
    http://www.kidney-symptom.com/foot-bath.html
  40. Galitzer M and Reminick H (1999) Efficacy of a naturally magnetized water on kidney function. Available online at: http://www.ihfglobal.com/education_documents.
  41. The Health Benefits of Magnetic Water. Publishing web Life-Sources Inc. Available online at: http://www.life-sources.com/pages/The-Health-Benefits-of-Magnetic-Water.htm