Fibrillazione atriale, trattamento anticoagulante e nefroprotezione: prudenza o coraggio?

Abstract

La fibrillazione atriale (FA) e la malattia renale cronica (CKD) sono strettamente interconnesse dal punto di vista fisiopatologico e condividono diversi fattori di rischio (ipertensione, diabete mellito, insufficienza cardiaca congestizia). Di conseguenza, la FA è molto comune tra i pazienti con CKD, specialmente in coloro i quali si presentano con un quadro di malattia renale in stadio terminale (ESRD). Inoltre, i pazienti con FA e malattia renale cronica avanzata presentano un tasso di mortalità più elevato rispetto ai pazienti con funzione renale conservata a causa di una maggiore incidenza di ictus e di un elevato rischio emorragico imprevisto. L’adeguata anticoagulazione orale a lungo termine in questo sottogruppo di pazienti rappresenta una sfida importante per i medici nella pratica clinica. Gli anticoagulanti orali diretti (DOACs) sono attualmente controindicati nei pazienti con ESRD, mentre gli antagonisti della vitamina K (VKA) sono caratterizzati da una finestra terapeutica stretta, da un aumento della calcificazione dei tessuti e da un rapporto rischio/beneficio sfavorevole e caratterizzato da un ridotto effetto in termini di prevenzione dell’ictus e da un aumento del rischio di emorragie maggiori. Lo scopo di questa revisione è di fare luce sulle applicazioni della terapia con DOACs nei pazienti affetti da CKD e, più in particolare, nei pazienti con ESRD.

Parole chiave: fibrillazione atriale, malattia renale cronica, warfarin, anticoagulanti orali diretti, malattia renale terminale, chiusura dell’auricola dell’atrio sinistro

Introduzione

La prevalenza della fibrillazione atriale (FA) nella popolazione generale oscilla tra lo 0,5 e l’1% con punte massime pari all’8% nei pazienti over 80, nonché in alcune condizioni patologiche ben definite come la malattia renale cronica (CKD, cronic kidney disease) e, soprattutto, nei pazienti sottoposti a terapia renale sostitutiva [1]. Proprio a proposito della condizione di CKD, va ricordato come il paziente nefropatico sia inquadrato come paziente ad alto ovvero altissimo rischio cardiovascolare, come sottolineato dalle recenti linee guida della Società Europea di Cardiologia (ESC) [2]. Nei pazienti affetti da CKD, la prevalenza di FA può raggiungere picchi decisamente elevati e, nell’ambito della popolazione affetta da FA, il 40-50% dei pazienti presentano un qualche grado di compromissione della funzione renale [35], mentre fino al 15-20% dei pazienti con CKD è affetto da FA, soprattutto nei pazienti con malattia renale cronica terminale (ESRD, end-stage renal disease) [68]. Una caratteristica fondamentale dei pazienti affetti da CKD è quella di presentare un rischio elevato sia di fenomeni tromboembolici, sia di fenomeni emorragici [913], particolare che complica la gestione di una qualsivoglia terapia anticoagulante. Una percentuale non trascurabile di pazienti con valori di filtrato glomerulare stimato (eGFR) <30 ml/min presentano un importante rischio emorragico dovuto, in primo luogo, alla disfunzione quali/quantitativa della componente piastrinica [1416]. Tra l’altro, una delle maggiori criticità nella valutazione del rischio emorragico/tromboembolico dei pazienti con CKD ed ESRD risiede nel fatto che i calcolatori di rischio più impiegati (HASBLED e CHAD2VASC2) non considerano, per il punteggio definitivo, proprio quei parametri più strettamente legati alla disfunzione renale (alterazioni del sistema della coagulazione, variazioni dell’ eGFR per fare due esempi) [17].

Il rischio trombotico/emorragico nel paziente con CKD

Il primo elemento da prendere in considerazione in termini di fisiopatologia del rischio trombotico ed emorragico è quello relativo alla correlazione tra CKD e FA in termine di condivisione di fattori di rischio quali ipertensione arteriosa, diabete mellito (DM) e sindrome metabolica. Inoltre, come già accennato, il progressivo deterioramento della funzione renale si accompagna ad incremento del rischio di FA con un quadro clinico che si caratterizza per un elevato rischio emorragico e tromboembolico [4, 6]. La presenza contemporanea di FA e CKD delinea una condizione clinica caratterizzata da un rischio tromboembolico molto elevato (ictus cardioembolico, tromboembolismo sistemico e morte) e un inaspettato rischio emorragico elevato, soprattutto nei pazienti in dialisi [14, 15]. Il ruolo centrale della CKD nel rischio tromboembolico elevato è ben noto. Piccini et al. hanno dimostrato che l’alterazione della funzione renale è un importante fattore predittivo di ictus cardioembolico ed embolia sistemica [18]. Pertanto, per una migliore valutazione del rischio tromboembolico, hanno proposto di estendere il punteggio CHADS2 con altri 2 punti per i pazienti con eGFR <60 mL/min, il cosiddetto punteggio R2CHADS2 [18]. Diversi fattori aumentano la propensione alla formazione di trombi nei pazienti con CKD; come illustrato nella Figura 1, tutti gli elementi della triade di Virchow (anomalie nel flusso sanguigno, nella parete dei vasi e nei costituenti del sangue) appaiono anormali. Inoltre, un eGFR ridotto è un fattore predittivo indipendente di bassa contrattilità e velocità di flusso dell’auricola sinistra [19, 20]. Questi elementi promuovono la formazione nell’atrio sinistro di un denso contrasto ecocardiografico spontaneo, che è un indicatore di stasi sanguigna rilevante ed è associato a un aumento del rischio trombogenico [21]. D’altra parte, i pazienti CKD hanno una maggiore suscettibilità all’aterosclerosi con una maggiore velocità dell’onda sfigmica e una ridotta dilatazione endotelio-dipendente mediata dal flusso [22, 23]. Livelli endogeni più elevati di Endotelina-1 e di cAMP plasmatico negli individui affetti da CKD sembrano essere associati a una maggiore suscettibilità tromboembolica [24]. Infine, la CKD è associata a un aumento dei biomarcatori infiammatori e della coagulazione che aumentano l’attività piastrinica e la formazione di coaguli [25, 26]. Il ridotto metabolismo della proteina C-reattiva, l’espressione anomala della glicoproteina Ib, l’aumento dei livelli di proteine pro-infiammatorie (IL-1, TNF alfa, D-Dimero) e di fattori della coagulazione (VII, VIII, fibrinogeno, Von Willebrand, inibitore dell’attivatore del plasminogeno-1) e l’inibizione della plasmina grazie all’aumento dei livelli di lipoproteina(a) sono le più importanti anomalie ematologiche descritte nei pazienti CKD [2730]. Tali fattori sono anche coinvolti in un aumento del rischio emorragico [14]. In particolare, le anomalie piastriniche, le tossine uremiche, l’ipertensione non controllata, le ripetute incannulazioni per la dialisi e le procedure invasive contribuiscono a un rischio di sanguinamento notevolmente elevato (Figura 2). Soprattutto, le disfunzioni piastriniche sembrano essere predominanti e comprendono la riduzione dell’ADP intracellulare, il rilascio alterato della proteina alfa-granulare piastrinica, l’aumento del cAMP intracellulare, il metabolismo anomalo dell’acido arachidonico e l’attività della ciclo-ossigenasi, l’aberrazione dell’attività della GP IIb/IIIa e l’alterazione del fattore von Willebrand che promuove uno stato pro-emorragico [3133]. Inoltre, le tossine uremiche alterano il flusso sanguigno e aumentano la carenza di eritropoietina [33, 34].

Figura 1: Fattori che predispongono alla trombogenesi nei pazienti con CKD
Figura 1: Fattori che predispongono alla trombogenesi nei pazienti con CKD RAAS: sistema renina-angiotensina-aldosterone
Figura 2: Fattori che contribuiscono allo stato pro-emorragico nei pazienti con CKD
Figura 2: Fattori che contribuiscono allo stato pro-emorragico nei pazienti con CKD FANS: antinfiammatori non steroidei; NO: Ossido Nitrico.

 

Nefropatia da anticoagulanti e progressione della malattia renale

Nonostante il crescente uso di anticoagulanti orali negli ultimi 20 anni, solo nel 2009 Brodsky et al. hanno introdotto il concetto di “nefropatia correlata a warfarin” (WRN) [35]. La WRN è una forma particolare di danno renale acuto (AKI) senza alcuna causa sottostante evidente, in un paziente trattato con warfarin con un rapporto internazionale normalizzato (INR) >3,0 ed ematuria microscopica o macroscopica [35]. Brodsky et al. hanno eseguito biopsie renali in nove pazienti con AKI inspiegabile e INR sovraterapeutico; i campioni istologici hanno mostrato un pattern di accumulo eritrocitario diffuso e dismorfo sia nei tubuli renali, alcuni dei quali apparivano ostruiti e dilatati, sia nel glomerulo, soprattutto nello spazio di Bowman [35]. I due principali processi fisiopatologici che spiegano l’AKI sono la rottura della barriera di filtrazione glomerulare che provoca un’emorragia nello spazio di Bowman e l’aggregazione dei globuli rossi, formando dei calchi nei tubuli, che portano alla loro ostruzione e ischemia [35]. L’anticoagulazione sovraterapeutica sembra giocare un ruolo essenziale nell’indurre la WRN, ma è probabile che sia necessario un secondo fattore; un numero notevolmente ridotto di nefroni o un danno acuto ai glomeruli sembrano essere le condizioni che contribuiscono all’emorragia glomerulare in caso di anticoagulazione sovraterapeutica. Cause di danno acuto ai nefroni potrebbero essere l’insufficienza cardiaca congestizia, l’inizio recente di inibitori del sistema renina-angiotensina, la malattia renale tromboembolica, la glomerulonefrite endocapillare proliferativa o i coaguli vescicali che causano un’ostruzione ureterale. In uno studio caso-controllo che ha arruolato 15.258 pazienti che hanno iniziato il warfarin durante un periodo di 5 anni, una diagnosi presuntiva di WRN si è verificata nel 20,5% dell’intera coorte e nel 33,0% della coorte CKD [36]. La mortalità a 1 anno nei pazienti con WRN è stata del 31,1% rispetto al 18,9% nei pazienti senza WRN, il che rappresenta un rischio aumentato del 65% [36]. Nel complesso, la WRN può essere considerata non solo una complicazione comune della terapia con VKAs, ma anche un potente fattore prognostico negativo. Dal 2009, diversi studi hanno confermato l’ipotesi proposta da Brodsky che un’eccessiva anticoagulazione è associata a WRN [3740]. Golbin et al. hanno descritto la più grande serie di casi biopticamente provati di AKI indotta da altri VKAs, in particolare i primi casi di AKI da fluindione e acenocumarolo [41]. Da notare che non sono state riportate differenze cliniche o istologiche nei pazienti trattati con warfarin o fluindione/acenocumarolo [41]. La connessione tra AKI e anticoagulazione è stata estesa anche ai DOACs; pertanto, il termine WRN è stato gradualmente sostituito dal più inclusivo “nefropatia legata all’anticoagulazione” (ARN) [4245].

Data la scarsità di esiti renali riportati negli studi sui DOACs e la mancanza di dati limitati a lungo termine, è possibile che la vera incidenza dell’ARN sia sottovalutata. Due grandi studi retrospettivi hanno dimostrato che apixaban, dabigatran e rivaroxaban sono associati a un rischio inferiore di AKI rispetto al warfarin (Figura 3) [46, 47]. Nel complesso, la somministrazione di VKAs è ancora considerata un importante fattore di rischio per l’AKI, come risultato della calcificazione vascolare dovuta all’inibizione della proteina Gla di matrice (MGP) dipendente dalla vitamina K, come illustrato nella Figura 4 [4851]. Risultati simili sono stati riportati anche in una coorte di pazienti con FA sottoposti a intervento coronarico percutaneo; dopo la somministrazione del mezzo di contrasto, i pazienti che assumevano DOACs, in particolare dabigatran, hanno mostrato un migliore controllo della funzione renale rispetto ai pazienti in warfarin con una tendenza alla riduzione dell’incidenza di AKI [52]. Sebbene le nuove linee guida ESC della FA raccomandino l’uso dei DOACs per l’anticoagulazione orale a lungo termine, e i precedenti studi osservazionali abbiano dimostrato come questi farmaci debbano giocare un ruolo importante nella conservazione della funzione renale, un ampio studio che ha confrontato i DOACs in diversi stadi della funzione renale ha rivelato che la percentuale di pazienti che utilizzano i DOACs diminuisce parallelamente alla diminuzione della funzione renale [53]. Infatti, nei pazienti con eGFR ≥90 mL/min, un DOAC è stato prescritto nel 73,5% dei casi, mentre nei pazienti con eGFR tra 15 e 30 mL/min, un DOAC è stato prescritto solo nel 45,0% dei casi [53]. In particolare, non è stata riportata alcuna differenza in termini di mortalità tra i tre DOAC, e ognuno di essi ha mostrato un’efficacia e una sicurezza almeno equivalenti rispetto al warfarin in tutti gli stadi funzionali dei reni, confermando i risultati promettenti in questo particolare contesto di pazienti [53]. In conclusione, la progressione dell’insufficienza renale rappresenta un problema centrale nella gestione dell’anticoagulazione orale a lungo termine, soprattutto nei pazienti anziani in cui FA e CKD coesistono fino al 25% dei casi [3, 35]. La FA può deteriorare la funzione renale nel tempo, e il peggioramento dell’eGFR è un fattore predittivo indipendente di ictus ischemico/embolia sistemica [5456]. In questi pazienti ad alto rischio tromboembolico ed emorragico, la funzione renale dovrebbe essere monitorata regolarmente, preferibilmente dopo 1 mese inizialmente e almeno ogni 3 mesi in seguito [9].

Confronto tra DOACs e warfarin
Figura 3: Confronto tra DOACs e warfarin in termini di nefroprotezione CI: Intervallo di Confidenza; DOAC: Anticoagulanti Orali Diretti; HR: Hazard Ratio
Calcificazione vascolare, danno vascolare e renale indotto dalla inibizione
Figura 4: Calcificazione vascolare, danno vascolare e renale indotto dalla inibizione della MGP. BMP: proteina morfogenetica dell’osso

 

DOACs, diabete e malattia renale cronica

Per quanto riguarda la progressione della CKD, è fondamentale sottolineare la stretta relazione tra FA, DM e CKD; quasi il 25% dei pazienti con CKD sono anche diabetici [57, 58]. Come descritto nella Figura 5, le complicanze microvascolari nel DM potrebbero peggiorare la funzione renale e contribuire all’insorgenza della malattia renale diabetica (DKD), che colpisce circa un terzo dei pazienti con DM [5962]. La terapia anticoagulante a lungo termine nei pazienti diabetici affetti da FA e CKD può essere più impegnativa perché sia il DM che la CKD sono stati indipendentemente associati a un aumento del rischio tromboembolico e di sanguinamento, che deriva dallo stato pro-trombotico e pro-infiammatorio [6367]. Nei pazienti diabetici, le anomalie metaboliche predispongono le arterie all’aterosclerosi e aumentano la reattività piastrinica e la coagulabilità del sangue [68, 69]. Contemporaneamente, il progressivo peggioramento della funzione renale è associato a un aumento del tasso di FA e a un maggiore rischio di sanguinamento [16, 70]. Dati emergenti suggeriscono che i DOACs possono essere associati a una migliore conservazione della funzione renale rispetto al warfarin [37, 71, 72]. Come descritto in precedenza, i VKAs possono anche indurre un danno renale dovuto all’aumento della calcificazione vascolare derivante dall’inibizione della MGP dipendente dalla vitamina K [4850]. In uno studio di Fusaro et al., la MGP sembrava essere ridotta nei pazienti affetti da DM e CKD, predisponendoli a un outcome renale peggiore quando trattati con VKAs [48, 7377]. Al contrario, rivaroxaban può garantire la nefroprotezione diminuendo l’infiammazione vascolare attraverso la riduzione del signalling di PAR-1 e PAR-2 [78]. I pazienti diabetici con FA trattati con rivaroxaban hanno mostrato un tasso di incidenza inferiore di ospedalizzazione per AKI, progressione allo stadio 5 della CKD o emodialisi rispetto ai pazienti trattati con warfarin [78]. Inoltre, nell’analisi post-hoc ROCKET AF, il rivaroxaban ha mostrato una sicurezza e un’efficacia migliori rispetto al warfarin nei pazienti con FA e DM [79]. L’evidenza del mondo reale supporta i risultati che la funzione renale è meglio preservata nei pazienti con DM che ricevono DOACs piuttosto che warfarin. Un’analisi di sottogruppo dello studio RE-LOAD ha esaminato l’efficacia e la sicurezza del rivaroxaban rispetto al warfarin in pazienti con FA e DM; il rischio di AKI e ESRD è diminuito nei pazienti con DM che assumono rivaroxaban [78]. In un’analisi condotta da Yao W et al. su un’ampia coorte eterogenea di pazienti con FA e DM (Figura 6), il trattamento con DOAC è stato correlato a una minore incidenza di peggioramento della funzione renale, definita come un calo ≥30% dell’eGFR, raddoppio della creatinina sierica o AKI [46]. I dati dono stati poi confermati dallo stesso Yao in una nuova pubblicazione nella quale i pazienti sono stati anche stratificati in base ai livelli di filtrato glomerulare, evidenziando un maggior beneficio della terapia con DOACs (in modo particolare con Rivaroxaban e Dabigatran) rispetto al warfarin [53]. Ulteriori dati a conforto della maggiore efficacia dei DOACs rispetto a warfarin nella rallentare la progressione della malattia renale giungono anche da un recente lavoro pubblicato da un gruppo italiano il quale, non solo ha confermato l’effetto favorevole esercitato da Rivaroxaban sulla progressione delle calcificazioni valvolari cardiache ma anche sulla preservazione della funzione renale probabilmente anche correlata ad un’azione antiinfiammatoria della molecola, come documentato dall’impatto sui livelli sierici di citochine infiammatorie [8082].

Figura 5: Fisiopatologia della malattia renale diabetica ROS: Specie Reattive dell’Ossigeno
Confronto tra DOACs e warfarin
Figura 6: Confronto tra DOACs e warfarin in termini di nefroprotezione nei pazienti diabetici CI: Intervallo di Confidenza; DOAC: Anticoagulanti Orali Diretti; HR: Hazard Ratio

 

DOACs e malattia renale cronica terminale

L’aumento del rischio emorragico e la mancanza di prove certe per un efficace rapporto rischio/beneficio sono le ragioni principali per l’uso limitato degli anticoagulanti nei pazienti con CKD, specialmente quelli sottoposti a terapia renale sostitutiva (RRT) [83, 84]. Nei pazienti sottoposti a RRT, considerando che l’eliminazione dei farmaci è strettamente dipendente dalle dimensioni delle molecole, dalle percentuali legate alle proteine plasmatiche e dalle proprietà fisico-chimiche del filtro di dialisi, il warfarin e i DOACs sono entrambi scarsamente eliminati dalla clearance della dialisi. Mentre la superiorità dei DOACs rispetto al warfarin è ben documentata nei pazienti con funzione renale conservata o CKD moderata, mancano dati attualmente disponibili per i DOAC in pazienti con CKD avanzata o ESRD che possono portare a un aumento del rischio di sanguinamento [85]. Infatti, non ci sono dati di studi randomizzati controllati sull’uso dei DOACs per la prevenzione dell’ictus nei pazienti con FA con CKD grave o in RRT, poiché tutti gli studi di riferimento sui DOACs hanno escluso i pazienti con eGFR <30 mL/min (tranne alcuni pazienti con apixaban con eGFR 25-30 mL/min) [8689]. I dati principali sull’uso dei DOACs nei pazienti con RRT provengono da studi condotti negli USA. Dabigatran 110 o 150 mg due volte al giorno ha prodotto un’esposizione maggiore rispetto ai pazienti RE-LY standard (aumento dell’area sotto la curva da 1,5 a 3,3 volte); dabigatran 75 o 110 mg una volta al giorno ha prodotto esposizioni comparabili a quelle simulate nei tipici pazienti RE-LY. Questi dati sembrano suggerire che il regime a dose ridotta può essere più adatto ai pazienti in emodialisi [90, 91]. Sono disponibili informazioni più dettagliate sulle caratteristiche farmacocinetiche di apixaban. L’ESRD ha portato a un modesto aumento (36%) dell’area sotto la curva di apixaban senza aumento della concentrazione di picco [92]. Apixaban 2,5 mg b/die somministrato a pazienti in emodialisi ha determinato un’esposizione al farmaco simile a quella della dose standard (5 mg b/die) in pazienti con funzione renale conservata, mentre apixaban 5 mg due volte al giorno è associato a livelli sovraterapeutici nei pazienti con ESRD [93]. Inoltre, l’apixaban è altamente legato alle proteine, e in caso di un evento emorragico, si dovrebbe somministrare un concentrato di complesso protrombinico invece di tentare il trattamento con dialisi. Risultati simili sono stati riportati con rivaroxaban 10 mg/die in pazienti in emodialisi rispetto alla dose standard (20 mg/die) in pazienti con funzione renale normale [94]. Sorprendentemente, il deterioramento della funzione renale da grave a ESRD non sembra avere un impatto significativo sulla farmacocinetica di rivaroxaban e sull’effetto anticoagulante rispetto ai cambiamenti osservati con insufficienza renale moderata o grave [95]. Sebbene i dati attuali sull’efficacia e la sicurezza dei DOACs nell’ESRD siano limitati, sono molto incoraggianti (Figura 7) [96]. In uno studio retrospettivo di coorte, apixaban è risultato superiore nei pazienti ESRD sia in termini di sicurezza che di efficacia rispetto al warfarin; sia la dose standard (5 mg/bd) che quella ridotta (2,5 mg/bd) di apixaban erano associate a minori rischi di sanguinamento maggiore, ma solo la dose standard era associata a minori eventi tromboembolici e mortalità [97]. Miao B et al. hanno confrontato rivaroxaban e apixaban in pazienti ESRD. Non sono state riportate differenze significative in termini di rischio tromboembolico ed emorragico [98]; tuttavia, rispetto al warfarin, il rivaroxaban sembra essere associato a una riduzione del sanguinamento maggiore [99]. Inoltre, una meta-analisi che ha arruolato 71.877 pazienti in dialisi a lungo termine e con FA ha mostrato che i pazienti che ricevevano apixaban 5 mg due volte al giorno avevano un rischio di mortalità significativamente inferiore rispetto a quelli che ricevevano apixaban 2,5 mg due volte al giorno, warfarin o nessun anticoagulante e un rischio di sanguinamento inferiore rispetto a quelli che assumevano warfarin, dabigatran o rivaroxaban [100]. Nel complesso, tra i pazienti con CKD avanzata ed ESRD, l’uso di apixaban è stato associato a un minor rischio di sanguinamento maggiore rispetto al warfarin ed è stato efficace nel prevenire l’embolia sistemica [101]. Ad oggi, solo rivaroxaban 15 mg/die e apixaban 5 mg/bd (dose ridotta 2,5 mg/bd nei pazienti di 80 anni o più che pesano 60 kg o meno) sono approvati dalla Food and Drug Administration come anticoagulante orale nei pazienti ESRD. Nonostante la crescente evidenza sulla possibilità di usare i DOACs nei pazienti con eGFR <15 mL/min, le linee guida nefrologiche KDIGO raccomandano ancora il warfarin come farmaco di prima scelta e suggeriscono la possibilità di chiusura percutanea o chirurgica dell’auricola atriale sinistra [102]. Uno studio randomizzato che confronti DOACs e warfarin nei pazienti ESRD potrebbe essere appropriato per chiarire quale sia la terapia di prevenzione dell’ictus a lungo termine più sicura ed efficace nei pazienti ESRD e con FA. Sono in corso studi randomizzati controllati che confrontano i DOACs con il warfarin in pazienti con CKD avanzata o in dialisi. Lo studio AXADIA (Compare Apixaban and Vitamin-K Antagonists in Patients with Atrial Fibrillation and End-Stage Kidney Disease) sta randomizzando i pazienti ad apixaban 2,5 mg/bd o al fenprocumone regolato individualmente a un INR di 2,0-3,0; la data di completamento dello studio è prevista per luglio 2023 (NCT02933697) [103]. Tassi simili di eventi emorragici maggiori e non maggiori clinicamente rilevanti sono stati riportati nello studio RENAL-AF in cui i pazienti sono stati randomizzati ad apixaban 5 mg/bd o warfarin (NCT02942407). Purtroppo, lo studio è stato interrotto presto e ha arruolato solo 154 dei 762 pazienti previsti, quindi la piccola dimensione del campione e il basso tasso di eventi sono limitazioni significative dello studio. Molto incoraggianti i dati dello studio Valkyrie nel quale sono stati arruolati poco più di 100 pazienti suddivisi in tre bracci di trattamento: solo warfarin con target INR compreso tra 2 e 3, Rivaroxaban al dosaggio di 10 mg/die o Rivaroxaban 10 mg/die in associazione a vitamina K2 [104]. I risultati sono stati decisamente incoraggianti con un incremento della sopravvivenza nei pazienti trattati con l’inibitore del fattore Xa e ancor di più in coloro i quali facevano parte del gruppo trattato con Rivaroxaban in associazione a vitamina K2. Inoltre, sempre nei due gruppi trattati con Rivaroxaban, si è osservata una riduzione della progressione delle calcificazioni cardiovascolari, soprattutto a livello di aorta toracica e di circolo coronarico [104].

Confronto tra DOACs e warfarin nei pazienti con FA con malattia renale avanzata o dializzati
Figura 7: Confronto tra DOACs e warfarin nei pazienti con FA con malattia renale avanzata o dializzati CI: Intervallo di Confidenza; DOAC: Anticoagulanti Orali Diretti; HR: Hazard Ratio

 

Prevenzione non farmacologica dello stroke

Considerando la difficoltà della gestione della terapia con VKAs e le evidenze che depongono per un maggior tasso di mortalità nei pazienti trattati con VKAs, i pazienti con ESRD che necessitano di terapia anticoagulante potrebbero giovarsi di procedure interventistiche come, ad esempio, la chiusura dell’auricola dell’atrio sinistro. La chiusura percutanea dell’auricola sinistra (LAAO) è emersa come una potenziale alternativa all’anticoagulazione orale per tutta la vita, perché il 90% o più dei trombi durante la FA sono localizzati nell’appendice atriale sinistra, un residuo dell’atrio sinistro primordiale [105]. Questa strategia è attualmente limitata ai pazienti con un alto rischio tromboembolico e di sanguinamento che non sono idonei per gli anticoagulanti orali a lungo termine. Sulla base dei dati disponibili, l’uso della LAAO probabilmente crescerà enormemente nei prossimi anni perché il tasso di eventi avversi maggiori periprocedurali è molto basso nei pazienti con diverse comorbidità e alto rischio tromboembolico/emorragico [106113]. Nei pazienti con CKD avanzata, la LAAO percutanea sembra avere un rischio simile di complicazioni periprocedurali rispetto ai pazienti senza compromissione renale significativa [114, 115]. Inoltre, studi recenti hanno esplorato la sua efficacia per la prevenzione tromboembolica nei pazienti con malattia renale allo stadio terminale [58, 114, 116121]. Anche se non ancora confermato in studi di grandi dimensioni, questi risultati preliminari sono molto promettenti. Noi crediamo che la LAAO potrebbe essere una valida alternativa all’anticoagulazione a vita nei pazienti con CKD in stadio avanzato con FA, fornendo così un’efficace prevenzione tromboembolica senza aumentare il rischio di eventi emorragici pericolosi per la vita. Lo svantaggio principale della LAAO è il rischio di possibile formazione di trombi sul dispositivo di occlusione. Diverse strategie antitrombotiche sono state empiricamente adottate nella pratica clinica per evitare questa preoccupante complicanza [110, 122125]. Ad oggi, l’approccio più comune si basa sull’uso dell’aspirina, inizialmente con clopidogrel e poi da sola, per prevenire l’attivazione delle piastrine che entrano in contatto con la superficie atriale del dispositivo fino alla completa endotelizzazione [114, 116119, 126]. Sono necessari studi clinici randomizzati per identificare la migliore terapia antitrombotica per prevenire la trombosi legata al dispositivo ed esplorare l’efficacia della LAAO in popolazioni ad alto rischio con un ridotto margine di sicurezza tra la prevenzione dell’ictus e il rischio di sanguinamento (ad esempio, CKD allo stadio finale, anziani).

 

Conclusioni

I pazienti con CKD, specialmente con ESRD già in RRT, rappresentano una popolazione impegnativa per la scelta della terapia anticoagulante a lungo termine; tuttavia, la crescente evidenza suggerisce che i DOACs potrebbero essere un’alternativa migliore del warfarin come risultato della minore incidenza di AKI e WRN e un migliore rapporto rischio/beneficio.

 

Abbreviazioni

AKI: Danno Renale Acuto

ARN: Nefropatia Legata all’Anticoagulazione

BMP: Proteina Morfogenetica dell’Osso

CI: Intervallo di Confidenza

CKD: Malattia Renale Cronica

DKD: Malattia Renale Diabetica

DM: Diabete Mellito

DOACs: Anticoagulanti Orali Diretti

eGFR: Filtrato Glomerulare Stimato

ESC: Società Europea di Cardiologia

ESRD: End-Stage Renal Disease

FA: Fibrillazione Atriale

FANS: Farmaci Antinfiammatori Non Steroidei

HR: Hazard Ratio

INR: Rapporto Internazionale Normalizzato

LAAO: Chiusura Percutanea di Auricola

NO: Ossido Nitrico

RAAS: sistema renina-angiotensina-aldosterone

ROS: Specie Reattive dell’Ossigeno

RRT: Terapia Renale Sostitutiva

WRN: Nefropatia Correlata a Warfarin

 

Bibliografia

  1. Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol 1998; 82:2N-9N. https://doi.org/10.1016/S0002-9149(98)00583-9
  2. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal 2021; 42:373-498. https://doi.org/10.1093/eurheartj/ehaa612
  3. Hart RG, Eikelboom JW, Brimble KS, McMurtry MS, Ingram AJ. Stroke prevention in atrial fibrillation patients with chronic kidney disease. Can J Cardiol 2013; 29:S71-78. https://doi.org/10.1016/j.cjca.2013.04.005
  4. Soliman EZ, Prineas RJ, Go AS, et al. Chronic kidney disease and prevalent atrial fibrillation: the Chronic Renal Insufficiency Cohort (CRIC). Am Heart J 2010; 159:1102-1107. https://doi.org/10.1016/j.ahj.2010.03.027
  5. Ananthapanyasut W, Napan S, Rudolph EH, et al. Prevalence of atrial fibrillation and its predictors in nondialysis patients with chronic kidney disease. Clin J Am Soc Nephrol 2010; 5:173-181. https://doi.org/10.2215/CJN.03170509
  6. Genovesi S, Pogliani D, Faini A, et al. Prevalence of atrial fibrillation and associated factors in a population of long-term hemodialysis patients. Am J Kidney Dis 2005; 46:897-902. https://doi.org/10.1053/j.ajkd.2005.07.044
  7. Levey AS, Eckardt K-U, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2005; 67:2089-2100. https://doi.org/10.1111/j.1523-1755.2005.00365.x
  8. Vazquez E, Sanchez-Perales C, Garcia-Garcia F, et al. Atrial fibrillation in incident dialysis patients. Kidney Int 2009; 76:324-330. https://doi.org/10.1038/ki.2009.185
  9. Steffel J, Verhamme P, Potpara TS, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 2018; 39:1330-1393. https://doi.org/10.1093/eurheartj/ehy136
  10. Turakhia MP, Shafrin J, Bognar K, et al. Estimated prevalence of undiagnosed atrial fibrillation in the United States. PLoS One 2018; 13:e0195088. https://doi.org/10.1371/journal.pone.0195088
  11. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation 2019; 140:e125-e151. https://doi.org/10.1161/CIR.0000000000000665
  12. Lip GYH, Banerjee A, Boriani G, et al. Antithrombotic Therapy for Atrial Fibrillation: CHEST Guideline and Expert Panel Report. Chest 2018; 154:1121-1201. https://doi.org/10.1016/j.chest.2018.07.040
  13. Lavalle C, Di Lullo L, Bellasi A, et al. Adverse Drug Reactions during Real-Life Use of Direct Oral Anticoagulants in Italy: An Update Based on Data from the Italian National Pharmacovigilance Network. Cardiorenal Med 2020; 10:266-276. https://doi.org/10.1159/000507046
  14. Iseki K, Kinjo K, Kimura Y, Osawa A, Fukiyama K. Evidence for high risk of cerebral hemorrhage in chronic dialysis patients. Kidney Int 1993; 44:1086-1090. https://doi.org/10.1038/ki.1993.352
  15. Bos MJ, Koudstaal PJ, Hofman A, Breteler MMB. Decreased glomerular filtration rate is a risk factor for hemorrhagic but not for ischemic stroke: the Rotterdam Study. Stroke 2007; 38:3127-3132. https://doi.org/10.1161/STROKEAHA.107.489807
  16. Shimizu M, Natori T, Tsuda K, et al. Thrombin-induced platelet aggregation -effect of dabigatran using automated platelet aggregometry. Platelets 2020; 31:360-364. https://doi.org/10.1080/09537104.2019.1624707
  17. Bussalino E, Ravera M, Minutolo R, et al. A new CHA2DS2VASC score integrated with eGFR, left ventricular hypertrophy, and pulse pressure is highly effective in predicting adverse cardiovascular outcome in chronic kidney disease. Eur J Prev Cardiol 2022:zwac039. https://doi.org/10.1093/eurjpc/zwac039
  18. Piccini JP, Stevens SR, Chang Y, et al. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: validation of the R(2)CHADS(2) index in the ROCKET AF (Rivaroxaban Once-daily, oral, direct factor Xa inhibition Compared with vitamin K antagonism for prevention of stroke and Embolism Trial in Atrial Fibrillation) and ATRIA (AnTicoagulation and Risk factors In Atrial fibrillation) study cohorts. Circulation 2013; 127:224-232. https://doi.org/10.1161/CIRCULATIONAHA.112.107128
  19. Providência R, Fernandes A, Paiva L, et al. Decreased glomerular filtration rate and markers of left atrial stasis in patients with nonvalvular atrial fibrillation. Cardiology 2013; 124:3-10. https://doi.org/10.1159/000345434
  20. Kizawa S, Ito T, Akamatsu K, et al. Chronic Kidney Disease as a Possible Predictor of Left Atrial Thrombogenic Milieu Among Patients with Nonvalvular Atrial Fibrillation. Am J Cardiol 2018; 122:2062-2067. https://doi.org/10.1016/j.amjcard.2018.08.058
  21. Gedikli Ö, Mohanty S, Trivedi C, et al. Impact of dense “smoke” detected on transesophageal echocardiography on stroke risk in patients with atrial fibrillation undergoing catheter ablation. Heart Rhythm 2019; 16:351-357. https://doi.org/10.1016/j.hrthm.2018.10.004
  22. Bolton CH, Downs LG, Victory JG, et al. Endothelial dysfunction in chronic renal failure: roles of lipoprotein oxidation and pro-inflammatory cytokines. Nephrol Dial Transplant 2001; 16:1189-1197. https://doi.org/10.1093/ndt/16.6.1189
  23. Wang M-C, Tsai W-C, Chen J-Y, Huang J-J. Stepwise increase in arterial stiffness corresponding with the stages of chronic kidney disease. Am J Kidney Dis 2005; 45:494-501. https://doi.org/10.1053/j.ajkd.2004.11.011
  24. Heintz B, Schmidt P, Maurin N, et al. Endothelin-1 potentiates ADP-induced platelet aggregation in chronic renal failure. Ren Fail 1994; 16:481-489. https://doi.org/10.3109/08860229409045079
  25. Della Rocca DG, Pepine CJ. Endothelium as a predictor of adverse outcomes. Clin Cardiol 2010; 33:730-732. https://doi.org/10.1002/clc.20854
  26. Della Rocca DG, Pepine CJ. Some thoughts on the continuing dilemma of angina pectoris. Eur Heart J 2014; 35:1361-1364. https://doi.org/10.1093/eurheartj/ehs225
  27. Keller C, Katz R, Cushman M, Fried LF, Shlipak M. Association of kidney function with inflammatory and procoagulant markers in a diverse cohort: a cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis (MESA). BMC Nephrol 2008; 9:9. https://doi.org/10.1186/1471-2369-9-9
  28. Costa E, Rocha S, Rocha-Pereira P, et al. Cross-Talk between Inflammation, Coagulation/Fibrinolysis and Vascular access in Hemodialysis Patients. J Vasc Access 2008; 9:248-253. https://doi.org/10.1177/112972980800900405
  29. Shlipak MG, Fried LF, Crump C, et al. Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 2003; 107:87-92. https://doi.org/10.1161/01.CIR.0000042700.48769.59
  30. Tomura S, Nakamura Y, Doi M, et al. Fibrinogen, coagulation factor VII, tissue plasminogen activator, plasminogen activator inhibitor-1, and lipid as cardiovascular risk factors in chronic hemodialysis and continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis 1996; 27:848-854. https://doi.org/10.1016/S0272-6386(96)90523-5
  31. Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure. Semin Thromb Hemost 2004; 30:579-589. https://doi.org/10.1055/s-2004-835678
  32. Kaw D, Malhotra D. Platelet dysfunction and end-stage renal disease. Semin Dial 2006; 19:317-322. https://doi.org/10.1111/j.1525-139X.2006.00179.x
  33. Mannucci PM, Tripodi A. Hemostatic defects in liver and renal dysfunction. Hematology Am Soc Hematol Educ Program 2012; 2012:168-173. https://doi.org/10.1182/asheducation.V2012.1.168.3798232
  34. Reinecke H, Brand E, Mesters R, et al. Dilemmas in the management of atrial fibrillation in chronic kidney disease. J Am Soc Nephrol 2009; 20:705-711. https://doi.org/10.1681/ASN.2007111207
  35. Brodsky SV, Satoskar A, Chen J, et al. Acute kidney injury during warfarin therapy associated with obstructive tubular red blood cell casts: a report of 9 cases. Am J Kidney Dis 2009; 54:1121-1126. https://doi.org/10.1053/j.ajkd.2009.04.024
  36. Brodsky SV, Nadasdy T, Rovin BH, et al. Warfarin-related nephropathy occurs in patients with and without chronic kidney disease and is associated with an increased mortality rate. Kidney Int 2011; 80:181-189. https://doi.org/10.1038/ki.2011.44
  37. Brodsky S, Eikelboom J, Hebert LA. Anticoagulant-Related Nephropathy. JASN 2018; 29:2787-2793. https://doi.org/10.1681/ASN.2018070741
  38. Piran S, Traquair H, Chan N, Robinson M, Schulman S. Incidence and risk factors for acute kidney injury in patients with excessive anticoagulation on warfarin: a retrospective study. J Thromb Thrombolysis 2018; 45:557-561. https://doi.org/10.1007/s11239-018-1626-1
  39. de Aquino Moura KB, Behrens PMP, Pirolli R, et al. Anticoagulant-related nephropathy: systematic review and meta-analysis. Clin Kidney J 2019; 12:400-407. https://doi.org/10.1093/ckj/sfy133
  40. Ware K, Brodsky P, Satoskar AA, et al. Warfarin-related nephropathy modeled by nephron reduction and excessive anticoagulation. J Am Soc Nephrol 2011; 22:1856-1862. https://doi.org/10.1681/ASN.2010101110
  41. Golbin L, Vigneau C, Touchard G, et al. Warfarin-related nephropathy induced by three different vitamin K antagonists: analysis of 13 biopsy-proven cases. Clinical Kidney Journal 2017; 10:381-388. https://doi.org/10.1093/ckj/sfw133
  42. Zeni L, Manenti C, Fisogni S, et al. Acute Kidney Injury due to Anticoagulant-Related Nephropathy : A Suggestion for Therapy. Case Rep Nephrol 2020; 2020:8952670. https://doi.org/10.1155/2020/8952670
  43. Escoli R, Santos P, Andrade S, Carvalho F. Dabigatran-Related Nephropathy in a Patient with Undiagnosed IgA Nephropathy. Case Rep Nephrol 2015; 2015:298261. https://doi.org/10.1155/2015/298261
  44. Ryan M, Ware K, Qamri Z, et al. Warfarin-related nephropathy is the tip of the iceberg: direct thrombin inhibitor dabigatran induces glomerular hemorrhage with acute kidney injury in rats. Nephrol Dial Transplant 2014; 29:2228-2234. https://doi.org/10.1093/ndt/gft380
  45. Zhang C, Gu Z-C, Ding Z, et al. Decreased risk of renal impairment in atrial fibrillation patients receiving non-vitamin K antagonist oral anticoagulants: A pooled analysis of randomized controlled trials and real-world studies. Thromb Res 2019; 174:16-23. https://doi.org/10.1016/j.thromres.2018.12.010
  46. Yao X, Tangri N, Gersh BJ, et al. Renal Outcomes in Anticoagulated Patients With Atrial Fibrillation. Journal of the American College of Cardiology 2017; 70:2621-2632. https://doi.org/10.1016/j.jacc.2017.09.1087
  47. Chan Y-H, See L-C, Tu H-T, et al. Efficacy and Safety of Apixaban, Dabigatran, Rivaroxaban, and Warfarin in Asians With Nonvalvular Atrial Fibrillation. J Am Heart Assoc 2018; 7:e008150. https://doi.org/10.1161/JAHA.117.008150
  48. Price PA, Faus SA, Williamson MK. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol 1998; 18:1400-1407. https://doi.org/10.1161/01.ATV.18.9.1400
  49. Tantisattamo E, Han KH, O’Neill WC. Increased vascular calcification in patients receiving warfarin. Arterioscler Thromb Vasc Biol 2015; 35:237-242. https://doi.org/10.1161/ATVBAHA.114.304392
  50. Della Rocca DG, Santini L, Forleo GB, et al. Novel perspectives on arrhythmia-induced cardiomyopathy: pathophysiology, clinical manifestations and an update on invasive management strategies. Cardiol Rev 2015; 23:135-141. https://doi.org/10.1097/CRD.0000000000000040
  51. Han KH, O’Neill WC. Increased Peripheral Arterial Calcification in Patients Receiving Warfarin. JAHA 2016; 5. https://doi.org/10.1161/JAHA.115.002665
  52. Montone RA, Niccoli G, Tufaro V, et al. Changes in renal function and occurrence of contrast-induced nephropathy after percutaneous coronary interventions in patients with atrial fibrillation treated with non-vitamin K oral anticoagulants or warfarin. Postepy Kardiol Interwencyjnej 2019; 15:59-67. https://doi.org/10.5114/aic.2019.83772
  53. Yao X, Inselman JW, Ross JS, et al. Comparative Effectiveness and Safety of Oral Anticoagulants Across Kidney Function in Patients With Atrial Fibrillation. Circ Cardiovasc Qual Outcomes 2020; 13:e006515. https://doi.org/10.1161/CIRCOUTCOMES.120.006515
  54. Fauchier L, Bisson A, Clementy N, et al. Changes in glomerular filtration rate and outcomes in patients with atrial fibrillation. Am Heart J 2018; 198:39-45. https://doi.org/10.1016/j.ahj.2017.12.017
  55. Banerjee A, Fauchier L, Vourc’h P, et al. A prospective study of estimated glomerular filtration rate and outcomes in patients with atrial fibrillation: the Loire Valley Atrial Fibrillation Project. Chest 2014; 145:1370-1382. https://doi.org/10.1378/chest.13-2103
  56. Bohula EA, Giugliano RP, Ruff CT, et al. Impact of Renal Function on Outcomes With Edoxaban in the ENGAGE AF-TIMI 48 Trial. Circulation 2016; 134:24-36. https://doi.org/10.1161/CIRCULATIONAHA.116.022361
  57. Pecoits-Filho R, Abensur H, Betônico CCR, et al. Interactions between kidney disease and diabetes: dangerous liaisons. Diabetol Metab Syndr 2016; 8:50. https://doi.org/10.1186/s13098-016-0159-z
  58. Magnocavallo M, Vetta G, Trivigno S, et al. The Connubium among diabetes, chronic kidney disease and atrial fibrillation. Minerva Cardiol Angiol 2022. https://doi.org/10.23736/S2724-5683.22.05891-4
  59. United States Renal Data System. 2019 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; United States Renal Data System: Bethesda, MD, USA, 2019.
  60. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PWF, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA 2004; 291:844-850. https://doi.org/10.1001/jama.291.7.844
  61. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 2011; 305:2532-2539. https://doi.org/10.1001/jama.2011.861
  62. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002; 287:2570-2581. https://doi.org/10.1001/jama.287.19.2570
  63. Franchi F, James SK, Ghukasyan Lakic T, et al. Impact of Diabetes Mellitus and Chronic Kidney Disease on Cardiovascular Outcomes and Platelet P2Y12 Receptor Antagonist Effects in Patients With Acute Coronary Syndromes: Insights From the PLATO Trial. J Am Heart Assoc 2019; 8:e011139. https://doi.org/10.1161/JAHA.118.011139
  64. Ferreiro JL, Angiolillo DJ. Diabetes and antiplatelet therapy in acute coronary syndrome. Circulation 2011; 123:798-813. https://doi.org/10.1161/CIRCULATIONAHA.109.913376
  65. Baber U, Chandrasekhar J, Sartori S, et al. Associations Between Chronic Kidney Disease and Outcomes With Use of Prasugrel Versus Clopidogrel in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: A Report From the PROMETHEUS Study. JACC Cardiovasc Interv 2017; 10:2017-2025. https://doi.org/10.1016/j.jcin.2017.02.047
  66. Bonello L, Angiolillo DJ, Aradi D, Sibbing D. P2Y12-ADP Receptor Blockade in Chronic Kidney Disease Patients With Acute Coronary Syndromes. Circulation 2018; 138:1582-1596. https://doi.org/10.1161/CIRCULATIONAHA.118.032078
  67. Desai RJ, Spoendlin J, Mogun H, Gagne JJ. Contemporary Time Trends in Use of Antiplatelet Agents Among Patients with Acute Coronary Syndrome and Comorbid Diabetes Mellitus or Chronic Kidney Disease. Pharmacotherapy 2017; 37:1322-1327. https://doi.org/10.1002/phar.2018
  68. Meyer C, Gerich JE. Role of the kidney in hyperglycemia in type 2 diabetes. Curr Diab Rep 2002; 2:237-241. https://doi.org/10.1007/s11892-002-0089-z
  69. Abe M, Kalantar-Zadeh K. Haemodialysis-induced hypoglycaemia and glycaemic disarrays. Nat Rev Nephrol 2015; 11:302-313. https://doi.org/10.1038/nrneph.2015.38
  70. Zimmerman D, Sood MM, Rigatto C, Holden RM, Hiremath S, Clase CM. Systematic review and meta-analysis of incidence, prevalence and outcomes of atrial fibrillation in patients on dialysis. Nephrol Dial Transplant 2012; 27:3816-3822. https://doi.org/10.1093/ndt/gfs416
  71. Ravera M, Bussalino E, Fusaro M, Di Lullo L, Aucella F, Paoletti E. Systematic DOACs oral anticoagulation in patients with atrial fibrillation and chronic kidney disease: the nephrologist’s perspective. J Nephrol 2020; 33:483-495. https://doi.org/10.1007/s40620-020-00720-5
  72. Posch F, Ay C, Stöger H, Kreutz R, Beyer-Westendorf J. Exposure to vitamin k antagonists and kidney function decline in patients with atrial fibrillation and chronic kidney disease. Res Pract Thromb Haemost 2019; 3:207-216. https://doi.org/10.1002/rth2.12189
  73. Fusaro M, Gallieni M, Aghi A, et al. Osteocalcin (bone GLA protein) levels, vascular calcifications, vertebral fractures and mortality in hemodialysis patients with diabetes mellitus. J Nephrol 2019; 32:635-643. https://doi.org/10.1007/s40620-019-00595-1
  74. Price PA, Fraser JD, Metz-Virca G. Molecular cloning of matrix Gla protein: implications for substrate recognition by the vitamin K-dependent gamma-carboxylase. Proc Natl Acad Sci U S A 1987; 84:8335-8339. https://doi.org/10.1073/pnas.84.23.8335
  75. Chatrou MLL, Winckers K, Hackeng TM, Reutelingsperger CP, Schurgers LJ. Vascular calcification: the price to pay for anticoagulation therapy with vitamin K-antagonists. Blood Rev 2012; 26:155-166. https://doi.org/10.1016/j.blre.2012.03.002
  76. Parker BD, Ix JH, Cranenburg ECM, Vermeer C, Whooley MA, Schurgers LJ. Association of kidney function and uncarboxylated matrix Gla protein: data from the Heart and Soul Study. Nephrol Dial Transplant 2009; 24:2095-2101. https://doi.org/10.1093/ndt/gfp024
  77. Chimenti C, Lavalle C, Magnocavallo M, et al. A proposed strategy for anticoagulation therapy in noncompaction cardiomyopathy. ESC Heart Failure 2022; 9:241-250. https://doi.org/10.1002/ehf2.13694
  78. Hernandez AV, Bradley G, Khan M, et al. Rivaroxaban vs. warfarin and renal outcomes in non-valvular atrial fibrillation patients with diabetes. Eur Heart J Qual Care Clin Outcomes 2020; 6(4):301-307. https://doi.org/10.1093/ehjqcco/qcz047
  79. Fordyce CB, Hellkamp AS, Lokhnygina Y, et al. On-Treatment Outcomes in Patients With Worsening Renal Function With Rivaroxaban Compared With Warfarin: Insights From ROCKET AF. Circulation 2016; 134:37-47. https://doi.org/10.1161/CIRCULATIONAHA.116.021890
  80. Bellasi A, Di Lullo L, Russo D, et al. Predictive Value of Measures of Vascular Calcification Burden and Progression for Risk of Death in Incident to Dialysis Patients. J Clin Med 2021; 10:376. https://doi.org/10.3390/jcm10030376
  81. Di Lullo L, Lavalle C, Magnocavallo M, et al. New evidence of direct oral anticoagulation therapy on cardiac valve calcifications, renal preservation and inflammatory modulation. International Journal of Cardiology 2021; 345:90-97. https://doi.org/10.1016/j.ijcard.2021.10.025
  82. Bellasi A, Di Lullo L, Russo D, et al. Vascular Calcification Progression Modulates the Risk Associated with Vascular Calcification Burden in Incident to Dialysis Patients. Cells 2021; 10:1091. https://doi.org/10.3390/cells10051091
  83. O’Brien EC, Simon DN, Allen LA, et al. Reasons for warfarin discontinuation in the Outcomes Registry for Better Informed Treatment of Atrial Fibrillation (ORBIT-AF). Am Heart J 2014; 168:487-494. https://doi.org/10.1016/j.ahj.2014.07.002
  84. Magnocavallo M, Bellasi A, Mariani MV, et al. Thromboembolic and Bleeding Risk in Atrial Fibrillation Patients with Chronic Kidney Disease: Role of Anticoagulation Therapy. J Clin Med 2020; 10. https://doi.org/10.3390/jcm10010083
  85. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 2014; 383:955-962. https://doi.org/10.1016/S0140-6736(13)62343-0
  86. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus Warfarin in Nonvalvular Atrial Fibrillation. N Engl J Med 2011; 365:883-891. https://doi.org/10.1056/NEJMoa1009638
  87. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med 2013; 369:2093-2104. https://doi.org/10.1056/NEJMoa1310907
  88. Granger CB, Alexander JH, McMurray JJV, et al. Apixaban versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med 2011; 365:981-992. https://doi.org/10.1056/NEJMoa1107039
  89. Coppens M, Synhorst D, Eikelboom JW, Yusuf S, Shestakovska O, Connolly SJ. Efficacy and safety of apixaban compared with aspirin in patients who previously tried but failed treatment with vitamin K antagonists: results from the AVERROES trial. Eur Heart J 2014; 35:1856-1863. https://doi.org/10.1093/eurheartj/ehu048
  90. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus Warfarin in Patients with Atrial Fibrillation. N Engl J Med 2009; 361:1139-1151. https://doi.org/10.1056/NEJMoa0905561
  91. Liesenfeld K-H, Clemens A, Kreuzer J, Brueckmann M, Schulze F. Dabigatran treatment simulation in patients undergoing maintenance haemodialysis. Thromb Haemost 2016; 115:562-569. https://doi.org/10.1160/th15-07-0531
  92. Wang X, Tirucherai G, Marbury TC, et al. Pharmacokinetics, pharmacodynamics, and safety of apixaban in subjects with end-stage renal disease on hemodialysis. J Clin Pharmacol 2016; 56:628-636. https://doi.org/10.1002/jcph.628
  93. Mavrakanas TA, Samer CF, Nessim SJ, Frisch G, Lipman ML. Apixaban Pharmacokinetics at Steady State in Hemodialysis Patients. J Am Soc Nephrol 2017; 28:2241-2248. https://doi.org/10.1681/ASN.2016090980
  94. De Vriese AS, Caluwé R, Bailleul E, et al. Dose-finding study of rivaroxaban in hemodialysis patients. Am J Kidney Dis 2015; 66:91-98. https://doi.org/10.1053/j.ajkd.2015.01.022
  95. Dias C, Moore KT, Murphy J, et al. Pharmacokinetics, Pharmacodynamics, and Safety of Single-Dose Rivaroxaban in Chronic Hemodialysis. Am J Nephrol 2016; 43:229-236. https://doi.org/10.1159/000445328
  96. See L-C, Lee H-F, Chao T-F, et al. Effectiveness and Safety of Direct Oral Anticoagulants in an Asian Population with Atrial Fibrillation Undergoing Dialysis: A Population-Based Cohort Study and Meta-Analysis. Cardiovasc Drugs Ther 2021; 35:975-986. https://doi.org/10.1007/s10557-020-07108-4
  97. Siontis KC, Zhang X, Eckard A, et al. Outcomes Associated With Apixaban Use in Patients With End-Stage Kidney Disease and Atrial Fibrillation in the United States. Circulation 2018; 138:1519-1529. https://doi.org/10.1161/CIRCULATIONAHA.118.035418
  98. Miao B, Sood N, Bunz TJ, Coleman CI. Rivaroxaban versus apixaban in non-valvular atrial fibrillation patients with end-stage renal disease or receiving dialysis. Eur J Haematol 2020; 104:328-335. https://doi.org/10.1111/ejh.13383
  99. Coleman CI, Kreutz R, Sood NA, et al. Rivaroxaban Versus Warfarin in Patients With Nonvalvular Atrial Fibrillation and Severe Kidney Disease or Undergoing Hemodialysis. Am J Med 2019; 132:1078-1083. https://doi.org/10.1016/j.amjmed.2019.04.013
  100. Kuno T, Takagi H, Ando T, et al. Oral Anticoagulation for Patients With Atrial Fibrillation on Long-Term Hemodialysis. J Am Coll Cardiol 2020; 75:273-285. https://doi.org/10.1016/j.jacc.2019.10.059
  101. Chokesuwattanaskul R, Thongprayoon C, Tanawuttiwat T, Kaewput W, Pachariyanon P, Cheungpasitporn W. Safety and efficacy of apixaban versus warfarin in patients with end-stage renal disease: Meta-analysis. Pacing Clin Electrophysiol 2018; 41:627-634. https://doi.org/10.1111/pace.13331
  102. Wanner C, Herzog CA, Turakhia MP, et al. Chronic kidney disease and arrhythmias: highlights from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International 2018; 94:231-234. https://doi.org/10.1016/j.kint.2018.05.005
  103. Reinecke H, Jürgensmeyer S, Engelbertz C, et al. Design and rationale of a randomised controlled trial comparing apixaban to phenprocoumon in patients with atrial fibrillation on chronic haemodialysis: the AXADIA-AFNET 8 study. BMJ Open 2018; 8:e022690. https://doi.org/10.1136/bmjopen-2018-022690
  104. De Vriese AS, Caluwé R, Pyfferoen L, et al. Multicenter Randomized Controlled Trial of Vitamin K Antagonist Replacement by Rivaroxaban with or without Vitamin K2 in Hemodialysis Patients with Atrial Fibrillation: the Valkyrie Study. J Am Soc Nephrol 2020; 31:186-196. https://doi.org/10.1681/ASN.2019060579
  105. Blackshear JL, Odell JA. Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg 1996; 61:755-759. https://doi.org/10.1016/0003-4975(95)00887-X
  106. Boersma LVA, Schmidt B, Betts TR, et al. Implant success and safety of left atrial appendage closure with the WATCHMAN device: peri-procedural outcomes from the EWOLUTION registry. Eur Heart J 2016; 37:2465-2474. https://doi.org/10.1093/eurheartj/ehv730
  107. Tzikas A, Shakir S, Gafoor S, et al. Left atrial appendage occlusion for stroke prevention in atrial fibrillation: multicentre experience with the AMPLATZER Cardiac Plug. EuroIntervention 2016; 11:1170-1179. https://doi.org/10.4244/EIJY15M01_06
  108. Lakkireddy D, Afzal MR, Lee RJ, et al. Short and long-term outcomes of percutaneous left atrial appendage suture ligation: Results from a US multicenter evaluation. Heart Rhythm 2016; 13:1030-1036. https://doi.org/10.1016/j.hrthm.2016.01.022
  109. Gianni C, Anannab A, Sahore Salwan A, Della Rocca DG, Natale A, Horton RP. Closure of the left atrial appendage using percutaneous transcatheter occlusion devices. J Cardiovasc Electrophysiol 2020; 31:2179-2186. https://doi.org/10.1111/jce.14471
  110. Holmes DR, Kar S, Price MJ, et al. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: the PREVAIL trial. J Am Coll Cardiol 2014; 64:1-12. https://doi.org/10.1016/j.jacc.2014.04.029
  111. Reddy VY, Möbius-Winkler S, Miller MA, et al. Left atrial appendage closure with the Watchman device in patients with a contraindication for oral anticoagulation: the ASAP study (ASA Plavix Feasibility Study With Watchman Left Atrial Appendage Closure Technology). J Am Coll Cardiol 2013; 61:2551-2556. https://doi.org/10.1016/j.jacc.2013.03.035
  112. Gadiyaram VK, Mohanty S, Gianni C, et al. Thromboembolic events and need for anticoagulation therapy following left atrial appendage occlusion in patients with electrical isolation of the appendage. J Cardiovasc Electrophysiol 2019; 30:511-516. https://doi.org/10.1111/jce.13838
  113. Della Rocca DG, Horton RP, Di Biase L, et al. First Experience of Transcatheter Leak Occlusion With Detachable Coils Following Left Atrial Appendage Closure. JACC Cardiovasc Interv 2020; 13:306-319. https://doi.org/10.1016/j.jcin.2019.10.022
  114. Kefer J, Tzikas A, Freixa X, et al. Impact of chronic kidney disease on left atrial appendage occlusion for stroke prevention in patients with atrial fibrillation. Int J Cardiol 2016; 207:335-340. https://doi.org/10.1016/j.ijcard.2016.01.003
  115. Sedaghat A, Vij V, Streit SR, et al. Incidence, predictors, and relevance of acute kidney injury in patients undergoing left atrial appendage closure with Amplatzer occluders: a multicentre observational study. Clin Res Cardiol 2020; 109:444-453. https://doi.org/10.1007/s00392-019-01524-9
  116. Luani B, Genz C, Herold J, et al. Cerebrovascular events, bleeding complications and device related thrombi in atrial fibrillation patients with chronic kidney disease and left atrial appendage closure with the WATCHMANTM device. BMC Cardiovasc Disord 2019; 19:112. https://doi.org/10.1186/s12872-019-1097-0
  117. Cruz-González I, González-Ferreiro R, Freixa X, et al. Left atrial appendage occlusion for stroke despite oral anticoagulation (resistant stroke). Results from the Amplatzer Cardiac Plug registry. Rev Esp Cardiol (Engl Ed) 2020; 73:28-34. https://doi.org/10.1016/j.recesp.2019.02.018
  118. Genovesi S, Porcu L, Slaviero G, et al. Outcomes on safety and efficacy of left atrial appendage occlusion in end stage renal disease patients undergoing dialysis. J Nephrol 2021; 34:63-73. https://doi.org/10.1007/s40620-020-00774-5
  119. Xue X, Jiang L, Duenninger E, et al. Impact of chronic kidney disease on Watchman implantation: experience with 300 consecutive left atrial appendage closures at a single center. Heart Vessels 2018; 33:1068-1075. https://doi.org/10.1007/s00380-018-1157-x
  120. Della Rocca DG, Magnocavallo M, Gianni C, et al. Procedural and short-term follow-up outcomes of Amplatzer Amulet occluder versus Watchman FLX device: A meta-analysis. Heart Rhythm 2022:S1547-5271(22)00130-8. https://doi.org/10.1016/j.hrthm.2022.02.007
  121. Magnocavallo M, Della Rocca DG, Gianni C, et al. Zero contrast left atrial appendage occlusion and peridevice leak closure in patients with advanced kidney disease. Heart Rhythm 2022:S1547-5271(22)00110-2. https://doi.org/10.1016/j.hrthm.2022.01.036
  122. Reddy VY, Doshi SK, Sievert H, et al. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation: 2.3-Year Follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients with Atrial Fibrillation) Trial. Circulation 2013; 127:720-729. https://doi.org/10.1161/CIRCULATIONAHA.112.114389
  123. Ayhan H, Mohanty S, Gedikli Ö, et al. A simple method to detect leaks after left atrial appendage occlusion with Watchman. J Cardiovasc Electrophysiol 2020; 31:2338-2343. https://doi.org/10.1111/jce.14641
  124. Della Rocca DG, Magnocavallo M, Di Biase L, et al. Half-Dose Direct Oral Anticoagulation Versus Standard Antithrombotic Therapy After Left Atrial Appendage Occlusion. JACC: Cardiovascular Interventions 2021:S1936879821014035. https://doi.org/10.1016/j.jcin.2021.07.031
  125. Della Rocca DG, Murtaza G, Di Biase L, et al. Radiofrequency Energy Applications Targeting Significant Residual Leaks After Watchman Implantation. JACC: Clinical Electrophysiology 2021; 7:1573-1584. https://doi.org/10.1016/j.jacep.2021.06.002
  126. Della Rocca DG, Horton RP, Di Biase L, et al. Incidence of Device-Related Thrombosis in Watchman Patients Undergoing a Genotype-Guided Antithrombotic Strategy. JACC: Clinical Electrophysiology 2021; 7:1533-1543. https://doi.org/10.1016/j.jacep.2021.04.012

Gestione della fibrillazione atriale nel paziente con insufficienza renale cronica avanzata e terminale: dalla terapia anticoagulante orale all’occlusione dell’auricola sinistra

Abstract

La fibrillazione atriale (AF) non valvolare è l’aritmia più frequente nella popolazione generale e la sua prevalenza aumenta all’aumentare dell’età. La prevalenza e l’incidenza di AF sono elevate in pazienti con insufficienza renale cronica (CKD).La più importante complicanza associata alla AF, sia nella popolazione generale che in quella con CKD, è lo stroke tromboembolico. Per questo motivo nei pazienti con AF le Linee Guida pongono l’indicazione alla terapia anticoagulante orale (OAT) con antagonisti della vitamina K (VKAs) o anticoagulanti oralidiretti (DOACs) per la prevenzione del rischio tromboembolico. I pazienti con severa CKD e, in particolare , con insufficienza renale cronica terminale (ESRD) sottoposti a terapia renale sostitutiva, hanno spesso un elevato rischio sia tromboembolico che emorragico e presentano quindi sia un’indicazione che una controindicazione alla OAT. Inoltre i pazienti con CKD avanzata o terminale sono stati esclusi dai trials che hanno evidenziato l’efficacia dei diversi farmaci antitrombotici nei pazienti con AF, per cui mancano evidenze dell’efficacia dell’OAT in questa popolazione. In questa review vengono discusse le problematiche relative alla OAT nel paziente con CKD severa o terminale e il possibile impiego della chiusura percutanea dell’auricola sinistra (LAAO), recentemente proposta come alternativa nei pazienti con contoindicazione assoluta all’OAT, in questa popolazione.

Parole chiave

Fibrillazione atriale; terapia anticoagulante orale; tromboembolia; emorragia; insufficienza renale cronica; insufficienza renale terminale; chiusura percutanea dell’auricola sinistra.

Lista delle abbreviazioni

AF Atrial Fibrillation

C-G Cockroft-Gault

CKD Chronic Kidney Disease 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Infarto renale: casistica multicentrica piemontese

Abstract

Razionale
Scopo dello studio è descrivere i fattori associati all’infarto renale; le caratteristiche cliniche, strumentali e di laboratorio; gli atteggiamenti terapeutici.
Casistica e Metodi
Studio osservazionale, retrospettivo, policentrico relativo ai casi osservati nei Centri Nefrologici piemontesi nel periodo 2013-2015 con diagnosi di infarto renale confermata con angioTC.
Risultati
Sono stati raccolti 48 casi (25 M, età 57±16 anni; 23 F età 70±18 anni, p = 0.007). I pazienti sono stati suddivisi in 3 gruppi in base all’eziologia: gruppo 1: cardio-embolica (n=19) ; gruppo 2: anomalie della coagulazione (n= 9); gruppo 3: altre cause o idiopatico (n=20).
Il tempo mediano dai sintomi alla diagnosi, noto però solo in 38 casi, è stato di 2 giorni (range 2 ore – 8 giorni). I sintomi alla presentazione, in ordine di frequenza erano: febbre (67%), ipertensione arteriosa (58%), dolore addominale o lombare (54%), nausea/vomito (58%), sintomi neurologici (12%), macroematuria (10%).
Un incremento delle LDH (>530 UI/ml) era presente nel 96% (45 casi su 47) dei casi, incremento della PCR (>0.5 mg/dl) nel 94% (45 su 48), eGFR <60 ml/min nel 56% dei casi (27 su 48). Il confronto delle varie caratteristiche tra i tre gruppi evidenzia: età significativamente maggiore (p=0.0001) nel gruppo 1 (76±12 anni) vs il gruppo 2 (54±17 anni) e il gruppo 3 (56±17 anni); fumo di sigaretta significativamente più frequente (p=0.01) nel gruppo 2 (67%; 5 casi su 9) e nel gruppo 3 (60%; 12 casi su 20) rispetto al gruppo 1 (17%). Nessun caso è stato sottoposto a trombolisi endovascolare. In 40 su 48 casi era riportata la terapia anticolagulante effettuata dopo la diagnosi: in 12 (32%) casi nessuna terapia, in 12 casi (30%) eparina sodica, in 8 casi (20%) eparina a basso peso molecolare, in 4 casi (10%) anticoagulanti orali, in 3 casi fondaparinux (7%), in 1 caso (2%) dermatan solfato. Conclusioni
Nonostante alcune caratteristiche possano orientare la diagnosi la latenza tra esordio e diagnosi è ancora mediamente elevata e tale da pregiudicare una terapia tempestiva.

Parole chiave: Infarto renale, insufficienza renale, fibrillazione atriale, coagulopatie

Introduzione

L’infarto renale è una patologia rara, caratterizzata dalla brusca interruzione del flusso nell’arteria renale o in uno dei suoi rami, con ischemia e necrosi del parenchima. La sua prevalenza è stata stimata nell’1.4% in uno studio autoptico molto datato (1), mentre due studi più recenti basati sulle diagnosi di ammissione in Dipartimenti di Emergenza hanno riscontrato un’incidenza rispettivamente del 0.004% e del 0.007% (2, 3). E’ possibile che la reale frequenza dell’infarto renale sia più elevata, in quanto si tratta di una patologia di difficile diagnosi a causa della possibile confusione con altre condizioni come la colica renale, la pielonefrite acuta e l’addome acuto. Inoltre, per questi motivi, la latenza tra esordio e diagnosi è spesso elevata (4), compromettendo le possibilità terapeutiche e condizionando la prognosi. 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.

Anticoagulanti orali non Vitamina K Dipendenti (NOACs) nei pazienti affetti da Malattia Renale Cronica e fibrillazione atriale non valvolvare

Abstract

La fibrillazione atriale (FA) rappresenta l’aritmia più comune nei pazienti con malattia renale cronica (CKD) in cui si associa, come nella popolazione generale, ad un aumento del rischio tromboembolico e di stroke con il progressivo ridursi del filtrato glomerulare (GFR). In tali pazienti, e soprattutto in quelli sottoposti a terapia dialitica (RRT), è presente inoltre un incremento del rischio emorragico, soprattutto a carico del tratto gastroenterico.

Gli anticoagulanti orali costituiscono la forma di tromboprofilassi  più efficace nei pazienti con FA che presentino un rischio maggiore di stroke. Tuttavia, le limitate evidenze scientifiche riguardanti la loro efficacia, nonché l’aumento del rischio emorragico ed alcuni aspetti riguardanti l’uso del warfarin in CKD hanno spesso portato ad un loro scarso utilizzo in tali pazienti.

Un crescente numero di studi sembra suggerire che nei soggetti con normale funzione renale i farmaci anticoagulanti orali non vitamina K dipendenti (NOACs) riducono significativamente il rischio di stroke, emorragia intracranica e mortalità, con riduzione dei sanguinamenti maggiori in confronto agli antagonisti della vitamina K (come il warfarin). Pertanto, essi sono raccomandati nei pazienti con FA a rischio di stroke. Tuttavia, dal momento che loro escrezione è fortemente influenzata dal livello di funzione renale, attualmente disponiamo di scarse informazioni sul loro utilizzo nei pazienti con clearance della creatinina inferiore a 25 ml/min poiché essi stati esclusi da tutti i trial di fase 3 riguardanti l’impiego dei NOACs.

Scopo della presente review è quello di puntualizzare i principali aspetti di farmacocinetica nonché le evidenze note, anche prospettiche, relativamente ai NOACs nei pazienti con malattia renale cronica in fase conservativa (clearance della creatinina < 25 ml/min) ed in quelli sottoposti a trattamento dialitico.

Parole chiave: Anticoagulanti orali non vitamina K dipendenti (NOACs), Fibrillazione atriale, Malattia renale cronica, Terapia anticoagulante, Warfarin

INTRODUZIONE

La fibrillazione atriale (FA) rappresenta l’aritmia più comune nei pazienti con malattia renale cronica (CKD) e si associa ad aumento del rischio tromboembolico e dell’insorgenza di stroke [1] [2].[3]. Le attuali evidenze scientifiche dimostrano che nei pazienti con FA e funzione renale normale la terapia anticoagulante rappresenta la più efficace forma di profilassi per l’aumentato rischio tromboembolico e/o  per l’insorgenza di stroke  [4]. Per contro, nei pazienti con CKD, in particolar modo quelli sottoposti a terapia dialitica (RRT), l’aumento del rischio emorragico nonché la mancanza di prove sicure a favore di un efficace rapporto rischio/beneficio ed infine il potenziale ruolo degli antagonisti della vitamina K nella patogenesi delle calcificazioni vascolari [5] hanno portato ad un ridotto utilizzo degli anticoagulanti in tali soggetti.
 

La visualizzazione dell’intero documento è riservata a Soci attivi, devi essere registrato e aver eseguito la Login con utente e password.