Salvataggio nella fistola in caso di ischemia distale o alta portata. Revisione della letteratura delle tecniche chirurgiche ed endovascolari con proposta di algoritmo decisionale

Abstract

La fistola artero-venosa (FAV) rappresenta l’accesso vascolare di scelta per i pazienti in emodialisi cronica, grazie alle minori complicanze infettive e trombotiche, alla ridotta morbidità e mortalità e alla maggiore durata rispetto ai cateteri venosi centrali. Tuttavia, l’allestimento di una FAV sta diventando sempre più ostico a causa dell’aumento della prevalenza di malattie croniche come il diabete, l’ipertensione e le patologie cardiovascolari, principali cause di insufficienza renale allo stadio terminale. Queste comorbidità, insieme all’invecchiamento della popolazione in dialisi, hanno portato a un incremento delle malattie vascolari periferiche, complicando la gestione delle FAV. Questo lavoro discute due principali complicazioni delle FAV: l’Ischemia Distale (HAIDI) e la FAV ad alta portata. L’HAIDI è caratterizzata da ischemia distale dovuta a una ridotta perfusione capillare, che può portare a esiti gravi come necrosi tissutale e amputazioni digitali. Circa il 5% dei pazienti in emodialisi con FAV sviluppano HAIDI, richiedendo trattamenti correttivi. Le FAV ad alto flusso, definite da un flusso sanguigno eccessivo che altera la dinamica circolatoria complessiva, rappresentano un’altra sfida significativa, soprattutto nei pazienti con compromissione cardiovascolare. La gestione di queste complicazioni è complessa e spesso richiede tecniche specializzate per preservare la FAV ed evitare la sua chiusura. Questa rassegna presenta tecniche sia chirurgiche che endovascolari per ridurre il flusso delle FAV e migliorare la perfusione distale. Le tecniche discusse includono approcci sul versante venoso della FAV come la legatura, la plicatura, il banding, l’interposizione di innesti protesici e vari interventi arteriosi come la legatura dell’arteria radiale distale o la sua embolizzazione. Inoltre, la rassegna presenta tecniche per il rimodellamento dell’anastomosi, offrendo approcci innovativi nella gestione delle complicazioni delle FAV. La rassegna si conclude con la proposta di un algoritmo decisionale per guidare i clinici nella selezione degli interventi più appropriati in base alle specifiche complicazioni legate alla FAV, assicurando i migliori esiti per i pazienti in emodialisi. Questa panoramica sottolinea l’importanza di strategie terapeutiche personalizzate nella gestione delle complicazioni delle FAV.

Parole chiave: fistola ad alto flusso, HAIDI, FAV, chirurgia, endovascolare

Ci spiace, ma questo articolo è disponibile soltanto in inglese.

Introduction

The preferred vascular access in chronic hemodialysis patients is represented by arteriovenous fistula (AVF), considering lower incidence of infectious and thrombotic complications, reduced morbidity and mortality, and longer durability compared to central venous catheters [1, 2]. However, currently, setting up AVFs with native vessels is becoming increasingly challenging due to the increasing prevalence of chronic diseases such as the leading causes of end-stage renal disease (ESRD) (diabetes, hypertension, heart diseases) coupled with the aging of the dialysis population, resulting in an increase in peripheral vascular diseases [3]. In this scenario distal fistulas are often created in patients with advanced peripheral vascular diseases or proximal fistulas. The major issues in such conditions, as known, are represented by distal ischemic syndrome associated with hemodialysis access (Hemodialysis Access-Induced Distal Ischemia – HAIDI) and high-flow AVF.

HAIDI is characterized by the onset of ischemia of varying severity at the extremities of the limb where the AVF is present due to reduced capillary perfusion caused by reduced blood arrival or resistance to its outflow [4]. This condition can occur acutely within a few hours after fistula creation (more frequently in grafts) with serious consequences up to possible loss of hand function. The chronic form (more commonly observed in AVFs with autologous vessels), albeit rare, is more common and usually of milder severity but can still result in tissue necrosis, sometimes necessitating digital amputations [5, 6]. It is estimated that about 5% of all hemodialysis patients with AVF develop distal ischemic syndrome requiring corrective treatment [7]. From an etiopathogenetic point of view, the involved mechanisms appear complex and not yet fully defined.

According to some authors, the main factor would be the drop in arterial pressures towards the hand due to a non-physiological readjustment of the arterial circulation after fistula creation (especially in patients with advanced vascular diseases due to diabetes, older age with severe atherosclerosis) with poor or absent remodeling, resulting in a progressive loss of perfusion pressures towards the periphery [8]. Healthy individuals’ arteries are sufficiently elastic and capable of initiating such remodeling, maintaining perfusion pressures downstream. Conversely, diabetic and vasculopathic patients often have high arterial wall stiffness or actual stenotic lesions, not guaranteeing adequate wall remodeling [9]. Another mechanism implicated to varying degrees in the determination of HAIDI is the “steal” phenomenon that physiologically occurs in AVFs created without terminalization of the artery. The principle underlying the determination of a retrograde (centripetal) flow from the hand to the anastomosis is related to the fact that the distal artery “prefers” to channel flow into a low-resistance district (the efferent vein) rather than a high-resistance district (the resistive arterial vessels of the hand). This mechanism occurs “physiologically” in all AVFs where the distal artery of the anastomosis is not terminalized. The steal becomes pathological, causing distal ischemia when it is quantitatively excessive, as in the case of high-flow AVFs with excessively large anastomoses (this is referred to as true steal) or in case of maladaptation of the distal arterial circulation as explained earlier [10]. Also, preexisting or subsequently formed proximal or distal arterial stenotic lesions in the AVF can be responsible for worsening distal ischemia after AVF creation [11, 12]. Finally, another cause of distal ischemia can be represented by venous blood stagnation in the hand caused by the presence of arterialized venous collaterals directed towards the hand or in the presence of venous outflow stenosis. This is referred to as stagnant venous ischemia [13]. From what has been said, the etiopathological mechanisms determining distal ischemia can be multiple and often concomitant and not always easy to identify (Table 1).

Mechanisms Causes
Proximal or distal preexisting arterial inflow reduction Arterial stenosis
Arterial system maladaptation Vasculopathy with calcification and increased arterial stiffness
True steel High flow fistula with big anastomosis
Stagnant venous ischemia Hand directed venous collaterals, outflow stenosis
Table 1. HAIDI etiopathogenesis. This table shows the main causes with the respective mechanisms underlying the development of distal ischemia in arteriovenous fistulas.

The definition of high-flow AVF varies and is ambiguous. Certainly, AVFs with high flow are those in which hemodynamics are influenced by blood flow far exceeding that required for hemodialysis, compromising overall circulatory dynamics [14]. The cardiovascular tolerance of a high-flow AVF is variable, with young patients able to tolerate flows of up to 3 liters per minute without hemodynamic compromise [15]. Some authors have identified a cut-off value between 1.5 and 2 l/min to define a high-flow AVF even in the absence of symptoms [1618]. The Vascular Access Society indicates values above 1-1.5 l/min and associates an additional parameter, the “cardiopulmonary recirculation” (CPR), which is the ratio between the flow of the AVF and the cardiac output. When this index is >20%, there may be a risk of high-output decompensation. In short, it is not the absolute value of AVF flow that defines high flow but the ratio between its flow and the cardiovascular system’s capacity of that patient to maintain adequate cardiac output to manage the increased venous return without going into failure [19].

Distal ischemia and high-flow fistula conditions represent major issues in hemodialysis patients, difficult to manage outside specialized centers. Frequently, AVF ligation is the method used to resolve the issue, but it results in the loss of access for the patient. Bearing in mind the importance of maintaining AVF as a preferred vascular access, this work will present commonly used surgical and endovascular techniques, as well as new proposals, to restore proper AVF functioning by resolving ischemic issues or excessive flow. The techniques mentioned here can be classified into techniques involving intervention on the vein or artery and techniques of “remodeling” the anastomosis.

 

Vein

Vein Ligation

With this technique, the efferent vein of the anastomosis is exposed, and a silk ligature is applied and knotted to reduce the vein diameter (Figure 1a) aiming to decrease its flow rate [20]. Some authors suggest applying multiple ligatures to achieve an effective reduction in flow rate [21]. Some authors have developed a percutaneous, ultrasound-guided procedure, without surgical incision, for reducing the diameter of the efferent vein using a silk ligature [22]. The procedure involves using two needles, one in its normal configuration and the other curved; the curved needle, under ultrasound guidance, is used to pass beneath the venous vessel to be ligated, near the anastomosis. Through this needle, a silk ligature is then passed. The straight needle is passed above the vessel; through this, the silk ligature is brought back to the initial point for knotting. In the 26 patients treated this way, the authors describe a reduction in flow rate from 2196 to 679 ml/min, with these values maintained at one year follow-up, and a procedure duration of only 8.5 minutes.

Intraoperative monitoring of flow using color Doppler in procedures for reducing the diameter of the efferent vein can guide the extent and concomitant reduction of flow to the desired value [21, 23].

Figure 1. In this picture are presented main vein techniques to manage pathological AVFs.
Figure 1. In this picture are presented main vein techniques to manage pathological AVFs.

Miller Technique

An improvement over the previous technique involves ligating the efferent vein with a ligature assisted by the presence of an inflated angioplasty balloon inside the lumen to define controlled ligature caliber (Figure 1b). This is referred to as minimally invasive limited ligation endoluminal-assisted revision (MILLER) [24, 25]. This technique has shown technical success close to 100%, with clinical success in 50% of patients with distal ischemia and 100% of patients with high-flow fistulas [26]. Some authors have applied the same principle of controlling the extent of ligature.

Vein Plication

In this technique, after isolating the efferent vein of the AVF, a continuous suture is performed on the vein using a Satinsky clamp, resulting in a reduction in diameter (Figure 1c). Flow monitoring using Doppler helps determine the extent of plication before venoplasty [27]. Some authors have shown technical success in all cases treated, with symptom reduction in 92% and an average flow reduction of 600 ml/min [28].

Vein Banding

Like vein ligation but using a PTFE strip to create a sleeve approximately 20-30 mm in length wrapped around the efferent vein shortly after the anastomosis (Figure 1d). This technique has shown good success rates and maintenance of access functionality at 1 year [29]. Complications reported with this technique include band migration or venous aneurysmal dilatation both pre- and post-anastomosis [30]. To avoid these issues, some authors have proposed T-banding, characterized by using a portion of a PTFE prosthesis that is longitudinally opened and trimmed to fashion a structure capable of wrapping around the anastomotic chamber with the afferent and efferent arteries and the segment of the efferent vein, reducing its diameter but avoiding the complications [31]. With this method, these authors have shown a 44% reduction in flow with a primary and secondary clinical success of 72% and 90%, respectively.

Prosthetic Graft Interposition

After surgical dissection with isolation of the efferent vein, it is sectioned and a 5 mm prosthetic segment is interposed, 5 to 2 cm away from the anastomotic chamber (Figure 1e). This technique has shown technical success in 100% of 25 patients, with clinical improvement in 96% of treated patients [32]. Advantages include a lower recurrence rate of high flow, with a higher risk of access infections or thrombosis compared to simple banding [33].

Endovascular Vein Diameter Reduction

Several endovascular techniques have been described to reduce the diameter of the efferent vein, resulting in reduced flow. Some authors have placed a covered stent, flared at one end, at the post-anastomotic segment of the efferent vein, resulting in a reduction in the usable lumen diameter (Figure 1f), with improvement in ischemic symptoms and fistula flow reduction [34]. Other authors have used a similar technique in three patients, but in which a larger caliber, longer covered stent is inserted into a smaller caliber and shorter covered stent, creating an hourglass-shaped structure (Figure 1g), adhering at the ends to the vein wall but having an internal segment of smaller caliber, reducing flow in the AVF [35].

Management of Stagnant Venous Ischemia

In this condition, the presence of arterialized venous collateral vessels directed towards the hand, with or without obstruction in proximal outflow vessels, can result in increased pressure in the capillary venous side of the hand, resulting in “warm” ischemia, associated with edema. This condition can be resolved by ligating the vessels directed towards the hand with possible treatment of venous stenotic lesions when indicated (Figure 1h) [36].

 

Artery

Distal Artery Ligation

In distal forearm fistulas constructed with the radial artery, which is non-terminalized, distal radial artery ligation (DRAL) (Figure 2a) can be a resolving method for improving ischemic syndrome by interrupting retrograde flow from the hand to the fistula [37]. This procedure should only be performed after assessing the capacity of the ulnar artery, with the palmar arch, to provide adequate vascularization of the hand and is indicated for the treatment of distal ischemic syndrome [38].

Figure 2. In this picture are presented main artery techniques to manage pathological AVFs.
Figure 2. In this picture are presented main artery techniques to manage pathological AVFs.

Proximal Artery Ligation

Proximal radial artery ligation (PRAL) (Figure 2b) is used to reduce flow in AVFs with the radial artery in the distal forearm. AVF patency will be ensured by retrograde flow from the distal radial artery, through the palmar arch and the ulnar artery. In this case as well, the patency of these structures should be established before the procedure to avoid complete closure of the fistula. Burquelot et al. demonstrated a success rate of flow reduction in 92% of cases, with primary patency at 1 and 2 years of 88% and 74%, respectively, in 37 patients [39].

Distal Radial Artery Embolization

Unlike the previously described techniques, interruption of arterial flow in the distal radial artery can be performed endovascularly, using embolization coils [38, 40, 41] (Figure 2c). The endovascular approach can allow simultaneous treatment of stenotic lesions of the brachial, proximal radial, or ulnar arteries [42], reducing procedural times with less invasiveness compared to surgical approaches.

Angioplasty of Stenotic Lesions

The presence of stenotic lesions in the arterial system supplying the AVF can cause various forms of distal ischemic injury. Stenosis on the ulnar side can cause reduced blood flow to the hand in patients with distal radio-cephalic fistulas due to physiological “steal” from the radial artery [42, 43], or in proximal accesses with brachial artery stenosis and associated radial or ulnar artery lesions [44]. Endovascular treatment of such lesions with angioplasty can lead to rapid improvement in patient symptoms, with minimally invasive and rapid procedures (Figure 2d). The presence of calcified stenotic lesions can pose challenges. Recently, new techniques have been developed and used by vascular surgeons and cardiologists. Intravascular lithotripsy (IVL) allows for the fragmentation of calcium by emitting sound waves from a device placed inside the vessel [45]. We have recently begun using this equipment in the treatment of pre-existing arterial stenotic lesions at the time of fistula creation [46, 47] or in failed fistulas during maturation [48]. This opens the possibility of using this tool in the future for the treatment of calcified stenotic lesions causing distal ischemic syndrome.

Anastomosis

RUDI

Revision Using Distal Inflow (RUDI) is a surgical technique used to revise the anastomosis in fistulas with the brachial artery associated with distal ischemia with or without high flow. The technique involves isolating the anastomosis, ligating the efferent vein, and applying a prosthetic bridge between the post-ligation vein segment and the radial or ulnar artery [49, 50] (Figure 3a). This method remodels a proximal fistula with the brachial artery into a “distal” fistula by distal transposition of the inflow. This results in a reduction in access flow as well as reduced steal from the brachial artery. Variants of this technique have been described, involving ligation of the efferent vein, its sectioning with transposition and anastomosis with the radial or ulnar artery [51]. Literature reports a 50% reduction in access flow, improvement in symptoms and ischemic lesions, with primary patency at 3 and 12 months of 80% and 100% respectively [52]. Other authors described primary and secondary patency at 3 years of 48% and 84% respectively, with a postoperative flow reduction of approximately 65% [53]. Mallios recently described a new technique, performed on a patient, named endo-RUDI, in which he created an anastomosis between the proximal radial artery and the radial vein using the Ellipsys endovascular system and subsequently, during surgical time, anastomosed the basilic vein (efferent of the previous brachio-basilic access) with the radial vein, ligating the previous anastomosis. This achieved distalization of the inflow [54].

Figure 3. In this picture are presented main techniques to remodeling AVFs anastomosis
Figure 3. In this picture are presented main techniques to remodeling AVFs anastomosis

DRILL

Distal Revascularization with Interval Ligation (DRILL) is used to treat distal ischemic syndromes with or without high flow by “proximalizing” the bifurcation of the brachial artery in patients with proximal fistulas with the brachial artery. A prosthetic bridge (or using autologous veins such as the saphenous) is placed between the artery (brachial or axillary) upstream of the anastomosis and the brachial artery downstream of the anastomosis, followed by ligation of the artery between the anastomosis (with the vein) and the new distal anastomosis (Figure 3b). This remodels the pathological access as if it were a fistula with a terminalized radial or ulnar artery [55]. A challenge with this technique is that distal arterial perfusion depends on graft patency; therefore, some authors recommend not ligating the artery between the two anastomoses, although this limits the effectiveness of the procedure in reducing access flow. Literature reports an 80% technical success rate [56] with primary access patency rates at 12 and 24 months of 87% and 79% respectively [57].

PAI

Proximalization of Arterial Inflow (PAI). By placing a junctional prosthetic bridge between the brachial or axillary artery and the efferent vein of the fistula with ligation of the vein in the iuxtanastomotic tract, the access is remodeled by “recreating” a high bifurcation of the artery, eliminating the previous anastomosis (Figure 3c). In this procedure, useful for reducing symptoms related to distal ischemia in AVFs with or without high flow, the brachial artery is not ligated as in DRILL, avoiding possible complications of distal vascularization in case of graft thrombosis [58]. Graft thrombosis will result in non-functioning of the vascular access, without compromising upper limb vascularization. With this technique, primary and secondary patency rates of 87% and 90% at 1 year and 67% and 78% at 3 years are described, with a significant improvement in ischemic symptoms [59].

Radial Artery Transposition

This technique described by Bourquelot [60] reduces the flow of a pathological access with the brachial artery by dissecting the radial artery, proximally transposing it, and anastomosing it with the efferent vein of the previous AVF, suppressing the old anastomosis (Figure 3d). This creates a new end-to-end anastomosis with the radial artery, effectively reducing its flow through a modification of the inflow, which will be supplied by the radial artery. Technical success is reported in 91% of cases, with a 66% reduction in fistula flow. Primary patency at one and three years was 61% and 40% respectively, with secondary patency of 89% and 70%.

From the preceding chapters, it is evident that the techniques currently used to reduce the flow of a vascular access or to improve distal perfusion are diverse. These techniques may involve the venous compartment, the arterial compartment, or act through “remodeling” of the anastomosis. There are both surgical and endovascular techniques, some well-established and others emerging. Some of the described procedures have a greater impact on the flow of the AVF, while others focus on improving distal perfusion. As previously described, the pathophysiological aspects of high-flow fistulas and distal ischemic syndrome are often intertwined. Therefore, in practical terms, we may encounter three types of issues, which are easy to diagnose: high-flow fistulas without distal ischemic syndrome, high-flow fistulas with distal ischemic syndrome, and fistulas with distal ischemic syndrome without high flow. The aim of this review is to propose a decision-making algorithm, based on literature data, to indicate which procedures to implement for addressing these three categories (Table 2, Figure 4).

Reducing flow Reducing ischemia
Vein
Vein ligature +++ +
Miller technique +++ +
Vein plication +++ +
Vein banding +++ +
Prosthetic interposition +++ +
Endovascular vein caliper reduction +++ +
Artery
DRAL + ++
PRAL ++
Distal radial artery embolization + ++
Stenotic lesion angioplasty +++
Anastomosis
RUDI + +++
DRILL + +++
PAI + +++
Radial artery transposition ++ +
Table 2. Available techniques. This table represents the effectiveness of the various techniques described in achieving flow rate reduction and/or improvement of ischemia in arteriovenous fistulas.
Figure 4. In this picture are presented decisional make algorithm to hang AVFs pathology in case of high flow with or without associated ischemia.
Figure 4. In this picture are presented decisional make algorithm to hang AVFs pathology in case of high flow with or without associated ischemia.

 

Bibliography

  1. Gibson KD, Gillen DL, Caps MT, Kohler TR, Sherrard DJ, Stehman-Breen CO. Vascular access survival and incidence of revisions: a comparison of prosthetic grafts, simple autogenous fistulas, and venous transposition fistulas from the United States Renal Data System Dialysis Morbidity and Mortality Study. J Vasc Surg. 2001 Oct;34(4):694-700. https://doi.org/10.1067/mva.2001.117890. PMID: 11668326.
  2. Lok CE, Huber TS, Lee T, Shenoy S, Yevzlin AS, Abreo K, Allon M, Asif A, Astor BC, Glickman MH, Graham J, Moist LM, Rajan DK, Roberts C, Vachharajani TJ, Valentini RP; National Kidney Foundation. KDOQI Clinical Practice Guideline for Vascular Access: 2019 Update. Am J Kidney Dis. 2020 Apr;75(4 Suppl 2):S1-S164. https://doi.org/10.1053/j.ajkd.2019.12.001. Epub 2020 Mar 12. Erratum in: Am J Kidney Dis. 2021 Apr;77(4):551. PMID: 32778223.
  3. Reiss AB, Miyawaki N, Moon J, Kasselman LJ, Voloshyna I, D’Avino R Jr, De Leon J. CKD, arterial calcification, atherosclerosis and bone health: Inter-relationships and controversies. Atherosclerosis. 2018 Nov;278:49-59. https://doi.org/10.1016/j.atherosclerosis.2018.08.046. Epub 2018 Aug 30. PMID: 30253289.
  4. Leach RM, Treacher DF. Oxygen transport-2. Tissue hypoxia. BMJ. 1998 Nov 14;317(7169):1370-3. https://doi.org/10.1136/bmj.317.7169.1370. PMID: 9812940; PMCID: PMC1114253.
  5. Scheltinga MR, van Hoek F, Bruijninckx CM. Time of onset in haemodialysis access-induced distal ischaemia (HAIDI) is related to the access type. Nephrol Dial Transplant. 2009 Oct;24(10):3198-204. https://doi.org/10.1093/ndt/gfp200. Epub 2009 Apr 29. PMID: 19403932.
  6. Van Hoek F, Scheltinga MR, Kouwenberg I, Moret KE, Beerenhout CH, Tordoir JH. Steal in hemodialysis patients depends on type of vascular access. Eur J Vasc Endovasc Surg. 2006 Dec;32(6):710-7. https://doi.org/10.1016/j.ejvs.2006.05.018. Epub 2006 Jul 26. PMID: 16875849.
  7. Padberg FT Jr, Calligaro KD, Sidawy AN. Complications of arteriovenous hemodialysis access: recognition and management. J Vasc Surg. 2008 Nov;48(5 Suppl):55S-80S. https://doi.org/10.1016/j.jvs.2008.08.067. PMID: 19000594.
  8. Scheltinga MR, Bruijninckx CM. Haemodialysis access-induced distal ischaemia (HAIDI) is caused by loco-regional hypotension but not by steal. Eur J Vasc Endovasc Surg. 2012 Feb;43(2):218-23. https://doi.org/10.1016/j.ejvs.2011.10.018. Epub 2011 Nov 26. PMID: 22119228.
  9. Ene-Iordache B, Mosconi L, Antiga L, Bruno S, Anghileri A, Remuzzi G, Remuzzi A. Radial artery remodeling in response to shear stress increase within arteriovenous fistula for hemodialysis access. Endothelium. 2003;10(2):95-102. https://doi.org/10.1080/10623320303365. PMID: 12791517.
  10. Malik J, Tuka V, Kasalova Z, Chytilova E, Slavikova M, Clagett P, Davidson I, Dolmatch B, Nichols D, Gallieni M. Understanding the dialysis access steal syndrome. A review of the etiologies, diagnosis, prevention and treatment strategies. J Vasc Access. 2008 Jul-Sep;9(3):155-66. PMID: 18850575. https://doi.org/10.1177/112972980800900301.
  11. Lee JY, Kim YO. Pre-existing arterial pathologic changes affecting arteriovenous fistula patency and cardiovascular mortality in hemodialysis patients. Korean J Intern Med. 2017 Sep;32(5):790-797. https://doi.org/10.3904/kjim.2017.268. Epub 2017 Aug 22. PMID: 28823140; PMCID: PMC5583462.
  12. Kokkosis AA, Abramowitz SD, Schwitzer J, Nowakowski S, Teodorescu VJ, Schanzer H. Inflow stenosis as a contributing factor in the etiology of AV access-induced ischemic steal. J Vasc Access. 2014 Jul-Aug;15(4):286-90. https://doi.org/10.5301/jva.5000205. Epub 2014 Jan 27. PMID: 24474518.
  13. Bourquelot P. Hemodialysis access-induced distal ischemia (HAIDI): surgical management. In: Asif A, Agarwal AK, Yevzlin AS, et al. (eds) Interventional nephrology. New York: McGraw Hill Medical, 2012, pp. 601–614.
  14. Zamboli P, Lucà S, Borrelli S, Garofalo C, Liberti ME, Pacilio M, Lucà S, Palladino G, Punzi M. High-flow arteriovenous fistula and heart failure: could the indexation of blood flow rate and echocardiography have a role in the identification of patients at higher risk? J Nephrol. 2018 Dec;31(6):975-983. https://doi.org/10.1007/s40620-018-0472-8. Epub 2018 Jan 22. PMID: 29357085.
  15. Malik J, Valerianova A, Tuka V, Trachta P, Bednarova V, Hruskova Z, Slavikova M, Rosner MH, Tesar V. The effect of high-flow arteriovenous fistulas on systemic haemodynamics and brain oxygenation. ESC Heart Fail. 2021 Jun;8(3):2165-2171. https://doi.org/10.1002/ehf2.13305. Epub 2021 Mar 23. PMID: 33755355; PMCID: PMC8120398.
  16. Malik J. Heart disease in chronic kidney disease – review of the mechanisms and the role of dialysis access. J Vasc Access. 2018 Jan;19(1):3-11. https://doi.org/10.5301/jva.5000815. PMID: 29192719.
  17. Basile C, Lomonte C. The complex relationship among arteriovenous access, heart, and circulation. Semin Dial. 2018 Jan;31(1):15-20. https://doi.org/10.1111/sdi.12652. Epub 2017 Oct 9. PMID: 28990213.
  18. Basile C, Lomonte C, Vernaglione L, Casucci F, Antonelli M, Losurdo N. The relationship between the flow of arteriovenous fistula and cardiac output in haemodialysis patients. Nephrol Dial Transplant. 2008 Jan;23(1):282-7. https://doi.org/10.1093/ndt/gfm549. Epub 2007 Oct 17. PMID: 17942475.
  19. Saleh MA, El Kilany WM, Keddis VW, El Said TW. Effect of high flow arteriovenous fistula on cardiac function in hemodialysis patients. Egypt Heart J. 2018 Dec;70(4):337-341. https://doi.org/10.1016/j.ehj.2018.10.007. Epub 2018 Nov 16. PMID: 30591752; PMCID: PMC6303531.
  20. Shaikh FA, Siddiqui N, Shahzad N, Riaz A, Sophie Z. Operative Techniques to Prevent Dialysis Access-associated Steal Syndrome in High-risk Patients Undergoing Surgery for Hemodialysis Access: A Systematic Review. Cureus. 2019 Nov 6;11(11):e6086. https://doi.org/10.7759/cureus.6086. PMID: 31853437; PMCID: PMC6894898.
  21. Lee H, Thomas SD, Paravastu S, Barber T, Varcoe RL. Dynamic Banding (DYBAND) Technique for Symptomatic High-Flow Fistulae. Vasc Endovascular Surg. 2020 Jan;54(1):5-11. https://doi.org/10.1177/1538574419874934. Epub 2019 Sep 10. PMID: 31506033.
  22. Wang Y, Li J, Liu W, Zhang Y, Li Q, He F. An ultrasound-guided no incision banding method for the treatment of arteriovenous fistula high-flow in hemodialysis. Ren Fail. 2023 Dec;45(1):2222853. https://doi.org/10.1080/0886022X.2023.2222853. PMID: 37340954; PMCID: PMC10286689.
  23. Turner AD, Chen M, Dahl N, Scoutt L, Dardik A, Ochoa Chaar CI. Intraoperative Ultrasound Guidance for Banding of an Arteriovenous Fistula Causing High Cardiac Output Heart Failure. Ann Vasc Surg. 2020 Jul;66:665.e5-665.e8. https://doi.org/10.1016/j.avsg.2019.12.011. Epub 2019 Dec 18. PMID: 31863947.
  24. Goel N., Miller G.A., Jotwani M.C., Licht J., Schur I., Arnold W.P. Minimally Invasive Limited Ligation Endoluminal-assisted Revision (MILLER) for treatment of dialysis access-associated steal syndrome. Kidney Int. 2006;70:765–770. https://doi.org/10.1038/sj.ki.5001554.
  25. Shukla PA, Kolber MK, Nwoke F, Kumar A, Shams JN, Silberzweig JE. The MILLER banding procedure as a treatment alternative for dialysis access steal syndrome: a single institutional experience. Clin Imaging. 2016 May-Jun;40(3):569-72. https://doi.org/10.1016/j.clinimag.2015.09.019. Epub 2015 Oct 3. PMID: 26615898.
  26. Miller GA, Goel N, Friedman A, Khariton A, Jotwani MC, Savransky Y, Khariton K, Arnold WP, Preddie DC. The MILLER banding procedure is an effective method for treating dialysis-associated steal syndrome. Kidney Int. 2010 Feb;77(4):359-66. https://doi.org/10.1038/ki.2009.461. Epub 2009 Dec 9. PMID: 20010547.
  27. Vierhout T, Saucedo-Crespo H, Auvenshine C, Sakpal SV. Pledgeted plication: A novel technique to treat dialysis access-related steal syndrome. SAGE Open Med Case Rep. 2022 Mar 15;10:2050313X221083513. https://doi.org/10.1177/2050313X221083513. PMID: 35308056; PMCID: PMC8928356.
  28. Patel MS, Davies MG, Nassar GM, Naoum JJ. Open repair and venous inflow plication of the arteriovenous fistula is effective in treating vascular steal syndrome. Ann Vasc Surg. 2015 Jul;29(5):927-33. https://doi.org/10.1016/j.avsg.2014.12.042. Epub 2015 Mar 7. PMID: 25757993.
  29. El-Laboudy, Medhat E.a,b,; Sorour, Waleed A.a; Tawfik, Ahmed M.a. Is polytetrafluoroethylene circular banding an effective technique for treatment of high-flow vascular access-induced steal syndrome? The Egyptian Journal of Surgery 39(2):p 387-392, Apr–Jun 2020. https://doi.org/10.4103/ejs.ejs_222_19.
  30. Hastaoglu IO, Tokoz H, Ozgen A, Bilgen F. An unusual complication following surgical banding procedure for steal syndrome: band migration and sudden arteriovenous fistula aneurysm formation. J Vasc Access. 2017 May 15;18(3):e31-e32. https://doi.org/10.5301/jva.5000650. PMID: 28165573.
  31. Schneider CG, Gawad KA, Strate T, Pfalzer B, Izbicki JR. T-banding: a technique for flow reduction of a hyperfunctioning arteriovenous fistula. J Vasc Surg. 2006 Feb;43(2):402-5. https://doi.org/10.1016/j.jvs.2005.11.047. PMID: 16476625.
  32. Hashimoto T, Akagi D, Yamamoto S, Suhara M, Sato O, Deguchi J. Short interposition with a small-diameter prosthetic graft for flow reduction of a high-flow arteriovenous fistula. J Vasc Surg. 2021 Jan;73(1):285-290. https://doi.org/10.1016/j.jvs.2020.05.035. Epub 2020 May 28. PMID: 32473337.
  33. Nojima T, Motomiya Y. Graft Inclusion Technique: A New Flow Reduction Procedure for High Flow Arteriovenous Fistulae. Ann Vasc Dis. 2018 Jun 25;11(2):202-209. https://doi.org/10.3400/avd.oa.17-00132. PMID: 30116412; PMCID: PMC6094033.
  34. Png CYM, Beckerman WE, Faries PL, Finlay DJ. Endovascular Treatment of Dialysis Access-Induced Hand Ischemia Using a Flared Stent-Graft. J Endovasc Ther. 2017 Oct;24(5):743-745. https://doi.org/10.1177/1526602817718539. Epub 2017 Jul 5. PMID: 28675950.
  35. Hong JH. A percutaneous endovascular technique for reducing arteriovenous fistula flow. J Vasc Access. 2020 Mar;21(2):251-255. https://doi.org/10.1177/1129729819871433. Epub 2019 Aug 28. PMID: 31455151.
  36. Bachleda P, Kojecký Z, Utíkal P, Drác P, Herman J, Zadrazil J. Peripheral venous hypertension after the creation of arteriovenous fistula for haemodialysis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2004 Jul;148(1):85-7. https://doi.org/10.5507/bp.2004.015. PMID: 15523553.
  37. Tolba M, Maresch M, Kamal D. Distal radial artery ligation for treatment of steal syndrome associated with radiocephalic arteriovenous fistula. J Surg Case Rep. 2020 Sep 14;2020(9): rjaa314. https://doi.org/10.1093/jscr/rjaa314. PMID: 32963762; PMCID: PMC7490220.
  38. Miller GA, Khariton K, Kardos SV, Koh E, Goel N, Khariton A. Flow interruption of the distal radial artery: treatment for finger ischemia in a matured radiocephalic AVF. J Vasc Access. 2008 Jan-Mar;9(1):58-63. PMID: 18379982. https://doi.org/10.1177/112972980800900110.
  39. Bourquelot P, Gaudric J, Turmel-Rodrigues L, Franco G, Van Laere O, Raynaud A. Proximal radial artery ligation (PRAL) for reduction of flow in autogenous radial cephalic accesses for haemodialysis. Eur J Vasc Endovasc Surg. 2010 Jul;40(1):94-9. https://doi.org/10.1016/j.ejvs.2010.02.007. Epub 2010 Mar 31. PMID: 20359915.
  40. Plumb TJ, Lynch TG, Adelson AB. Treatment of steal syndrome in a distal radiocephalic arteriovenous fistula using intravascular coil embolization. J Vasc Surg. 2008 Feb;47(2):457-9. https://doi.org/10.1016/j.jvs.2007.08.014. Epub 2007 Oct 22. PMID: 17950561.
  41. Shukla PA, Contractor S, Huang JT, Curi MA. Coil embolization as a treatment alternative for dialysis-associated steal syndrome. Vasc Endovascular Surg. 2012 Oct;46(7):546-9. https://doi.org/10.1177/1538574412456435. Epub 2012 Aug 30. PMID: 22941957.
  42. Tercan F, Koçyiğit A, Güney B. Combined Endovascular Treatment with Distal Radial Artery Coil Embolization and Angioplasty in Steal Syndrome Associated with Forearm Dialysis Fistula. Cardiovasc Intervent Radiol. 2016 Sep;39(9):1266-71. https://doi.org/10.1007/s00270-016-1368-4. Epub 2016 May 25. PMID: 27224985.
  43. Samaha A, Salman L, Asif A. Arterial angioplasty to treat hand ischemia in a radial-cephalic fistula. Semin Dial. 2009 Sep-Oct;22(5):561-3. https://doi.org/10.1111/j.1525-139X.2009.00625.x. Epub 2009 Sep 11. PMID: 19747175.
  44. Losinno F, Busato F, Degli Esposti E, Pavlica P, Spongano M, Viglietta G. Studio angiografico delle complicanze degli accessi vascolari nei pazienti in emodialisi [Angiographic study of the complications of vascular access in patients under hemodialysis]. Radiol Med. 1988 Jun;75(6):621-5. Italian. PMID: 3387614.
  45. Madhavan MV, Shahim B, Mena-Hurtado C, Garcia L, Crowley A, Parikh SA. Efficacy and safety of intravascular lithotripsy for the treatment of peripheral arterial disease: An individual patient-level pooled data analysis. Catheter Cardiovasc Interv. 2020 Apr 1;95(5):959-968. https://doi.org/10.1002/ccd.28729. Epub 2020 Jan 20. PMID: 31957955; PMCID: PMC7187419.
  46. Napoli M, Barbarini S, Ria P, Zito A, Lefons ML, De Pascalis A. The intraoperative intravascular lithotripsy to recruit a calcified radial artery for creating a distal radio-cephalic fistula. J Vasc Access. 2023 Mar;24(2):300-304. https://doi.org/10.1177/11297298211017029. Epub 2021 Jul 2. PMID: 34213371.
  47. Marcello N, Marco T, Patrizia C, Paolo R, Silvia B, Simona C, Antonio P. Distal AVF creation with marginal calcified radial artery: Multicentric experience of intraoperative intravascular lithotripsy. J Vasc Access. 2024 Jan 11:11297298231222051. https://doi.org/10.1177/11297298231222051. Epub ahead of print. PMID: 38205610.
  48. Marco T, Andrea M, Filomena D. Percutaneous ecoguided endovascular lithotripsy to recruit failed-to-mature arteriovenous fistula due to completely calcified radial artery. J Vasc Access. 2023 Jan 4:11297298221147600. https://doi.org/10.1177/11297298221147600. Epub ahead of print. PMID: 36600412.
  49. Minion DJ, Moore E, Endean E. Revision using distal inflow: a novel approach to dialysis-associated steal syndrome. Ann Vasc Surg. 2005 Sep;19(5):625-8. https://doi.org/10.1007/s10016-005-5827-7. PMID: 16052391.
  50. Callaghan CJ, Mallik M, Sivaprakasam R, Iype S, Pettigrew GJ. Treatment of dialysis access-associated steal syndrome with the “revision using distal inflow” technique. J Vasc Access. 2011 Jan-Mar;12(1):52-6. https://doi.org/10.5301/jva.2010.5985. PMID: 21058261.
  51. Hansrani V, Muhammad K, Charlswood N, Al-Khaffaf H. The efficacy of the secondary Extension Technique in the management of arterio-venous fistula-associated steal syndrome. J Vasc Access. 2019 Nov;20(6):592-596. https://doi.org/10.1177/1129729819826046. Epub 2019 Feb 4. PMID: 30712439.
  52. Usman R, Jamil M, Fatima R, Mazhar M, Majeed S, Shahab A. Efficacy of Revision Using Distal Inflow in Patients with Symptomatic Dialysis Access-Associated Steal Syndrome. Ann Vasc Dis. 2023 Sep 25;16(3):205-209. https://doi.org/10.3400/avd.oa.23-00043. PMID: 37779643; PMCID: PMC10539131.
  53. Gerrickens MWM, Vaes RHD, Govaert B, van Loon M, Tordoir JHM, van Hoek F, Teijink JAW, Scheltinga MR. Three Year Patency and Recurrence Rates of Revision Using Distal Inflow with a Venous Interposition Graft for High Flow Brachial Artery Based Arteriovenous Fistula. Eur J Vasc Endovasc Surg. 2018 Jun;55(6):874-881. https://doi.org/10.1016/j.ejvs.2018.03.014. Epub 2018 Apr 19. PMID: 29680175.
  54. Mallios A, Jennings WC. Endovascular Revision Using Distal Inflow: EndoRUDI. Eur J Vasc Endovasc Surg. 2020 Jul;60(1):144. https://doi.org/10.1016/j.ejvs.2020.03.050. Epub 2020 May 12. PMID: 32409014.
  55. Schanzer H, Schwartz M, Harrington E, Haimov M. Treatment of ischemia due to “steal” by arteriovenous fistula with distal artery ligation and revascularization. J Vasc Surg. 1988 Jun;7(6):770-3. https://doi.org/10.1067/mva.1988.avs0070770. PMID: 3373618.
  56. Kordzadeh A, Parsa AD. A systematic review of distal revascularization and interval ligation for the treatment of vascular access-induced ischemia. J Vasc Surg. 2019 Oct;70(4):1364-1373. https://doi.org/10.1016/j.jvs.2019.02.060. Epub 2019 May 29. PMID: 31153703.
  57. Weaver ML, Holscher CM, Graham A, Reifsnyder T. Distal revascularization and interval ligation for dialysis access-related ischemia is best performed using arm vein conduit. J Vasc Surg. 2021 Apr;73(4):1368-1375.e1. https://doi.org/10.1016/j.jvs.2020.07.105. Epub 2020 Aug 31. PMID: 32882351.
  58. Zanow J, Kruger U, Scholz H. Proximalization of the arterial inflow: a new technique to treat access-related ischemia. J Vasc Surg. 2006 Jun;43(6):1216-21; discussion 1221. https://doi.org/10.1016/j.jvs.2006.01.025. PMID: 16765242.
  59. Thermann F, Wollert U, Ukkat J, Dralle H. Proximalization of the arterial inflow (PAI) in patients with dialysis access-induced ischemic syndrome: first report on long-term clinical results. J Vasc Access. 2010 Apr-Jun;11(2):143-9. https://doi.org/10.1177/112972981001100211. PMID: 20155715.
  60. Bourquelot P, Gaudric J, Turmel-Rodrigues L, Franco G, Van Laere O, Raynaud A. Transposition of radial artery for reduction of excessive high-flow in autogenous arm accesses for hemodialysis. J Vasc Surg. 2009 Feb;49(2):424-8, 428.e1. https://doi.org/10.1016/j.jvs.2008.08.098. Epub 2008 Nov 22. PMID: 19028066.

Platelet-To-Lymphocyte Ratio (PLR) e fistola artero-venosa per emodialisi: un indicatore precoce per identificare il malfunzionamento delle FAV per emodialisi

Abstract

Le linee guida KDOQI (Kidney Disease Outcomes Quality Initiative) raccomandano l’allestimento di una fistola artero-venosa su vasi nativi (FAV) come accesso vascolare di scelta nei pazienti affetti da insufficienza renale cronica in terapia emodialitica sostitutiva in quanto si associa a una migliore qualità di vita e a minor rischio di complicanze rispetto alle fistole artero-venose protesiche o ai cateteri venosi centrali (CVC). Diversi studi hanno valutato diversi biomarcatori infiammatori per identificare l’eventuale associazione tra infiammazione sistemica e disfunzione degli accessi vascolari per emodialisi. Un nuovo biomarcatore infiammatorio, il platelet-to-lymphocyte ratio (PLR), è un parametro di laboratorio utile e semplice che può evidenziare uno stato di flogosi sistemica. Il nostro studio mirava a valutare la relazione tra le modificazioni del PLR ​​nel tempo e la disfunzione delle FAV per emodialisi nei pazienti afferenti al nostro centro. L’impatto del PLR sulle complicanze stenotiche/trombotiche mostrava un trend che si avvicinava alla significatività, ma con un valore dello slope non lineare (OR: 4,9; 95%IC: [0,84-28,5]; p = 0,08). Pertanto, abbiamo eseguito la stessa analisi suddividendo i pazienti in base al valore PLR ​​mediano e abbiamo evidenziato una relazione significativa tra il nostro outcome e il PLR (log trasformato) con valori di PLR ​​inferiori al valore mediano (OR: 9,97; 95%IC: [2,53-39,25], p = 0,001). Inoltre, nei pazienti con PLR superiore al valore mediano, l’interazione visita-PLR ha mostrato un impatto vicino alla significatività statistica (OR: 7,7; 95%IC: [0,81-72,97]; p = 0,07). Il PLR (log trasformato) era correlato positivamente con l’età della FAV (Rho: 0,254, p = 0,002).

Parole chaive: FAV, fistola artero-venosa per emodialisi, danno renale cronico, emodialisi, rapporto piastrine-linfociti, complicanze steno-trombotiche

Ci spiace, ma questo articolo è disponibile soltanto in inglese.

Introduction

The KDOQI guidelines (Kidney Disease Outcomes Quality Initiative) recommend autologous arteriovenous fistula (AVF) as the primary vascular access in hemodialysis patients because of the higher quality of life and lower complication rates if compared to arteriovenous grafts (AVGs) or central venous catheter (CVC) [13]. Several studies evaluated the association between systemic inflammation and AVF dysfunction using various inflammatory biomarkers [4, 5, 10].

A novel inflammatory biomarker, the platelet-lymphocyte ratio (PLR), is a useful and easy laboratory parameter that can reveal systemic inflammation [1]. Various studies showed how the PLR values are linked to chronic inflammation in different clinical conditions [8, 12]. Our study aimed to evaluate the relationship between PLR value changes over time and AVF dysfunction (both stenotic and/or thrombotic complications) in our group of patients undergoing chronic hemodialysis (HD) at our center.

La FAV stenotica: successo della collaborazione tra SPOKE e HUB

Abstract

La fistola artero-venosa costituisce l’accesso vascolare di prima scelta in emodialisi. Presentiamo tre casi clinici che evidenziano la risoluzione in radiologia interventistica della stenosi venosa, una delle maggiori complicanze.
Il monitoraggio clinico e la diagnostica strumentale con l’ecocolordoppler hanno prevenuto il fallimento della FAV per alto rischio di trombosi.
Gli interventi angiografici, grazie alla collaborazione tra Spoke e Hub, sono stati portati a termine senza complicanze.

Parole chiave: emodialisi, stenosi, FAV, radiologia interventistica, ecocolordoppler, PTA

Introduzione

La fistola artero-venosa (FAV) per il paziente in dialisi costituisce l’accesso vascolare di prima scelta, in quanto meno gravato da complicanze a medio-lungo termine e per la maggiore sopravvivenza rispetto alla protesi e al catetere venoso centrale permanente [1]. L’Ecocolordoppler (ECD) ormai da anni rappresenta l’esame diagnostico meno invasivo per il mapping dei vasi pre-confezionamento FAV e per il monitoraggio delle complicanze (stenosi, trombosi, ematomi, aneurismi e pseudoaneurismi) venose e arteriose [26]. Sono più frequenti le stenosi venose che le stenosi arteriose [7, 8]; si distingue poi ulteriormente tra stenosi dell’inflow (vaso afferente) e stenosi dell’outflow (vaso efferente). Tra le stenosi venose, le stenosi iuxta-anastomotiche (entro i 2 cm dall’anastomosi) sono più frequenti rispetto alle stenosi distali [7, 8].

Il primum movens della stenosi venosa è l’iperplasia neointimale. Costituiscono fattori concomitanti lo stress chirurgico, lo stato pro-infiammatorio legato alla malattia renale cronica, la predisposizione genetica, le venipunture ripetute. Il processo che si determina è un’anomala proliferazione e migrazione delle cellule muscolari lisce, con espressione di citochine, chemochine, e mediatori come l’endotelina, il TGFβ, l’ossido nitrico, l’osteopontina e l’apolipoproteina. Spiegherebbe la riduzione del lume vascolare anche la migrazione di fibroblasti dall’avventizia all’intima [911].

Tripla stenosi su fistola arterovenosa brachio-basilica: utilità dell’angioplastica, case report e review della letteratura

Abstract

La principale complicanza della fistola artero-venosa (FAV) è rappresentata dalla patologia stenotica. Tale condizione è caratterizzata da una riduzione del calibro del vaso arterioso o venoso che costituiscono la FAV. Più frequentemente si riscontra in corrispondenza della regione iuxta-anastomotica del segmento venoso.

Ci sono molti meccanismi responsabili della formazione della stenosi; alcuni correlati allo shear stress nella parete del tratto venoso, altri associati alle ripetute venipunture durante il trattamento dialitico.

È raccomandabile che ogni centro dialisi attivi un programma di monitoraggio della FAV in grado di identificare e trattare le stenosi.

Descriviamo il caso clinico di una giovane donna con una malattia da stenosi multipla di una FAV brachio-basilica trasposta.

Parole chiave: FAV, emodialisi, stenosi, angioplastica, angioplastica ecoguidata

Introduzione

Tra le complicanze della fistola arterovenosa (FAV) per emodialisi (Tabella I), vanno annoverate le stenosi; trattasi di una complicanza strutturale a cui è esposta la FAV. Le stenosi delle FAV native possono interessare sia il versante venoso che quello arterioso. L’incidenza di stenosi coinvolgenti il sistema venoso della FAV risulta essere di gran lunga maggiore rispetto a quello arterioso [15]. Le stenosi sono senza dubbio la causa più frequente di failure della fistola arterovenosa; la caduta di portata di cui sono responsabili riduce l’efficienza dialitica con calo del Kt/V, inoltre sono causa di un incremento della pressione negativa nel circuito, ostacolano il ritorno venoso, favoriscono il ricircolo [6, 7].

COMPLICANZE STRUTTURALI COMPLICANZE EMODINAMICHE
Ridotto/assente inflow (stenosi vaso afferente) Ridotta portata della FAV per perdita dell’inflow
Ridotto/assente outflow (stenosi del vaso efferente) Sindrome da furto (Steal syndrome)
Stenosi della porzione centrale del vaso efferente Presenza di collaterali venose che riducono la portata
Ematoma Scompenso cardiaco congestizio
Aneurisma Edema del braccio
Pseudoaneurisma
Calcificazioni
Tabella I: complicanze della FAV (Meola M: Ecografia clinica in nefrologia. Fistola arterovenosa, p 1308. Meola M. Eureka editore 2015).

Alcuni autori hanno classificato le stenosi del versante venoso della FAV in iuxta-anastomotiche o distali, a seconda che la sede della stenosi sia rispettivamente entro o oltre i 2 cm dall’anastomosi; anche se per Tessitore [8] vanno considerate tali anche le stenosi entro i 5 cm dall’anastomosi; questo sottotipo è responsabile dell’80 % delle stenosi.

Altra possibile classificazione riguardante la sede delle stenosi prevede la distinzione di stenosi centrali, iuxta-anastomotiche e stenosi riguardanti il tratto di vena compreso tra queste due regioni. Infine, da un punto di vista emodinamico, possiamo classificarle in stenosi dell’inflow e stenosi dell’outflow. Le prime determinano, da un punto di vista emodinamico, una riduzione della portata della fistola e riguardano le stenosi arteriose e le stenosi venose iuxta-anastomotiche; le seconde, invece, sono le stenosi venose distali che determinano un ostacolo al deflusso venoso anche in presenza di una valida portata [9].

La sede più frequente di stenosi è la porzione iuxta-anastomotica [1013], ma sono frequenti anche le stenosi della porzione centrale della vena efferente sede di venopuntura. Possiamo definire critica una stenosi quando la riduzione del diametro del lume vasale è superiore al 50 % rispetto a quello misurato nella porzione prestenotica. Ma tale definizione non può prescindere dalle alterazioni emodinamiche causate dalla stenosi: una riduzione della portata, l’aumento degli indici di resistenza, l’incremento della velocità di picco sistolico in corrispondenza della stenosi e, non ultima, l’inadeguata efficienza dialitica che accompagnano la stenosi [14].

La FAV è un “bene prezioso” per il paziente emodializzato; il patrimonio vascolare non è illimitato e il ricorso al catetere venoso centrale dovrebbe essere una seconda scelta. La stenosi deve essere considerata come l’iniziale processo di chiusura della FAV: se precocemente riconosciuta e trattata può evitare la chiusura definitiva dell’accesso vascolare.

 

Case report

Descriviamo il caso di una paziente di 54 anni, ipertesa, uremica in trattamento emodialitico da 3 anni, affetta da sindrome Nail-Patella. All’avvio al trattamento veniva confezionata una FAV radio-cefalica distale all’avambraccio sinistro previo mapping preoperatorio dell’arto che evidenziava una vena cefalica di 2 mm che incrementava il suo diametro a più del 50% dopo posizionamento del laccio emostatico; arteria radiale di 2,2 mm con portata di 15 ml/m e un test dell’iperemia reattiva che mostrava una caduta delle resistenze e incremento della portata.

Dopo 6 mesi la FAV andava incontro a failure, per cui veniva posizionato un catetere venoso centrale definitivo in vena giugulare destra. Allestita una nuova FAV distale radio-cefalica a carico dell’avambraccio di destra, quest’ultima andava incontro ad early failure nonostante il mapping preoperatorio mostrasse vasi aggredibili con buona compliance vascolare. Veniva quindi allestita una FAV prossimale brachio-basilica a carico del braccio sinistro con trasposizione della basilica. La portata della fistola, calcolata sull’arteria brachiale, dopo 7 giorni dall’allestimento era pari a 765 ml/m e incrementava a 1130 ml/m dopo 30 giorni.

Durante i trattamenti emodialitici si riscontravano pressioni venose elevate nell’accesso vascolare e pressioni arteriose eccessivamente negative. Veniva intrapreso quindi un follow-up ecografico e veniva posticipata la rimozione del CVC definitivo. Un controllo a distanza di 8 mesi mostrava una caduta della portata a 880 ml/m. L’accesso vascolare, monitorato nei mesi successivi, mostrava una progressiva riduzione di portata: 760 ml/m dopo 10 mesi dall’allestimento; 600 ml/m dopo 13 mesi. Giunge alla nostra osservazione a marzo 2022. L’esame doppler metteva in evidenza una portata pari a 465 ml/min. IR pari a 0,5 e l’evidenza di 3 stenosi lungo il decorso della vena basilica trasposta. Di queste, una si presentava in regione iuxta-anastomotica, con velocità di picco sistolico (PSV) calcolata in corrispondenza della stenosi pari a 350 cm/sec e le due restanti in regione distale con PSV rispettivamente di 617 cm/sec e 387 cm/sec. Si concludeva dunque per FAV malfunzionante con patologia stenotica multipla, con impatto emodinamico significativo. Per difficoltà operativa nel reperire un accesso unico che consentisse di trattare tutte e tre le stenosi contemporaneamente, veniva pianificato un trattamento di PTA in due tempi:

  1. PTA delle due stenosi distali con approccio anterogrado.
  2. PTA della stenosi iuxta-anastomotica con approccio retrogrado.

Veniva eseguita una prima procedura di PTA ecoguidata con balloon non compliante ad alta pressione delle dimensioni di 6 x 30 mm gonfiato fino a 24 atmosfere con completa distensione delle due lesioni stenotiche. Immediatamente dopo la procedura la portata dell’accesso vascolare risultava essere di 1100 ml/min con IR pari a 0,42 (Figure 1-5).

Figura 1: B-Mode. Scansione longitudinale su vena basilica efferente la FAV. Si nota esteso tratto stenotico.
Figura 1: B-Mode. Scansione longitudinale su vena basilica efferente la FAV. Si nota esteso tratto stenotico.
Figura 2: Color-doppler. Portata calcolata su arteria brachiale: 465ml/min; IR 0.5.
Figura 2: Color-doppler. Portata calcolata su arteria brachiale: 465ml/min; IR 0.5.
B-Mode. Gonfiaggio del pallone per angioplastica nel lume
Figura 3: B-Mode. Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico. Si notano due incisure disegnate sul profilo del pallone, sede di maggiore resistenza della stenosi, che verranno completamente sfiancate al raggiungimento di 24 atmosfere.
B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Figura 4: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura.
Figura 5: Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura. Si nota un incremento della portata a 1094 ml/min con riduzione indici di resistenza a 0,41.

A distanza di 15 giorni veniva eseguita seconda proceduta di PTA ecoguidata su stenosi iuxta-anastomotica. Veniva utilizzato balloon non compliante ad alta pressione delle dimensioni di 6 x 30 mm gonfiato fino a 24 atmosfere con completa risoluzione della stenosi (Figure 6-10).

Scansione longitudinale su vena basilica efferente la FAV in corrispondenza della regione iuxta-anastomotica stenotica.
Figura 6: B-Mode. Scansione longitudinale su vena basilica efferente la FAV in corrispondenza della regione iuxta-anastomotica stenotica.
Figura 7: Color-doppler. Portata calcolata su arteria brachiale: 920 ml/min con IR 0.49.
Figura 7: Color-doppler. Portata calcolata su arteria brachiale: 920 ml/min con IR 0.49.
Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico.
Figura 8: B-Mode. Gonfiaggio del pallone per angioplastica nel lume venoso in corrispondenza del tratto stenotico. Pallone completamente disteso, gonfiato a 24 atmosfere.
Figura 9: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Figura 9: B-Mode. Risultato finale della procedura. Assenza di recoil della stenosi, omogeneo il lume vascolare.
Portata calcolata su arteria brachiale successivamente alla procedura
Figura 10: Color-doppler. Portata calcolata su arteria brachiale successivamente alla procedura. Si nota un incremento della portata a 1756 ml/min con riduzione indici di resistenza a 0,37.

La portata dell’accesso al termine della procedura risultava pari a 1600 ml/min con IR pari a 0,37. Contestualmente nella stessa seduta operatoria veniva rimosso CVC giugulare definitivo destro. In Figura 11 è riportato l’andamento della portata della FAV dal suo allestimento fino all’espletamento dell’ultima procedura descritta.

Figura 11: Il grafico, portata/tempo, mostra l’andamento del flusso prima e dopo le due procedure di angioplastica.
Figura 11: Il grafico, portata/tempo, mostra l’andamento del flusso prima e dopo le due procedure di angioplastica.

 

Discussione

Il primum movens del processo di stenosi è rappresentato dall’iperplasia neointimale, a sua volta legata ad un incremento dello shear-stress di parete per l’imponente incremento di flusso cui è sottoposto il vaso dopo la creazione dell’anastomosi. Concorrono, al processo di stenosi, anche lo stato pro infiammatorio proprio della malattia renale cronica, le venipunture ripetute, lo stress chirurgico, fattori genetici. Tutti questi elementi sono responsabili del rimodellamento della parete vascolare e di una anomala proliferazione [15] e migrazione delle cellule muscolari lisce mediata da una serie di fattori: citochine, chemochine, ossido di azoto, endotelina, osteopontina, apolipoproteina [10, 16-21].

È inoltre dimostrata una migrazione di fibroblasti dall’avventizia all’intima e la loro trasformazione in miofibroblati che contribuisce in maniera significativa alla riduzione del lume vascolare [2228]. Alcuni studi hanno incentrato l’attenzione sulla natura delle cellule che costituiscono la neointima: la loro identificazione pone infatti le basi per azioni terapeutiche volte a inibire il processo di proliferazione neointimale. In particolare la recente evidenza di fibroblasti migrati dall’avventizia all’intima e trasformati in miofibroblasti ha sottolineato il ruolo fondamentale di queste cellule nella produzione di matrice extracellulare della neointima. Tutto questo rimarca l’importanza dell’avventizia come attore in prima linea nel processo di iperplasia neointimale e la pone al centro dell’attenzione di interventi terapeutici che mirino al controllo di tutti questi elementi cellulari (fibroblasti, miofibroblasti, cellule muscolari lisce). Da ciò la proposta di alcuni autori di utilizzare farmaci antiproliferativi ad azione perivascolare [29-31]. Non ultima la necessità di una corretta manipolazione chirurgica intraoperatoria finalizzata a preservare l’avventizia e i vasa vasorum [29]; è dimostrato infatti che il ridotto traumatismo della parete vasale riduce in maniera significativa l’iperplasia neointimale [32].

Il malfunzionamento dell’accesso vascolare è una temuta complicanza del paziente in trattamento emodialitico: la sorveglianza clinica e il monitoraggio strumentale della FAV tendono a scongiurare questo pericolo. Negli anni si sono sviluppati programmi di sorveglianza clinico/strumentale spesso dissociati in quanto il nefrologo non sempre è il fulcro di questa sorveglianza, demandando al chirurgo vascolare o al radiologo la parte tecnico/strumentale. Nel nostro centro da tempo è stata posta l’attenzione a questo tipo di problematica e un team dedicato, oltre ad effettuare una sorveglianza clinica (esame ispettivo della FAV, Kt/V, ricircolo dell’accesso, monitoraggio delle pressioni venose ed arteriose intradialitiche), provvede al monitoraggio ecografico delle FAV a rischio di chiusura. L’ecocolordoppler infatti va ritenuto l’unica indagine capace di fornire informazioni strutturali e funzionali sull’accesso vascolare [33-36]; la metodica, infatti, oltre ad identificare deficit funzionali, mediante la valutazione della portata [3547], è in grado di individuare stenosi e trombosi da correggere mediante interventi di angioplastica, anch’essi ecoguidati, con i quali lo stesso nefrologo può cimentarsi.

Va comunque precisato che i programmi di sorveglianza degli accessi vascolari a tutt’oggi sono oggetto di discussione, in quanto lì dove studi osservazionali indicano che la correzione preventiva delle stenosi riduca la percentuale di fallimento dell’accesso vascolare [47] e le stesse linee guida NKF-K-DOQI [48] consigliano di sottoporre gli emodializzati portatori di FAV ad un programma di sorveglianza dell’accesso vascolare, ci sono pareri discordanti che attribuiscono una scarsa efficacia a detti programmi [4951].

I dati presenti in letteratura mostrano come vi sia una tendenza alla recidiva della stenosi dopo trattamento mediante PTA.

Le varie casistiche identificano una pervietà della FAV tra il 50-60% ad un anno dal trattamento. L’ipotesi eziopatogenetica è identificata nella iperplasia reattiva dei miociti della parete del vaso sottoposto a stretching durante la procedura con conseguente reazione sclerotico-cicatriziale e riformazione della stenosi [52]. A tal ragione vengono usati con maggiore frequenza balloon medicati (DCB), ricoperti da farmaci antiproliferativi come il Placitaxel, che rilasciati nella parete vascolare durante la dilatazione della stenosi vanno ad inibire la proliferazione reattiva. Grazie all’utilizzo di tali dispositivi si è ottenuta una pervietà primaria maggiore rispetto ai ballon convenzionali: fino all’80% a 6 mesi [53].

 

Conclusioni

La FAV va considerata l’accesso vascolare di prima scelta, la sua sopravvivenza deve essere garantita con l’utilizzo di tutti i mezzi a nostra disposizione: osservazione clinica e strumentale, monitoraggio intradialitico, accuratezza nella venopuntura. Le stenosi rappresentano la causa più frequente di malfunzionamento della FAV, se precocemente riconosciute e trattate l’accesso vascolare “sopravvive”. È nostra esperienza che la restenosi di una FAV, sottoposta ad angioplastica, è una evenienza possibile, ma proprio la sorveglianza di queste FAV a rischio ci consente di reintervenire concedendo all’accesso vascolare un ulteriore periodo di utilizzo.

 

Bibliografia

  1. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Update 2006. Am J Kidney Dis 2006; 48 (suppl 1): 5248-73. https://doi.org/10.1053/j.ajkd.2006.03.010.
  2. Beathard GA, Arnold P, Jackson J, Litchfield T; Physician Operators Forum of RMS Lifeline. Aggressive treatment of early fistula failure. Kidney Int. 2003 Oct;64(4):1487-94. https://doi.org/1046/j.1523-1755.2003.00210.x.
  3. Marcello Napoli, Raffaele Prudenzano, Francesco Russo, Assunta Lucia Antonaci, Maria Aprile, Erasmo Buongiorno. Juxta-anastomotic stenosis of native arteriovenous fistulas: surgical treatment versus percutaneous transluminal angioplasty. J Vasc Access. 2010 Oct-Dec;11(4):346-51. https://doi.org/5301/jva.2010.5968.
  4. Roy-Chaudhury P. PTA versus surgery for juxta-anastomotic stenosis. Acta of 5th Annual Controversies in Dialisys Access. Washington, DC USA October 2008.  J  Vasc Access 2008; 9: 185.
  5. Clark Timothy W I, Hirsch David A, Jindal Kailash J, Veugelers Paul J, LeBlanc John. Outcome and prognostic factors of restenosis after percutaneous treatment of native hemodialysis fistulas. J Vasc Interv Radiol. 2002 Jan;13(1):51-9. https://doi.org/1016/s1051-0443(07)60009-8.
  6. Aruny JE, Lewis CA, Cardella JF, Cole PE et al. Quality improvement guidelines for percutaneous management of the thrombosed or dysfunctional dialysis access. Standards of Practice Committee of the Society of Cardiovascular & Interventional Radiology. J Vasc Interv Radiol. 1999 Apr;10(4):491-8. https://doi.org/1016/s1051-0443(99)70071-0.
  7. National Kidney Foundation: K/DOQI Clinical practice guidelines for vascular access 2006 Am J Kidney Dis . 2006 Jul;48 Suppl 1:S176-247. https://doi.org/10.1053/j.ajkd.2006.04.029.
  8. Tessitore Nicola, Mansueto Giancarlo, et al. Endovascular versus surgical preemptive repair of forearm arteriovenous fistula juxta-anastomotic stenosis: analysis of data collected prospectively from 1999 to 2004. Clin J Am Soc Nephrol. 2006 May;1(3):448-54. https://doi.org/2215/CJN.01351005.
  9. Dacian-Călin Tirinescu et Al. Ultrasonographic diagnosis of stenosis of native arteriovenous fistulas in haemodialysis patients. Med Ultrason. 2016 Sep;18(3):332-8. https://doi.org/11152/mu.2013.2066.183.fis.
  10. Rajan DK, Bunston S, Misra S, Pinto R, Lok CE. Dysfunctional autogenous hemodialysis fistulas: outcomes after angioplasty–are there clinical predictors of patency? Radiology. 2004 Aug;232(2):508-15. https://doi.org/1148/radiol.2322030714.
  11. Clark TW, Hirsch DA, Jindal KJ, Veugelers PJ, LeBlanc J. Outcome and prognostic factors of restenosis after percutaneous treatment of native hemodialysis fistulas. J Vasc Interv Radiol. 2002 Jan;13(1):51-9. https://doi.org/10.1016/s1051-0443(07)60009-8.
  12. Giovanni Lipari1, Nicola Tessitore, Albino Poli, Valeria Bedogna, Antonella Impedovo, Antonio Lupo, Elda Baggio. Outcomes of surgical revision of stenosed and thrombosed forearm arteriovenous fistulae for haemodialysis. Nephrol Dial Transplant 2007 Sep;22(9):2605-12. https://doi.org/10.1093/ndt/gfm239.
  1. Allon M, Robbin ML. Increasing arteriovenous fistulas in hemodialysis patients: problems and solutions. Kidney Int. 2002 Oct;62(4):1109-24. https://doi.org/10.1111/j.1523-1755.2002.kid551.x.
  2. Mario Meola, Antonio Marciello, Gianfranco Di Salle , Ilaria Petrucci. Ultrasound evaluation of access complications: Thrombosis, aneurysms, pseudoaneurysms and infections. J Vasc Access. 2021 Nov;22(1_suppl):71-83. https://doi.org/10.1177/11297298211018062.
  3. Chang CJ, Ko PJ, Hsu LA, et al. Highly increased cell proliferation activity in the restenotichemodialysis vascular access after percutaneous transluminal angioplasty: implication in prevention of restenosis. Am J Kidney Dis 2004;43:74–84. https://doi.org/10.1053/j.ajkd.2003.09.015.
  4. Lawrence Vascular Access for Hemodialysis in adult. Chap 4.pp 49-78. of dialysis therapy. Nissenson AR, Fine RN Eds. 4th edition: Saunders-Elsevier Philadelphia, 2008
  5. Asif A, Roy-Chaudhury P, Beathard GA Early arteriovenous fistula failure: a logical proposal for when and how to intervene. Clin J Am Soc Nephrol. 2006 Mar;1(2):332-9. https://doi.org/10.2215/CJN.00850805.
  6. Moreno PR, Fallon JT, Murcia AM, Leon MN, Simosa H, Fuster V, Palacios. Tissue characteristics of restenosis after percutaneous transluminal coronary angioplasty in diabetic patients.J Am Coll Cardiol. 1999 Oct;34(4):1045-9. https://doi.org/10.1016/s0735-1097(99)00338-1.
  7. Megan Nguyen, Finosh G Thankam, Devendra K Agrawal. Sterile inflammation in the pathogenesis of maturation failure of arteriovenous fistula. J Mol Med (Berl). 2021 Jun;99(6):729-741. https://doi.org/10.1007/s00109-021-02056-4.
  8. Jinjing Zhao, Frances L Jourd’heuil, et al. Dual Function for Mature Vascular Smooth Muscle Cells During Arteriovenous Fistula Remodeling. J Am Heart Assoc. 2017 Mar 30;6(4):e004891. https://doi.org/10.1161/JAHA.116.004891.
  9. Chun-Yu Wong, Margreet R de Vries, Yang Wang, Joost R van der Vorst, et al. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg. 2014 Jan;59(1):192-201.e1. https://doi.org/1016/j.jvs.2013.02.242.
  10. Honda HM, T Hsiai,  Wortham C M, M Chen, H Lin, M Navab, L L Demer. A complex flow pattern of low shear stress and flow reversal promotes monocyte binding to endothelial cells. Atherosclerosis 2001 Oct;158(2):385-90. https://doi.org/10.1016/s0021-9150(01)00462-2.
  11. Dardik A, Leiling Chen, Frattini J, et al. Differential effects of orbital and laminar shear stress on endothelial cells. Comparative Study. J Vasc Surg 2005 May;41(5):869-80. https://doi.org/10.1016/j.jvs.2005.01.020.
  12. Gambillara V, Montorzi G, Christelle Haziza-Pigeon, Stergiopulos N, Silacci P. Arterial wall response to ex vivo exposure to oscillatory shear stress. J Vasc Re Nov-Dec 2005;42(6):535-44. https://doi.org/10.1159/000088343.
  13. Roy-Chaudhury P, Sukhatme VP, Cheung AK. Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. J Am Soc Nephro. 2006 Apr;17(4):1112-27. https://doi.org/10.1681/ASN.2005050615.
  14. Alfred K Cheung, Christi Terry, Li Li. Pathogenesis and local drug delivery for prevention of vascular access stenosisJ Ren Nutr. 2008 Jan;18(1):140-5. https://doi.org/1053/j.jrn.2007.10.028.
  15. Li G, Chen SJ, Oparil S, et al. Direct in vivo evidence demonstrating neointimal migration ofadventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 2000;101:1362–1365. https://doi.org/10.1161/01.cir.101.12.1362.
  16. Li Li 1, Christi M Terry, Donald K Blumenthal, Tadashi Kuji, Takahisa Masaki, Bonnie C H Kwan, Ilya Zhuplatov, John K Leypoldt, Alfred K CheungCellular and morphological changes during neointimal hyperplasia development in a porcine arteriovenous graft modelNephrol Dial Transplant. 2007 Nov;22(11):3139-46. https://doi.org/1093/ndt/gfm415.
  17. Napoli M. Complicanze steno-trombotiche delle AVF. Eco color doppler & accessi vascolari per emodialisi Cap 4 pp 67-84. Wichtig Editore 2010.
  18. Kim SJ, Masaki T, Leypoldt JK, et al. Arterial and venous smooth-muscle cells differ in their responsesto antiproliferative drugs. J Lab Clin Med 2004;144:156–162. https://doi.org/10.1016/j.lab.2004.06.002.
  19. Kim SJ, Masaki T, Rowley R, et al. Different responses by cultured aortic and venous smooth musclecells to gamma radiation. Kidney Int 2005;68:371–377. https://doi.org/10.1111/j.1523-1755.2005.00407.x.
  20. Shenoy S. Pro/con juxta-anastomotic stenosis… Avoidable. Selected short paper from “Controversies in dialysis access”. San Francisco USA November 2006. J Vasc Access 2006; 7:167.
  21. Meola M. Ecografia clinica in nefrologia. Fistola arterovenosa, p 1299. Meola M. Eureka editore 2015.
  22. RobbinM, Chamberlain N, et al. Hemodialysis arteriovenous fistula maturity: US evaluation. Radiology. 2002 Oct;225(1):59-64. https://doi.org/10.1148/radiol.2251011367.
  23. Lomonte C, Meola M, Petrucci I, Casucci F, Basile C. The Key Role of Color Doppler Ultrasound in the Work-up of Hemodialysis Vascular Access. Semin Dial. 2015; 28: 211-5. https://doi.org/10.1111/sdi.12312.
  24. Ferring M, Henderson J, Wilmink A, Smith S. Vascular ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence. Nephrol Dial Transplant. 2008 Jun;23(6):1809-15. https://doi.org/10.1093/ndt/gfn001.
  25. Silva Jr, Hobson MB, Pappas PJ, et al. A strategy for increasing use of autogenous hemodialysis access procedures: impact of preoperative noninvasive evaluation. J Vasc Surg. 1998 Feb;27(2):302-7; discussion 307-8. https://doi.org/10.1016/s0741-5214(98)70360-x.
  26. McCarley P, Wingard RL, et al. Vascular access blood flow monitoring reduces access morbidity and costs. Kidney Int . 2001 Sep;60(3):1164-72. https://doi.org/10.1046/j.1523-1755.2001.0600031164.x.
  27. Sands J, Miranda C. Prolongation of hemodialysis access survival with elective revision. J Clin Nephrol. 1995 Nov;44(5):329-33.
  28. Wiese P, Nonnast-Daniel B. Colour Doppler ultrasound in dialysis access. Nephrol Dial Transplant. 2004 Aug;19(8):1956-63. https://doi.org/1093/ndt/gfh244.
  29. Richard E. et al. Predictive measures of vascular access thrombosis: A prospective study. Kidney International Volume 52, Issue 6, December 1997, Pages 1656-1662. https://doi.org/10.1038/ki.1997.499
  30. Lauvao LS, Ihnat DM, et al. Vein diameter is the major predictor of fistula maturation. J Vasc Surg. 2009 Jun;49(6):1499-504. https://doi.org/1016/j.jvs.2009.02.018.
  31. RobbinML, Oser RF, et al. Hemodialysis access graft stenosis: US detection. Radiology. 1998 Sep;208(3):655-61. https://doi.org/10.1148/radiology.208.3.9722842.
  32. BackMR, Maynard M, Winkler A, et al. Expected flow parameters within hemodialysis access and selection for remedial intervention of nonmaturing conduits. Vasc Endovascular Surg. Apr-May 2008;42(2):150-8. https://doi.org/10.1177/1538574407312648.
  33. Dumars MC, Thompson WE, et al. Management of suspected hemodialysis graft dysfunction: usefulness of diagnostic US. Radiology. 2002 Jan;222(1):103-7. https://doi.org/10.1148/radiol.2221991095.
  34. Malovrh Native arteriovenous fistula: preoperative evaluation. Am J Kidney Dis 2002 Jun;39(6):1218-25. https://doi.org/10.1053/ajkd.2002.33394.
  35. Tordoir JH, de Bruin HG, Hoeneveld H. Duplex ultrasound scanning in the assessment of arteriovenous fistulas created for hemodialysis access: comparison with digital subtraction angiography. J Vasc Surg. 1989 Aug;10(2):122-8. https://doi.org/10.1067/mva.1989.0100122.
  36. NKF-K/DOQI: Clinical Practice Guidelines and Clinical Practice Recommendations, Update 2006. Am J Kidney Dis 2006; 48 : 1-322.
  37. TonelliM, Jindal Screening for subclinical stenosis in native vessel arteriovenous fistulae. J Am Soc Nephro. 2001 Aug;12(8):1729-1733. https://doi.org/10.1681/ASN.V1281729.
  38. Tonelli M, James M,Wiebe N. Ultrasound monitoring to detect access stenosis in hemodialysis patients: a systematic review. Am J Kidney Dis. 2008 Apr;51(4):630-40. https://doi.org/1053/j.ajkd.2007.11.025.
  39. Sands JJ, Ferrell LM, Perry MA. The role of color flow Doppler ultrasound in dialysis access. Semin Nephrol. 2002 May;22(3):195-201. https://doi.org/1053/snep.2002.31705.
  40. WouterJukema J, Verschuren JJW. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nature Reviews Cardiology volume 9, pages5362 (2012).
  41. Robert A. Lookstein et Al. Drug-Coated Balloons for Dysfunctional Dialysis ArteriovenousFistulas. NEJM 20 Aug 2020.