Supplemento S83 - In depth review

Metodiche convettive verso metodiche diffusive: superiorità definita?

Abstract

La tecnica di dialisi ha avuto negli ultimi cinquanta anni delle enormi evoluzioni, passando da una fase iniziale prettamente basata sulla diffusione attraverso una membrana semipermeabile, per arrivare ad ora, dove si preferisce una convezione spinta, con rimozione di diversi litri di ultrafiltrato. La dialisi diffusiva, nella sua relativa semplicità di esecuzione ha permesso di trattare diversi milioni di individui con ESRD, assicurando loro anche un a certa qualità di vita, però non viene vista come ottimale nei riguardi della sopravvivenza ed anche per alcune complicanze proprie dello stato uremico. La convezione, attraverso la rimozione di sostanze tossiche sfruttando il solvent drug, ha aperto alla depurazione non solo di piccole molecole, ma anche di molecole a medio-alto peso molecolare. Come risultato si è avuto con le tecniche di emodiafiltrazione  un riflesso migliorativo nei riguardi sia della mortalità e anche delle complicanze intradialitiche come i crampi e l’ipotensione intradialitica. Questi risultati però passano attraverso uno scambio di liquidi che va decisamente oltre i 20 litri per seduta, e quindi con maggiore complessità tecnica e non applicabilità a tutti i pazienti, in particolare a quelli con problematiche dell’accesso vascolare. La recente scoperta di membrane così dette a medio cut-off (MCO) sembra poter mantenere i vantaggi delle tecniche emodiafiltrative senza la necessità di elevati flussi convettivi. Pertanto la diatriba tra convezione e diffusione sembra tutt’altro che chiusa e ci riserverà ancora sorprese in un prossimo futuro.

Parole chiave: diffusione, convezione, emodialisi, emodiafiltrazione, membrane a medio cut-off

Introduzione

La diatriba sulla superiorità di una tecnica dialitica rispetto ad un’altra nei riguardi della depurazione renale, nasce sin dai primi anni di applicazione della dialisi cronica a pazienti con ESRD. Nel 1965, Beldin Scribner [1] osservò che i pazienti sottoposti a dialisi peritoneale, nonostante avessero livelli più elevati di urea e creatinina rispetto ai pazienti in emodialisi, spesso “si sentivano meglio” ed avevano una neuropatia più sopportabile. Scribner ipotizzò che il peritoneo fosse più permeabile alle molecole di peso molecolare più elevato rispetto all’emodialisi e quindi ne favorisse la rimozione. Nacque allora l’ipotesi che, nell’uremia si accumulavano anche molecole di medio peso molecolare, le così dette “medie molecole” con un impatto sulla fisiopatologia dell’uremia. A causa delle loro dimensioni, queste molecole venivano rimosse più lentamente dell’urea e le membrane cellulosiche, in uso all’epoca, mostravano un’elevata resistenza diffusiva alle medie molecole. Di conseguenza, per purificare l’organismo da queste tossine era necessario un numero minimo di ore di dialisi a settimana, non inferiore alle 30 ore settimanali. Negli anni successivi con l’introduzione di nuove membrane di sintesi, al di là delle cellulosiche, il concetto della sola durata, è stato sostituito da ipotesi meccanicistiche che si basavano sulla dose di dialisi ricavata dall’indice KT/Vurea proposto da Gotch e Sargent [2].

Il Kt/V è un rapporto adimensionale che si basa sulla valutazione della clearance dell’urea, del tempo di trattamento e del volume dell’acqua corporea totale. Per anni questo indice con un valore di cut-off ottimale sull’ordine di 1,2-1,4 è stato considerato espressione di adeguatezza dialitica. In realtà si è sempre trascurato che il Kt/V riguardava solo l’urea e quindi una molecola di basso peso molecolare, dimenticandosi dell’insegnamento di un padre della dialisi come Beldin Scribner che aveva posto l’accento sulla importanza delle medie molecole.

Solo negli anni ’80 con lo sviluppo delle membrane semi-permeabili, la convezione è stata riconosciuta come un processo potenzialmente vantaggioso per la rimozione di soluti di dimensioni maggiori rispetto a quelli che possono essere eliminati attraverso la sola diffusione. La dialisi convettiva, in particolare l’emofiltrazione (HF), venne utilizzata in ambito clinico con sistemi pionieristici che permettevano la rimozione di grandi quantità di acqua corporea e la sua sostituzione con un liquido sterile reinfuso attraverso un circuito addizionale [3].

Negli anni ’90, la tecnologia delle macchine per dialisi progredisce velocemente, permettendo una migliore gestione dei volumi di ultrafiltrazione ed una efficiente diffusione. Nasce l’emodiafiltrazione (HDF), tecnica mista convettivo-diffusiva, che negli anni 2000 si diffonde in tutto il mondo dialitico affiancandosi alla HD tradizionale.

Da allora si continua a discutere se sia preferibile la diffusione o la convezione o anche la combinazione delle due, in termini di depurazione, effetti collaterali e benefici del paziente.

 

Le tecniche di dialisi diffusive

Le tecniche diffusive che comprendono anche la dialisi peritoneale che sfrutta la membrana peritoneale (e quindi non è una tecnica extra-corporea), hanno alcuni vantaggi:

  • Efficienza nella rimozione delle piccole molecole: eccellente per eliminare urea, creatinina e altre piccole tossine. La peritoneale inoltre permette di rimuovere una certa quota di medie molecole
  • A concentrazioni più alte di piccole molecole aumenta il gradiente con il liquido di dialisi e quindi l’efficienza della tecnica
  • Le caratteristiche della membrana, in particolare la porosità, influenzano i trasporti diffusivi
  • Tecnologia ben consolidata ampiamente disponibile e supportata da una vasta esperienza clinica
  • Flessibilità nelle opzioni: possibilità di scegliere tra emodialisi e dialisi peritoneale in base alle esigenze del paziente

Accanto ai vantaggi vi sono anche alcune limitazioni:

  • Tempo e Frequenza: le sessioni di emodialisi richiedono diverse ore e devono essere effettuate più volte alla settimana
  • La peritoneale richiede lunghi scambi e ultrafiltrazione non eccessiva
  • Tolleranza cardio-vascolare in emodialisi: non ottimale, tanto che spesso le sedute, in particolare nei pazienti fragili, sono gravate da episodi ipotensivi
  • Meno efficace per la rimozione di molecole più grandi: la diffusione è meno efficace nel rimuovere tossine di dimensioni maggiori e legate alle proteine.

La dialisi diffusiva, detta anche tradizionale, pur con questi limiti ha permesso, a milioni di persone di vivere con una discreta qualità di vita, anche in assenza di funzione renale. Nell’emodialisi diffusiva (HD), i dati degli studi clinici supportano che il raggiungimento di valori Kt/V dell’urea in single pool (non equilibrato) superiori a 1,2 possono essere sufficienti per una larga schiera di pazienti [4]. Il valore soglia maggiore di 1,2 del Kt/V può essere ottenuto aumentando le dimensioni del dializzatore o la velocità del flusso sangue. Per aumentare la Kurea, si può anche allungare la durata della sessione di dialisi (ovvero, aumento del tempo di trattamento, la t nell’indice Kt/V).

Sulla base di diversi studi clinici, è opinione diffusa che un tempo di trattamento più lungo delle classiche 4 ore per seduta, conferisca benefici clinici che vanno oltre Kt/Vurea, inclusa l’eliminazione delle tossine sostanzialmente più grandi dell’urea (le cosiddette molecole medie) e una adeguata rimozione del volume di fluido target (raggiungimento del peso secco) riducendo al contempo l’instabilità emodinamica.  I dati osservazionali indicano che un tempo di trattamento più lungo è associato a una sopravvivenza più lunga, a una migliore gestione dei liquidi corporei, a un migliore controllo della pressione sanguigna, a un migliore controllo del fosforo e a meno eventi cardiovascolari gravi rispetto a sessioni di dialisi più brevi [5]. In questo contesto, il tempo medio di trattamento dialitico nei pazienti che ricevono dialisi in centro tre volte alla settimana è ora di 4 ore (per un totale di 12 ore settimana) [6]. In alcuni paesi come il Giappone nel 2008 e in Germania nel 2009, le sessioni di dialisi sono tra le più lunghe dei paesi DOPPS [6]. Al contrario negli Stati Uniti le misurazioni delle prestazioni non sono legate alla durata della sessione, ma piuttosto al Kt/Vurea  che viene raggiunto. Per questo sono favorite sessioni dialisi brevi, con flussi sangue elevati e dializzatori di ampia superficie. Sessioni di dialisi più brevi offrono molti vantaggi operativi ed incrementi del flusso di pazienti su tre turni giornalieri, a scapito però di una maggiore incidenza di effetti collaterali come l’ipotensione intradialitica (IDH) ed i crampi. Le linee guida giapponesi [6] sottolineano l’importanza di una dialisi più lunga e più “morbida” (con flussi sangue ed ultrafiltrazioni orarie ridotti), al fine di garantire al meglio la stabilità emodinamica, nonostante una maggiore probabilità di avere valori di Kt/Vurea inferiori a 1,2.

Resta a tutt’oggi l’incertezza sulla durata ottimale della sessione di dialisi e sui parametri di adeguatezza e sulla gestione del volume dei liquidi e dell’ultrafiltrazione oraria. Tematiche che però non si fermano alla dialisi diffusiva e che sono presenti anche nelle tecniche di tipo convettivo.

 

Le tecniche di dialisi convettive

Nonostante gli indubbi vantaggi dell’emodialisi tradizionale, sia la mortalità che la morbilità rimangono inaccettabilmente elevate nei pazienti in emodialisi (HD) [7]. La ritenzione di molecole tossiche di peso molecolare medio (5–40 kDa) e di molecole legate alle proteine è chiamata in causa nella patogenesi della sindrome uremica e nella precoce mortalità in dialisi cronica [8]. Per questo negli anni 2000 vi è stata un grande attenzione verso le dialisi ad alto flusso che potrebbero favorire la rimozione di medie molecole. Tuttavia, nessuno dei due grandi studi, l’HEMO study [9] e l’MPO [10], hanno dimostrato un chiaro vantaggio delle membrane ad alto flusso rispetto a quelle a basso flusso. Entrambi gli studi hanno però suggerito che era preferibile incrementare i flussi convettivi per accrescere la rimozione di molecole di grosse dimensioni (Figura 1). Di qua la maggiore diffusione delle tecniche convettive.

Nelle tecniche convettive:

  • La drive force principale non è il gradiente di concentrazione ma la differenza di pressione trai due lati della membrana
  • Il maggior fattore di impatto nel trasporto lo hanno le dimensioni delle molecole nei riguardi dei pori della membrana
  • Importante è il coefficiente di sieving della membrana che per l’acqua è pari a 1
  • Il coefficiente di sieving influenza sia il passaggio di acqua che quello dei soluti

La tecnologia delle membrane insieme all’evoluzione delle macchine da dialisi ed accanto ad una buona dose di inventiva dei nefrologi, in particolare degli italiani, ha permesso lo sviluppo negli ultimi anni di numerose tecniche di tipo misto convettivo-diffusivo (Figura 2).

Tra le tante tecniche di tipo misto, quella che più si è affermata e diffusa è la HDF. In HDF la diffusione, che è il principale meccanismo di rimozione in emodialisi a basso flusso, è combinata con la convezione. Considerando che la quantità stimata di trasporto convettivo durante l’HD ad alto flusso è <10 litri/sessione, nell’HDF in post-diluizione, possono essere 25 litri o più, i litri scambiati. Accanto alla HDF, per un certo periodo, ha preso piede una tecnica convettiva pura e cioè l’HF proposta da Lee Henderson [3] e che si basa esclusivamente sui trasporti convettivi senza diffusione. L’HF ha uno scarso impatto depurativo per le piccole molecole come l’urea, mentre privilegia le medie e le grandi molecole. Utilizzando questa tecnica, in pre-diluzione con scambi del 120% del peso corporeo e per sfatare il mito del KT/Vurea riguardo alla mortalità nei pazienti in dialisi cronica, noi abbiamo realizzato uno studio policentrico randomizzato a due bracci tra HD tradizionale ed HF in pre-diluizione [11]. Partecipavano allo studio pazienti con alto grado di mortalità (indice di Charlson > 6) e veniva valutata la mortalità a tre anni come obiettivo primario. A fine studio si è riscontrato un miglioramento significativo della sopravvivenza con HF rispetto a HD (78%, HF contro 57%, HD). Il Kt/V di fine trattamento era significativamente più alto con HD (1,42 ± 0,06 contro 1,07 ± 0,06 con HF), mentre i livelli di beta(2)-microglobulina sono rimasti costanti nei pazienti HD (33,90 ± 2,94 mg/dL al basale e 36,90 ± 5,06 mg/dL a 3 anni), ma sono diminuiti significativamente nei pazienti in HF (30,02 ± 3,54 mg/dL al basale contro 23,9 ± 1,77 mg/dL; p < 0,05). In pratica lo studio dimostrava che nell’influenzare la mortalità era meno rilevante il KT/Vurea rispetto alla riduzione di medie molecole rappresentate dalla beta2-microglobilina. Quindi una ulteriore prova del minor valore prognostico nel rischio di morte, della rimozione dell’urea rispetto a quella delle medie molecole.

L’HF però è più complicata della HDF e, alla lunga, penalizza molto la rimozione delle piccole molecole, che un certo impatto lo hanno sulla sindrome uremica.  Negli ultimi anni due studi randomizzati controllati con disegno molto simile, lo studio CONTRAST [12] e lo studio turco OL-HDF [13], non hanno trovato una differenza significativa tra HDF post-diluizione e HD. Tuttavia, le analisi post hoc di entrambi gli studi, hanno evidenziato rischi di mortalità più bassi nei pazienti con i volumi di convezione più elevati per sessione (in media >22,0 litri nel CONTRAST e >19,7 litri nello studio turco.

Un terzo grande studio randomizzato e controllato ESHOL [14] ha dimostrato che il rischio di mortalità complessivo nei pazienti con HDF era inferiore del 30% rispetto ai pazienti con HD. In questo studio, il volume medio di convezione era di 23,7 litri. Una sotto-analisi dello studio ESHOL ha confermato la relazione tra convezione (volume) e rischio di mortalità. Nel complesso, questi risultati supportano il concetto di una relazione dose-risposta tra volume di convezione e sopravvivenza.  In realtà il volume convettivo non va visto come una grandezza assoluta (con un cut-off di 23 litri), ma andrebbe messo in relazione con la superficie corporea del paziente e con il suo peso corporeo [15].

Nel 2023 viene pubblicato sul New England Journal Medicine lo studio CONVINCE [16], studio multinazionale, randomizzato e controllato che ha coinvolto pazienti con insufficienza renale sottoposti a emodialisi ad alto flusso da almeno 3 mesi. Tutti i pazienti sono stati considerati candidati per un volume di convezione di almeno 23 litri per sessione e hanno mantenuto questi volumi di scambio per tutta la durata dello studio. Ogni paziente veniva assegnato a ricevere HDF ad alte dosi o continuare la terapia HD convenzionale ad alto flusso. L’outcome primario era la morte per qualsiasi causa. Un totale di 1.360 pazienti è stato sottoposto a randomizzazione: 683 a ricevere HDF ad alte dosi e 677 per ricevere emodialisi ad alto flusso. Il follow-up mediano è stato di 30 mesi.  La morte per qualsiasi causa si è verificata in 118 pazienti (17,3%) nel gruppo HDF e in 148 pazienti (21,9%) nel gruppo HD (rapporto di rischio: 0,77; confidenza al 95%, intervallo, da 0,65 a 0,93.

Le conclusioni dello studio sono state molto laconiche: nei pazienti con insufficienza renale, che richiedono terapia sostitutiva renale, l’uso di HDF ad alte dosi ha comportato un rischio inferiore di morte per qualsiasi causa rispetto alla HD convenzionale ad alto flusso.

Tuttavia, andando a guardare nelle pieghe dello studio si scopre che tra i pazienti del gruppo HDF, il vantaggio assoluto di sopravvivenza sembrerebbe riguardare i pazienti più giovani, che non avevano il diabete o problemi cardiovascolari rilevanti. Quindi la superiorità della HDF in termini di mortalità andrebbe circostanziata a determinate categorie di pazienti.

L’HDF a parte un vantaggio diretto sulla mortalità ha anche una superiorità nei riguardi della HD su uno degli effetti collaterali della dialisi extracorporea, la ipotensione intradialitica (IHD), che, a sua volta è un importante determinante della sopravvivenza in dialisi. Diversi studi, tra cui il FRENCHIE study, confrontando la tolleranza cardio-vascolare in HDF ed in HD, hanno dimostrato una significativa ridotta incidenza di IDH e di crampi in 11.981 sessioni di HDF [17]. Quindi migliore tolleranza cardiovascolare in HDF e di conseguenza ci sarebbe da aspettarsi una ridotta mortalità nel lungo periodo per il forte legame che esiste tra IDH e mortalità.

Mettendo insieme tutti questi dati sarebbe lecito affermare che la partita tra diffusione e convezione, la ha largamente vinta la convezione associata alla diffusione.

In realtà, negli ultimi anni sono state sviluppate membrane permeabili alle medie molecole, le così dette membrane a medio cut-off, che hanno riproposto il tema della diffusione semplice in HD.

 

La diffusione con le membrane a medio cut-off (MCO)

Recentemente, grazie ai processi ottimizzati di formazione delle membrane e all’uso simultaneo di additivi particolari, sono state generate membrane di dialisi con nuove caratteristiche di profilo diffusivo e proprietà di separazione. Le nuove membrane per dialisi hanno un’eccellente selettività e gradualità nella separazione delle molecole, rispetto a quelle polimeriche classiche. Ora si è giunti ad una classe di membrane, le così dette MCO, che hanno capacità di rimozione di molecole di larghe dimensioni comparabili a quelle della HDF, però con il vantaggio di una rimozione ridotta e controllata di albumina [18]. Si è quindi configurata una tecnica di dialisi definita Expanded Hemodialysis (HDx) che dovrebbe esporre a minori rischi i pazienti con denutrizione proteico-calorica, che possono soffrire elevate perdite di albumina. Inoltre, le membrane MCO possono essere utilizzate anche con flussi di sangue non così elevati come richiesto dalle tecniche convettive.

Quindi la diatriba tra convezione e diffusione si è recentemente riaperta e non possiamo dare per certo la superiorità della convezione come sembrava sino a qualche anno fa.

Va però detto che la HDF, sia pure con qualche distinguo, ha dimostrato, in studi randomizzati e controllati di vaste dimensioni, un certo grado di superiorità, almeno per quel che riguarda il rischio di morte e di IDH, rispetto alla HD [16, 17]. Le membrane MCO pur avendo mostrato eccellenti capacità di rimozione delle medie molecole, devono ancora validare, in studi RCT, una loro superiorità riguardo gli hard endpoint clinici come la mortalità. Molto recentemente in Spagna è stato iniziato lo studio MOTHER [19], che confronta l’HDF con una membrana MCO nei riguardi della mortalità e morbilità in un ampio gruppo (700) di pazienti in dialisi cronica.

I risultati preliminari di questo studio supportano il dato che l’HDx non è inferiore a OL-HDF nel ridurre l’esito di mortalità per tutte le cause. Naturalmente dovremo attendere i risultati definitivi di questo studio [19], come anche di altri studi RCT, che affrontino lo stesso tema, per capire il reale valore di queste nuove metodiche nel panorama delle tecniche dialitiche, che vedono come protagonisti, la diffusione e la convezione.

Figura 1. Rimozione di molecole a diverso peso molecolare a seconda della tecnica dialitica ( membrana) e della entità del flusso convettivo.
Figura 1. Rimozione di molecole a diverso peso molecolare a seconda della tecnica dialitica ( membrana) e della entità del flusso convettivo.
Figura 2. Evoluzione nel tempo delle tecniche emodiafiltrative , partendo dalla biofiltrazione ad arrivando alla emodiafiltrazione on-line con almeno 23 litri di liquido di scambio.
Figura 2. Evoluzione nel tempo delle tecniche emodiafiltrative , partendo dalla biofiltrazione ad arrivando alla emodiafiltrazione on-line con almeno 23 litri di liquido di scambio.
Curve di sopravvivenza riguardanti pazienti con alto grado di co-morbidità
Figura 3. Curve di sopravvivenza riguardanti pazienti con alto grado di co-morbidità e trattati per 36 mesi o con emodialisi classica low-flux o con emofiltrazione in pre-diluizione ( con scambio di liquido di sostituzione del 120% del peso corporeo). Significativa differenza in mortalità, nonostante in emodialisi sia stato mantenuto un alto KT/V di circa 1,42 contro un basso Kt/V di 1,07 in emofiltrazione. I livelli di beta2 microglobulina sono però significativamente ridotti in emofiltrazione, mentre restano elevati e non si modificano in emodialisi. ( voce bibliografica n.11)

 

Bibliografia

  1. Oxford Academic – “Belding Scribner and the Development of Hemodialysis”URL: Oxford Academic (Oxford Academic) 1965.
  2. Gotch FA, Sargent JA.A mechanistic analysis of the National Cooperative Dialysis Study (NCDS).Kidney Int. 1985 Sep;28(3):526-34.
  3. Henderson LW. The beginning of clinical hemofiltration: a personal account.ASAIO J. 2003 Sep-Oct;49(5):513-7
  4. Clinical practice guidelines for hemodialysis adequacy 2006
  5. Nauman Q.Mortality and Duration of Hemodialysis Treatment. JAMA. 1991;265(22):2958
  6. Robinson et al. Factors affecting outcomes in patients reaching end-stage kidney disease worldwide: differences in access to renal replacement therapy, modality use, and haemodialysis practices. Lancet. 2016 July 16; 388(10041): 294–306.
  7. Bello AK et al. Epidemiology of haemodialysis outcomes. Nat Rev Nephrol. 2022; 18(6): 378–395.
  8. Mitchell H et al. Classification of Uremic Toxins and Their Role in Kidney Diseases. CJASN 2021;16:1918-1928
  9. Eknoyan A. et al. Effect of Dialysis Dose and Membrane Flux in Maintenance Hemodialysis. N Engl J Med 2002;347:2010-2019.
  10. Locatelli F. et al. Effect of membrane permeability on survival in dialysis patients. J Am Soc Nephrol. Marzo 2009; 20(3): 645–654
  11. Santoro A. et al. The effect of on-line high-flux hemofiltration versus low-flux hemodialysis on mortality in chronic kidney failure: a small randomized controlled trial. Am J Kidney Dis 2008 Sep;52(3):507-18
  12. Grooteman MP et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J Am Soc Nephrol 2012; 23: 1087–1096.
  13. Ok E et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with highflux dialysis: results from the Turkish OLHDF Study. Nephrol Dial Transplant 2013;28: 192–202.
  14. Maduell F et al. High efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J Am Soc Nephrol 2013; 24: 487–497.
  15. Davenport A. et al. Dialysis and Patient Factors Which Determine Convective Volume Exchange in Patients Treated by Postdilution Online Hemodiafiltration. Artif Organs 2016 Dec;40(12):1121-1127.
  16. Blankestijn PJ et al. Effect of Hemodiafiltration or Hemodialysis on Mortality in Kidney Failure. N Engl J Med 2023;389:700-709
  17. Marion M. et al . Treatment tolerance and patient-reported outcomes favor online hemodiafiltration compared to high-flux hemodialysis in the elderly. Kidney International 2017; 91, 1495–150.
  18. Boschetti A.et al. Membrane Innovation in Dialysis.Contrib Nephrol. Basel, Karger, 2017, vol 191, pp 100–114.
  19. De Sequera Ortiz p. et al.Study to Explore Morbimortality in Patients Dialyzed With the Theranova HDx in Comparison to On-Line-Hemodiafiltration. NDT vol. 38, suppl. 1, 3472,2023.