Supplemento S81 - In depth review

La tossicità renale degli inibitori tirosin chinasici: un problema emergente dalla ricerca alla pratica clinica

Abstract

Gli inibitori della tirosina chinasi (TKI, Tyrosine Kinase Inhibitors) hanno contribuito a rivoluzionare la terapia farmacologica dei tumori essendo piccole molecole, somministrabili per via orale, in grado di modulare in maniera altamente selettiva vie di segnalazione coinvolte nella crescita del tumore e nell’angiogenesi. Tuttavia, l’utilità clinica dei TKI può essere talvolta limitata dalla comparsa di effetti avversi, che possono colpire diversi tessuti e organi, compresi i reni. Questa revisione della letteratura scientifica ad oggi disponibile offre una panoramica generale degli studi che documentano incidenza e caratteristiche cliniche della nefrotossicità correlata all’esposizione a TKI ed esplora i meccanismi molecolari alla base dell’intricata relazione tra TKI e tossicità renale. Viene qui discusso il razionale biologico delle manifestazioni renali associate al trattamento con agenti TKI selettivi, sottolineando l’importanza di un’accurata valutazione del rischio e di strategie di gestione personalizzata dei pazienti in trattamento con TKI.

Una conoscenza approfondita dei meccanismi molecolari della nefrotossicità indotta da TKI è cruciale non solo per migliorare l’attuale utilizzo clinico di questi preziosi strumenti terapeutici ma anche per poter sviluppare nuove terapie farmacologiche sempre più efficaci e sicure.

Parole chiave: inibitori della tirosina chinasi, rene, nefrotossicità, tumore

Introduzione

Gli inibitori delle tirosin chinasi (TKI, Tyrosin Kinase Inhibitors) sono una importante classe di farmaci che ha permesso di ridefinire il panorama della farmacoterapia dei tumori, grazie alle numerose applicazioni in un ampio spettro di contesti patologici, dalla leucemia mieloide cronica a diverse tipologie di tumori solidi, compresi carcinomi renali. Il loro meccanismo d’azione consiste in una inibizione selettiva di enzimi tirosin chinasi, un gruppo eterogeneo di proteine coinvolte nelle cascate di segnalazione cellulari, che governano un ampio spettro di processi cellulari vitali, tra cui il ciclo cellulare, la migrazione, la proliferazione, la differenziazione e la sopravvivenza [1].

Il loro meccanismo di azione altamente selettivo ha portato a risultati clinici molto interessanti, documentando ottima efficacia associata a elevati tassi di sopravvivenza [2]. Sebbene il potenziale terapeutico dei TKI sia ben documentato e ampiamente riconosciuto, l’utilizzo sempre più su ampia scala di TKI ha portato ad evidenziare la comparsa di effetti collaterali, talvolta anche di grado severo. Recenti dati clinici e di farmacovigilanza hanno documentato in particolare la possibilità di forme diverse di tossicità renale che possono essere associate all’assunzione di questi farmaci [3].

La tossicità renale dei TKI rappresenta un problema emergente, non solo per il loro sempre più esteso utilizzo ma anche per la maggior sopravvivenza dei pazienti e di conseguenza una maggior durata di queste terapie.

L’obiettivo principale di questa revisione della letteratura è quello di analizzare la complessa interazione tra esposizione a TKI e rischio di tossicità renale, evidenziando elementi di criticità e possibili indicazioni per il contenimento del rischio tossicologico.

 

Meccanismo d’azione

Gli enzimi tirosin-chinasi possono essere classificati come proteine tirosin-chinasi recettoriali (RTK, Receptor Tyrosin Kinase), proteine tirosin-chinasi non recettoriali (NRTK, Non Receptor Tyrosin Kinase) e proteine chinasi a doppia specificità (DSTK, Dual specificity protein kinases) in grado di fosforilare residui di serina, treonina e tirosina. Le RTK sono recettori transmembrana che includono recettori del fattore di crescita dell’endotelio vascolare (VEGFR), recettori del fattore di crescita derivato dalle piastrine (PDGFR), recettori dell’insulina (famiglia InsR) e la famiglia di recettori ErbB, che comprende il recettore umano 2 del fattore di crescita epidermico (HER2) e i recettori del fattore di crescita epidermico (EGFR). Esempi di DSTK sono le chinasi delle proteine mitogeno-attivate (MEK), che sono principalmente coinvolte nelle vie di segnalazione MAP.

Nel contesto dell’oncogenesi, la disregolazione delle tirosin chinasi può innescare una proliferazione cellulare e una sopravvivenza incontrollata, promuovendo lo sviluppo e la progressione tumorale.

Esistono quattro meccanismi principali di trasformazione oncogenica che coinvolgono processi tirosin chinasi-dipendenti:

  • trasduzione retrovirale di un proto-oncogene corrispondente a una tirosin chinasi, concomitante a cambiamenti strutturali [4];
  • riarrangiamenti genomici, come traslocazioni cromosomiche, che danno luogo a proteine di fusione oncogeniche contenenti un dominio catalitico di tirosin chinasi e parte di una proteina non correlata (ad esempio, Bcr-Abl nelle leucemie Philadelphia-positive);
  • mutazioni gain-of-function o piccole delezioni nelle tirosin chinasi (ad esempio, KIT nei tumori stromali gastrointestinali);
  • sovraespressione delle tirosin chinasi a seguito di amplificazione genica (ad esempio, EGFR in diversi tumori solidi) [5].

I TKI sono piccole molecole progettate per inibire l’attività delle tirosin chinasi, attraverso il legame competitivo con il sito di legame dell’adenosina trifosfato (ATP) della chinasi o mediante la modulazione della conformazione della chinasi [6]. Gli inibitori di tipo 1 si legano alla conformazione attiva, mentre gli inibitori di tipo 2 riconoscono la forma inattiva dell’enzima. Poiché le proteine chinasi presentano forti omologie nel sito di legame dell’ATP, i TKI spesso non sono specifici per una singola chinasi e mostrano reattività crociata con altri enzimi, con conseguenti rischi di comparsa di effetti di tossicità off-target.

Oltre alla loro azione di inibizione di cascate di segnale di sopravvivenza nelle cellule tumorali, i TKI esercitano la loro influenza sull’ambiente microscopico del tumore, inducendo in particolare l’arresto dell’angiogenesi [7]. Mediante l’inibizione dell’angiogenesi, i TKI non solo rallentano la crescita del tumore, ma, attenuando la formazione di nuovi vasi sanguigni, riducono anche la capacità del tumore di metastatizzare e infiltrare i tessuti circostanti, ostacolando quindi l’accesso del tumore ai nutrienti essenziali e all’ossigeno.

 

TKI e tossicità renale

Sebbene i TKI abbiano contribuito a rivoluzionare la farmacoterapia tumorale, l’equilibrio delicato tra efficacia terapeutica e potenziali effetti avversi condiziona il loro impiego clinico. L’utilizzo di questi farmaci, infatti, è associato ad una serie di tossicità in particolare a carico della cute (con effetti che possono includere secchezza, ispessimento o screpolatura della cute, bolle o rash cutaneo del palmo delle mani o della pianta dei piedi), del tratto gastrointestinale (diarrea, nausea/vomito, dolore addominale, dispepsia e stomatite/dolore orale), e del sistema cardiovascolare (ipertensione, prolungamento dell’intervallo QT, eventi tromboembolici). Inoltre l’assunzione di TKI può portare a compromissione della funzionalità renale, con rischio di insufficienza renale e/o insufficienza renale acuta, in alcuni casi anche con esito fatale. Sebbene il rischio di nefrotossicità sia comune a molti trattamenti farmacologici chemioterapici, il tipo di danno indotto a livello renale può variare anche significativamente da una classe di farmaci ad un’altra. Ad esempio, farmaci chemioterapici come il cisplatino e la ciclofosfosfamide, inducono solitamente un danno tubulare, portando a necrosi o lesione tubulare acuta. Al contrario, i TKI causano più frequentemente glomerulopatia caratterizzata da podocitopatia o microangiopatia trombotica [3]. Il danno glomerulare da TKI si traduce in proteinuria, spesso associata a ipertensione arteriosa e raramente anche ad alterazioni elettrolitiche come ipofosfatemia, ipocalcemia e iponatremia. Tali alterazioni renali, se persistenti, possono causare una riduzione persistente del filtrato glomerulare, fino a malattia renale cronica terminale [8]. Tra questi effetti avversi, la proteinuria è quello con una maggiore incidenza, la cui comparsa può costringere ad una revisione del regime posologico, non esistendo ad oggi un trattamento farmacologico adeguato a contrastarla efficacemente. Le percentuali di incidenza di proteinuria possono essere anche piuttosto drammatiche e, come ad esempio recentemente documentato per lenvatinib e regorafenib [9, 10], la riduzione del dosaggio che ne consegue può mettere a rischio l’efficacia del trattamento farmacologico stesso.

 

Meccanismi molecolari della tossicità renale da TKI

La comprensione dei possibili meccanismi alla base di questo importante effetto avverso comune a diversi TKI utilizzati nella pratica clinica risulta quindi essere fondamentale per implementare un uso corretto e sicuro di questa classe di farmaci. Numerosi sono gli studi clinici e preclinici che hanno tentato di delucidare i meccanismi molecolari sottesi alla nefrotossicità da TKI, sottolineando in particolare il ruolo chiave svolto dal fattore di crescita vascolare endoteliale (VEGF, Vascular Endothelial Growth Factor), una proteina essenziale per la crescita dei vasi sia in condizioni fisiologiche che patologiche. La proteinuria infatti è strettamente correlata alla distruzione dell’integrità della barriera di filtrazione glomerulare, che è composta da podociti, una membrana basale glomerulare e cellule endoteliali.  L’interferenza con la cascata di segnalazione del VEGF indotta dai TKI determina una patologia renale che si manifesta con perdita delle finestre endoteliali nei capillari glomerulari, proliferazione delle cellule endoteliali glomerulari (endoteliosi), perdita di podociti e proteinuria [11]. In condizioni fisiologiche, il VEGF è espresso costitutivamente dai podociti e, una volta rilasciato a livello glomerulare, si lega al suo recettore (VEGFR, Vascular Endothelial Growth Factor Receptor) presente sulle cellule endoteliali. Il cross-talk cellulare tra podocita ed endotelio mediato da VEGF è di fondamentale importanza per il mantenimento dell’integrità strutturale e funzionale del glomerulo. I farmaci TKI, inibendo i processi di attivazione della cascata di segnale mediata dai recettori del VEGF, interferiscono con questo meccanismo fisiologico di comunicazione cellulare, compromettendo la funzionalità glomerulare. La conseguenza è una maggiore vulnerabilità dell’endotelio glomerulare con aumentato rischio di microaneurismi e di sviluppo di ialinosi focale e segmentaria. Le cellule endoteliali, rese sofferenti dall’inibizione della segnalazione VEGF-dipendente, possono iniziare una abnorme produzione compensatoria di fattori pro-angiogenici, che a loro volta portano a sofferenza podocitaria, aggravando il danno renale ed aumentando il rischio di comparsa di proteinuria.

Recenti studi meccanicistici hanno permesso di chiarire meglio i meccanismi molecolari sottesi alla tossicità glomerulare che si manifesta conseguentemente all’esposizione a farmaci TKI in grado di interferire con la funzionalità chinasica dei recettori del VEGF (Figura 1). Ad esempio, i TKI possono inibire nei podociti l’espressione della proteina Neuropilina-1 (NRP1), che svolge un ruolo fondamentale per un corretto cross-talk tra le cellule endoteliali e i podociti stessi, contribuendo in questo modo alla comparsa di una sofferenza podocitaria [12]. Un’altra proteina chiave, la cui espressione è inibita in presenza di TKI, è la proteina WT1, un fattore di trascrizione specifico dei podociti che regola in questa popolazione cellulare la produzione di VEGF e di altre molecole effettrici come la podocalixina e la nefrina. Pazienti con una ridotta espressione basale di WT1 risultano essere più suscettibili alla tossicità renale dei TKI con una maggiore incidenza di proteinuria [13]. Anche la chemochina CXCL12 e il suo recettore CXCR4, espressi rispettivamente su podociti e cellule endoteliali, svolgono un ruolo essenziale nel reclutamento di cellule pro-angiogeniche in sinergia con il sistema di VEGF/VEGFR. Nella proteinuria indotta da TKI, l’espressione del sistema CXCL12/CXCR4 risulta essere alterato, suggerendo pertanto un suo contributo nella comparsa di anomalie di comunicazione tra l’endotelio e la componente podocitaria [14]. Tuttavia, altri dati di letteratura dimostrano che una aumentata espressione di CXCL12 nei podociti migliora la proteinuria e la perdita della funzionalità podocitaria, portando in questo caso ad ipotizzare possibili effetti protettori di questo pattern chemochinico [15].

Figura 1. Target farmacologico dei farmaci TKI diretti contro il VEGFR e meccanismi molecolari sottesi alla loro tossicità renale.
Figura 1. Target farmacologico dei farmaci TKI diretti contro il VEGFR e meccanismi molecolari sottesi alla loro tossicità renale.

Queste evidenze sperimentali di tipo meccanicistico trovano conferma in studi clinici che documentano rischi di effetti avversi di tipo renale, in particolar modo proteinuria, in pazienti in trattamento con farmaci TKI in grado di interferire selettivamente con il sistema recettoriale VEGF/VEGFR (Tabella I).

La comparsa di proteinuria come effetto collaterale dei TKI non è solo da imputare all’interferenza con il sistema recettoriale del VEGF, ma può anche essere secondaria all’aumento della pressione intraglomerulare conseguente ad una ipertensione arteriosa, che rappresenta un altro effetto collaterale tipico dei TKI. Poiché ipertensione e proteinuria spesso si manifestano contemporaneamente, non è chiaro se entrambi questi fenomeni si presentino in maniera indipendente oppure se ci sia un rapporto causale tra i due eventi avversi.

È importante inoltre sottolineare che complicazioni renali sono documentate anche per altri farmaci TKI che interferiscono con altre tipologie di enzimi tirosin-chinasi, diversi dal sistema recettoriale VEGF/VEGFR. Ad esempio, manifestazioni di tossicità renale, inclusa nefrite tubulointerstiziale, nefropatia membranosa, e nefropatia da IgA, sono state documentate in seguito a trattamento con gefitnib, un inibitore selettivo della tirosin chinasi del recettore per il fattore di crescita dell’epidermide (EGFR) [16]. Tossicità renali sono state registrate anche in seguito alla somministrazione di ibrutinib, un potente inibitore della tirosin chinasi di Bruton (BTK), coinvolta nelle vie del segnale del recettore per l’antigene dei linfociti B (BCR) e del recettore per le citochine. In questo caso sono state riportati danni tubulari acuti e nefrite tubulointerstiziale con elevati livelli di creatinina sierica, dovuti probabilmente ad un danno di tipo endoteliale [17].

Oltre al target farmacologico, anche la via di eliminazione può impattare sull’incidenza di tossicità renale. La maggior parte dei TKI presentano come principale via di eliminazione quella renale, favorendo l’accumulo di farmaco nei reni e quindi un maggiore rischio di tossicità a livello locale. Sorafenib, ad esempio, è un inibitore multi-target non selettivo con una ridotta tossicità renale, in parte dovuta al fatto che questo farmaco utilizza come via di eliminazione principale il sistema epatico/biliare. Un altro TKI con scarsa tossicità renale è l’imatinib, farmaco che presenta una elevata selettività di interferenza con la proteina di fusione BCR-ABL e che viene eliminato principalmente per via fecale. Tuttavia, anche per imatinib sono documentati casi di tossicità renale in letteratura, riconducibili a polimorfismi genetici che possono facilitare un maggiore accumulo cellulare del farmaco anche a livello renale [18]. Particolare attenzione va infatti posta nei confronti di polimorfismi a carico di proteine di trasporto di membrana, la cui variazione di espressione e di funzionalità condiziona la capacità del farmaco di accumularsi nella cellula, con conseguenze clinicamente rilevanti sia in termini di efficacia del trattamento farmacologico sia in termini di rischi di comparsa di resistenze. Infatti i TKI presentano un assorbimento attivo, condizionato dai livelli di espressione e attività di specifiche pompe di influsso e di efflusso. Pertanto, una alterata espressione di trasportatori di membrana responsabili dell’attraversamento di membrana dei TKI può modificare significativamente la concentrazione intracellulare di TKI e quindi condizionare la capacità del farmaco di inibire enzimi tirosin chinasi con alterazioni clinicamente rilevanti del profilo di efficacia/sicurezza del farmaco stesso [19].

Principio attivo Targets farmacologici  

Indicazioni d’uso approvate EMA (anno di approvazione)

Tossicità renale
Axitinib VEGFR1/2/3, PDGFRβ

RCC (2012)

Proteinuria, Insufficienza renale
Cabozantinib VEGFR1/2/3, RET, Met, Kit,TrkB, Flt3, Axl, Tie2, ROS1

MTC (2014), RCC (2016), HCC (2016)

Proteinuria, insufficienza renale, lesione renale acuta, nefrite
Lenvatinib VEGFRs, FGFRs, PDGFR, Kit, RET

RCC (2016)

Insufficienza renale, urea ematica aumentata, necrosi tubulare renale

Regorafenib VEGFR1/2/3, BCR-Abl, B-Raf, B-Raf(V600E), Kit

CRC (2013), GIST (2013)

Proteinuria
Sunitinib VEGFR1/2/3, PDGFRα/β, Kit, Flt3 RCC (2006), GIST (2006) Insufficienza renale
Tivozanib VEGFR2 RCC (2017) Proteinuria
Vandetanib VEGFRs, EGFRs, RET, Brk, Tie2, MTC (2012) Insufficienza renale
Tabella I. Tossicità renale correlata al trattamento con TKI diretti contro il VEGFR.
Axl: anexelekto AXL receptor tyrosine kinase; BCR-Abl: breakpoint cluster region-Tyrosine-protein kinase ABL1; B-Raf: v-raf murine sarcoma viral oncogene homolog B1;Brk: Breast tumor kinase Tyrosine-protein kinase; CRC: Colorectal cancer; EGFRs: Epidermal Growth Factor Receptors.;Fms: Feline McDonough Sarcoma;Flt3: fms related receptor tyrosine kinase 3; GIST: Gastrointestinal stromal tumor; HCC: Hepatocellular carcinoma; Kit: Stem cell growth factor receptor; Lck: lymphocyte-specific protein tyrosine kinase; Met: MET proto-oncogene, receptor tyrosine kinase; MTC: Medullary thyroid cancer; PDGFRβ: Platelet-Derived Growth Factor Receptor beta; Ph+ CML: Philadelphia chromosome-positive chronic myeloid leukemia; RCC: Renal cell carcinoma; RET: REarranged during Transfection ;ROS1: Proto-oncogene 1 receptor; Tie2: Angiopoietin 1 receptor ;TrkB: Tyrosine Kinase B receptor ;VEGFR: vascular Endothelial Growth Factor Receptor.

 

Conclusioni

La scelta terapeutica del TKI più adatto deve essere effettuata con attenzione, tenendo conto della salute generale del paziente, delle comorbidità, e con una particolare attenzione al grado di funzionalità renale. I dati di letteratura ad oggi disponibili suggeriscono l’importanza di monitorare la funzionalità renale ed evidenziare segni precoci di tossicità, che, se trascurati, possono portare a forme diverse di disfunzione d’organo, con un rischio particolarmente elevato di comparsa di proteinuria. La proteinuria TKI-dipendente è dovuta principalmente ad una alterata comunicazione tra cellule endoteliali e podociti a livello glomerulare. Il danno endoteliale conseguente all’esposizione a TKI può essere causa di una aumentata espressione compensatoria di fattori pro-angiogenici che, a loro volta, contribuiscono ad esacerbare l’insufficienza podocitaria. Una migliore comprensione dei meccanismi patogenetici alla base della tossicità renale dei TKI è fondamentale non solo per ottimizzare i protocolli di somministrazione dei TKI attualmente disponibili in clinica ma anche per poter progettare e sperimentare nuove molecole con profili di efficacia e sicurezza sempre migliori e in grado di limitare i rischi di farmacoresistenza, che possono condizionare gravemente la rilevanza clinica degli approcci farmacologici ad oggi disponibili in ambito chemioterapico.

 

Bibliografia

  1. Schlessinger, Cell signaling by receptor tyrosine kinases, Cell. 2000 Oct. https://doi.org/10.1016/S0092-8674(00)00114-8.
  2. E. Gorre, M. Mohammed, K. Ellwood, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification, Science. 2001 Jun. https://doi.org/10.1126/science.1062538.
  3. Tonooka, R. Ohashi, Current Trends in Anti-Cancer Molecular Targeted Therapies: Renal Complications and Their Histological Features, J. Nippon Med. Sch. 2022. https://doi.org/10.1272/jnms.JNMS.2022_89-221.
  4. E. Miller, N. Raab-Traub, The EGFR as a target for viral oncoproteins, Trends Microbiol. 1999 Nov. https://doi.org/10.1016/S0966-842X(99)01605-4.
  5. Blume-Jensen, T. Hunter, Oncogenic kinase signalling, Nature. 2001 May. https://doi.org/10.1038/35077225.
  6. Jiao, L. Bi, Y. Ren, et al. Advances in studies of tyrosine kinase inhibitors and their acquired resistance, Mol. Cancer. 2018 Feb. https://doi.org/10.1186/s12943-018-0801-5.
  7. J. Gotink, H.M.W. Verheul, Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action?, Angiogenesis. (2010). https://doi.org/10.1007/s10456-009-9160-6.
  8. Porta, L. Cosmai, M. Gallieni, et al. Renal effects of targeted anticancer therapies, Nat. Rev. Nephrol. 2015 Mar. https://doi.org/10.1038/nrneph.2015.15.
  9. P. Riechelmann, L.S. Leite, G.M. Bariani, et al. Regorafenib in Patients with Antiangiogenic-Naïve and Chemotherapy-Refractory Advanced Colorectal Cancer: Results from a Phase IIb Trial, Oncologist. 2019 Sep. https://doi.org/10.1634/theoncologist.2019-0067.
  10. Sato, M. Satouchi, S. Itoh, et al. Lenvatinib in patients with advanced or metastatic thymic carcinoma (REMORA): a multicentre, phase 2 trial, Lancet Oncol. 2020 Jun. https://doi.org/10.1016/S1470-2045(20)30162-5.
  11. Daehn, G. Casalena, T. Zhang, et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis, J. Clin. Invest. 2014 Mar. https://doi.org/10.1172/JCI71195.
  12. Bondeva, G. Wolf, Role of neuropilin-1 in diabetic nephropathy, J. Clin. Med. 2015 Jun. https://doi.org/10.3390/jcm4061293.
  13. A. Schumacher, U. Schlötzer-Schrehardt, S.A. Karumanchi, et al. WT1-Dependent sulfatase expression maintains the normal glomerular filtration barrier (Journal of the American Society of Nephrology 2011 Jul. 22, (1286-1296)), J. Am. Soc. Nephrol. (2011). https://doi.org/10.1681/ASN.2011-11-1128.
  14. Petit, D. Jin, S. Rafii, The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis, Trends Immunol. 2007 Jul. https://doi.org/10.1016/j.it.2007.05.007.
  15. Takashima, H. Fujita, H. Fujishima, et al. Stromal cell–derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy, Kidney Int. 2016 Jul. https://doi.org/10.1016/j.kint.2016.06.012.
  16. Maruyama, J. Chinda, T. Kuroshima, et al. Minimal change nephrotic syndrome associated with gefitinib and a successful switch to erlotinib, Intern. Med. 2015 Apr. https://doi.org/10.2169/internalmedicine.54.3661.
  17. Manohar, A. Bansal, R. Wanchoo, et al. Ibrutinib induced acute tubular injury: A case series and review of the literature, Am. J. Hematol. 2019 May. https://doi.org/10.1002/ajh.25546.
  18. Nambu, A. Hamada, R. Nakashima, et al. Association of SLCO1B3 polymorphism with intracellular accumulation of imatinib in leukocytes in patients with chronic myeloid leukemia, Biol. Pharm. Bull. 2011 Jan. https://doi.org/10.1248/bpb.34.114.
  19. L. Beretta, G. Cassinelli, M. Pennati, et al. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents, Eur. J. Med. Chem. 2017 Dec. https://doi.org/10.1016/j.ejmech.2017.07.062.