Classificazione e gestione clinica delle gammopatie monoclonali a significato renale

Abstract

Le gammopatie monoclonali di significato renale (MGRS) sono un gruppo complesso di patologie caratterizzate dalla produzione di proteine ​​monoclonali aberranti che interagiscono con le strutture renali, causando danni ai tessuti. A differenza delle forme neoplastiche, il danno renale nella MGRS non è correlato alla massa del clone o ai livelli circolanti di proteina monoclonale.

Questo manoscritto esplora l’eterogeneità delle proteine ​​monoclonali coinvolte, che variano dalle immunoglobuline complete alle catene leggere libere (FLC), e il modo in cui determinano uno spettro di lesioni renali con prognosi diverse. Approfondiremo inoltre le sfide diagnostiche, sottolineando il ruolo indispensabile della biopsia renale, comprese tecniche avanzate come la microdissezione laser e la spettrometria di massa (LMD/MS) per la caratterizzazione dei depositi, in particolare in casi ambigui o complessi. Vengono inoltre discusse considerazioni sulla gestione clinica e sul trattamento, inclusa la necessità dell’identificazione dei cloni.

Parole chiave: Discrasie plasmacellulari, Gammopatia monoclonale, Gammopatie monoclonali di significato renale, Biopsia renale

Classificazione delle MGRS

Le gammopatie monoclonali di significato renale (MGRS) sono definite dalla presenza di una proteina monoclonale che direttamente o indirettamente interagisce con le strutture renali, portando a danno tissutale. Il danno renale è esclusivamente espressione delle caratteristiche chimico-fisiche della proteina monoclonale. La massa del clone e la quantità di proteina monoclonale immessa nel circolo non influenzano il danno renale, contrariamente a quanto osservato nelle forme neoplastiche. Per tali motivi, i cloni responsabili delle MGRS hanno caratteristiche pre-neoplastiche o non neoplastiche. Infatti, le MGRS si caratterizzano per una sopravvivenza generale superiore alle forme neoplastiche (escluse alcune forme quali l’amiloidosi ad immunoglobuline), ma ciò che le contraddistingue è una sopravvivenza renale sensibilmente ridotta [1]. 

La produzione di proteine monoclonali aberranti è varia e può includere immunoglobuline complete (L+H chains), immunoglobuline con eccessiva produzione di catene leggere libere (free light chain (FLC)), esclusivamente FLC, oppure immunoglobuline incomplete (catene pesanti e leggere non integrate in una singola immunoglobulina, ma separate). Questa eterogeneità di proteine monoclonali è responsabile di un caleidoscopio di lesioni renali, la cui prevalenza è più o meno rara e talvolta unica.

Le caratteristiche chimico-fisiche della proteina monoclonale e la sede prevalente di danno renale sono responsabili di una prognosi renale che è differente tra i pattern istologici noti. Ad esempio, pazienti affetti da light chain deposition disease (LCDD) hanno una prognosi renale sensibilmente inferiore se paragonati agli affetti da glomerulonefrite proliferativa con depositi monoclonali di IgG (proliferative glomerulonephritis with monoclonal IgG deposits (PGNMID)), rispettivamente 57% e 17% di insufficienza renale terminale a 28 mesi di follow-up [1, 2].

Definite dall’International Kidney and Myeloma Group (IKMG) nel 2012, le MGRS possono essere classificate secondo criteri di danno diretto o indiretto della proteina monoclonale coinvolta e ulteriormente stratificate per caratteristiche dei depositi alla microscopia elettronica (Figura 1) [3].

Figura 1. Classificazione eziopatologica delle MGRS.
Figura 1. Classificazione eziopatologica delle MGRS.

Il danno diretto è dimostrabile documentando la restrizione monoclonale dei depositi all’immunofluorescenza (IF) /immunoistochimica (IHC) della biopsia renale; esempio più frequente è la positività all’IF esclusivamente per una catena leggera, anti-kappa o anti-lambda. L’assenza di restrizione monoclonale ed il sospetto clinico deve portare all’esecuzione dell’immunofluorescenza su tessuto paraffinato (non “a fresco”) con tecniche immunoenzimatiche, più efficaci nello smascherare gli epitopi delle catene leggere monoclonali.

I depositi possono essere suddivisi in organizzati o amorfi in relazione alla presenza o meno di una organizzazione quaternaria della proteina monoclonale in polimeri disfunzionali (e.g., fibrille, tubuli) o cristalli. Tale classificazione è possibile esclusivamente con l’osservazione dei depositi con il microscopio elettronico a trasmissione. 

Il danno indiretto è di più complessa definizione in quanto la proteina monoclonale non si osserva direttamente in sede tessutale.

Danno diretto: forme a depositi organizzati

  • Amiloidosi ad Immunoglobuline. Si definisce per la formazione di depositi di fibrille non orientate, di diametro compreso tra i 7 e i 13 nm, caratteristicamente positive alla colorazione Rosso Congo (con birifrangenza verde mela alla luce polarizzata) e alla Tioflavina T.  È una forma sistemica di amiloidosi, con maggiore interessamento renale, cardiaco e midollare. In sede renale, tutte le strutture possono essere interessate, con differenti presentazioni cliniche quali sindrome nefrosica (depositi in sede mesangiale e nell’ansa capillare in sede subendoteliale, intramembranosa e subepiteliale), insufficienza renale (interessamento interstiziale o vascolare), o entrambe. I depositi non causano reazione infiammatoria; differentemente da quanto osservato in altre patologie a depositi organizzati, la microscopia ottica non si caratterizza per un quadro di glomerulonefrite membranoproliferativa (MPGN). L’amiloidosi ad immunoglobuline rappresenta il 43% delle diagnosi di MGRS e tra queste è la condizione con la peggiore prognosi, specialmente quanto la presentazione sistemica è già clinicamente significativa (in tal caso, la sopravvivenza mediana è di 8,4 mesi) [4, 5]. I depositi di amiloide sono monotipici per l’immunoglobulina o per la sua porzione coinvolta. Distinguiamo tre sottotipi alla luce dello studio in immunofluorescenza o immunoistochimica: amiloidosi AL (singola catena leggera, kappa o lambda), AH (singola catena pesante) e ALH (immunoglobulina completa). Talvolta, la restrizione monoclonale dei depositi è di difficile interpretazione per il mascheramento degli epitopi; pertanto, le tecniche immunoenzimatiche (e.g., Pronase®) su paraffinato sono più sensibili.
  • Glomerulonefrite crioglobulinemica (tipo I). La forma di tipo I di crioglobulinemia si caratterizza per la presenza in circolo di una proteina monoclonale (IgG o IgM) che precipita nel siero e nel plasma a temperature inferiori ai 37 °C; le altre due forme descritte (tipo II e tipo III) presentano le medesime caratteristiche fisiche, ma contrariamente alla forma di tipo I precipitano con altre immunoglobuline non patologiche. Queste ultime sono note come crioglobulinemie “miste” in quanto i depositi presentano nel tipo II una IgM monoclonale con attività di fattore reumatoide diretta contro Ig policlonali (IgG, IgA), mentre nel tipo III depositi di IgG policlonali e IgM policlonali. Essendo una patologia dei piccoli vasi, essa assume una rilevanza sistemica con interessamento multiorgano (in primis cardiaco, neurologico, gastroenterico, cutaneo, articolare). Nei glomeruli, i depositi possono interessare tutte le sedi (mesangiale, subendoteliale, intramembranosa e subepiteliale) con aspetti talvolta grossolani in sede subendoteliale a formare “pseudotrombi” di immunoglobuline, monoclonali all’immunofluorescenza; i depositi sono flogogeni e cronicamente generano un pattern glomerulare tipo MPGN. Alla microscopia elettronica i depositi mostrano microtubuli di diametro superiore ai 40 nm, con o senza spazio vuoto centrale [6].
  • Glomerulonefrite fibrillare. È una patologia limitata al rene che si caratterizza per la presenza di depositi di fibrille con andamento non ordinato simile all’amiloidosi, ma con diametri superiori (16-25 nm). La negatività per il rosso congo e la positività della DnaJ heat shock protein family (Hsp40) member B9 (DNAJB9) sono le caratteristiche istologiche salienti; quest’ultima, descritta nel 2018, è altamente sensibile e specifica per la glomerulonefrite fibrillare, non essendo descritte altre forme ad esso positive di depositi organizzati o amorfi [7].
  • Glomerulonefrite da immunotattoidi. Questa rara forma di MPGN a depositi organizzati si caratterizza per fasci ordinati di microtubuli di diametro superiore ai 25 nanometri. I depositi sono caratteristicamente negativi per rosso congo, tioflavina T e DNAJB9. La patologia è limitata al rene e non sono dimostrabili crioprecipitati nel siero e nel plasma; pertanto l’assenza di manifestazioni cliniche sistemiche è il principale elemento di distinzione con le crioglobulinemie, essendo l’organizzazione dei depositi simile [6]. La forma monoclonale è infrequente se paragonata alla forma policlonale che si associa ad autoimmunità (e.g., lupus eritematoso sistemico) e infezioni croniche (e.g., epatiti virali). Tuttavia, la forma monoclonale si associa soventemente a forme pre-neoplastiche o neoplastiche linfoplasmocitoidi (e.g., leucemia linfatica cronica, CLL) [8].

Depositi cristallini

Seppur raro, ogni struttura renale coinvolta nel transito di catene leggere monoclonali (in particolare Kappa) può essere interessata dalla formazione di inclusi intracellulari (in particolare lisosomiali) con struttura cristallina. Essendo le strutture renali più esposte il tubulo prossimale, l’interstizio peritubulare (istiociti), e il glomerulo (podociti), queste possono sviluppare depositi intracitoplasmatici di cristalli con restrizione monoclonale rispettivamente note come tubulopatia prossimale da catene leggere, l’istiocitosi a depositi cristallini di catene leggere e la podocitopatia da cristalli. Le ultime due sono forme rare per cui, vista la similitudine del danno istologico alla microscopia ottica ed elettronica, si ipotizza una comune eziopatogenesi legata alla resistenza alla degradazione in sede lisosomiale del cristallo.

  • Tubulopatia prossimale da catene leggere (a depositi cristallini o amorfi). Il quadro renale più frequentemente osservato in questa categoria di lesioni istologiche consiste nella tubulopatia prossimale da catene leggere, variante cristallina. Essa si caratterizza per la presenza di inclusioni cristalline in sede lisosomiale a carico delle cellule tubulari prossimali, positive per kappa all’immunofluorescenza. Raramente, tali inclusioni non raggiungono un’organizzazione cristallina e permangono amorfe [9]. Ad oggi, il danno tubulare è chiarito da due meccanismi: 1) biochimico, secondario all’intrinseca resistenza delle mutazioni acquisite dal clone (sottogruppo VK1 della catena kappa monoclonale) [10]; 2) meccanico, secondario alla lisi delle membrane cellulari causato dai cristalli. L’elevato stress ossidativo intracitoplasmatico generato dalla persistenza dei cristalli in sede citoplasmatica porta ad apoptosi o necrosi della cellula tubulare prossimale [11]. Questo peculiare quadro istologico si caratterizza clinicamente per lo sviluppo di sindrome di Fanconi completa (glicosuria normoglicemica, acidosi tubulare prossimale, ipouricemia, aminoaciduria, ipofosfatemia), insufficienza renale e proteinuria di modesta entità.

Danno diretto: forme a depositi non organizzati

  • Malattie a deposizione di immunoglobuline monoclonali (MIDDs). Si definisce MIDDs un gruppo di patologie caratterizzate dalla precipitazione di una porzione o una immunoglobulina completa in sede di membrana basale glomerulare, tubulare e vascolare in depositi definiti di tipo “Randall” o “a grani di pepe”, che appaiono lineari all’immunofluorescenza e caratteristicamente granulari alla microscopia elettronica. Lo stimolo immunogeno si estrinseca in una espansione mesangiale (proliferazione + matrice) che determina un quadro glomerulopatia nodulare con aspetti di MPGN. In relazione alle caratteristiche dell’immunoglobulina monoclonale, possiamo distinguere tre tipi di MIDD: malattia da deposizione di catene leggere (LCDD), di catene pesanti (HCDD), di catene pesanti e leggere (LHCDD). La LCDD rappresenta circa l’80% di tutte le forme di MIDD, generalmente di tipo kappa (>70% di tutte le forme). È generalmente una forma limitata al rene.
  • Glomerulonefrite proliferativa a deposizione di immunoglobuline monoclonali (PGNMID). Tale condizione si caratterizza per la presenza di depositi granulari in sede esclusivamente glomerulare (preminentemente mesangiale e subendoteliale) con monoclonalità IgG3 kappa. La patologia è tipicamente limitata al rene. I depositi sono amorfi e non hanno caratteristiche peculiari. L’effetto pro-flogogeno dei depositi e la sede sono responsabili di un quadro di MPGN. Tuttavia, nonostante la floridità del quadro infiammatorio glomerulare, in >60% dei casi non si osserva una proteina monoclonale nel siero o nelle urine. Il riscontro di monoclonalità è sfavorevole in quanto associato con un maggiore rischio di evoluzione verso l’insufficienza renale terminale e “recurrence” su trapianto [12].
  • Forme similari ai pattern primitivi o secondari policlonali. Raramente le proteine monoclonali presentano affinità verso lo stesso epitopo degli anticorpi policlonali causa di alcune forme di nefropatia immuno-mediata. Alcuni esempi sono: 1) glomerulonefrite membranosa IgG3 Kappa positiva, descritta nel 2012, sovrapponibile ad una forma primitiva se non per la restrizione dei depositi verso una monoclonalità IgG3 Kappa e la recidiva su trapianto, atipica nelle forme policlonali [13]; 2) malattia da anticorpi anti-membrana basale glomerulare, monoclonale, IgA1 kappa, descritta nel 2005, caratterizzata da recidive nel tempo, diversamente dalle forme policlonali che si caratterizzano per una singola presentazione [14]; 3) nefropatia a depositi monotipici di IgA (IgA kappa), che nella più estesa esperienza pubblicata in letteratura può essere espressione di due pattern a depositi monoclonali di IgA, ovvero la alfa-HCDD o la IgA-PGNMID [15].

Danno indiretto

In questo gruppo rientrano i danni istologici renali in cui la proteina monoclonale non si osserva direttamente in sede tessutale ma, stabilizzando a monte la via alterna del complemento, essa è causa indiretta di: 1) consumo del C3 e cofattori per stabilizzazione della C3 convertasi in fase liquida, con deposizione di frammenti nelle strutture glomerulari (glomerulopatia da deposizione di C3, che include la glomerulonefrite a depositi di C3 (C3GN) e la malattia da depositi densi (DDD)), oppure 2) un danno citotossico secondario alla stabilizzazione della C3 convertasi in fase solida in sede endoteliale che si configura istologicamente e clinicamente con un danno microangiopatico (condizione nota a livello sistemico come sindrome emolitico-uremica complemento-mediata).

In letteratura sono riportati diversi epitopi cui le immunoglobuline monoclonali sono state descritte essere affini: 1) anticorpi anti-C3 convertasi della via alterna (APC3C) e anti-C5 convertasi, chiamati “fattori nefritogeni”; 2) anti fattore H, particolarmente interessanti dal punto di vista patogenetico in quanto in relazione al dominio coinvolto possono essere responsabili di forme patologiche differenti. Infatti, 1) se l’epitopo bersaglio è un dominio in sede carbossi-terminale (SCR 19-20), potremmo osservare una sindrome emolitico-uremico complemento mediata per stabilizzazione della APC3C in fase solida endoteliale mentre, 2) se diretti verso i domini amino-terminali (SCR1-4), si potrebbe osservare una stabilizzazione della APC3C della fase liquida con consumo massivo di C3 e fattori regolatori della via alterna; questi, depositandosi in sede glomerulare, originano delle forme proliferative glomerulari quali la C3GN e la DDD; 3) anti fattore B, che stabilizza la APC3C nella fase liquida, generando pattern tipo C3GN/DDD [16].

 

Management delle MGRS

Quando dovrebbe essere presa in considerazione la diagnosi di MGRS?

Le manifestazioni cliniche in corso di MGRS dipendono essenzialmente dal segmento del nefrone interessato dal processo patogenetico. L’interessamento glomerulare è caratterizzato da proteinuria di entità variabile (dalla proteinuria sub-nefrosica fino alla sindrome nefrosica conclamata) talora in associazione con microematuria (specialmente in presenza di lesioni glomerulari con aspetti proliferativi endocapillari o extracapillari). Il declino della funzione renale può essere osservato, con caratteristiche cliniche variabili dalla malattia renale cronica fino all’insufficienza renale rapidamente evolutiva. In presenza di una principale localizzazione tubulare del danno diretto o indiretto secondario alla proteina M, il quadro clinico è caratterizzato dal riscontro di elementi suggestivi di disfunzione tubulare: basso peso specifico urinario, glicosuria normoglicemica, iperfosfaturia con conseguente ipofosfatemia, proteinuria tubulare, aminoaciduria, iperuricosuria e perdita urinaria di bicarbonato. L’insieme di tali reperti identifica la sindrome di Fanconi: la presenza esclusivamente di alcuni di essi delinea una condizione di sindrome di Fanconi incompleta. Pertanto, una diagnosi di MGRS dovrebbe essere presa in considerazione in ogni paziente con manifestazioni cliniche indicative di malattia renale (comprendendo tutto lo spettro di sindrome cliniche nefrologiche) associate alla presenza di una proteina M. Il sospetto clinico di MGRS aumenta in assenza di altre condizioni cliniche potenzialmente responsabili di un danno renale (diabete mellito, ipertensione e aterosclerosi). Nella casistica della Mayo Clinic i principali fattori clinici associati ad un incremento della probabilità di porre diagnosi di MGRS in pazienti affetti da gammopatia monoclonale e sottoposti a biopsia renale sono risultati essere: presenza di proteinuria > 1,5 nelle 24 ore, presenza di microematuria e riscontro di un rapporto FLC kappa/FLC lambda alterato [4]. Una condizione di MGRS dovrebbe essere presa in considerazione anche nei pazienti con diagnosi istologica di C3 glomerulopathy o TMA, specie in soggetti di età superiore a 50 anni: i dati provenienti dalle casistiche della Mayo Clinic mostrano una prevalenza di gammopatia monoclonale nel 65% dei soggetti con età superiore a 50 anni e diagnosi istologica di C3G [17] e nel 21% dei soggetti di pari età con diagnosi istologica di TMA [18]. Manifestazioni extrarenali sono comuni nell’amiloidosi AL e nella MIDD, con il cuore e il fegato che rappresentano gli organi più frequentemente colpiti. Nella crioglobulinemia di tipo 1, la cute è l’organo più frequentemente colpito.

La diagnosi di MGRS si basa su due fasi di fondamentale importanza: 1) l’identificazione della proteina M circolante; 2) la dimostrazione di una correlazione causale tra la proteina M circolante e l’anomalia renale osservata, il cui strumento diagnostico fondamentale è la biopsia renale. 

Identificazione della componente monoclonale

Tipicamente, una condizione di MGRS è caratterizzata da bassi livelli di proteina M circolante che riflettono le piccole dimensioni del clone B-cellulare o plasmacellulare sottostante. Con un limite di rilevamento di 500-2000 mg/l, l’elettroforesi delle proteine ​​sieriche (SPE) ha una sensibilità insufficiente per rilevare livelli bassi di proteina M circolante, in particolare nel caso in cui questa sia costituita da catene leggere libere (FLC) in considerazione della loro emivita inferiore rispetto alle Ig intatte: in oltre il 50% dei casi di amiloidosi AL l’elettroforesi delle proteine sieriche non è in grado di rilevare la presenza di una componente monoclonale [19]. L’immunofissazione sierica (IFE) presenta una sensibilità circa 10 volte maggiore rispetto a quella della SPE, tuttavia in una proporzione elevata di casi il rilevamento della proteina M richiede l’esecuzione di immunofissazione urinaria e/o la determinazione delle catene leggere libere nel siero.

Il principio su cui si basano i test per la determinazione delle sFLC utilizza anticorpi diretti contro epitopi esposti nelle catene leggere “libere” ma nascosti nelle immunoglobuline intatte. Questo test fornisce una misurazione quantitativa delle FLC sia κ che λ con una sensibilità < 5 mg/l e il calcolo del rapporto κ/λ può dimostrare una sintesi di catene leggere sbilanciata, suggerendo la presenza di una gammopatia monoclonale. Gli studi che valutano le prestazioni diagnostiche di questo test hanno documentato il rilevamento di rapporti κ/λ anormali nel 76-98% dei pazienti con amiloidosi AL e nel 92-100% dei pazienti con LCDD [19, 20]. Da più di 10 anni, la quantificazione delle sFLC viene eseguita mediante un test immunonefelometrico basato su anticorpi policlonali (Freelite®, The Binding Site, Birmingham, UK). Negli ultimi anni, nuovi test basati su anticorpi monoclonali sono entrati nella pratica clinica. Il test Freelite FLC e uno dei nuovi test (N Latex FLC assay®, Siemens Healthcare Diagnostic Products GmbH, Marburg, Germania) sembrano avere prestazioni diagnostiche simili, sebbene i dati attuali indichino che non sono intercambiabili, soprattutto nel monitoraggio della risposta alla terapia. Gli intervalli di riferimento per le FLC sieriche di Freelite sono stati definiti da Katzmann et al. (intervallo normale κ: 3,3-19,4 mg/l; λ: 5,7-26,3 mg/l; rapporto κ/λ: 0,26-1,65) [21]. Poiché le FLC vengono filtrate dal glomerulo e metabolizzate nei tubuli prossimali, è necessaria cautela nell’interpretare questo test nel contesto dell’insufficienza renale. Quando la velocità di filtrazione glomerulare (GFR) diminuisce significativamente, la rimozione delle FLC mediante pinocitosi reticoloendoteliale diventa più importante, con conseguente prolungamento dell’emivita delle FLC e aumento policlonale delle FLC sia κ che λ. Nei pazienti con GFR normale, l’aumentata produzione fisiologica di LC policlonali κ (peso molecolare (MW) 22,5 kDa) è mascherata dalla più rapida eliminazione di queste LC monomeriche rispetto alle LC λ dimeriche e quindi di maggior dimensioni (MW 45-50 kDa). Poiché la capacità differenziale di eliminare le LC κ e λ da parte del rene viene persa con il deterioramento della funzione renale, il rapporto κ/λ può aumentare leggermente e, per questo motivo, l’adattamento dell’intervallo normale a 0,37-3,17 aumenta l’affidabilità del test FLC Freelite nei pazienti con insufficienza renale [22]. Al contrario, quando si utilizza il test N Latex FLC, non è necessario un intervallo di riferimento renale separato poiché il rapporto κ/λ nei pazienti con malattia renale non differisce dai valori normali nei controlli sani.

Biopsia renale

La biopsia renale è fondamentale per la diagnosi di MGRS al fine di determinare se la proteina M è uno spettatore innocente o la causa della sindrome clinica nefrologica. L’esame del campione bioptico non può prescindere da studi di immunofluorescenza (IF), immunoistochimici (IHC) e microscopia elettronica (EM) per identificare la composizione del deposito e il modello di organizzazione ultrastrutturale. A questo proposito, è importante sottolineare il ruolo dell’EM, che dovrebbe far parte del work-up standard, in quanto unico strumento in grado di porre diagnosi di FGN, ITG, CG di tipo 1 e LCPT. In casi selezionati, può rendersi necessario il ricorso a tecniche più sofisticate come microscopia elettronica in immunogold o analisi proteomica tramite microdissezione laser e spettrometria di massa (LMD/MS) per caratterizzare le proteine ​​componenti di depositi densi. LMD/MS non è solo considerato il gold standard per tipizzazione accurata dell’amiloidosi, ma si è rivelata estremamente utile anche per la corretta diagnosi e comprensione di altre MGRS. L’utilizzo di queste tecniche avanzate può richiedere l’invio del campione bioptico a un centro specializzato ed è quindi solitamente riservato a risultati equivoci o casi difficili.

Work-up ematologico

In un contesto di MGRS definita o sospetta, il ruolo dell’ematologo e degli ematopatologi è volto all’identificazione clonale, aspetto fondamentale per la gestione terapeutica dei pazienti con MGRS. L’identificazione clonale è essenziale poiché uno stesso quadro istologico renale può essere espressione di condizioni ematologiche differenti, con diverso trattamento e diversa prognosi.  Da notare che, sebbene un clone patologico possa essere identificato praticamente in ogni paziente con amiloidosi AL o MIDD, tali cloni sono spesso difficili da rilevare in altre forme di MGRS. Ad esempio, la possibilità di identificare il clone patologico scende al di sotto del 17% per i pazienti che non hanno un’immunoglobulina monoclonale rilevabile negli studi di immunofissazione, e solo il 20-30% dei pazienti con PGNMID ha un’immunoglobulina monoclonale rilevabile in circolo [23].

Poiché il trattamento varia a seconda del fatto che il clone abbia una natura plasmocitaria o linfocitaria, scegliere l’agente giusto è difficile se non è possibile identificare un clone. La valutazione ematologica richiede nella maggior parte dei pazienti l’esecuzione di aspirato e biopsia del midollo osseo, sebbene nei pazienti con cloni di leucemia linfatica cronica (CLL) la diagnosi potrebbe essere posta con l’utilizzo della citometria a flusso su sangue periferico. La valutazione morfologica dovrebbe includere la quantificazione della percentuale di plasmacellule (in presenza di plasmacellulari) e la valutazione della presenza di aggregati linfoidi o linfoplasmocitici atipici (in presenza di cloni linfocitari) nonché di depositi di amiloide. Inoltre, studi ausiliari – in particolare la immunofenotipizzazione con citometria a flusso, il rilevamento della malattia minima residua e la valutazione citogenetica e genetica dei cloni – sono utili per l’identificazione di piccoli cloni e per ricavare raccomandazioni terapeutiche.

Il pannello FISH (ibridazione fluorescente in situ) del mieloma ha dimostrato una crescente importanza nel guidare il trattamento dei pazienti con discrasie plasmacellulari. Ad esempio, i pazienti con amiloidosi AL con traslocazione t(11;14) hanno risposte inferiori alla terapia a base di bortezomib, mentre quelli con guadagno del cromosoma 1q21 mostrano risposte meno soddisfacenti al trattamento con melfalan più desametasone (rispetto ai pazienti senza queste varianti genetiche) [24]. Questi risultati evidenziano l’importanza di eseguire il pannello FISH per il mieloma su tutti i campioni bioptici del midollo osseo di pazienti con discrasia plasmacellulare. Se la valutazione del midollo osseo non rivela una malattia ematologica clonale, il passo successivo potrebbe essere quello di eseguire studi di imaging (come TC-total body, PET-CT) per cercare un plasmocitoma localizzato o una linfoadenopatia in linfoma di basso stadio e di basso grado [25]. Per i pazienti con sospetto di mieloma multiplo, è opportuno eseguire una TC total-body con specifiche scansioni per la ricerca di interessamento scheletrico [26]. Qualsiasi lesione sospetta dovrebbe essere sottoposta a biopsia e dovrebbe essere ottenuto materiale sufficiente per consentire studi diagnostici e prognostici. Nella misurazione della malattia residua minima è stata utilizzata la citometria a flusso di nuova generazione: questa tecnica potrebbe essere utile nei pazienti con sospetta MGRS che hanno risultati negativi alla citologia tradizionale o agli studi di citometria a flusso di campioni di midollo osseo.

Principi di terapia

Lo scopo del trattamento nella MGRS è preservare o migliorare la funzione renale con l’utilizzo di un approccio terapeutico mirato al clone di cellule B o plasmacellule responsabile della produzione della proteina M e del danno d’organo. Le evidenze attuali supportano fortemente la strategia della terapia diretta al clone, con il raggiungimento di una risposta ematologica completa quale obiettivo terapeutico finalizzato a ottenere un’adeguata risposta renale e prevenire la progressione del danno d’organo. I dati pubblicati da Sayed et al provenienti da una coorte di 53 pazienti affetti da LCDD mostrano come il raggiungimento una risposta ematologica (risposta completa o very good partial response) fosse associata ad una sopravvivenza renale nettamente superiore rispetto a quanto osservato in presenza di una risposta parziale o in assenza di risposta ematologica [27]. La scelta del protocollo terapeutico è espressione della natura del clone (plasamacellulare vs linfocitario), del metabolismo renale dei farmaci, della potenziale tossicità renale della terapia e della presenza di neuropatia nel paziente.

Discrasia plasmacellulare

In presenza di un clone di plasmacellule che producono IgG, IgA o LC (MGUS non IgM), deve essere presa in considerazione una terapia diretta all’eradicazione del clone di plasmacellule con agenti anti-mieloma. Il farmaco più importante nel trattamento della MGRS associata a un clone di plasmacellule è l’inibitore del proteasoma bortezomib. Bortezomib ha un metabolismo non renale e viene solitamente somministrato in combinazione con desametasone. Sono attualmente disponibili altri inibitori del proteasoma, ma bortezomib dispone dei dati più affidabili nel trattamento della MGRS. Cohen et al nel 2015 hanno pubblicato risultati relativi a 49 pazienti affetti da MIDD e trattati con regimi basati sull’utilizzo di bortezomib, mostrando il raggiungimento di una risposta renale in 26 casi: l’analisi multivariata identificava il raggiungimento di una risposta ematologica quale principale fattore associato all’ottenimento di una risposta renale [28]. Risultati analoghi sono stati riportati con l’utilizzo di bortezomib nel contesto di altre forme di MGRS, quali LCPT [29], PGNMID [12], C3 glomerulopathy [30]. Daratumumab è un anticorpo monoclonale umano IgGk anti-CD38 che ha dimostrato efficacia come agente singolo, o in combinazione con altri agenti, nel trattamento di pazienti con MM recidivante e di nuova diagnosi: negli ultimi anni un numero crescente di evidenze ha supportato l’utilizzo di tale molecola nel trattamento delle forme di MGRS associate alla presenza di un clone plasmacellulare. L’esperienza retrospettiva pubblicata dal gruppo di Kastritis nel 2020 ha analizzato i dati relativi a 25 pazienti trattati con daratumumab (20 casi di LCDD, 2 casi di HCDD, 2 casi di C3G e 1 caso di PGNMID): il 77% dei pazienti otteneva una risposta ematologica (48% dei casi risposta completa/very good partial remission) e il 55% dei pazienti mostrava a 6 mesi dall’inizio della terapia una riduzione della proteinuria > 30% con eGFR stabile [31]. Nel 2021 il gruppo della Mayo Clinic ha pubblicato i risultati di uno studio di fase II condotto su 11 pazienti affetti da PGNMID: il trattamento con daratumumab determinava una risposta renale, parziale o completa, in 10 pazienti dopo 12 mesi di follow-up [32].

Clone di cellule B con proteina M IgM

Poiché la MGUS IgM è rara, vi sono in letteratura poche evidenze che possano guidare la scelta del trattamento nella MGRS correlata alla proteina M di tipo IgM. Quando il clone midollare sottostante è un clone B-linfocitario o linfoplasmocitario IgM positivo che produce proteine ​​M ed esprime CD20, la terapia a base di rituximab (eventualmente in associazione con desametasone e ciclofosfoamide o bendamustina) è la prima scelta di trattamento. Il rituximab può essere somministrato in sicurezza senza modifiche della dose nei pazienti con funzionalità renale ridotta. Circa il 60% della ciclofosfamide viene eliminato attraverso i reni: gli studi descrivono un aumento dell’esposizione alla ciclofosfamide nei pazienti con malattia renale, tuttavia, gli aggiustamenti della dose in questi pazienti rimangono variabili in letteratura. La bendamustina non sembra alterare la farmacocinetica nell’insufficienza renale moderata, ma dati limitati suggeriscono aumenti di tossicità nei pazienti con GFR < 40 ml/min.

Risposta alla terapia

Nella MGRS, la valutazione della risposta ematologica al trattamento è cruciale perché la risposta renale dipende dalla risposta ematologica. Il tasso di risposta renale nell’amiloidosi AL è significativamente più alto nei pazienti con una soppressione > 90% della proteina M nefrotossica [33] e anche in corso di MIDD, il raggiungimento di una risposta ematologica completa ha mostrato benefici simili [34]. Nell’amiloidosi AL, la misurazione della sFLC è uno strumento essenziale per la valutazione di una risposta ematologica. I criteri di risposta utilizzati nell’amiloidosi AL sono riportati in Tabella 1; sembra logico utilizzare questi stessi criteri di risposta negli altri disturbi MGRS. L’uso del test sFLC per la risposta è stato suggerito per tutte le MGRS che coinvolgono solo LC. Nei casi di una proteina M non rilevabile o difficile da misurare, la risposta ematologica può essere valutata con esami ripetuti del midollo osseo utilizzando una citometria a flusso. In assenza di una componente monoclonale circolante e senza identificazione del clone cellulare, la GFR e la proteinuria possono essere gli unici parametri utilizzati per valutare l’attività della malattia.  È importante notare che la risposta renale è solitamente ritardata: nel lavoro pubblicato da Leung et al è stata necessaria una durata minima di 12 mesi di risposta ematologica prima che si osservasse l’insorgenza della risposta renale in pazienti con amiloidosi AL [35].

Risposta Criteri
Completa Normalizzazione dei livelli sierici di FLC e della ratio, immunofissazione sierica e urinaria negativa
Very good partial response Riduzione del dFLC < 40 mg/l
Paziale Riduzione del dFLC > 50%
Nessuna risposta Riduzione del dFLC < 50%
Progressione

In caso di CR, ricomparsa di proteine monoclonali su siero o urine o FLR ratio alterato In caso di PR, incremento della proteina M sierica del 50% (0,5 g/dl) o incremento della proteina

M urinaria del 50% (> 200 mg/die)

Incremento delle FLC > 50% (>100 mg/l)

Tabella 1. Valutazione della risposta ematologica in corso di MGRS (sulla base dei criteri IMWG per amiloidosi AL).

 

Bibliografia

  1. Pozzi C, D’Amico M, Fogazzi GB, et al. Light chain deposition disease with renal involvement: clinical characteristics and prognostic factors. Am J Kidney Dis. 2003 Dec;42(6):1154-63. https://doi.org/10.1053/j.ajkd.2003.08.040.
  2. Nasr SH, Satoskar A, Markowitz GS, et al. Proliferative glomerulonephritis with monoclonal IgG deposits. J Am Soc Nephrol. 2009 Sep;20(9):2055-64. https://doi.org/10.1681/ASN.2009010110.
  3. Leung N, Bridoux F, Hutchison CA, et al; International Kidney and Monoclonal Gammopathy Research Group. Monoclonal gammopathy of renal significance: when MGUS is no longer undetermined or insignificant. Blood. 2012 Nov 22;120(22):4292-5. https://doi.org/10.1182/blood-2012-07-445304.
  4. Klomjit N, Leung N, Fervenza F, et al. Rate and Predictors of Finding Monoclonal Gammopathy of Renal Significance (MGRS) Lesions on Kidney Biopsy in Patients with Monoclonal Gammopathy. J Am Soc Nephrol. 2020 Oct;31(10):2400-2411. https://doi.org/10.1681/ASN.2020010054.
  5. Skinner M, Anderson J, Simms R, et al. Treatment of 100 patients with primary amyloidosis: a randomized trial of melphalan, prednisone, and colchicine versus colchicine only. Am J Med. 1996 Mar;100(3):290-8. https://doi.org/10.1016/s0002-9343(97)89487-9.
  6. Alpers CE, Kowalewska J. Fibrillary glomerulonephritis and immunotactoid glomerulopathy. J Am Soc Nephrol. 2008 Jan;19(1):34-7. https://doi.org/10.1681/ASN.2007070757.
  7. Dasari S, Alexander MP, Vrana JA, et al. DnaJ Heat Shock Protein Family B Member 9 Is a Novel Biomarker for Fibrillary GN. J Am Soc Nephrol. 2018 Jan;29(1):51-56. https://doi.org/10.1681/ASN.2017030306.
  8. Rago A, Pettorini L, Andriani A, et al. Immunotactoid glomerulopathy and chronic lymphocytic leukemia: The need for a multidisciplinary approach. EJHaem. 2022 Dec 13;4(1):266-268. https://doi.org/10.1002/jha2.592.
  9. Angioi A, Amer H, Fervenza FC, et al. Recurrent Light Chain Proximal Tubulopathy in a Kidney Allograft. Am J Kidney Dis. 2016 Sep;68(3):483-7. https://doi.org/10.1053/j.ajkd.2016.04.021.
  10. Leboulleux M, Lelongt B, Mougenot B, et al. Protease resistance and binding of Ig light chains in myeloma-associated tubulopathies. Kidney Int. 1995 Jul;48(1):72-9. https://doi.org/10.1038/ki.1995.269.
  11. Sirac C, Batuman V, Sanders PW. The Proximal Tubule Toxicity of Immunoglobulin Light Chains. Kidney Int Rep. 2021 Mar 3;6(5):1225-1231. https://doi.org/10.1016/j.ekir.2021.02.026.
  12. Gumber R, Cohen JB, Palmer MB, et al. A clone-directed approach may improve diagnosis and treatment of proliferative glomerulonephritis with monoclonal immunoglobulin deposits. Kidney Int. 2018 Jul;94(1):199-205. https://doi.org/10.1016/j.kint.2018.02.020.
  13. Debiec H, Hanoy M, Francois A, et al. Recurrent membranous nephropathy in an allograft caused by IgG3κ targeting the PLA2 receptor. J Am Soc Nephrol. 2012 Dec;23(12):1949-54. https://doi.org/10.1681/ASN.2012060577.
  14. Borza DB, Chedid MF, Colon S, et al. Recurrent Goodpasture’s disease secondary to a monoclonal IgA1-kappa antibody autoreactive with the alpha1/alpha2 chains of type IV collagen. Am J Kidney Dis. 2005 Feb;45(2):397-406. https://doi.org/10.1053/j.ajkd.2004.09.029.
  15. Vignon M, Cohen C, Faguer S, et al. The clinicopathologic characteristics of kidney diseases related to monotypic IgA deposits. Kidney Int. 2017 Mar;91(3):720-728. https://doi.org/10.1016/j.kint.2016.10.026.
  16. Angioi A, Fervenza FC, Sethi S, et al. Diagnosis of complement alternative pathway disorders. Kidney Int. 2016 Feb;89(2):278-88. https://doi.org/10.1016/j.kint.2015.12.003.
  17. Ravindran A, Fervenza FC, Smith RJH, et al. C3 glomerulopathy associated with monoclonal Ig is a distinct subtype. Kidney Int. 2018 Jul;94(1):178-186. https://doi.org/10.1016/j.kint.2018.01.037.
  18. Ravindran A, Go RS, Fervenza FC, et al. Thrombotic microangiopathy associated with monoclonal gammopathy. Kidney Int. 2017 Mar;91(3):691-698. https://doi.org/10.1016/j.kint.2016.09.045.
  19. Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995 Jan;32(1):45-59.
  20. Lachmann HJ, Gallimore R, Gillmore JD, et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br J Haematol. 2003 Jul;122(1):78-84. https://doi.org/10.1046/j.1365-2141.2003.04433.x.
  21. Katzmann JA, Abraham RS, Dispenzieri A, et al. Diagnostic performance of quantitative kappa and lambda free light chain assays in clinical practice. Clin Chem. 2005 May;51(5):878-81. https://doi.org/10.1373/clinchem.2004.046870.
  22. Hutchison CA, Plant T, Drayson M, et al. Serum free light chain measurement aids the diagnosis of myeloma in patients with severe renal failure. BMC Nephrol. 2008 Sep 22;9:11. https://doi.org/10.1186/1471-2369-9-11.
  23. Bhutani G, Nasr SH, Said SM, et al. Hematologic characteristics of proliferative glomerulonephritides with nonorganized monoclonal immunoglobulin deposits. Mayo Clin Proc. 2015 May;90(5):587-96. https://doi.org/10.1016/j.mayocp.2015.01.024.
  24. Muchtar E, Dispenzieri A, Kumar SK, et al. Interphase fluorescence in situ hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category. Leukemia. 2017 Jul;31(7):1562-1569. https://doi.org/10.1038/leu.2016.369.
  25. Bridoux F, Leung N, Hutchison CA, et al; International Kidney and Monoclonal Gammopathy Research Group. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int. 2015 Apr;87(4):698-711. https://doi.org/10.1038/ki.2014.408.
  26. Chantry A, Kazmi M, Barrington S, et al; British Society for Haematology Guidelines. Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol. 2017 Aug;178(3):380-393. https://doi.org/10.1111/bjh.14827.
  27. Sayed RH, Wechalekar AD, Gilbertson JA, et al. Natural history and outcome of light chain deposition disease. Blood. 2015 Dec 24;126(26):2805-10. https://doi.org/10.1182/blood-2015-07-658872.
  28. Cohen C, Royer B, Javaugue V, et al. Bortezomib produces high hematological response rates with prolonged renal survival in monoclonal immunoglobulin deposition disease. Kidney Int. 2015 Nov;88(5):1135-43. https://doi.org/10.1038/ki.2015.201.
  29. Wu X, Zhang L, Feng J, et al. Bortezomib-based chemotherapy can improve renal and tubular functions in patients with light chain-associated Fanconi syndrome. Ann Hematol. 2019 May;98(5):1095-1100. https://doi.org/10.1007/s00277-018-3572-6.
  30. Chauvet S, Frémeaux-Bacchi V, Petitprez F, et al. Treatment of B-cell disorder improves renal outcome of patients with monoclonal gammopathy-associated C3 glomerulopathy. Blood. 2017 Mar 16;129(11):1437-1447. https://doi.org/10.1182/blood-2016-08-737163.
  31. Kastritis E, Theodorakakou F, Roussou M, et al. Daratumumab-based therapy for patients with monoclonal gammopathy of renal significance. Br J Haematol. 2021 Apr;193(1):113-118. https://doi.org/10.1111/bjh.17052.
  32. Zand L, Rajkumar SV, Leung N, et al. Safety and Efficacy of Daratumumab in Patients with Proliferative GN with Monoclonal Immunoglobulin Deposits. J Am Soc Nephrol. 2021 May 3;32(5):1163-1173. https://doi.org/10.1681/ASN.2020101541.
  33. Pinney JH, Lachmann HJ, Bansi L, et al. Outcome in renal Al amyloidosis after chemotherapy. J Clin Oncol. 2011 Feb 20;29(6):674-81. https://doi.org/10.1200/JCO.2010.30.5235.
  34. Hassoun H, Flombaum C, D’Agati VD, et al. High-dose melphalan and auto-SCT in patients with monoclonal Ig deposition disease. Bone Marrow Transplant. 2008 Sep;42(6):405-12. https://doi.org/10.1038/bmt.2008.179.
  35. Leung N, Dispenzieri A, Fervenza FC, et al. Renal response after high-dose melphalan and stem cell transplantation is a favorable marker in patients with primary systemic amyloidosis. Am J Kidney Dis. 2005 Aug;46(2):270-7. https://doi.org/10.1053/j.ajkd.2005.05.010.

PGNMID and anti-CD38 monoclonal antibody: a therapeutic challenge

Abstract

Monoclonal gammopathy of renal significance (MGRS) designates disorders induced by a monoclonal protein secreted by plasma cells or B-cell clones in patients who do not meet the diagnostic criteria for multiple myeloma or other B-cell malignancies. Proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID) is a form MGRS.

Until now, no guidelines to decide the best therapeutic approach to manage PGNMID exist, and most patients progress to End Stage Renal Disease (ESRD) without therapy. Recently, daratumumab has showed an acceptable improvement in proteinuria and renal function in patients with PGNMID.

We report the clinical outcome and the histological renal evolution and treatment complication of our patient, who was initially treated with a combination regimen including bortezomib, dexamethasone, and cyclophosphamide and then with anti-CD38 monoclonal antibody-based regimen.

Keywords: monoclonal gammopathy of renal significance, proliferative glomerulonephritis with monoclonal immunoglobulin deposits, histological evaluation, pharmacological therapies, case report

Ci spiace, ma questo articolo è disponibile soltanto in inglese.

Introduction

Monoclonal gammopathy of renal significance (MGRS) designates disorders induced by a monoclonal protein secreted by plasma cells or B-cell clones in patients who do not meet the diagnostic criteria for multiple myeloma or other B-cell malignancies. MGRS was defined by the Kidney and Monoclonal Gammopathy Research Group (IKMG) in 2012 [1] and is classified by the site of the dominant immunoglobulin deposition or even by the ultrastructural findings on renal biopsy. It is important to mention that while light chains and truncated heavy chains can affect all renal compartments, intact immunoglobulin molecules are limited to the glomerulus [12].

Renal damage due to nephrotoxic monoclonal immunoglobulin (MIg) or its light- or heavy-chain fragments include some disorders, such as cast nephropathy, amyloidosis, MIg deposition diseases, immunotactoid glomerulopathy, proliferative GN with monoclonal Ig deposits, light-chain proximal tubulopathy, and the rare entities of crystal-storing histiocytosis and crystalglobulinemia. C3 glomerulonephritis and Thrombotic Microangiopathy (TMA) due to dysregulation of the alternative complement pathway can be seen as a result of indirect mechanisms induced by immunoglobulins [2].

Proliferative glomerulonephritis with monoclonal immunoglobulin deposits (PGNMID) is a form of monoclonal gammopathy of renal significance (MGRS) often leading to end-stage kidney disease [3]. In 70% of cases no blood or bone marrow monoclonal immunoglobulins are detected [3].

In PGNMID, deposits are detected in the glomeruli, especially in mesangial and subendothelial space and occasionally in the subepithelial space [4]. In most patients, PGNMID is IgG3-driven, but it can also be IgA-driven or IgM-driven [5].

Plasma cell-derived PGNMID (usually IgG) is treated with bortezomib-based chemotherapy; B-cell-derived PGNMID is usually treated with a rituximab-based regimen [6]. The patients with PGNMID may have plasma cell clones that produce monoclonal proteins, which elicit inflammation. Recently daratumumab showed an acceptable improvement in proteinuria and renal function in patients with PGNMID [7].

Herein we report the clinical outcome and the histological renal evolution and treatment complication of our patient, who was initially treated with a combination regimen including bortezomib, dexamethasone, and cyclophosphamide and then with anti-CD38 monoclonal antibody.

 

Case report

We report the case of a 66-year-old white man with a history of JAK2 mutation-negative essential thrombocythemia, on cytoreductive therapy with anagrelide, who presented with proteinuria in the nephrotic range. At presentation urinalysis showed 40 RBCs/μL, albuminuria 100 mg/dl and proteinuria 4.3 gr/day. Serum creatinine was 1.8 mg/dL, calcium 8.7 mg/dl, hematuria with 40 RBC, serum immunofixation did not detect any abnormalities and protein electrophoresis showed hypogammaglobulinemia, IgG 508 mg/dl, negative Bence Jones and negative urine immunofixation revealed monoclonal IgA k (87 mg/24 h) and a mild increase in serum kappa free light chain with normal kappa/lambda ratio.

A kidney biopsy was performed (Figure 1) and showed a 30% of fibroepithelial crescent cell, 4% epithelia crescent cell and single fibrinoid necrosis. Immunofluorescence showed positive diffuse staining for IgA (3+), C3 (2+) and k-light chain (3+) involving the basal membrane in intramembranous and subepithelial region and the mesangium, with negative staining for λ-light chain and for heavy chain. The ultrastructural evaluation highlighted subendothelial and mesangial electron dense deposits. Therefore, we reached a diagnosis of proliferative glomerulonephritis with monoclonal IgA-kappa deposits without interstitial fibrosis, with mild tubular atrophy [7].

Figure 1: Renal Biopsy
Figure 1: Renal Biopsy. Photo A: electron microscopy, electron-dense deposits with focally variegated texture (without evidence of well-developed microtubules or fibrils) located in subendothelial area (original magnification ×14,000); photo B: electron microscopy: endocapillary hypercellularity filled by swollen endothelial cell, monocyte and neutrophil granulocyte (original magnification ×1900)

Bone marrow aspiration and biopsy with fluorescence in situ hybridization detected essential thrombocythemia with mild fibrosis MF-1 and presence of 8% κ-restricted plasma cells, considered as monoclonal gammopathy of undetermined significance (MGUS). Whole-body, CT bone scan showed erosive lesions of the temporal bone extended for 3 cm, non-ossifying fibromas (NOF) of the distal epiphysis of the right femur. Consequently, the diagnosis of MRGS was made and chemotherapy with CyBorD regimen (Bortezomib, Dexamethasone and cyclophosphamide) was started. The treatment schedule included 8 cycles of Bortezomib, Dexamethasone and cyclophosphamide with the following doses: cyclophosphamide 350 mg per os on days 1, 8, 15 + bortezomib 1.3 mg/m2 subcutaneously on days 1, 8, 15, 22 + dexamethasone 20 mg per os on days 1, 8, 15,22, each of these for 35 days.

Acyclovir, fluconazole and trimethoprim-sulfamethoxazole was added to the therapy as prophylaxis and after 4 weeks trimethoprim-sulfamethoxazole was withheld due to an allergic reaction.

After the first 4 cycles of therapy, a mild renal improvement was achieved. The serum creatinine decreased to 1.4 mg/dl with a partial reduction of proteinuria up to 3100 mg/24h and a reduction of monoclonal IgA k from 87 to 50 mg/24h. After 6 months of chemotherapy, osteolytic lesions on the sphenoid greater wing were detected on CT bone scan. After 8 cycles of CyBorD chemotherapy, at the 12th month of follow up: monoclonal IgA remained constant and under 50 mg/24h in urine immunofixation; serum free kappa light chain concentration was 32.9 mg/l and serum free light chain lambda was 14.7 mg/l (k/λ ratio = 2.2); a non-monoclonal component was detected in protein electrophoresis, while mild deterioration of renal function (cr: 2.3 mg/dl) without reduction of proteinuria was observed.

During the first 12 month of follow up no adverse effects related to the cytotoxic therapy were observed. At this time another evaluation with BMA and CT bone scan was programmed. The bone marrow aspirate and the biopsy were examined with light microscopy, immunohistochemistry, and flow cytometry, showing the presence of 10% κ-restricted plasma cells, considered as MGUS, with mild fibrosis MF-1. No new bone lesions were detected in the CT scan.

Based on radiological and histological findings, associated with progressive renal impairment (an increase of serum creatinine up to 4.1mg/dl with constant proteinuria nearly 4 gr/day), the second line treatment with Daratumumab-Lenalidomide plus Dexamethasone (D-Rd) was scheduled.

D-Rd regimen chemotherapy was started, despite the stable hematologic disease. The Daratumumab regimen consisted in an intravenous (IV) dose of 16 mg/kg once a week for 8 weeks, followed by the same dose once every 2 weeks plus lenalidomide and dexamethasone (for eight additional doses).

After one month of therapy with D-Rd regimen (4° administration) the patient was admitted to our hospital because of a rapidly progressive loss of renal function and nephrotic syndrome. Lower extremities petechiae were found on physical examination, with pitting edema in the lower limbs.

At admission, ultrasound examination evidenced the normal size of the inferior vena cava with a 40% collapsibility index, and mild bilateral pleural effusion; both kidneys had normal size and normal parenchymal thickness, with normal arterial and vein vascularization without hydronephrosis. Blood and urinary exams showed a progressive renal impairment with increase of creatinine up to 8.7 mg/dl and urea around 270-290 mg/dl, proteinuria increased to 5.5 gr/24h, Hb 8 gr/dl, albumin 1.9 gr/dl, calcium 6.9 mg/dl, magnesium1.3 mg/dl, sodiuria 47 mmol/l, creatinuria 114 mg/dl, procalcitonina 0.4 (normal range <0.5). They also evidenced normal complement C3 and C4 levels, negative cryoglobulins, and Ig levels 130 mg/dl. Protein electrophoresis detected monoclonal gammopathy IgAK 1.7%, 0.06 g/dl, negative rheumatoid factor; serum k free light chain concentration was 21.8 and lambda was 10.8 mg/l (k/λ ratio 2.01). Urinary immunofixation showed IgAk less than 50 mg/24h with microscopic hematuria and 300 mg/dl albuminuria. Skin punch biopsy was performed, revealing acute cutaneous vasculitis.

At this time, based on the deterioration of the renal function and despite the mild hematologic improvement during the first cycle of chemotherapy, ultrasound-guided percutaneous renal biopsy was performed again. The renal biopsy was examined with light microscopy and immunofluorescence. Light microscopy showed an increase of sclerosis up to 70%, 30% of fibroepithelial crescent cell and mild leucocyte interstitial infiltration. Immunofluorescence showed positive staining for IgA (2+) and C3 (1+) and k-light chain (2+) involving mesangial, subendothelial and intramembranous regions.

Given the rapidly progressive renal failure and the presence of fibroepithelial crescent cells in the renal biopsy, accompanied by acute cutaneous vasculitis, in a patient with IgA monoclonal gammopathy, the following renal rescue therapy was programmed: IV cyclophosphamide 500 mg once every 2 weeks for 4 doses adjusted for renal insufficiency and IV metilprednisolone 125/day for 3 days, followed by oral prednisone 50 mg with rapid tapering

On the other hand, the chemotherapy was continued with daratumumab IV at a dose of 16 mg/kg once weekly for 8 weeks, followed by 16mg/kg every two weeks for 8 weeks, plus oral dexamethasone 20 mg (only in the day of chemotherapy, withholding prednisone).

After nearly three weeks of therapy (after the 2nd administration of Daratumumab-dexamethasone and the 2 nd administration of cyclophosphamide) the patient was admitted because of fever, cough and hemoptysis. A CT scan at admission revealed extended consolidation diffused in the entire right lung lobe, characterized by ground glass opacities mixed with parenchymal consolidation and air bronchogram (Figure 2).

Figure 2: Pneumonitis before (A) and after (B) treatment

Serological assessment, sputum and blood cultures were done to identify the type of organism causing the infection and upon admission a broad-spectrum antibiotic therapy with meropenem and teicoplanin associated with a new triazole antifungal, voriconazole, was started. After one week of therapy, there was an improvement in the clinical symptoms. Therapy with voriconazole was continued because of positive serum aspergillus-specific antibody. On the other hand, CMV PCR exam resulted positive (58000 cp/ml) and antiviral therapy with IV ganciclovir (1.25 mg/kg/dose 3 times weekly) was started.

After roughly 7 days of antibiotic therapy, in consideration of the adequate reduction of systemic inflammatory markers with sustained renal failure (creatinine 8.4 mg/dl and urea 320 mg/dl), a central venous catheter (CVC) was inserted in the internal jugular vein and the patient underwent 6 hemodialysis sessions with the HFR Supra Bellco filter system to achieve an acceptable and persistent reduction of free light chains, as the effect of chemotherapy was still persisting.

After 22 days of hospitalization, as a result of febrile neutropenia, antibiotic therapy was continued and filgrastim (granulocyte colony-stimulating factor) was applicated subcutaneously. Suspecting that the neutropenia was induced by ganciclovir and in consideration of the negative PCR CMV test, the induction therapy was withheld. After a mild improvement of the renal function, the CVC was removed, and the creation of surgical arteriovenous fistulas (AVFs) was planned.

Following 4 days of granulocyte colony-stimulating factor therapy, the neutrophils count increased up to the normal range and the fever disappeared; therefore, maintenance therapy with oral valcyte was started and maintained for the following two weeks.

After nearly 35 days of hospitalization, Acinetobacter baumanii was found in sputum culture and was successfully treated with inhaled colistin at a dose of 1000000 UI three times a day for 5 days.

The patient was discharged with serum creatinine reduced from 8.4 mg/dl to 6 mg/dl and urea from 298 mg/dl to 150 mg/dl; CRP and procalcitonin were in the normal range, with negative cultural tests. One month after discharge, laboratory exams showed a further reduction of creatinine, down to 5.2 mg/dl, while urea remained steady around 150 mg/dl; CRP, procalcitonin and complete blood count were all in the normal range. The patient did not need hemodialysis and we decided to continue chemotherapy with Daratumumab-dexamethasone (Table I).

  Time Creatinine mg/dl ProteinuriaGr/ 24h SIF UIF SE KLC k/λ ratio IgG mg/dl
T0 Before treatment 1.8 3 neg IgAK 87mg/24h hypogammaglobulinemia 0.94
CyBorD T1 End of 1th cycle 1.89 3.2 neg IgAK:50.3 mg 24h hypogammaglobulinemia normal, without MC 0.9 508
T4 End of 4th cycle 1.4 2.5 neg IgAK<50 mg 24h hypogammaglobulinemia normal, without MC 1.02
T6 End of 6th cycle 2.1 4.2 neg IgAK<50 mg 24h hypogammaglobulinemia normal, without MC
T7 End of 7th cycle 2.05 4 neg IgAK<50 mg 24h hypogammaglobulinemia normal, without MC 28.16 mg/l 1.8 336
T8 End of 8th cycle 2.3 mg/dl 3.5 neg IgAK<50 mg 24h hypogammaglobulinemia normal, without MC 32.9 mg/l 2.2
2 month follow up 1th month 2.9 3.4 neg IgAK<50 mg 24h 35.05 1.6 362
2th month 4.4 5.9 MC IgAK IgAK<50 mg 24h MC 0.17 g/dl, 3.3 % 43 2.08 319
Anti CD38 monoclonal based chemotherapy T1 After 1th  cycle of D.Rd 6.8 4.4 MC IgAK IgAK<50 mg 24h MC 0.06 g/dl, 1.7 % 21 2.01 130
Second renal biopsy
T2 After 2 cycles of D-d and first administration of CYC 6.1 4.2 MC IgAK IgAK<50 mg 24h 17.3 1.2 91
1 month follow up without therapy 5.4 3.2 MC IgAK IgAK<50 mg 24h 11.3 0.9 540
Resumption of D-d after infection resolution
Table I: The disease progression (CyBorD: Bortezomib, Dexamethasone and cyclophosphamide; D-Rd: daratumumab-lenalidomide plus dexamethasone; SIF: serum immunofixation; UIF: urine immunofixation; SE: serum electrophoresis; KLC: kappa light chain)

 

Discussion

The clinical presentation of kidney involvement in MGRS is ambiguous and, according to the IKMG recommendations, a kidney biopsy is mandatory for the correct diagnosis and management [1].

A peculiar aspect of MGRS is that kidney lesions are associated with low-grade plasma cell dyscrasias or lymphoproliferative disorders in the absence of multiple myeloma (MM) or other hematologic malignancies. PGNMID occurs specially is the sixth decade of life and is rarely seen in younger patients. Unlike other MGRS, abnormal monoclonal immunoglobulin in serum or urine or even in bone marrow is detected only in 30 % of the PGNMID [8].

Daratumumab is a human immunoglobulin G (IgG) kappa monoclonal antibody anti-CD38 cells [9]. Given the good results of daratumumab in the treatment of patients with refractory MM, it has recently been used in renal disease secondary to PGNMID. The hypothesis is that there is a correlation between kidney injury and monoclonal proteins produced by plasma cells. Therefore, removing the pathologic clone can result in a renal response [10].

Recently, Zand et al. have evaluated, in an open-label, phase 2 trial, daratumumab’s safety and efficacy in 11 adults with PGNMID. Daratumumab was administrated intravenously (16 mg/kg) once a week for 8 weeks, then every other week for eight additional doses. One patient did not complete the first infusion. During the 12-month follow up, six patients had a partial response, and four had a complete response. The trial concluded there was a significant improvement in proteinuria and a stabilization of kidney function in patients with PGNMID on daratumumab [7].

Until now, no guidelines to decide the best therapeutic approach to manage PGNMID exist, and most patients progress to End Stage Renal Disease (ESRD) without therapy [3, 11].

We have described a case of MGRS secondary to PGNMID treated at first with 8 cycles of CyBorD chemotherapy. After one year, monoclonal IgA remained constant, with a deterioration of renal function without reduction of proteinuria. At this time, considering both the findings in BMA and CT bone scan and the progressive renal impairment, we chose a second-line treatment with anti-CD38 monoclonal antibody, which showed good results according to a Mayo Clinic study

Unfortunately, during the first month of this second-line therapy (with daratumumab-lenalidomide-dexamethasone) the patient was hospitalized because of a rapidly progressive renal failure, despite stable hematologic disease. A second renal biopsy showed sclerosis in up to 70% of the glomeruli and 30% of fibroepithelial crescent cells. This was associated to acute cutaneous vasculitis, and the rescue therapy of choice included intravenous cyclophosphamide and oral prednisone; the treatment with daratumumab, without lenalidomide, was continued. Unfortunately, after three weeks, all therapies were withheld because of infective complications and sever febrile neutropenia.

The most common side effects associated with daratumumab are neutropenia (37%), thrombocytopenia (23%), anemia (16%), pneumonia (10%), infusion-related reactions (6%), upper respiratory tract infection (5%), and fatigue (5%) [12].

Some studies find daratumumab to be adequately safe, with an acceptable improvement in proteinuria during the first month of infusion. However, in the case we have described, severe pulmonary infection and life-threatening febrile neutropenia was observed within three months of therapy, with progressive renal impairment. It is possible that the severe pulmonary infection was detected because of the withholding of prophylaxis treatment with trimethoprim-sulfamethoxazole (due in turn to an allergic reaction), but it is also possible that the risk was increased by the association of anti-CD38 monoclonal antibody with alkylating agents. In our case, despite using the therapeutic regimen targeting plasma cell clones responsible for kidney injury, no improvement was achieved, even with the reduction of M-spike protein.

 

Conclusion

The management of PGNMID remains unclear, and treatment is based on expert consensus, depending on the underlying clone and the risk of renal impairment progression. While low-risk patients without detectable monoclonal disease are treated only with supportive care, chemotherapy is indicated for patients with monoclonal immunoglobulins and a high risk of renal impairment.

Histological evaluation guides all therapeutic decisions, according to the pattern and degree of kidney injury. Once MGRS is diagnosed, the collaboration between nephrology and hematology specialist is recommended to find the most adequate therapy.

The case we have described, of PGNMID with the presence of mild monoclonal IgA k in urine immunofixation, did not respond to first-line therapy with CyBorD regimen, nor to second-line regimen with Daratumumab (anti CD38). According to our experience, further research is needed to assess the management and outcome of PGNMID.

 

References

  1. Leung N, Bridaux F, et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol 2019; 15(1):45-59. https://doi.org/10.1038/s41581-018-0077-4
  2. Jain A, Haynes R, Kothari J, Khera A, Soares M, Ramasamy K. Pathophysiology and management of monoclonal gammopathy of renal significance. Blood Adv 2019; 3(15):2409-23. https://doi.org/10.1182/bloodadvances.2019031914
  3. Nasr SH, Satoskar A, Markowitz GS, et al. Proliferative glomerulonephritis with monoclonal IgG deposits. J Am Soc Nephrol 2009; 20(9):2055-64. https://doi.org/10.1681/asn.2009010110
  4. Vignon M, Cohen C, Faguer S, Noel LH, et al. The clinicopathologic characteristics of kidney diseases related to monotypic IgA deposits. Kidney Int 2017; 91(3):720-28. https://doi.org/10.1016/j.kint.2016.10.026
  5. Nasr SH, Markowitz GS, Stokes MB, et al. Proliferative glomerulonephritis with monoclonal IgG deposits: a distinct entity mimicking immune-complex glomerulonephritis. Kidney Int 2004; 65(1):85-96. https://doi.org/10.1111/j.1523-1755.2004.00365.x
  6. Xiao-juan Yu, Mang-ju Wang, et al. Proliferative Glomerulonephritis with Monoclonal IgG3λ Deposits: a Case Report of a Rare Cause of Monoclonal Gammopathy of Renal Significance. Kidney Med 2019; 1(4):221-25.https://doi.org/10.1016/j.xkme.2019.06.004
  7. Zand L, Rajkumar SV, Leung N, et al. Safety and Efficacy of Daratumumab in Patients with Proliferative GN with Monoclonal Immunoglobulin Deposits. J Am Soc Nephrol 2021; 32(5):1163-73. https://doi.org/10.1681/ASN.2020101541
  8. Bridoux F, Javaugue V, Nasr SH, Leung N. Proliferative glomerulonephritis with monoclonal immunoglobulin deposits: a nephrologist perspective. Nephrol Dial Transplant 2021; 36(2):208-15. https://doi.org/10.1093/ndt/gfz176
  9. Krejcik J, Casneuf T, Nijhof IS, Verbist B, et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016; 128(3):384-94. https://doi.org/10.1182/blood-2015-12-687749
  10. Bhutani G, Nasr SH, Said SM, Sethi S, Fervenza FC, Morice WG, et al. Hematologic characteristics of proliferative glomerulonephritides with nonorganized monoclonal immunoglobulin deposits. Mayo Clin Proc 2015; 90:587-96. https://doi.org/10.1016/j.mayocp.2015.01.024
  11. Gumber R, Cohen JB, Palmer MB, Kobrin SM, Vogl DT, et al. A clone-directed approach may improve diagnosis and treatment of proliferative glomerulonephritis with monoclonal immunoglobulin deposits. Kidney Int 2018; 94:199-205. https://doi.org/10.1016/j.kint.2018.02.020
  12. Tzogani K, Penninga E, Schougaard Christiansen ML, Hovgaard D, et al. EMA Review of Daratumumab for the Treatment of Adult Patients with Multiple Myeloma. TheOncologist 2018; 23(5):594-602. https://doi.org/10.1634/theoncologist.2017-0328