Microangiopatia Trombotica: la sindrome emolitico-uremica atipica

Abstract

La sindrome emolitico-uremica (SEU) atipica è una malattia ultra rara caratterizzata da insufficienza renale acuta, trombocitopenia e anemia emolitica microangiopatica (microangiopatia trombotica) che si verifica con un’incidenza di circa 0,5 nuovi casi all’anno per milione di persone.

Almeno il 50% dei pazienti con SEU atipica ha un’anomalia del sistema del complemento, ereditaria e/o acquisita, che determina un’attività incontrollata della via alternativa del complemento sulla superficie delle cellule endoteliali.

Fino a poco tempo fa, la prognosi per la SEU atipica era sfavorevole, e la maggior parte dei pazienti sviluppava insufficienza renale terminale entro due anni dalla presentazione. Tuttavia, con l’introduzione della terapia con eculizumab, un anticorpo monoclonale umanizzato diretto contro il fattore C5 del complemento, efficace nell’inibire la microangiopatia trombotica mediata dal complemento, è ora possibile controllare la malattia renale e prevenire la necessità di emodialisi. Il dosaggio e la durata del trattamento con eculizumab sono ancora controversi e dovrebbero essere studiati rigorosamente. A questo proposito, il test di deposizione endoteliale del complesso terminale del complemento (C5b-9) può rappresentare un aiuto per monitorare l’attività del complemento nella SEU atipica e individualizzare la terapia, ma attualmente può essere eseguito solo in laboratori specializzati.

Parole chiave: sindrome emolitico-uremica atipica, complemento, anticorpo monoclonale anti-C5, test C5b-9

Introduzione

Il termine sindrome emolitico-uremica (SEU) atipica è stato utilizzato per molto tempo per definire qualsiasi forma di SEU non causata da Shiga-tossina (SEU tipica). Le attuali classificazioni riflettono una maggiore comprensione dei meccanismi della malattia, compreso l’impatto del background genetico e dei fattori scatenanti [1]. L’indagine per Shiga-tossina dovrebbe essere comunque di routine in tutti i pazienti con presunta SEU atipica, poiché circa il 5% dei casi di SEU da Shiga-tossina non ha diarrea prodromica, mentre il 30% dei casi di SEU atipica mediata dal complemento ha diarrea o gastroenterite concomitanti.

Attualmente si usa spesso il termine di SEU atipica primaria quando si sospetta fortemente un’anomalia genetica (o acquisita) della via alternativa del sistema del complemento e sono state escluse altre cause di SEU secondaria. Tuttavia, anche in alcuni di questi ultimi casi può venire identificata un’anomalia del complemento. In molti pazienti con un sottostante fattore di rischio del complemento, è inoltre necessario un fattore scatenante per la manifestazione della SEU atipica [2]. Fattori scatenanti possono includere condizioni autoimmuni, trapianto, gravidanza, infezioni, farmaci e condizioni metaboliche [3].

La dimostrazione che la SEU atipica è una malattia associata ad anomalie del complemento ha aperto la strada a trattamenti complemento-specifici, come l’eculizumab, un anticorpo monoclonale umanizzato diretto contro il fattore C5 del complemento [4], che ha migliorato notevolmente la prognosi a lungo termine di questa patologia modificandone drasticamente la storia naturale.

 

Implicazioni delle anomalie genetiche nella SEU atipica

Studi su centinaia di pazienti con SEU atipica hanno permesso di comprendere i fattori genetici della malattia e fornito informazioni in merito alle correlazioni genotipo-fenotipo predittive della progressione della malattia, della risposta alla terapia e del rischio di recidiva dopo il trapianto [5].

Il pannello base di geni da analizzare nello screening genetico della SEU atipica (attualmente mediante Next generation sequencing) dovrebbe comprendere CFH, CD46, CFI, C3, CFB, THBD, CFHR1 e DGKE [611]. Questa analisi dovrebbe includere anche la genotipizzazione per gli aplotipi di rischio CFH-H3 e MCPggaac [12], che rappresentano fattori genetici di suscettibilità per la SEU atipica, spesso presenti in concomitanza con una variante patogenetica.

Nella SEU atipica, le varianti patogenetiche compromettono in modo specifico la capacità di proteggere le cellule endoteliali e le piastrine dell’ospite dal danno o dall’attivazione del complemento [1315]. È inoltre chiaro che la combinazione di diverse varianti patogenetiche e/o la combinazione di varianti patogenetiche e degli aplotipi di suscettibilità in CFH e MCP determinano il rischio e la predisposizione genetica individuale alla SEU atipica [12, 1618].

Le analisi genetiche devono inoltre includere tecnologie adeguate (quale la metodica MLPA, Multiplex Ligation-dependent Probe Amplification) per rilevare la variazione del numero di copie dei geni CFHR, i geni ibridi e altri complessi riarrangiamenti genomici nella regione genomica di CFH/CFHR [1921]. La presenza della delezione in omozigosi dei geni CFHR3-CFHR1 rappresenta un fattore di rischio per la formazione di anticorpi anti-Fattore H, identificati nel 5-10% dei casi di SEU atipica (specialmente bambini) e solitamente associati con questa delezione in omozigosi [22].

L’identificazione di una variante genetica patogenetica in un paziente con SEU atipica rafforza la diagnosi e stabilisce con precisione la causa della malattia, facilitando la gestione del paziente [5].

L’analisi genetica è inoltre essenziale nel trapianto di rene da donatore vivente [23]. La raccomandazione generale nella SEU atipica è che il trapianto da donatore consanguineo di rene dovrebbe essere preso in considerazione solo nel caso in cui fattori genetici chiaramente identificati nel ricevente siano assenti nel donatore consanguineo. In questo contesto, la presenza nel donatore degli aplotipi di suscettibilità CFH-H3 o MCPggaac non costituisce una controindicazione alla donazione [5].

Questo livello di comprensione supporta un approccio individualizzato alla gestione e al trattamento del paziente basato sull’interpretazione esperta dei profili genetici e richiede la diagnostica molecolare in ogni paziente. I tempi per ottenere i risultati dagli studi genetici non dovrebbero peraltro posticipare il trattamento, poiché il trattamento precoce è fondamentale per preservare la funzione renale ed evitare sequele irreversibili [24].

 

Trattamento della SEU atipica

La dimostrazione che la SEU atipica è una malattia associata ad anomalie del complemento ha aperto la strada a trattamenti complemento-specifici.

L’introduzione di eculizumab, un anticorpo monoclonale umanizzato diretto contro il fattore C5 del complemento [4], ha cambiato la storia naturale della SEU atipica. Prima di eculizumab, nella maggior parte dei pazienti con SEU atipica la malattia progrediva verso l’insufficienza renale terminale, momento in cui il processo di microangiopatia trombotica di solito cessava [25]. Con la terapia inibitoria del complemento, la perfusione glomerulare e la funzione renale vengono invece mantenute.

Tutti i pazienti con una diagnosi clinica di SEU atipica primaria sono eleggibili per il trattamento con un inibitore del complemento. Viene raccomandato di seguire lo schema posologico riportato negli studi [4], sebbene siano state prese in considerazione due possibili opzioni per modificare il dosaggio: la dose minima richiesta per ottenere il blocco del complemento, e uno schema posologico di allungamento dell’intervallo delle infusioni fino all’interruzione del trattamento [4]. Non ci sono però dati a supporto di nessuna delle due opzioni ed entrambe richiedono il monitoraggio dell’attività del complemento. Non è comunque raccomandata l’interruzione della terapia che blocca la via terminale del complemento durante una malattia intercorrente, una situazione ad alto rischio di recidiva di SEU atipica.

Se l’accesso alla terapia con eculizumab non è disponibile, è possibile utilizzare il plasma. Il trattamento con plasma-exchange dovrebbe essere preso in considerazione anche per la SEU atipica associata ad anticorpi anti-Fattore H e nel trattamento di emergenza di pazienti critici con grave microangiopatia trombotica (ad es. coma o convulsioni) e un forte sospetto di porpora trombotica trombocitopenica, fino a quando non si dimostra che l’attività di ADAMTS13 sia superiore al 10% [26].

L’utilizzo di plasma-exchange quando l’eculizumab è disponibile può essere associato a qualche miglioramento del quadro clinico, ma può esserci il rischio che ritardare l’inizio della terapia con eculizumab possa portare a un risultato terapeutico non ottimale.

La durata del trattamento con eculizumab è controversa e ad oggi non ci sono prove a sostegno di una terapia permanente in tutti i pazienti affetti da SEU atipica. Gli esperti sono comunque a favore di un periodo minimo di trattamento per consentire un recupero renale ottimale senza recidive precoci [5]. Non ci sono infatti studi prospettici controllati in pazienti con SEU atipica per definire i criteri per l’interruzione della terapia con eculizumab. L’interruzione del trattamento può essere presa in considerazione caso per caso nei pazienti dopo almeno 6-12 mesi di trattamento e almeno 3 mesi di normalizzazione (o stabilizzazione in caso di malattia renale cronica residua) della funzionalità renale. Una interruzione anticipata (a 3 mesi) può essere presa in considerazione nei pazienti (soprattutto bambini) con varianti patogenetiche nel gene MCP, se si è verificata una rapida remissione e recupero della funzione renale [5]. Nei pazienti sottoposti a dialisi, la terapia con eculizumab deve essere mantenuta per almeno 4-6 mesi prima di considerare l’interruzione. Nei pazienti che hanno subito un trapianto, in particolare quelli che hanno perso precedenti trapianti, l’interruzione non è raccomandata [27, 28].

Gli studi prospettici sono fondamentali per valutare parametri predittivi di recidiva e per definire in che modo la genetica, la qualità del recupero renale, l’età, la presenza o assenza di un evento scatenante e biomarcatori correlati all’attivazione del complemento e/o al danno delle cellule endoteliali possano dare informazioni utili per decidere in merito alla sospensione della terapia con eculizumab.

Se la terapia con eculizumab deve essere interrotta, è comunque fondamentale un attento e periodico monitoraggio della funzionalità renale e dei parametri ematologici.

 

Trapianto di rene nella SEU atipica

Il trapianto di rene dovrebbe essere posticipato fino ad almeno 6 mesi dopo l’inizio della dialisi poiché può verificarsi un minimo recupero renale diversi mesi dopo l’inizio della terapia con eculizumab [29, 30]. La risoluzione dei segni ematologici della microangiopatia trombotica e delle manifestazioni extrarenali è un prerequisito per il trapianto. La decisione di utilizzare la terapia di inibizione del complemento per il trapianto dovrebbe essere basata sul rischio di recidiva [5].

La donazione di rene da vivente può comportare un rischio di recidiva nel ricevente e un rischio di malattia de novo nel donatore se il donatore è portatore di una variante genetica di rischio. Dovrebbero essere quindi esclusi potenziali donatori con evidenza di attività anomala della via alternativa del complemento. Se il potenziale donatore vivente non è portatore di una variante patogenetica in un gene del complemento e non ha evidenza di un’attivazione anomala del complemento, la donazione è invece possibile [5].

 

Test di deposizione endoteliale del complesso terminale del complemento C5b-9

Nella SEU atipica si verifica un’attivazione del complemento ristretta all’endotelio e la remissione clinica si basa su un’efficace inibizione del complemento a livello endoteliale.

Nel 2014 Noris M., Galbusera M. e collaboratori hanno analizzato un gruppo di 44 pazienti affetti da SEU atipica per testare nuovi saggi di attivazione del complemento e per trovare uno strumento per il monitoraggio dell’efficacia di eculizumab [31].

Nel 50% dei pazienti vi erano normali livelli nel circolo di C3, C5a o di C5b-9 solubile, anche durante la fase acuta della malattia, il che indicava che questi non erano utili marcatori di attivazione del complemento nella malattia. Invece, il siero prelevato in fase acuta di SEU atipica, ma non il siero in fase di remissione, induceva un’aumentata deposizione di C5b-9, rispetto al siero di controllo, su cellule endoteliali microvascolari umane non stimolate (HMEC). Inoltre, nelle cellule HMEC attivate con adenosina difosfato anche il siero raccolto in remissione induceva un eccesso di depositi di C5b-9 nella maggior parte dei pazienti.

I risultati di cui sopra confermavano precedenti studi in vitro con proteine mutanti del complemento, indicando che l’attivazione del complemento sulle cellule endoteliali piuttosto che in fase fluida svolge un ruolo patogenetico nella SEU atipica [8, 3234].

Inoltre in 8 pazienti affetti da SEU atipica trattati con eculizumab, i depositi di C5b-9 endoteliali si normalizzavano dopo il trattamento, in parallelo o addirittura precedendo la remissione, e guidavano il dosaggio e la tempistica del farmaco.

Questi risultati indicavano che per il trattamento della SEU atipica è necessaria un’efficace inibizione del complemento a livello endoteliale, che permette di proteggere dalla trombosi microvascolare, e che i depositi endoteliali di C5b-9 indotti dal siero ex vivo sono uno strumento sensibile per monitorare l’attivazione del complemento e l’efficacia di eculizumab nella SEU atipica.

Nel 2019 Galbusera M. e collaboratori valutavano inoltre l’utilità del test di deposizione endoteliale di C5b-9 ex vivo per differenziare la SEU atipica attiva dalla remissione, monitorare l’efficacia della terapia con eculizumab, e identificare le recidive della malattia durante la riduzione graduale del dosaggio di eculizumab e dopo l’interruzione del trattamento [35]. I test con cellule HMEC attivate con adenosina difosfato mostravano depositi di C5b-9 elevati per i pazienti con SEU atipica non in trattamento con eculizumab, indipendentemente dall’attività della malattia, mentre i test con cellule HMEC non stimolate mostravano depositi di C5b-9 solo nella malattia attiva. I depositi di C5b-9 indotti dal siero sull’endotelio attivato e su quello non stimolato si normalizzavano durante il trattamento con eculizumab. La maggior parte dei pazienti trattati con eculizumab a intervalli di somministrazione estesi di 3 o 4 settimane dimostravano normali depositi di C5b-9 sull’endotelio attivato. Durante la riduzione graduale del dosaggio di eculizumab o dopo l’interruzione del trattamento, tutti i pazienti che manifestavano ricadute della malattia avevano depositi di C5b-9 elevati sull’endotelio non stimolato.

Sulla base di questi risultati, il test di deposizione endoteliale di C5b-9 (eseguito però solo in laboratori specializzati) può rappresentare un utile marcatore per monitorare l’attività della SEU atipica e personalizzare la terapia con eculizumab.

 

Conclusioni

I test genetici dovrebbero essere effettuati in tutte le persone con sospetta SEU atipica primaria, nei pazienti candidati a trapianto renale per SEU atipica e nei pazienti in cui si sta valutando l’interruzione della terapia con eculizumab.

Nonostante i notevoli progressi nella nostra comprensione dei meccanismi patologici sottostanti coinvolti nella SEU atipica, molto resta da imparare sul trattamento. L’eculizumab ha modificato la storia naturale della SEU atipica, ma sono sorte controversie in diverse aree del trattamento, in particolare il dosaggio e la durata del trattamento rimangono da stabilire e dovrebbero essere rigorosamente studiati.

A tale proposito, lo studio dei depositi endoteliali di C5b-9 potrebbe aiutare a monitorare l’efficacia di eculizumab, e potrebbe essere uno strumento utile per regolare la dose di eculizumab e l’estensione dell’intervallo tra le dosi per mantenere bloccato il complemento a livello endoteliale.

Il test di deposizione endoteliale C5b-9 può rappresentare quindi un aiuto nella capacità di monitorare l’attività del complemento nella SEU atipica e nel personalizzare la terapia.

Il limite è rappresentato dal fatto che questo test può essere eseguito solo in laboratori specializzati. I risultati sulla riduzione graduale del dosaggio di eculizumab devono inoltre essere confermati con studi di monitoraggio della deposizione di C5b-9.

Dovrebbero inoltre essere condotti studi prospettici prima di poter raccomandare questo test nella pratica clinica.

Un biomarcatore predittivo rappresenterebbe comunque una preziosa salvaguardia per la riduzione graduale del dosaggio o per l’eventuale interruzione del trattamento con eculizumab perché porterebbe alla ripresa precoce del trattamento prima di una recidiva conclamata di SEU atipica e/o al mantenimento del trattamento nei pazienti a rischio di recidiva.

 

Bibliografia

  1. Loirat C, Fakhouri F, Ariceta G, et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016;31:15–39, https://doi.org/10.1007/s00467-015-3076-8.
  2. Caprioli J, Noris M, Brioschi S, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108:1267–1279, https://doi.org/10.1182/blood-2005-10-007252.
  3. Kavanagh D, Goodship TH, Richards A. Atypical hemolytic uremic syndrome. Semin Nephrol. 2013;33:508–530, https://doi.org/10.1016/j.semnephrol.2013.08.003.
  4. Legendre CM, Licht C, Muus P, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368:2169–2181, https://doi.org/10.1056/NEJMoa1208981.
  5. Goodship THJ, Cook HT, Fakhouri F F, et al.for Conference Participants. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int 2017; 91:539-551, https://doi.org/10.1016/j.kint.2016.10.005.
  6. Abarrategui-Garrido C, Martinez-Barricarte R, Lopez-Trascasa M, et al. Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood. 2009;114:4261–4271, https://doi.org/10.1182/blood-2009-05-223834.
  7. Delvaeye M, Noris M, De Vriese A, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361:345–357, https://doi.org/10.1056/NEJMoa0810739.
  8. Noris M, Caprioli J, Bresin E, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844-1859, https://doi.org/10.2215/CJN.02210310.
  9. Maga TK, Nishimura CJ, Weaver AE, et al. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat. 2010;31:E1445–E1460, https://doi.org/10.1002/humu.21256.
  10. Fremeaux-Bacchi V, Fakhouri F, Garnier A, et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol. 2013;8:554–562, https://doi.org/10.2215/CJN.04760512.
  11. Lemaire M, Fremeaux-Bacchi V, Schaefer F, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45:531–536, https://doi.org/10.1038/ng.2590.
  12. Esparza-Gordillo J, Goicoechea de Jorge E, Buil A, et al. Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. Hum Mol Genet. 2005;14:703–712, https://doi.org/10.1093/hmg/ddi066.
  13. Manuelian T, Hellwage J, Meri S, et al. Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J Clin Invest. 2003;111: 1181–1190, https://doi.org/10.1172/JCI16651.
  14. Roumenina LT, Jablonski M, Hue C, et al. Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. Blood. 2009;114:2837–2845, https://doi.org/10.1182/blood-2009-01-197640.
  15. Stahl AL, Vaziri-Sani F, Heinen S, et al. Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood. 2008;111:5307–5315, https://doi.org/10.1182/blood-2007-08-106153.
  16. Sansbury FH, Cordell HJ, Bingham C, et al. Factors determining penetrance in familial atypical haemolytic uraemic syndrome. J Med Genet. 2014;51:756–764, https://doi.org/10.1136/jmedgenet-2014-102498.
  17. Bresin E, Rurali E, Caprioli J, et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol. 2013;24:475–486, https://doi.org/10.1681/ASN.2012090884.
  18. Bernabeu-Herrero ME, Jimenez-Alcazar M, Anter J, et al. Complement factor H, FHR-3 and FHR-1 variants associate in an extended haplotype conferring increased risk of atypical hemolytic uremic syndrome. Mol Immunol. 2015;67:276–286, https://doi.org/10.1016/j.molimm.2015.06.021.
  19. Challis RC, Araujo GS, Wong EK, et al. A de novo deletion in the regulators of complement activation cluster producing a hybrid complement factor H/complement factor H-related 3 gene in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2016;27:1617–1624, https://doi.org/10.1681/ASN.2015010100.
  20. Valoti E, Alberti M, Tortajada A, et al. A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J Am Soc Nephrol. 2015;26:209–219, https://doi.org/10.1681/ASN.2013121339.
  21. Venables JP, Strain L, Routledge D, et al. Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med. 2006;3:e431, https://doi.org/10.1371/journal.pmed.0030431.
  22. Dragon-Durey MA, Sethi SK, Bagga A, et al. Clinical features of anti-factor H autoantibody-associated hemolytic uremic syndrome. J Am Soc Nephrol 2010; 21:2180-2187, https://doi.org/10.1681/ASN.2010030315.
  23. Noris M, Remuzzi G. Managing and preventing atypical hemolytic uremic syndrome recurrence after kidney transplantation. Curr Opin Nephrol Hypertens. 2013;22:704–712, https://doi.org/10.1097/MNH.0b013e328365b3fe.
  24. Zuber J, Fakhouri F, Roumenina LT, et al. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol. 2012;8:643–657, https://doi.org/10.1038/nrneph.2012.214.
  25. Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol.2005;16:1035–1050, https://doi.org/10.1681/ASN.2004100861.
  26. Mannucci PM, Cugno M. The complex differential diagnosis between thrombotic thrombocytopenic purpura and the atypical hemolytic uremic syndrome: Laboratory weapons and their impact on treatment choice and monitoring. Thromb Res. 2015;136:851–854, https://doi.org/10.1016/j.thromres.2015.09.007.
  27. Wetzels JF, van de Kar NC. Discontinuation of eculizumab maintenance treatment for atypical hemolytic uremic syndrome. Am J Kidney Dis. 2015;65:342, https://doi.org/10.1053/j.ajkd.2014.04.039.
  28. Ardissino G, Possenti I, Tel F, et al. Discontinuation of eculizumab treatment in atypical hemolytic uremic syndrome: an update. Am J Kidney Dis. 2015;66:172–173, https://doi.org/10.1053/j.ajkd.2015.04.010.
  29. Povey H, Vundru R, Junglee N, et al. Renal recovery with eculizumab in atypical hemolytic uremic syndrome following prolonged dialysis. Clin Nephrol. 2014;82:326–331, https://doi.org/10.5414/CN107958.
  30. Licht C, Greenbaum LA, Muus P, et al. Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int. 2015;87:1061–1073, https://doi.org/10.1038/ki.2014.423.
  31. Noris M, Galbusera M, Gastoldi S, et al. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood 2014;124(11):1715-1726, https://doi.org/10.1182/blood-2014-02-558296.
  32. Noris M, Remuzzi G. Atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(17): 1676-1687, https://doi.org/10.1056/NEJMra0902814.
  33. Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007;104:240–245, https://doi.org/10.1073/pnas.0603420103.
  34. Fremeaux-Bacchi V, Miller EC, Liszewski MK, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008; 112(13):4948-4952, https://doi.org/10.1182/blood-2008-01-133702.
  35. Galbusera M, Noris M, Gastoldi S, et al. An Ex Vivo Test of Complement Activation on Endothelium for Individualized Eculizumab Therapy in Hemolytic Uremic Syndrome. Am J Kidney Dis. 74(1):56-72, https://doi.org/10.1053/j.ajkd.2018.11.012.

Rene e sistema immunitario

Abstract

Il rene e il sistema immunitario sono caratterizzati da una stretta e complessa relazione multidirezionale. Il sistema immunitario è causa di nefropatie immunomediate oltre ad essere un fondamentale mediatore del danno parenchimale renale in corso di nefropatie acute e croniche. Occorre inoltre sottolineare come la disfunzione renale, soprattutto se cronica, ha un impatto determinante sulla funzionalità del sistema immunitario causando un’immunosenescenza accelerata ed “inflammaging”.

Questo articolato cross-talk fornisce potenzialmente numerose possibilità di intervento; da notare infatti come l’armamentario terapeutico per la gestione delle nefropatie immunomediate sia in significativo aumento con numerosi farmaci immunomodulanti già entrati nella pratica clinica o in prossimità di entrarvi. D’altro canto, strumenti in grado di modificare significativamente l’impatto del sistema immunitario sulla progressione del danno renale in corso di nefropatia, così come strumenti in grado di modulare l’effetto della nefropatia cronica sulla disfunzione ad essa secondaria del sistema immunitario, non sono ancora disponibili nella pratica clinica.

Scopo di questa review è quello di discutere la complessa interazione esistente tra rene e sistema immunitario con un focus particolare sulle potenziali traslazioni cliniche attuali e future.

Parole chiave: glomerulopatia, autoimmunità, complemento, anti-CD20, Blyss

Introduzione

La complessa relazione tra fisiopatologia renale e sistema immunitario è un argomento di grande interesse scientifico, sia dal punto di vista patogenetico che terapeutico. La perdita della tolleranza immunologica e l’attivazione della risposta immunitaria sia innata che adattativa è infatti implicata nella patogenesi di numerose nefropatie. La crescente comprensione dei meccanismi patogenetici sottostanti ha portato ad importanti risvolti in ambito diagnostico e prognostico, a significativi avanzamenti terapeutici nella gestione delle glomerulopatie, sempre più tendente ad un approccio personalizzato e multimodale. Il sistema immunitario svolge inoltre un ruolo nella progressione del danno renale non immunomediato sia nel contesto della malattia renale acuta (AKI) che della malattia renale cronica (MRC). Occorre inoltre sottolineare come il rene stesso abbia un impatto profondo sull’attività del sistema immunitario: la malattia renale si accompagna infatti ad una varietà ancora parzialmente incompresa di effetti a carico del sistema immunitario. Il seguente manoscritto tratterà questi argomenti, soffermandosi sui più recenti avanzamenti in ambito terapeutico.

 

Sistema immunitario e cellule residenti all’interno del parenchima renale

Oltre alla funzione depurativa, al mantenimento del bilancio dei fluidi corporei e dei principali elettroliti, e alla funzione ormonale, il rene svolge un ruolo importante nel mantenimento di una corretta omeostasi immunitaria. Il glomerulo è infatti in grado di mitigare la risposta infiammatoria grazie alla clearance di tossine, prodotti della degradazione batterica (es. lipopolisaccaride) e citochine [1, 2].  Inoltre, numerose popolazioni cellulari residenti, distribuite in maniera polarizzata nei diversi compartimenti del parenchima renale, in condizioni fisiologiche partecipano ad un corretto mantenimento dell’omeostasi renale e alla tolleranza immunologica [36]; cellule dendritiche e monociti/macrofagi sono le sottopopolazioni più rappresentate, tuttavia possono essere presenti in misura minore anche linfociti B e T, cellule natural killer e mastociti [3, 5].

Le cellule dendritiche sono specializzate nella presentazione dell’antigene e, conseguentemente, nell’iniziazione della risposta immunitaria, ponendosi a ponte tra immunità innata e adattativa. Le cellule dendritiche sono principalmente localizzate nel tubulo-interstizio, a stretto contatto con il compartimento vascolare peri-tubulare; a tale livello, esse sono in grado di captare frammenti antigenici proteici a basso peso molecolare filtrati dal glomerulo per poi migrare ai linfonodi renali, dove favoriscono la tolleranza immunologica grazie all’inattivazione dei cloni T cellulari autoreattivi. Il legame con antigeni non-self induce l’attivazione della risposta infiammatoria adattativa negli organi linfoidi secondari e, a livello locale, la chemiotassi di neutrofili e monociti/macrofagi grazie alla produzione di citochine e chemochine con efficienza e magnitudine nettamente maggiore rispetto alle cellule tubulari (anch’esse in grado di produrre chemochine) [3, 7]. I macrofagi sono invece cellule scavenger con ruolo cardine nella clearance di patogeni e cellule apoptotiche e necrotiche (fenotipo M1), nonché nella riparazione del danno tissutale (fenotipo M2). I macrofagi renali residenti sono principalmente localizzati nella midollare e nella capsula di Bowman, anche se l’attivazione della risposta infiammatoria può portare alla loro infiltrazione diffusa del parenchima renale da parte dei monociti circolanti [3, 7, 8]. Nel soggetto sano questo porta ad un’efficace clearance dei patogeni e al successivo innesco dei meccanismi riparativi [3, 5, 7]; in situazioni di disregolazione immunitaria, invece, tali popolazioni cellulari sono in grado di perpetuare l’infiammazione portando al danno irreparabile del nefrone e all’attivazione di meccanismi profibrotici [9].

I linfociti B e T, pilastri dell’immunità adattativa, in condizioni fisiologiche sono scarsamente rappresentati a livello renale; la presenza di infiltrati linfocitari importanti solitamente è un correlato fisiopatologico di alcune nefropatie immunomediate (es. Vasculiti ANCA associate, Lupus Eritematoso Sistemico, nefriti tubulointerstiziali).  Altre cellule del sistema immunitario possono essere identificate a livello del parenchima renale (es. cellule natural killer, cellule linfoidi innate, mastociti); il loro ruolo nell’omeostasi renale tuttavia non è ancora stato pienamente delucidato [3, 5].

 

Il sistema immunitario influenza il rene: ruolo nella patogenesi e target terapeutici di interesse nelle principali glomerulopatie immunomediate

La disregolazione dell’immunità innata e adattativa è stata implicata nella patogenesi di numerose nefropatie [5]. Dal punto di vista meccanicistico, il tipo di danno immunomediato sul rene può essere di tipo diretto o indiretto [1]: nel primo caso, il sistema immunitario produce autoanticorpi diretti contro un antigene primariamente localizzato a livello glomerulare (es. malattia da anticorpi anti-membrana basale glomerulare, glomerulopatia membranosa) o tubulare (es. malattia da anticorpi anti-membrana basale tubulare, sindrome di Sjögren). Differentemente, il danno immunomediato di tipo indiretto è causato da una disregolazione immunitaria generalizzata, che si estrinseca nella formazione e deposizione di immunoglobuline o immunocomplessi nelle varie porzioni del nefrone o nell’iperattivazione del sistema del complemento, più frequentemente della via alterna. Il danno immunomediato nella maggior parte dei casi si verifica in condizioni di autoimmunità (es. Vasculiti ANCA associate, Lupus Eritematoso Sistemico) o iperattivazione in seguito a stimoli esterni (es. infezioni), mentre una minoranza dei casi riconosce una base genetica (es. Microangiopatie Trombotiche, Glomerulopatie a deposito di C3) [1, 5]. La crescente comprensione dei meccanismi alla base del danno immunomediato ha consentito non solo una più corretta classificazione delle glomerulopatie, ma anche l’identificazione di nuovi target terapeutici di interesse.

Per gli scopi di questo manoscritto, ci focalizzeremo nei prossimi paragrafi su due compartimenti del sistema immunitario che hanno ricevuto grande attenzione negli ultimi anni in quanto centrali nella patogenesi di diverse nefropatie ed importanti bersagli terapeutici: il comparto B cellulare e il sistema del complemento.

 

Il comparto B cellulare

I linfociti B sono cellule del braccio adattativo del sistema immunitario, dotati di estrema eterogeneità fenotipica e funzionale. Dal fegato fetale al midollo osseo, i linfociti B vanno incontro ad una serie di stadi maturativi che terminano nel rilascio nel circolo periferico di cellule naive dotate di recettore B cellulare (BCR) adeguatamente funzionante e non autoreattivo. Il contatto con antigeni ed apteni a livello periferico e linfonodale stimola l’ulteriore maturazione dei linfociti B a plasmacellule e plasmablasti, secernenti immunoglobuline, e allo sviluppo delle cellule B della memoria, responsabili dell’immunità secondaria. Tali fasi maturative si accompagnano a caratteristiche variazioni dei principali markers di superficie: di particolare interesse è il CD20, non presente su plasmacellule/plasmablasti. Il principale meccanismo effettore dei linfociti B nella genesi delle nefropatie immunomediate è determinato dalla secrezione di immunoglobuline; altri meccanismi di danno, detti anticorpo-indipendenti, includono la secrezione di citochine e la presentazione dell’antigene ai linfociti T (comunicazione B-T cellulare) [5, 10].

Lo studio delle diverse sottopopolazioni B cellulari potrebbe portare ad interessanti sviluppi sia in ambito terapeutico che nel monitoraggio dell’attività di malattia [10, 11]. La disregolazione del comparto B cellulare è evidente nel Lupus Eritematoso Sistemico, in cui la genesi di autoanticorpi diretti contro numerosi antigeni nucleari provoca la formazione di immunocomplessi, l’attivazione del complemento e la produzione diffusa di citochine e cloni T autoreattivi, generando uno stato infiammatorio che a livello renale si traduce in un quadro istopatologico e fenotipico molto eterogeneo [12]. Nelle Vasculiti ANCA associate, la produzione di anticorpi diretti contro la mieloperossidasi (MPO) e la proteinasi 3 (PR3) è in grado di stimolare la degranulazione dei neutrofili attivati con conseguente infiammazione vascolare necrotizzante caratterizzata a livello renale dallo sviluppo di una glomerulonefrite rapidamente progressiva [13, 14].

Nella nefropatia membranosa primitiva, la produzione di immunocomplessi antigene-anticorpo nella maggior parte dei casi rivolti verso il recettore della fosfolipasi A2 (PLA2R) e, in minor misura, della trombospondina di tipo 1 7A (THSD7A) porta al danneggiamento della barriera di filtrazione glomerulare e allo sviluppo di sindrome nefrosica [1517].  Nella nefropatia a depositi mesangiali di IgA la produzione di IgA degalattosilate, legata alla verosimile migrazione di B cellule dell’immunità mucosale al midollo osseo, porta alla formazione di immunocomplessi che si depositano a livello mesangiale, attivando la risposta infiammatoria [18]. Infine, la comunicazione B-T cellulare sembra svolgere un ruolo cardine anche nella patogenesi delle podocitopatie primitive in cui un fattore circolante attualmente sconosciuto, verosimilmente di origine T cellulare, è in grado di danneggiare le cellule epiteliali viscerali della barriera di filtrazione glomerulare, determinandone la perdita di selettività e la comparsa di sindrome nefrosica [19].

Utilizzare il comparto B cellulare nelle sue diverse fasi maturative come target terapeutico è ormai la base del trattamento di svariate nefropatie immunomediate [1, 5, 20]. Il CD20, antigene espresso sin dalle fasi precoci della maturazione B cellulare e perso nella maturazione a plasmacellula, presenta le evidenze più solide in letteratura: l’anticorpo monoclonale chimerico rituximab è infatti utilizzato come prima linea terapeutica in diverse nefropatie immunomediate. L’esperienza maggiore proviene dal trattamento delle Vasculiti ANCA associate, in cui il rituximab, in associazione con i glucocorticoidi, è utilizzato in prima linea sia nella induzione che nel mantenimento della remissione di malattia [20]. I trial clinici RAVE (n=197) e RITUXVAS (n=44) sono i primi ad aver documentato la non inferiorità del rituximab rispetto alla terapia standard con ciclofosfamide nella poliangite microscopica (MPA) e nella granulomatosi con poliangite (GPA): l’outcome primario è stato infatti raggiunto dal 64% versus 53% e dal 76% versus 82% dei pazienti, rispettivamente, con profilo di sicurezza e tassi di recidiva simili durante il periodo di osservazione [21, 22]. I trial MAINRITSAN e RITAZAREM hanno successivamente indagato il ruolo del rituximab come terapia di mantenimento [2327]: nel MAINRITSAN 1 (n=115), dopo una terapia di induzione a base di ciclofosfamide e glucocorticoidi, si è osservato un beneficio in termini di recidive maggiori nei pazienti in mantenimento con rituximab rispetto ad azatioprina (a 28 mesi: 29% nel gruppo trattato con azatioprina versus 5% nel braccio trattato con rituximab, p=0.0002) [23]. Il trial RITAZAREM (n=188) ha portato a risultati simili in pazienti con Vasculite ANCA associata recidivante trattati con rituximab e corticosteroidi in induzione e, successivamente, rituximab o azatioprina come terapia di mantenimento, con un hazard ratio nella protezione da recidiva di 0.36 (95% CI 0.23-0.57, p<0.001) [27, 28].

Rimane ancora da chiarire quale sia lo schema di mantenimento a base di rituximab ideale. Nel MAINRITSAN 1 i pazienti, all’avvio della fase di mantenimento, venivano trattati con rituximab 500 mg al giorno 0 e 14 e poi al mese 6, 12, 18; nel RITAZAREM, dopo induzione con rituximab, la dose era di 1000 mg al mese 4, 8, 12, 16, 20. Lo studio MAINRITSAN 2 ha invece confrontato lo schema di rituximab utilizzato come terapia di mantenimento del MAINRITSAN 1 con uno schema on-demand, in cui il ritrattamento era guidato dal ripopolamento dei linfociti B CD20 o da un aumento significativo degli ANCA senza identificare differenze significative tra i due regimi; occorre tuttavia sottolineare un trend non statisticamente significativo verso una minor incidenza di recidive nel braccio trattato a cadenza fissa semestrale [24]. La terapia di mantenimento ideale a base di rituximab nel contesto delle Vasculiti ANCA associate è ancora da chiarire (Tabella 1) e i diversi regimi di mantenimento proposti possono al momento essere considerati in modo alternativo nel contesto di scenari clinici diversi (es. età del paziente, funzione renale residua, fenotipo di malattia, comorbidità, pregresse recidive); idealmente, studi futuri saranno in grado di fornirci biomarkers efficaci nell’identificare l’approccio ideale per il singolo paziente. Occorre inoltre considerare che il rituximab può essere utilizzato in maniera efficace e sicura anche come mantenimento a lungo termine [25, 29, 30]; un più rapido ripopolamento del comparto B cellulare, la ripositivizzazione degli ANCA e la loro specificità PR3 sono fattori di rischio per la recidiva, identificando un sottogruppo di pazienti che potrebbe beneficiare da schemi di mantenimento aggressivi e monitoraggi stretti [25, 29, 30].

 

 

MAINRITSAN (2014)

N=57

MAINRITSAN 2 (2018)

N= 162

RITAZAREM (2020)

N=85

Caratteristiche basali

 

Sesso femminile*

Età (anni) *

ANCA-PR3 *

ANCA-MPO*

GPA*

MPA*

Vasculiti renali*

 

 

20 (35%)

54±13°

44 (77%)

9 (16%)

47 (82%)

8 (14%)

2 (4%)

Schema personalizzato (n=81)

 

31 (38%)

62±14°

38 (47%)

26 (32%)

56 (69%)

25 (31%)

Schema fisso (n=81)

 

37 (46%)

59±13°

38 (47%)

24 (29%)

61 (75%)

20 (25%)

 

 

42 (49%)

57 (18 – 89)+

61 (72%)

24 (28%)

Popolazione arruolata Remissione completa dopo terapia di induzione Remissione completa dopo terapia di induzione Recidiva di malattia
Schema di mantenimento con RTX 500 mg al giorno 0 e 14 e, successivamente, al mese 6-12-18 500 mg al giorno 0, trattamento guidato dall’aumento degli ANCA o ripopolazione B cellulare 500 mg al giorno 0 e 14 e, successivamente, al mese 6-12-18 1 g ogni 4 mesi (mese 4-24)
Follow-up (mesi) 28 28 Minimo 24 mesi
Recidive maggiori di malattia* 3 (5%) 6 (7%) 3 (4%) 2 (2%)
SAE (n° pazienti, %) 25 (44%) 26 (27%) 31 (38%) 19 (22%)
Tabella 1: Caratteristiche cliniche, strategie di terapia di mantenimento, tassi di recidiva ed eventi avversi nei bracci tratti con Rituximab degli studi prospettici focalizzati sulla terapia di mantenimento delle Vasculiti ANCA associate.
*: n/N (%); °: media ± deviazione standard; +: mediana (range interquartile); GPA: granulomatosi con poliangite; MPA: micropoliangite; RTX: rituximab; SAE: eventi avversi severi (severe adverse events).

Un’altra glomerulopatia in cui il rituximab è ormai identificato come terapia di prima linea nella maggior parte dei contesti clinici è la nefropatia membranosa; infatti, il rituximab si è dimostrato superiore rispetto al solo approccio supportivo con inibitori del sistema renina angiotensina aldosterone (GEMRITUX, n= 75) [31] e alla terapia con ciclosporina soprattutto dopo la sospensione di quest’ultima (MENTOR, n=130) [32]. Il ruolo del rituximab rispetto allo storico schema ciclico a base di ciclofosfamide e corticosteroidi è invece più dibattuto: nel trial STARMEN (n=86) lo schema ciclico è stato comparato ad un approccio sequenziale con tacrolimus e rituximab somministrato come singola dose di 1 g, identificando una differenza a favore dello schema ciclico nel raggiungimento della remissione di malattia, sia completa che parziale, a 24 mesi (83.7% versus 58.1%) [33]. Questo studio, pur non mostrando un’equivalenza della terapia ciclica alla terapia sequenziale con tacrolimus e rituximab, ha tuttavia dimostrato il potenziale ruolo del rituximab come terapia, almeno in certi contesti clinici, in grado di consolidare la remissione alla sospensione degli inibitori della calcineurina, condizione gravata da un elevato rischio di recidiva.

Il più recente trial RI-CYCLO (n=74) ha confrontato terapia ciclica e rituximab 1 g x 2 senza identificare differenze tra i due trattamenti a 24 mesi in termini di efficacia clinica: la probabilità di ottenere una risposta completa o parziale è risultata sovrapponibile tra i due gruppi, con una tendenza alla remissione più rapida nello schema ciclico. Il sesso maschile, un’età <55 anni e la presenza di una sindrome nefrosica più severa sono risultati fattori associati ad una minore probabilità di sperimentare una remissione di malattia [34]. Anche in questo contesto, lo schema terapeutico ideale (Tabella 2) e il possibile impatto della dose di rituximab sulla risposta clinica deve essere investigato ulteriormente, soprattutto considerando l’incrementata perdita urinaria del farmaco in corso di sindrome nefrosica [35].

Trial Trattamento (n° pazienti) Follow-up (mesi) Risposta clinica (CR+PR) Recidive di malattia Eventi avversi severi

(n°eventi)

GEMRITUX (2017)

RTX 375 mg/m2 al giorno 1 e 8 (n=37)

Terapia supportiva (n=38)

17 (12.5–24.0)+

 

17 (13.0–23.0)+

24/37%

 

13/38%

8

 

8

MENTOR (2019)

RTX 1g al giorno 1 e 15 (eventualmente ripetuto a 6 mesi) (n=65)

Ciclosporina (3.5 mg/kg/die) per 12 mesi, scalato fino a sospensione in 2 mesi (n=65)

24 39/65$

 

 

13/65$

 

2/39$

 

 

18/34$

 

13

 

 

22

 

STARMEN (2021)

Schema ciclico: MPDN (1 g/die x 3) seguito da PDN (0.5 mg/kg/die) per 27 giorni al mese 1-3-5, alternato a ciclofosfamide orale (2 mg/kg/die) al mese 2-4-6 (n=43)

Tacrolimus (0.05 mg/kg/die) fino al mese 6, poi scalato fino a sospensione in 3 mesi + RTX 1g al giorno 180 (n=43)

24 36/43$

 

 

 

 

 

25/43$

1/36%

 

 

 

 

 

3/25%

10

 

 

 

 

 

7

RI-CYCLO (2021)

RTX 1g al giorno 1 e 15 (n=37)

Schema ciclico: MPDN (1 g/die x3) seguito da PDN (0.5 mg/kg/die) per 27 giorni al mese 1-3-5, alternato a ciclofosfamide orale (2 mg/kg/die) al mese 2-4-6 (n=37)

Fino a 36 mesi 17/20$

 

 

 

16/22$

3/23%

 

 

 

6/27%

8

 

 

 

6

Tabella 2: Caratteristiche cliniche, schemi terapeutici, tassi di risposta clinica/recidiva ed eventi avversi negli studi prospettici sul ruolo del Rituximab nella Nefropatia Membranosa.
+: mediana (range interquartile); %: risposta cumulativa; $: alla fine del follow-up; MPDN: metilprednisolone; PDN: prednisone; RTX: rituximab

Nonostante il ruolo centrale del comparto B cellulare nella patogenesi del Lupus Eritematoso Sistemico, i primi dati di efficacia terapeutica dei farmaci anti-CD20 di tipo I (rituximab, ocrelizumab) in corso di nefrite lupica sono stati poco incoraggianti, infatti le ultime linee guida ACR/EULAR riservano il trattamento con RTX solo nella patologia lupica refrattaria o difficile da trattare [36,37]. Nel trial clinico di fase III LUNAR (n= 144) l’aggiunta del RTX alla terapia di background in pazienti con nefrite lupica proliferativa non ha apportato sostanziali benefici in termini di risposta clinica rispetto a placebo (p=0.18) [38]. Il trattamento con rituximab è stato inoltre indagato come terapia di mantenimento, nel tentativo di identificare un ruolo del farmaco in questo contesto così come di esplorare un potenziale impatto dell’utilizzo di una elevata dose cumulativa del farmaco nel modificare il rischio di recidiva nel lungo termine, evento descritto nelle Vasculiti ANCA associate [30].

In uno studio retrospettivo di 147 pazienti [39] affetti da Lupus Eritematoso Sistemico, 80 di questi erano stati trattati con terapia di mantenimento con rituximab (in media, 1 g ogni 6 mesi per 2 anni): una risposta clinica completa è stata ottenuta nel 48% dei pazienti a 24 mesi; i pazienti con ipocomplementemia per C4, un numero più basso di linee terapeutiche prima del rituximab ed un coinvolgimento d’organo grave presentavano migliori probabilità di sperimentare una risposta clinica positiva. La terapia di mantenimento con rituximab ha consentito un complessivo risparmio di steroide, tuttavia il 65% dei pazienti ha sperimentato almeno una recidiva in corso di terapia di mantenimento (53/100 pazienti-anno), più frequentemente tra i 6 e 12 mesi dopo la prima somministrazione del farmaco e a coinvolgimento d’organo non severo, ossia per lo più osteoarticolare e cutaneo. La sospensione del mantenimento con rituximab, a differenza delle Vasculiti ANCA associate, non si associava ad un ritardo nel tempo libero da recidiva rispetto ai pazienti trattati con rituximab con il solo scopo di indurre la remissione e poi mantenuti in terapia standard. Alla sospensione della terapia di mantenimento, si osservava un incremento del tasso di recidive maggiori (da 38% a 67%, p=0.01) con interessamento neurologico, ematologico e polmonare, mentre la frequenza di recidive maggiori con coinvolgimento renale rimaneva sostanzialmente stabile [39]. Veniva quindi concluso che una terapia di mantenimento a base di rituximab può essere considerata un’opzione in malati con Lupus Eritematoso Sistemico difficile da trattare, che il rischio di recidive muscolo-scheletriche in corso di terapia esiste ma le recidive maggiori erano infrequenti; tuttavia, alla sospensione della terapia di mantenimento il rischio di recidiva rimaneva identico a quello di pazienti trattati con la sola induzione a base di rituximab.

La minor efficacia del rituximab nell’ambito del lupus eritematoso sistemico rispetto ad altre malattie immunomediate non ha ancora un’interpretazione univoca. Le spiegazioni possibili sono molteplici, queste esiterebbero comunque in un’incompleta deplezione dei linfociti B che manterrebbero quindi la loro capacità di perpetuare la risposta autoimmunitaria [4042]. Per certo, una adeguata deplezione B linfocitaria sembrerebbe condizione necessaria al fine di ottenere una risposta al rituximab in corso di Lupus Eritematoso Sistemico in generale e nefrite lupica in particolare. Un’analisi post-hoc della cinetica di deplezione nei pazienti dello studio LUNAR ha infatti rilevato una maggior incidenza di remissione sostenuta a 78 settimane (ma non a 52 settimane) nei pazienti con una deplezione B cellulare più sostenuta. La presenza di un eGFR più elevato, un minor consumo complementare e un grado minore di proteinuria erano fattori associati ad una deplezione più sostenuta [40].

L’incompleta deplezione B cellulare dopo rituximab, unitamente alla sua immunogenicità e alla lenta cinetica, potrebbero essere superate dai nuovi anticorpi monoclonali anti-CD20 di classe II, di cui attualmente l’obinutuzumab è la molecola che si sta rivelando in grado di raccogliere le maggiori evidenze. Oltre alla minor immunogenicità, legata alla bioingegnerizzazione di tipo umanizzato, obinutuzamab è dotato di un effetto citotossico diretto più marcato e una miglior resistenza all’internalizzazione mediata dal recettore per il frammento costante gamma; ciò si traduce in una miglior capacità depletiva sul comparto B cellulare residuo a livello tissutale [43]. I primi risultati nei pazienti con Lupus Eritematoso Sistemico sono incoraggianti: lo studio di fase II NOBILITY (n=125) ha infatti evidenziato una miglior risposta renale a 104 settimane nei pazienti trattati con obinutuzumab rispetto a placebo in aggiunta a terapia di background con steroide e micofenolato mofetile (p=0.026), con una cinetica di deplezione B cellulare molto più rapida rispetto al RTX (96% dopo 2 settimane versus 52% nel trial LUNAR) e un profilo di sicurezza favorevole [44]. È attualmente in fase di arruolamento lo studio di fase III REGENCY (NCT04221477), che auspicabilmente fornirà ulteriori evidenze prospettiche a favore di questa nuova arma terapeutica. Il trattamento con obinutuzumab è in corso di studio anche nella nefropatia membranosa (NCT04629248, fase III) e nella glomerulosclerosi focale e segmentaria (NCT04983888, fase II), mentre dati aneddotici ne documentano l’efficacia nelle Vasculiti ANCA associate, contesto clinico in cui peraltro una inefficacia del rituximab è significativamente meno frequente [45].

Un più recente approccio terapeutico nelle glomerulopatie immunomediate mira ad una modulazione più indiretta del compartimento B cellulare attraverso un’azione sulle citochine che ne regolano lo sviluppo e la differenziazione. Particolare attenzione è stata posta all’inibizione del fattore attivante i linfociti B (BAFF), uno dei principali fattori immunostimolanti del braccio B cellulare dell’immunità adattativa nei suoi diversi compartimenti [1, 10]. L’anticorpo monoclonale umano belimumab è ormai approvato per il trattamento dei pazienti con Lupus Eritematoso Sistemico non controllato dalla terapia standard [36]. I principali dati sulla nefrite lupica derivano dal trial clinico di fase III BLISS-LN (n=448), in cui belimumab è stato comparato con placebo in aggiunta alla terapia di background in pazienti con nefrite lupica proliferativa in fase attiva. Già dalle 24 settimane di follow-up, l’aggiunta di belimumab è stata associata ad un maggior tasso di raggiungimento dell’outcome renale primario rispetto a placebo indipendentemente dalla terapia di induzione utilizzata (ciclofosfamide seguita da azatioprina rispetto a micofenolato mofetile). Tale beneficio è stato sostenuto lungo tutto il periodo di osservazione di 104 settimane (43% vs 32%, odds ratio, 1.6; IC95% 1.0 – 2.3; p=0.03). I pazienti randomizzati a belimumab hanno inoltre sperimentato una miglior risposta sierologica. Infine, il trattamento con belimumab è stato associato ad un minor rischio di eventi renali o morte (hazard ratio= 0.51, IC95% 0.34 – 0.77, p=0.001), presentando un profilo di sicurezza assimilabile alla sola terapia di background [46]. Una post hoc analisi avrebbe ristretto il beneficio in termini degli outcomes renali ai casi con classi proliferative di nefrite lupica e con proteinuria lieve o moderata; non veniva identificato invece un segnale di efficacia nelle forme di membranosa lupica [47].

L’effetto di Belimumab è stato inoltre indagato nelle Vasculiti ANCA associate, in cui il BAFF svolge un importante ruolo patogenetico nel perpetuare la produzione di ANCA. Lo studio di fase III BREVAS (n=105) ha valutato l’efficacia di belimumab versus placebo in associazione ad azatioprina e glucocorticoidi come terapia di mantenimento nelle GPA ed MPA. In tale setting, il trattamento con belimumab non ha raggiunto l’outcome primario e non ha dimostrato sostanziali benefici in termini di protezione dalle recidive, sebbene il tempo mediano alla recidiva fosse più lungo nel braccio belimumab rispetto a placebo (251 giorni versus 105 giorni); occorre sottolineare come lo studio sia stato chiuso in anticipo senza raggiungere il target di reclutamento prefissato. È interessante segnalare come tutte le recidive verificatesi nel braccio trattato con belimumab fossero pazienti PR3-ANCA positivi che avevano ricevuto un’induzione a base di ciclofosfamide, mentre nessuna recidiva è stata riportata in pazienti trattati con rituximab come induzione che avessero ricevuto anche belimumab come mantenimento [48], suggerendo che la combinazione dei due farmaci potrebbe avere un ruolo nella gestione delle Vasculiti ANCA associate. In questo ambito, occorre sottolineare come un polimorfismo del singolo nucleotide della regione regolatoria del gene BAFF, associato a segni di maggior attività del compartimento B cellulare, sia stato identificato associato ad una minor probabilità di risposta in Vasculiti ANCA associate trattate con rituximab come induzione, ulteriormente rafforzando il razionale della potenziale utilità del targeting contemporaneo di linfociti B e di loro citochine attivanti almeno in alcuni contesti clinici [49]. Infine, una monoterapia biennale con belimumab è stata indagata in pazienti con nefropatia membranosa PLA2R positiva attraverso un piccolo trial open-label, in cui 11 pazienti hanno raggiunto una remissione completa o parziale di malattia, ottenuta a seguito di una remissione sierologica. Tutti i pazienti hanno sperimentato almeno un evento avverso durante il follow-up, principalmente di natura infettiva, sebbene si trattasse di eventi lievi-moderati a risoluzione spontanea [50]. In tutti e tre gli studi, il trattamento con belimumab si è associato ad un decremento dei linfociti B naive e ad un aumento farmaco-correlato dei linfociti B della memoria, probabile espressione di una aumentata mobilizzazione degli stessi dagli organi linfoidi tissutale al circolo ematico ponendo un intrigante razionale teorico per una terapia in combinazione di belimumab e rituximab in cui il belimumab preceda la somministrazione del farmaco anti-CD20 con l’obiettivo di rendere le cellule della memoria CD20 positive più accessibili al killing rituximab mediato [46, 48, 50].

 

Il sistema del complemento

Il sistema del complemento è un importante pilastro dell’immunità innata, attivato a livelli sub-soglia in condizioni fisiologiche. La sua attivazione avviene con un meccanismo a cascata che riconosce tre vie distinte: la via classica, la via alternativa e la via lectinica; momento ultimo comune è la formazione del complesso di attacco alla membrana (MAC), con attività litica, e la produzione delle anafilotossine C3a e C5a, che partecipano alla chemiotassi delle cellule immunitarie nei siti di infiammazione [51]. La disregolazione del sistema del complemento è un elemento patogenetico centrale in molteplici glomerulopatie mediate da immunocomplessi, in cui la sua attivazione è contestuale all’autoimmunità; alcune condizioni genetiche, infine, sono state associate all’iperattivazione del sistema del complemento (es. sindrome emolitico-uremica atipica e glomerulopatie da C3) [5, 51]. L’attivazione del complemento si traduce solitamente in un consumo dei livelli circolanti di C3 e, se coinvolta anche la via classica, di C4 (es. Lupus Eritematoso Sistemico); tuttavia, alcune patologie con coinvolgimento del complemento possono presentarsi con normocomplementemia a seguito dell’attivazione complementare esclusivamente in situ (es. nefropatia membranosa, Vasculiti ANCA associate).

L’utilizzo del sistema del complemento come target terapeutico di prima linea nasce dall’esperienza ematologica, ed è stato traslato alla nefrologia con l’utilizzo dell’inibitore del C5 eculizumab nella sindrome emolitico-uremica atipica [52]. Recentemente, la disregolazione della via alternativa del complemento è stata identificata come uno dei principali momenti patogenetici nelle Vasculiti ANCA associate, in cui la produzione delle anafilotossine (in particolare il C5a) parteciperebbe alla chemiotassi dei neutrofili attivati e, conseguentemente, all’infiammazione vascolare [53]. Tali evidenze hanno portato all’impiego dell’avacopan, farmaco orale con effetto inibitorio selettivo sul recettore del C5a, con risultati molto incoraggianti negli studi di fase II [54, 55]; il successivo trial clinico di fase III ADVOCATE (n=331) ha testato l’efficacia di avacopan in aggiunta alla terapia steroidea come terapia di induzione in pazienti con GPA e MPA, dimostrando una non-inferiorità nel mantenimento di una remissione clinica sostenuta a 26 settimane (72.3 versus 70.1%) e una superiorità a 52 settimane rispetto al braccio di controllo trattato con terapia di mantenimento standard (65.7% versus 54.9%). Riguardo il braccio di controllo, occorre sottolineare come il gruppo trattato con ciclofosfamide come induzione (36% circa) ricevesse come mantenimento azatioprina, mentre il gruppo trattato con rituximab come induzione (64% circa) non ricevesse altri immunosoppressori a scopo di mantenimento. Il trattamento con avacopan ha consentito una riduzione significativa della dose di glucocorticoidi necessaria, con conseguente riduzione degli effetti tossici legati a quest’ultimo e nei malati con coinvolgimento renale una più rapida riduzione della proteinuria e un maggior miglioramento della GFR soprattutto nel sottogruppo con filtrato di partenza inferiore ai 30 ml/min/1.73m2 [56].

I tre bracci del complemento sono stati estensivamente implicati nella patogenesi del Lupus Eritematoso Sistemico [57]. Nella nefropatia membranosa, la via alterna del complemento, attivata in situ, partecipa al danno glomerulare mediato dagli immunocomplessi [58]. Infine, il ruolo della via alternativa e lectinica del complemento sia in situ che in fase fluida è sempre più evidente nella nefropatia a depositi di IgA ed è parte integrante del modello patogenetico multi-hit [18, 59]; ciò determina un importante avanzamento nel paradigma di trattamento di questa glomerulopatia assai diffusa ma caratterizzata da scarse opzioni terapeutiche [59]. Lo studio dei farmaci anti-complemento in queste nefropatie è ancora in fase iniziale: sono attualmente in corso di reclutamento studi di fase II sia su farmaci anti-complemento biologici (NCT04564339) che su inibitori della via alterna orali (NCT05097989).

 

Il sistema immunitario influenza il rene: ruolo nella progressione del danno renale

Il sistema immunitario residente a livello renale, oltre a partecipare alla tolleranza immunologica e al mantenimento di una corretta omeostasi, regola gli insulti infiammatori a tutti i livelli del nefrone. Il ruolo dell’infiammazione e dell’attivazione disregolata del sistema immunitario in toto è noto nell’insufficienza renale acuta (AKI) nelle sue diverse manifestazioni (es. necrosi tubulare acuta, nefriti tubulointerstiziali acute e croniche): la morte delle cellule glomerulari e tubulari determina l’espressione di pattern molecolari associati al danno (DAMPs), che innescano le cellule dell’immunità innata residenti ad attivare la risposta infiammatoria (necroinfiammazione) stimolando la produzione di citochine pro-infiammatorie, il reclutamento dei leucociti circolanti, l’attivazione del sistema del complemento e di meccanismi di immunotrombosi [5, 6, 60]. Il pattern di infiammazione e i bracci del sistema immunitario coinvolti dipendono dal tipo di danno acuto [5]. Alla risoluzione dell’insulto, così come nell’AKI post-renale, il sistema immunitario viene invece attivato in senso anti-infiammatorio e profibrotico [6], partecipando alla rigenerazione, in caso di danno tubulare non particolarmente esteso, o alla riparazione del tessuto danneggiato con formazione di aree sclerotiche e fibrosi/atrofia tubulointerstiziale [1]. Quest’ultima, in particolare, è il momento ultimo comune riconoscibile in tutte le forme di danno renale ed è considerata uno stadio irreversibile. L’elemento principe nell’attivazione di un fenotipo infiammatorio pro-fibrotico è il fattore di crescita tumorale beta (TGF-β), in grado di agire sulle principali popolazioni renali e sulle cellule dell’immunità innata e adattativa attraverso vie canoniche (Smad-dipendenti) e non canoniche (via delle MAP-kinasi, etc.) [61, 62]: i principali effetti di un disregolato signalling del TGF-β includono il perpetuarsi di una risposta infiammatoria cronica, l’attivazione dei macrofagi in senso M2 e la loro differenziazione a miofibroblasti, in grado di produrre e accumulare matrice extracellulare [61]. La progressiva comprensione dei meccanismi alla base della fibrosi e delle popolazioni cellulari implicate ha portato allo sviluppo di interessanti target terapeutici che, differentemente dal mirare al trattamento di una specifica condizione primaria, mirano alla stimolazione di una corretta riparazione tissutale. L’inibitore della proteinchinasi MEK trametinib è infatti risultato in grado di ridurre l’accumulo di matrice extracellulare e l’espansione del pool di fibroblasti a livello renale in vivo su modello murino e in vitro in colture di fibroblasti umani [63]. In vivo, tuttavia, tali evidenze non sono state riproducibili, come dimostrato dal fallimento degli inibitori di TGF-β nel rallentare la progressione del danno renale sia nella nefropatia diabetica [64] che nella glomerulosclerosi focale segmentaria [65] per quanto nel contesto di studi clinici caratterizzati da un disegno sperimentale subottimale.

 

Il rene influenza il sistema immunitario: inflammaging e immunosenescenza nella mrc

L’invecchiamento fisiologico si associa ad una complessa modifica del funzionamento del sistema immunitario, sia innato che adattativo, portando a immunosenescenza e inflammaging. La prima altro non è che la riduzione della risposta immunitaria, più inefficace, con conseguente aumentato rischio di eventi infettivi e neoplasie, minor risposta alle vaccinazioni e incapacità di ottenere una riparazione tissutale efficace dopo un danno.  L’inflammaging è invece il perpetuarsi di una infiammazione cronica subclinica con aumentato rischio di autoimmunità e di eventi cardiovascolari e trombotici. Questo complesso disordine è legato all’involuzione degli organi linfoidi primari (fibrosi midollare, involuzione timica), all’incremento delle cellule senescenti circolanti, alla riduzione dell’organizzazione linfonodale con conseguente malfunzionamento dell’immunità adattativa umorale e cellulare, al contestuale aumento del numero di cellule mieloidi attivate ma dotate di attività fagocitaria deficitaria e di linfociti T proinfiammatori con rapporto CD4:CD8 ridotto [2, 66].

Nel paziente con MRC, tali processi risultano accelerati [66, 67]. La MRC, soprattutto in fase avanzata, è infatti in grado di modulare negativamente il sistema immunitario. La ritenzione di alcune tossine uremiche (es. acido fenilacetico e omocisteina) esercita infatti un ruolo inibitorio sulle cellule del sistema immune e ne stimola l’apoptosi. L’uremia determina inoltre un’alterazione della permeabilità di barriera a livello intestinale che, associata ad una proliferazione batterica incontrollata, porta alla circolazione di livelli elevati di pattern molecolari associati a patogeni (PAMPs) con il duplice effetto di stimolazione di un’infiammazione sistemica persistente subclinica e di una immunosoppressione mediata da una progressiva desensibilizzazione alle endotossine. Anche i prodotti del catabolismo proteico, che risulta aumentato nell’IRC, possiedono un effetto ambivalente sul sistema immunitario, determinandone l’attivazione cronica e, allo stesso tempo, alterandone la funzione effettrice. Questa attivazione cronica subclinica dell’infiammazione, in associazione all’effetto pro-ossidativo dell’uremia stessa, determina un eccessivo stress ossidativo a livello sistemico, che stimola il catabolismo proteico ed ha effetto pro-aterogeno e trombotico. Infine, l’aumento delle concentrazioni di renina tipico della MRC è in grado di attivare il compartimento T-helper 17, stimolando l’autoimmunità e l’infiammazione vascolare [2, 5, 66]. Alcune similitudini sono inoltre presenti nel soggetto immunosoppresso: a seguito di un trapianto renale, ad esempio, le sottopopolazioni T cellulari subiscono notevoli modificazioni e, in particolare, caduta dei livelli di linfociti CD4 che sembra correlare all’incidenza di infezioni opportunistiche [68]. Queste considerazioni diventano estremamente attuali nel periodo di pandemia da SARS-CoV-2: la presenza di un’alterata risposta immunitaria nel paziente emodializzato o trapiantato contribuisce infatti a giustificare l’elevata morbilità e mortalità dell’infezione da SARS-CoV-2 rispetto alla popolazione generale, nonché la scarsa risposta all’immunizzazione attiva tramite vaccino [6971]. È interessante notare come i livelli di linfociti T CD4+, CD8+, Natural Killer così come di linfociti B e cellule dendritiche plasmocitoidi siano di per sé ridotti nei malati dializzati e trapiantati rispetto a controlli sani e questo può avere un impatto sulla maggior severità di malattia osservata in questi contesti. Interessante è inoltre l’osservazione che la MRC causi una “cicatrice” immunologica irreversibile anche nel momento in cui la funzione renale viene ad essere reinstaurata, ad esempio con il trapianto renale: le alterazioni immunofenotipiche basali e durante infezione da SARS-CoV-2 sia nei malati trapiantati che dializzati sono infatti simili; si osserva tuttavia una maggior compromissione del sistema immunitario innato nei malati trapiantati, probabile effetto della terapia immunosoppressiva che potrebbe quindi costituire un fattore di rischio additivo [72].

L’identificazione di strategie volte a mitigare lo sviluppo e le conseguenze dell’immunosenescenza e dell’inflammaging avrebbe un enorme impatto sulla prognosi dei pazienti. Varie opzioni sono state considerate tra cui terapie ormonali, esercizio fisico, la possibilità di somministrare citochine e fattori di crescita [73], la somministrazione di probiotici [74] e il ricorso ad una dieta fortemente ipoproteica [75]. Anche la scelta della tecnica dialitica potrebbe avere un impatto su questo aspetto: l’utilizzo di membrane dall’elevata biocompatibilità (es. polimetilmetacrilato) si associa ad una ridotta attivazione della cascata coagulativa e all’adsorbimento di citochine, riducendo il grado di infiammazione cronica latente [76]; le membrane a medio cut-off hanno dimostrato un’ottima capacità di rimozione delle principali citochine proinfiammatorie  [77]; infine, le membrane ricoperte da vitamina E sembrano possedere un effetto antiossidante [78]. Nonostante il forte razionale teorico per tentare di agire su questi aspetti e l’identificazione di potenziali approcci di intervento di interesse, al momento non sono ancora state identificate strategie vincenti in questo contesto e la ricerca scientifica dovrà tentare di identificare nuovi potenziali approcci in grado di impattare sulla prognosi di malati con MRC avanzata.

 

Conclusioni

Le interazioni tra rene e sistema immunitario sono complesse e multidirezionali. Alcune di queste, soprattutto quelle riguardanti il ruolo del sistema immunitario nella patogenesi delle nefropatie immunomediate, sono state relativamente ben approfondite. Questo ha permesso l’identificazione di bersagli terapeutici di grande interesse con il conseguente sviluppo di farmaci che, o in quanto già a disposizione della normale pratica clinica o in quanto in fase avanzata di sperimentazione, stanno impattando significativamente sulla gestione clinica delle nefropatie immunomediate. Altri aspetti chiave della complessa interazione tra rene e sistema immunitario sono il ruolo del sistema immunitario nel favorire la progressione del danno parenchimale renale in corso di nefropatia acuta o cronica oltre che l’impatto della condizione di nefropatia (in particolare, di malattia renale cronica) sulla funzione del sistema immunitario stesso. Gli studi finora condotti e focalizzati su questi ultimi due aspetti non hanno ancora consentito l’identificazione di strategie terapeutiche in grado di impattare sulle conseguenze cliniche di questi complessi rapporti. Programmi di ricerca volti a chiarire ulteriormente le basi fisiopatologiche e molecolari di queste interazioni consentiranno, nel futuro, nuovi importanti avanzamenti con l’obiettivo di impattare significativamente sulla prognosi dei malati nefropatici.

 

Bibliografia

  1. Tecklenborg J., Clayton D., Siebert S. & Coley S. M. The role of the immune system in kidney disease. Exp. Immunol. 192, 142–150 (2018), https://doi.org/10.1111/cei.13119.
  2. Betjes, M. G. H. Immune cell dysfunction and inflammation in end-stage renal disease. Rev. Nephrol. 9, 255–265 (2013), https://doi.org/10.1038/nrneph.2013.44.
  3. Basso P. J., Andrade-Oliveira V. & Câmara N. O. S. Targeting immune cell metabolism in kidney diseases. Rev. Nephrol. 17, 465–480 (2021).
  4. Stewart, B. J. et al. Spatiotemporal immune zonation of the human kidney. Science 365, 1461–1466 (2019), https://doi.org/10.1126/science.aat5031.
  5. Kurts C., Panzer U., Anders H.-J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Rev. Immunol. 13, 738–753 (2013), https://doi.org/10.1038/nri3523.
  6. Anders H.-J., Wilkens L., Schraml B. & Marschner, J. One concept does not fit all: the immune system in different forms of acute kidney injury. Dial. Transplant. 36, 29–38 (2021), https://doi.org/10.1093/ndt/gfaa056.
  7. Kurts C., Ginhoux F. & Panzer U. Kidney dendritic cells: fundamental biology and functional roles in health and disease. Rev. Nephrol. 16, 391–407 (2020), https://doi.org/10.1038/s41581-020-0272-y.
  8. Tang P. M.-K., Nikolic-Paterson D. J. & Lan H.-Y. Macrophages: versatile players in renal inflammation and fibrosis. Rev. Nephrol. 15, 144–158 (2019), https://doi.org/10.1038/s41581-019-0110-2.
  9. Rogers N., Ferenbach D., Isenberg J., Thomson A. & Hughes J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Rev. Nephrol. 10, 625–643 (2014), https://doi.org/10.1038/nrneph.2014.170.
  10. Schrezenmeier E., Jayne D. & Dörner T. Targeting B Cells and Plasma Cells in Glomerular Diseases: Translational Perspectives. Am. Soc. Nephrol. 29, 741–758 (2018), https://doi.org/10.1681/ASN.2017040367.
  11. Oleinika K., Mauri C. & Salama A. D. Effector and regulatory B cells in immune-mediated kidney disease. Rev. Nephrol. 15, 11–26 (2019), https://doi.org/10.1038/s41581-018-0074-7.
  12. Anders H.-J. et al. Lupus nephritis. Rev. Dis. Primer 6, 7 (2020), https://doi.org/10.1038/s41572-019-0141-9.
  13. Alberici F. & Jayne D. R. W. Impact of rituximab trials on the treatment of ANCA-associated vasculitis. Dial. Transplant. 29, 1151–1159 (2014), https://doi.org/10.1093/ndt/gft318.
  14. Nakazawa D., Masuda S., Tomaru U. & Ishizu A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Rev. Rheumatol. 15, 91–101 (2019), https://doi.org/10.1038/s41584-018-0145-y.
  15. Glassock R. J. The Pathogenesis of Idiopathic Membranous Nephropathy: A 50-Year Odyssey. J. Kidney Dis. 56, 157–167 (2010), https://doi.org/10.1053/j.ajkd.2010.01.008.
  16. Ronco P. & Debiec H. Pathogenesis of membranous nephropathy: recent advances and future challenges. Rev. Nephrol. 8, 203–213 (2012), https://doi.org/10.1038/nrneph.2012.35.
  17. Nast C. C. Antigens in Membranous Nephropathy: Progress Toward Precision. J. Kidney Dis. 76, 610–612 (2020), https://doi.org/10.1053/j.ajkd.2020.06.013.
  18. Pattrapornpisut P., Avila-Casado C. & Reich H. N. IgA Nephropathy: Core Curriculum 2021. J. Kidney Dis. Off. J. Natl. Kidney Found. 78, 429–441 (2021), https://doi.org/10.1053/j.ajkd.2021.01.024.
  19. Gauckler P. et al. Rituximab in adult minimal change disease and focal segmental glomerulosclerosis – What is known and what is still unknown? Rev. 19, 102671 (2020), https://doi.org/10.1016/j.autrev.2020.102671.
  20. Rovin B. H. et al. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 100, S1–S276 (2021), https://doi.org/10.1016/j.kint.2021.05.021.
  21. Stone J. H. et al. Rituximab versus Cyclophosphamide for ANCA-Associated Vasculitis. Engl. J. Med. 363, 221–232 (2010), https://doi.org/10.1056/NEJMoa0909905.
  22. Jones, R. B. et al. Rituximab versus Cyclophosphamide in ANCA-Associated Renal Vasculitis. Engl. J. Med. 363, 211–220 (2010), https://doi.org/10.1056/NEJMoa0909169.
  23. Guillevin L. et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. Engl. J. Med. 371, 1771–1780 (2014), https://doi.org/10.1056/NEJMoa1404231.
  24. Charles P. et al. Comparison of individually tailored versus fixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission: results of a multicentre, randomised controlled, phase III trial (MAINRITSAN2). Rheum. Dis. 77, 1143–1149 (2018), https://doi.org/10.1136/annrheumdis-2017-212878.
  25. Charles P. et al. Long-Term Rituximab Use to Maintain Remission of Antineutrophil Cytoplasmic Antibody-Associated Vasculitis: A Randomized Trial. Intern. Med. 173, 179–187 (2020), https://doi.org/10.7326/M19-3827.
  26. Bashford-Rogers R. J. M. et al. Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574, 122–126 (2019), https://doi.org/1038/s41586-019-1595-3.
  27. A Randomized, Controlled Trial of Rituximab versus Azathioprine After Induction of Remission with Rituximab for Patients with ANCA-associated Vasculitis and Relapsing Disease. ACR Meeting Abstracts https://acrabstracts.org/abstract/a-randomized-controlled-trial-of-rituximab-versus-azathioprine-after-induction-of-remission-with-rituximab-for-patients-with-anca-associated-vasculitis-and-relapsing-disease/.
  28. Smith R. M. et al. Rituximab as therapy to induce remission after relapse in ANCA-associated vasculitis. Rheum. Dis. 79, 1243–1249 (2020), https://doi.org/10.1136/annrheumdis-2019-216863.
  29. Terrier B. et al. Long-term efficacy of remission-maintenance regimens for ANCA-associated vasculitides. Rheum. Dis. 77, 1150–1156 (2018).
  30. Alberici F. et al. Long-term follow-up of patients who received repeat-dose rituximab as maintenance therapy for ANCA-associated vasculitis. Oxf. Engl. 54, 1153–1160 (2015), https://doi.org/10.1093/rheumatology/keu452.
  31. Dahan K. et al. Rituximab for Severe Membranous Nephropathy: A 6-Month Trial with Extended Follow-Up. Am. Soc. Nephrol. JASN 28, 348–358 (2017), https://doi.org/10.1681/ASN.2016040449.
  32. Fervenza F. C. et al. Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy. Engl. J. Med. 381, 36–46 (2019), https://doi.org/10.1056/NEJMoa1814427.
  33. Fernández-Juárez G. et al. The STARMEN trial indicates that alternating treatment with corticosteroids and cyclophosphamide is superior to sequential treatment with tacrolimus and rituximab in primary membranous nephropathy. Kidney Int. 99, 986–998 (2021), https://doi.org/1016/j.kint.2020.10.014.
  34. Scolari F. et al. Rituximab or Cyclophosphamide in the Treatment of Membranous Nephropathy: The RI-CYCLO Randomized Trial. Am. Soc. Nephrol. JASN ASN.2020071091 (2021), https://doi.org/10.1681/ASN.2020071091.
  35. Sinha A. & Bagga A. Rituximab therapy in nephrotic syndrome: implications for patients’ management. Rev. Nephrol. 9, 154–169 (2013), https://doi.org/10.1038/nrneph.2012.289.
  36. Fanouriakis A. et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Rheum. Dis. 78, 736–745 (2019), http://dx.doi.org/10.1136/annrheumdis-2019-215089.
  37. Weidenbusch M., Römmele C., Schröttle A. & Anders H.-J. Beyond the LUNAR trial. Efficacy of rituximab in refractory lupus nephritis. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. – Eur. Ren. Assoc. 28, 106–111 (2013), https://doi.org/10.1093/ndt/gfs285.
  38. Rovin B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012), https://org/10.1002/art.34359.
  39. Cassia M. A. et al. Rituximab as Maintenance Treatment for Systemic Lupus Erythematosus: A Multicenter Observational Study of 147 Patients. Arthritis Rheumatol. Hoboken NJ 71, 1670–1680 (2019), https://doi.org/1002/art.40932.
  40. Gomez Mendez L. M. et al. Peripheral Blood B Cell Depletion after Rituximab and Complete Response in Lupus Nephritis. J. Am. Soc. Nephrol. 13, 1502–1509 (2018), https://doi.org/10.2215/CJN.01070118.
  41. Kamburova E. G. et al. A single dose of rituximab does not deplete B cells in secondary lymphoid organs but alters phenotype and function. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 13, 1503–1511 (2013), https://doi.org/10.1111/ajt.12220.
  42. Mahévas M. et al. B cell depletion in immune thrombocytopenia reveals splenic long-lived plasma cells. Clin. Invest. 123, 432–442 (2013), https://doi.org/10.1111/ajt.1222010.1172/JCI65689.
  43. Goede V. et al. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL11 study. Leukemia 29, 1602–1604 (2015), https://doi.org/1038/leu.2015.14.
  44. Furie R. A. et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Rheum. Dis. 81, 100–107 (2022), https://doi.org/10.1136/annrheumdis-2021-220920.
  45. Amudala N. A. et al. Obinutuzumab as Treatment for ANCA-Associated Vasculitis. Oxf. Engl. keab916 (2021) https://doi.org/10.1093/rheumatology/keab916.
  46. Furie R. et al. Two-Year, Randomized, Controlled Trial of Belimumab in Lupus Nephritis. Engl. J. Med. 383, 1117–1128 (2020), https://doi.org/10.1056/NEJMoa2001180.
  47. Rovin B. H. et al. A secondary analysis of the Belimumab International Study in Lupus Nephritis trial examined effects of belimumab on kidney outcomes and preservation of kidney function in patients with lupus nephritis. Kidney Int. 101, 403–413 (2022), https://doi.org/1016/j.kint.2021.08.027.
  48. Jayne D. et al. Efficacy and Safety of Belimumab and Azathioprine for Maintenance of Remission in Antineutrophil Cytoplasmic Antibody–Associated Vasculitis: A Randomized Controlled Study. Arthritis Rheumatol. 71, 952–963 (2019), https://doi.org/1002/art.40802.
  49. Alberici F. et al. Association of a TNFSF13B (BAFF) regulatory region single nucleotide polymorphism with response to rituximab in antineutrophil cytoplasmic antibody-associated vasculitis. Allergy Clin. Immunol. 139, 1684-1687.e10 (2017), https://doi.org/10.1016/j.jaci.2016.08.051.
  50. Barrett C. et al. Effect of belimumab on proteinuria and anti-phospholipase A2 receptor autoantibody in primary membranous nephropathy. Dial. Transplant. 35, 599–606 (2020), https://doi.org/10.1093/ndt/gfz086.
  51. Noris M. & Remuzzi G. Genetics of Immune-Mediated Glomerular Diseases: Focus on Complement. Nephrol. 37, 447–463 (2017), https://doi.org/10.1016/j.semnephrol.2017.05.018.
  52. Legendre C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. Engl. J. Med. 368, 2169–2181 (2013), https://doi.org/10.1056/NEJMoa1208981.
  53. Kallenberg C. G. M. & Heeringa P. Complement is crucial in the pathogenesis of ANCA-associated vasculitis. Kidney Int. 83, 16–18 (2013), https://doi.org/1038/ki.2012.371.
  54. Jayne D. R. W. et al. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. Am. Soc. Nephrol. JASN 28, 2756–2767 (2017), https://doi.org/10.1681/ASN.2016111179.
  55. Merkel P. A. et al. Adjunctive Treatment With Avacopan, an Oral C5a Receptor Inhibitor, in Patients With Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. ACR Open Rheumatol. 2, 662–671 (2020), https://doi.org/1002/acr2.11185.
  56. Jayne D. R. W., Merkel P. A., Schall T. J. & Bekker P. Avacopan for the Treatment of ANCA-Associated Vasculitis. Engl. J. Med. 384, 599–609 (2021), https://doi.org/10.1056/NEJMoa2023386.
  57. Leffler J., Bengtsson A. A. & Blom A. M. The complement system in systemic lupus erythematosus: an update. Rheum. Dis. 73, 1601–1606 (2014), https://doi.org/10.1136/annrheumdis-2014-205287.
  58. Luo W. et al. Alternative Pathway Is Essential for Glomerular Complement Activation and Proteinuria in a Mouse Model of Membranous Nephropathy. Immunol. 9, (2018), https://doi.org/10.3389/fimmu.2018.01433.
  59. Rizk D. V. et al. The Emerging Role of Complement Proteins as a Target for Therapy of IgA Nephropathy. Immunol. 10, 504 (2019), https://doi.org/10.3389/fimmu.2019.00504.
  60. Dellepiane S., Leventhal J. S. & Cravedi P. T Cells and Acute Kidney Injury: A Two-Way Relationship. Immunol. 11, 1546 (2020), https://doi.org/10.3389/fimmu.2020.01546.
  61. Tang P. C.-T. et al. TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Med. 8, 628519 (2021), https://doi.org/10.3389/fmed.2021.628519.
  62. Sisto M., Lorusso L., Ingravallo G., Ribatti D. & Lisi S. TGFβ1-Smad canonical and -Erk noncanonical pathways participate in interleukin-17-induced epithelial–mesenchymal transition in Sjögren’s syndrome. Invest. 100, 824–836 (2020), https://doi.org/10.1038/s41374-020-0373-z. 
  63. Andrikopoulos P. et al. The MEK Inhibitor Trametinib Ameliorates Kidney Fibrosis by Suppressing ERK1/2 and mTORC1 Signaling. Am. Soc. Nephrol. 30, 33–49 (2019), https://doi.org/10.1681/ASN.2018020209.
  64. Voelker J. et al. Anti–TGF- β 1 Antibody Therapy in Patients with Diabetic Nephropathy. Am. Soc. Nephrol. 28, 953–962 (2017), https://doi.org/10.1681/ASN.2015111230.
  65. Vincenti F. et al. A Phase 2, Double-Blind, Placebo-Controlled, Randomized Study of Fresolimumab in Patients With Steroid-Resistant Primary Focal Segmental Glomerulosclerosis. Kidney Int. Rep. 2, 800–810 (2017), https://doi.org/1016/j.ekir.2017.03.011.
  66. Sato Y. & Yanagita M. Immunology of the ageing kidney. Rev. Nephrol. 15, 625–640 (2019).
  67. Kooman J. P., Kotanko P., Schols A. M. W. J., Shiels P. G. & Stenvinkel P. Chronic kidney disease and premature ageing. Rev. Nephrol. 10, 732–742 (2014), https://doi.org/10.1038/nrneph.2014.185.
  68. Calarota S. A. et al. Kinetics of T-Lymphocyte Subsets and Posttransplant Opportunistic Infections in Heart and Kidney Transplant Recipients. Transplantation 93, 112–119 (2012), https://doi.org/1097/TP.0b013e318239e90c.
  69. Alberici F. et al. A report from the Brescia Renal COVID Task Force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. Kidney Int. 98, 20–26 (2020), https://doi.org/1016/j.kint.2020.04.030.
  70. Bossini N. et al. Kidney transplant patients with SARS‐CoV‐2. (2020) https://doi.org/10.1111/ajt.16176.
  71. Alberici F. et al. A single center observational study of the clinical characteristics and short-term outcome of 20 kidney transplant patients admitted for SARS-CoV2 pneumonia. Kidney Int. 97, 1083–1088 (2020), https://doi.org/1016/j.kint.2020.04.002.
  72. Alberici F. et al. SARS-CoV-2 infection in dialysis and kidney transplant patients: immunological and serological response. Nephrol. 35, 745–759 (2022), https://doi.org/10.1007/s40620-021-01214-8.
  73. Ducloux D. et al. End-Stage Renal Disease-Related Accelerated Immune Senescence: Is Rejuvenation of the Immune System a Therapeutic Goal? Med. 8, 720402 (2021), https://doi.org/10.3389/fmed.2021.720402.
  74. Lei W.-T., Shih P.-C., Liu S.-J., Lin C.-Y. & Yeh T.-L. Effect of Probiotics and Prebiotics on Immune Response to Influenza Vaccination in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 9, E1175 (2017), https://doi.org/3390/nu9111175.
  75. Di Iorio B. R. et al. Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study). Clin. Med. 8, E1424 (2019), https://doi.org/10.3390/jcm8091424.
  76. Galli F. et al. Glycoxidation and inflammatory markers in patients on treatment with PMMA-based protein-leaking dialyzers. Kidney Int. 67, 750–759 (2005), https://doi.org/10.1111/j.1523-1755.2005.67138.x.
  77. Zickler D. et al. Medium Cut-Off (MCO) Membranes Reduce Inflammation in Chronic Dialysis Patients-A Randomized Controlled Clinical Trial. PloS One 12, e0169024 (2017), https://doi.org/1371/journal.pone.0169024.
  78. Sepe V. et al. Vitamin e-loaded membrane dialyzers reduce hemodialysis inflammaging. BMC Nephrol. 20, 412 (2019).