Cosa c’è di nuovo nella terapia della CKD-MBD?

Abstract

Gli importanti avanzamenti nelle conoscenze scientifiche hanno portato ad un notevole arricchimento delle offerte terapeutiche nel campo della CKD-MBD, che hanno permesso un miglior controllo dei parametri biochimici correlati, rispetto al passato. A questo non è però corrisposto un tangibile miglioramento degli esiti clinici, sia ossei che cardiovascolari, connessi alla CKD-MBD, né vi è stato un sensibile calo del numero di pillole che i pazienti nefropatici devono assumere, con l’obiettivo di mantenere controllati i parametri biochimici, con un costo terapeutico di questi interventi che rimane elevato. Tutti questi bisogni insoddisfatti continuano a stimolare la ricerca per cercare soluzioni nuove che possano migliorare uno o più di questi obiettivi non ancora raggiunti.

In questa revisione della letteratura più recente, abbiamo cercato di sintetizzare quanto di nuovo è stato recentemente proposto nel campo terapeutico della CKD-MBD, sottolineando gli eventuali vantaggi dei nuovi farmaci rispetto alle terapie già disponibili, con particolare attenzione ai bisogni non ancora soddisfatti.

Abbiamo inoltre rivisitato le recenti acquisizioni relativamente a farmaci, già da tempo in uso, riportando anche quelle che sono le più recenti evidenze raccolte che potrebbero modificare l’approccio al loro utilizzo.

Parole chiave: CKD-MBD, iperparatiroidismo secondario, fratture ossee, malattia cardiovascolare

Introduzione

Negli ultimi decenni, l’ambito delle conoscenze sulle alterazioni del metabolismo minerale e osseo associate ai vari stadi della malattia renale cronica (CKD-MBD, nell’acronimo anglosassone), si è arricchito di importanti novità sia nel campo fisiopatologico che in quello clinico.

Nelle prime stagioni della storia della nefrologia, si riteneva che tale condizione clinica, identificata come una problematica limitata alle manifestazioni ossee osservate nel paziente con malattia renale cronica (osteodistrofia uremica), fosse quasi esclusivamente conseguenza dell’eccessiva produzione di paratormone (PTH), a sua volta secondaria alla ridotta capacità di mantenere livelli calcemici nella norma a causa della ridotta sintesi del metabolita attivo della vitamina D (calcitriolo) e della ritenzione di fosfati, entrambe conseguenti al progressivo venir meno della funzione endocrina e depurativa renale [1].

Negli anni seguenti, le nuove acquisizione fisiopatologiche e cliniche, favorite da uno sviluppo esplosivo delle tecnologie di indagine, hanno evidenziato la maggiore complessità patogenetica della CKD-MBD che, in aggiunta agli storici protagonisti (PTH, ViTD, calcio, fosforo), ha visto comparire una serie di altri fattori di derivazione ossea, renale o sistemica (solo per citarne alcuni, FGF23, Klotho, sclerostina, activina, vitK, etc.) che, con ruoli non ancora del tutto definiti, potrebbero non solo contribuire alle variegate e variabili espressioni fenotipiche delle alterazioni funzionali e strutturali del metabolismo minerale e del sistema scheletrico, ma essere anche coinvolti in altre manifestazioni cliniche sistemiche che caratterizzano la malattia renale cronica (da qui in avanti CKD, secondo l’acronimo anglosassone più in uso), in particolare in quelle dell’apparato cardiovascolare, oltre a poter contribuire ad accelerare la progressione della CKD stessa [2].

Negli ultimi due decenni, abbiamo anche assistito ad un progressivo arricchimento dell’armamentario terapeutico nell’ambito della CKD-MBD, con farmaci indirizzati a correggere in modo sempre più efficace le alterazioni del metabolismo minerale, con l’obiettivo di ridurre anche gli esiti clinici ossei (fratture), sistemici (morbilità e mortalità CV) e renali (progressione della CKD).

La tabella 1 sintetizza gli indirizzi terapeutici più consolidati per il trattamento della CKD-MBD, basati fondamentalmente   sulle raccomandazioni contenute nelle ultime le linee guida pubblicate [3], in attesa dell’imminente pubblicazione della prossima versione.

Nonostante però gli indubitabili miglioramenti raggiunti nel controllo dei parametri biochimici (calcio, fosforo, PTH, vitD), che si rispecchiano anche nella riduzione della necessità di ricorso alla paratiroidectomia (PTX), mancano ad oggi chiare evidenze di un miglioramento anche degli esiti clinici sia ossei che sistemici. Rimangono inoltre insoddisfatte altre aspettative connesse alle terapie utilizzate nel controllo della CKD-MBD, come la necessità di ridurre l’elevato numero di pillole che i pazienti devono assumere quotidianamente, oltre al carico economico correlato a tali farmaci per la spesa sanitaria globale.

Nei prossimi paragrafi saranno brevemente descritte le novità terapeutiche, quelle che, a nostro parere, hanno un rilievo clinico di maggior interesse (anche se non tutte al momento disponibili nella pratica clinica), oltre a riportare quelle che sono alcune nuove evidenze su farmaci già da tempo in uso nel campo della CKD-MBD. Si è cercato anche di dare risalto agli eventuali vantaggi, quando presenti, delle nuove proposte terapeutiche rispetto alle terapie già disponibili, prestando particolare attenzione ai bisogni non ancora soddisfatti.

Argomento della raccomandazione Obiettivo Intervento Punti di attenzione Considerazioni e Limiti
 

 

 

 

 

 

 

 

Approccio generale

Il trattamento della

CKD-MBD si basa sul controllo seriale dei parametri biochimici: calcio, fosforo, PTH, 25-OH-vitD, FA

Controllo ripetuto dei parametri biochimici, con frequenza variabile e incrementale in funzione del grado di CKD

Valutare, oltre al valore assoluto del singolo parametro, anche la direzione e entità delle sue variazioni nel tempo

Attenzione da porre alle variazioni dei metodi di laboratorio utilizzati nel tempo

Mancanza di valori di riferimento di normalità, in particolare per PTH, negli stadi di CKD non in dialisi.

Non è definito se alla calcemia totale, influenzata dal livello di albumemia, vada preferito il calcio corretto per albumina o il calcio ionizzato.

Le  indicazioni all’uso di parametri strumentali (mineralometria, biopsia ossea, metodi per valutare le calcificazioni vascolari) sono poco definite

 

 

 

 

 

 

 

Controllo del fosforo

Mantenere i livelli di fosforemia nel range di normalità

Riduzione dell’apporto di fosforo con la dieta (con particolare attenzione alle sorgenti di fosfato facilmente assorbibile)

Eventuale aggiunta di chelanti intestinali del fosfato, privilegiando quelli non contenenti Al o Ca

Attenzione alle sorgenti nascoste di fosforo con la dieta (cibi e bevande processate o colorate; prodotti da forno; leggere le etichette di composizione di tutti gli alimenti confezionati)

Mancanza di evidenze che il mantenimento di livelli normali di fosforo si traduca in un miglioramento degli esiti ossei, cardiovascolari e renali.

Il solo livello ematico di fosforo non è un indicatore del suo bilancio  corporeo.

Restrizioni dietetiche troppo rigide potrebbero determinare una malnutrizione proteico-calorica, in particolare nel soggetto anziano

 

 

Controllo del calcio

Mantenere i livelli di calcemia entro i limiti della norma; particolare attenzione ad evitare l’ipercalcemia Evitare o ridurre l’uso di chelanti del fosforo a base di calcio; calcio nel liquido di dialisi tra 1.25 e 1.50 mmol/L In funzione del minore impatto clinico dell’ipocalcemia rispetto all’ipercalcemia, particolare attenzione andrà posta nell’uso di quantità elevate di calcitriolo e/o analoghi della vitamina D Limitazioni informative della calcemia totale (vedi sopra).
Controllo del PTH

Mantenere i livelli di PTH tra 2 e 9 volte il limite massimo di normalità nel paziente in dialisi.

Negli altri stadi di CKD, valutare la tendenza all’incremento dei valori più che ai valori assoluti

Possono essere utilizzate combinazioni variabili di calcitriolo, analoghi della vitamina D e calcimimetici (questi ultimi solo nei pazienti in dialisi o trapiantati), in funzione dei valori di calcio e fosforo ematici.

PTX nei casi non responsivi alla terapia medica

Attenzione ad un’eccessiva inibizione del PTH, per evitare il rischio della malattia adinamica dell’osso

Mancanza di una definizione dei valori desiderati per gli stadi di CKD non in dialisi.

Mancata valorizzazione della normalizzazione dei livelli di vitamina D nativa per il controllo del PTH.

Mancanza di chiare indicazioni alla PTX

Controllo dello stato vitaminico D Mantenere i livelli di 25-OH-vitD (calcidiolo) superiori al limite della sufficienza (30 ng/mL) Supplementazioni con varie forme di vitamina D nativa o 25-monoidrossilata (colecalciferolo, ergocalciferolo, calcidiolo) Attenzione ad alcune condizioni relativamente rare di mutazioni della 24-25- idrossilasi con sviluppo di ipercalcemia, anche severa, dopo somministrazione di vitamina D nativa

Non definiti i valori di normalità per i pazienti con CKD.

Non ben definiti i livelli di calcidiolo da non superare.

 

Tabella 1. Raccomandazioni secondo le KDIGO per il controllo della CKD-MBD [3] Note: FA: fosfatasi alcalina; PTH: paratormone; PTX: paratiroidectomia.

 

Farmaci che riducono il trasporto intestinale del fosfato

Il controllo dei livelli della fosforemia è da sempre indicato come uno dei principali obiettivi terapeutici nel trattamento della CKD-MBD. I suggerimenti dietetici e, nel paziente in dialisi, l’ottimizzazione del trattamento dialitico rappresentano i passaggi preliminari ineludibili, ma spesso non sufficienti, per il mantenimento dei livelli di fosforemia entro i limiti desiderati, con la conseguente necessità di ricorrere spesso all’uso di farmaci che, legando il fosfato contenuto negli alimenti, ne riducono l’assorbimento intestinale (chelanti del fosforo). Nonostante l’elevato numero di chelanti del fosfato disponibili [4], solo una minor parte dei pazienti riesce a mantenere livelli di fosforemia stabilmente entro i limiti della normalità, anche a causa di una ridotta aderenza terapeutica legata sia ad effetti di intolleranza gastroenterica al farmaco, ma non infrequentemente anche all’elevato numero di pillole da assumere per raggiungere il risultato terapeutico.

Nei prossimi paragrafi, riporteremo le note essenziali riguardo a due farmaci diretti al controllo dei valori fosforemici nel paziente con CKD che, a differenza di tutti i farmaci ipofosfatemici che agiscono con meccanismi di chelazione del fosfato contenuto nella dieta, hanno effetti inibitori diretti sul trasporto intestinale, attivo o passivo, di fosfato.

Nicotinamide

Oltre un decennio fa, era stato proposta come farmaco utile al controllo dell’iperfosforemia del paziente con CKD la Nicotinamide, derivato idrosolubile dell’acido nicotinico (Vitamina B3), la cui carenza è noto essere la causa della pellagra, per la sua azione inibitrice diretta del co-trasportatore attivo sodio/fosfato (NaPi2b), presente sul versante cellulare apicale degli enterociti [5]. Purtroppo, l’uso di questo farmaco si è dimostrato associato, nei primi studi, a numerosi effetti collaterali, anche gravi (4 casi di trombocitopenia e 2 decessi) [6]. Inoltre, un recente studio controllato nel quale è stata utilizzata in pazienti in trattamento dialitico una nuova formulazione di Nicotinamide a rilascio controllato, se pure confermando una certa efficacia nel controllo della fosforemia, ha anche evidenziato un’importante associazione con numerosi eventi avversi, in particolare gastroenterici, che hanno indotto una larga parte dei pazienti arruolati a sospendere il trattamento [7]. Per queste ragioni, la Nicotinamide non sembrerebbe avere al momento concrete prospettive di utilizzo in campo clinico.

Tenapanor

Recentemente, un altro farmaco che agisce sul trasporto intestinale di fosfato, il Tenapanor, è stato portato all’attenzione dei nefrologi come un nuovo possibile mezzo terapeutico indirizzato al controllo della fosforemia. Tenapanor, una piccola molecola con attività inibitrice sull’isoforma 3 dell’anti-trasportatore sodio/idrogeno (NHE3), espressa nelle cellule del tratto gastroenterico, è un farmaco già noto per i suoi effetti sodio-depletivi a livello intestinale, che ne aveva suggerito il possibile impiego nella correzione delle condizioni di idro/sodio ritenzione nei soggetti in dialisi, nei quali l’uso dei diuretici ha ovviamente uno spazio limitato se non nullo [8]. Tra gli effetti osservati con l’uso di tale farmaco, vi era quello di una riduzione dei valori della fosforemia, che successivi studi hanno dimostrato essere secondario ad una riduzione del trasporto paracellulare di fosfato nel tratto intestinale, conseguenza dell’inibizione di NHE3 [9]. A queste iniziali osservazioni, sono seguiti studi clinici che hanno confermato l’efficacia di questo farmaco nel controllo della fosforemia in pazienti in dialisi, peraltro associata ad una considerevole riduzione del numero di pillole necessarie al controllo di tale parametro, quando confrontato con la maggior parte dei chelanti del fosfato [10-13]. Il farmaco, approvato per l’uso del controllo della fosforemia dall’FDA, non è al momento approvato per tale applicazione in Italia. È comunque da segnalare che in tutti gli studi è stata riportata una frequente comparsa di eventi avversi gastroenterici, tra i quali, con particolare frequenza, la diarrea, talvolta di entità considerevole, che potrebbero limitarne un uso generalizzabile.

 

Calcifediolo a rilascio prolungato

L’uso del calcitriolo e degli altri analoghi della vitamina D è stato e continua a rimanere uno dei caposaldi della terapia della CKD-MBD, sulla base dei numerosi riconosciuti effetti diretti e indiretti della vitamina D sul controllo della produzione di PTH, sul metabolismo dell’apparato scheletrico, in aggiunta ai numerosi (presunti o reali) effetti pleiotropici. Le indicazioni specifiche al loro uso nei vari stadi della CKD hanno comunque subito ampie revisioni nelle linee guida che sono state prodotte negli ultimi 2 decenni [3, 14, 15]. È però altrettanto noto come l’efficacia dei metaboliti attivi della vitamina D sia spesso limitata dal loro effetto di incremento dei livelli sierici di calcio, di fosforo e, in una certa misura, anche di FGF23 associato al loro uso. Anche, ma non solo, sulla base di tutte queste considerazioni, negli ultimi due decenni si è andato sempre più consolidando l’interesse alla correzione del deficit di vitamina D nativa, di riscontro particolarmente elevato nella popolazione dei pazienti con CKD, preliminarmente o in contemporanea all’uso dei metaboliti attivi, al fine di rendere più efficace il controllo della CKD-MBD [3, 16]. In aggiunta però ai numerosi limiti nel definire quali siano i livelli di sufficienza di vitamina D nativa nei pazienti con varie forme di CKD [17], l’uso dei metaboliti della vitamina D nativa (colecalciferolo, ergocalciferolo, calcifediolo) si sono per il momento manifestati non particolarmente efficaci nella correzione dell’Iperparatiroidismo secondario (IPS) della CKD, forse anche a causa di un dosaggio non appropriato [18].

Calcifediolo a rilascio prolungato (ERC)

Recentemente, si è resa disponibile una nuova formulazione di calcifediolo, a rilascio prolungato nell’apparato gastrointestinale, che avrebbe dimostrato una maggiore efficacia nel controllo dei livelli di PTH, associandosi peraltro ad un miglior profilo nel controllo della calcemia, fosforemia e livelli di FGF23, quando confrontata non solo con altre formulazioni di vitamina D nativa, ma anche con analoghi della vitamina D attiva [19-21]. Sebbene questo farmaco si presenti come un mezzo terapeutico indubitabilmente efficace nel controllo quantomeno dell’IPS della CKD, rimangono da chiarire alcuni aspetti fisiopatologici e clinici che spieghino più approfonditamente le ragioni del differente profilo di efficacia e sicurezza rispetto agli altri preparati attualmente disponibili (migliore correzione dei livelli di 25-OH-VitD? Più elevati livelli di calcitriolemia? Etc.), oltre alla mancanza di dati su un confronto testa a testa con il già disponibile calcifediolo, possibilmente utilizzato allo stesso dosaggio, per poterne poi valutare il rapporto costo/efficacia. ERC rappresenta comunque una nuova opportunità terapeutica che certamente allargherà il paniere dei metaboliti della vitamina D utilizzabili in questo campo.

 

Nuovi calciomimetici

L’intensa ricerca che fece seguito alla identificazione, oltre 3 decenni fa, da parte di Edward E. Brown & Collaboratori di un recettore specifico per il calcio (CaSR), espresso sulle cellule paratiroidee e in grado di controllare la secrezione del PTH [22, 23], diede seguito alla produzione di una serie di molecole in grado di modulare tale recettore, controllando in senso inibitorio (calcimimetici) o stimolatorio (calcilitici) la produzione e secrezione del PTH [24]. Tra i calciomimetici, farmaci in grado di sopprimere la secrezione di PTH in condizioni ipersecretive, in particolare nell’IPS della CKD in fase avanzata, cinacalcet, un modulatore allosterico del CaSR, è stato il primo a entrare nell’uso clinico, sia nei pazienti in dialisi che dopo trapianto renale, dimostrandosi efficace nel controllo dei livelli di PTH, di calcio (con tendenza all’ipocalcemia) e del fosforo [25, 26]. Fu però chiaro, sin dagli inizi del suo uso, che una buona percentuale di pazienti si dimostrava intollerante al farmaco, in particolare a causa di effetti avversi gastroenterici (nausea, vomito, epigastralgie, diarrea); inoltre, l’efficacia di cinacalcet nel controllo dei livelli dei parametri biochimici non è stata accompagnata da un miglioramento significativo degli esiti clinici, ossei o sistemici [27, 28].

Per superare o quantomeno limitare i problemi legati alla gastro-tolleranza di cinacalcet, circa una decina di anni fa, è stato proposto l’uso di etelcalcetide, un altro calciomimetico utilizzabile per via endovenosa, con azione agonista diretta sul CaSR, che presenta una efficacia inibitoria sul PTH discretamente superiore a quella di cinacalcet, accompagnata comunque da effetti ipocalcemizzanti e ipotensivizzanti moderatamente più spiccati rispetto a cinacalcet [30].

Nel tentativo di migliorare la tollerabilità sia gastroenterica e/o di limitare l’effetto ipocalcemizzante, mantenendo sostanzialmente invariata l’efficacia nel controllo dei livelli di PTH, sono stati proposti alcuni nuovi calciomimetici che però, al momento, non sono disponibili per l’uso clinico in gran parte dei Paesi nel mondo, inclusa l’Italia.

Ci limiteremo a descrivere brevemente le caratteristiche principali di due tra questi nuovi calcimimetici, evocalcet e upacicalcet, visto che di essi vi sono già dati in letteratura relativi al loro utilizzo clinico.

Evocalcet

Evocalcet è un nuovo calcimimetico, sviluppato in Giappone, assumibile per via orale, che agisce in modo non dissimile da quello di cinacalcet (modulatore allosterico). Studi sperimentali avevano dimostrato che questo nuovo calcimimetico interferiva con lo svuotamento gastrico notevolmente meno rispetto a cinacalcet e inoltre, al contrario di quest’ultimo, non aveva nessuna interferenza metabolica con il CYP2D6 [31]. Un trial randomizzato, doppio cieco e doppio “dummy”, effettuato in Giappone, su pazienti in dialisi, ha dimostrato che l’efficacia di evocalcet  nel controllo dei livelli di PTH non è inferiore a quella di cinacalcet, ma l’incidenza di eventi avversi gastroenterici era significativamente inferiore con evocalcet, rispetto a cinacalcet (circa la metà) [32]. Risultati sostanzialmente confrontabili sono stati riportati anche  in un più recente studio randomizzato, in doppio cieco, effettuato in paesi dell’Asia orientale (Cina, Giappone, Corea, Taiwan), dove gli autori, oltre a confermare una frequenza decisamente inferiore nella comparsa di eventi  avversi gastroenterici nei pazienti in trattamento con evocalcet rispetto a quelli trattati con cinacalcet, sottolineano un sovrapponibile effetto ipocalcemizzante di evocalcet rispetto a cinacalcet [33].

Upacicalcet

Questo nuovo calcimimetico, anch’esso sviluppato in Giappone, è un farmaco somministrabile per via endovenosa come etelcalcetide e come quest’ultimo agisce legando i siti extracellulari del CaSR, che interagiscono con i vari agonisti, primo fra tutti il calcio [34, 35]. Il tipo di interazione è comunque differente tra i due calcimimetici, in quanto etelcalcetide agisce independentemente dalla concentrazione del calcio, mentre l’interazione tra upacicalcet è il CaSR è influenzata dal livello di questo catione, con l’effetto ipocalcemizzante che si attenua sino ad annullarsi per concentrazioni calcemiche al di sotto della norma [36]. Inoltre, sempre in studi sperimentali, questo nuovo calcimimetico sembrerebbe interferire con lo svuotamento gastrico in misura significativamente inferiore rispetto a cinacalcet [36]. Queste caratteristiche farebbero prevedere una maggiore maneggevolezza di upacicalcet rispetto sia ad etelcalcetide (per una possibile minore incidenza di episodi ipocalcemici severi) che a cinacalcet (per una migliore tolleranza gastroenterica). È necessario comunque precisare che, al momento, non sono disponibili dati prodotti su pazienti, con un confronto testa a testa di upacicalcet con gli altri calcimimetici già in uso. Gli studi disponibili, tutti di confronto con placebo, hanno comunque riportato un’incidenza relativamente bassa di eventi ipocalcemici, con una frequenza di disturbi gastroenterici nei pazienti trattati con upacicalcet sovrapponibile a quella dei gruppi trattati con placebo [37, 38].

Sebbene pertanto questi nuovi calcimimetici proposti  presentino prospettive di migliorare quantomeno alcuni dei limiti presentai nei farmaci dello stesso gruppo già entrati nell’uso clinico, è giusto sottolineare che gli studi al momento disponibili sono limitati sia dalla scarsa generalizzabilità, essendo stati effettuati solo in paesi dell’Asia orientali, che dalla mancanza di confronti diretti testa a testa con i calcimimetici già disponibili, rendendo difficile un’eventuale valutazione del costo efficacia comparativo. È inoltre ancora una volta necessario ricordare che anche per questi nuovi farmaci sarà auspicabile avere dati sulla loro ricaduta sugli esiti clinici ossei e sistemici.

 

Farmaci con azione ossea diretta

Come già accennato in precedenza, uno degli obiettivi principali della terapia della CKD-MBD è quello di ridurre il rischio di fratture, il principale evento clinico collegato alla patologia ossea, che nei pazienti con CKD è due-tre volte superiore a quello della popolazione generale di pari età, impattando inoltre in modo negativo anche sulla sopravvivenza, oltre che sulla qualità della vita, dei pazienti con insufficiente funzione renale [39]. È altrettanto noto che i farmaci sino ad oggi utilizzati per il controllo dei parametri biochimici nella CKD-MBD hanno avuto un limitato, se non nullo, impatto nel modificare il rischio di fratture. Per tale motivo è andato nel tempo crescendo l’interesse all’uso dei farmaci indirizzati alla prevenzione delle fratture, in uso nella popolazione generale.

Nei prossimi paragrafi saranno brevemente trattati le più importanti novità relative a questo gruppo di farmaci.

Difosfonati

I difosfonati rappresentano da decenni i farmaci maggiormente utilizzati per la prevenzione delle fratture ossee nella popolazione generale. Il loro uso è stato però fortemente limitato nel paziente nefropatico, in particolare quando il VFG è inferiore ai 30 mL/min, per un pericolo di accumulo nel tessuto osseo con conseguenze potenzialmente severe come la malattia adinamica dell’osso che può paradossalmente aumentare il rischio di fratture patologiche nei pazienti con CKD o come la necrosi a livello delle ossa mandibolari e mascellari, evento raro, ma di rilevante impatto clinico. Inoltre, il loro uso in presenza di una ridotta funzione renale può essere associato ad un maggiore sviluppo di ipocalcemia, con conseguente stimolazione paratiroidea, oltre a poter provocare un peggioramento della funzione renale e disturbi gastroenterici anche severi [40, 41]. Per tali motivi anche le ultime KDIGO pubblicate, se pure sulla base di evidenze di livello molto limitato (raccomandazione 2D), suggeriscono particolare cautela nell’uso dei difosfonati negli stadi di CKD superiori al 3a, comunque limitando questa scelta nei casi ad elevato rischio fratturante e considerando eventualmente l’esecuzione di una biopsia ossea, al fine di avere una diagnosi più precisa della patologia scheletrica sottostante [3].

Per completezza di informazione, è giusto però segnalare che da alcuni anni è in atto una tendenza a rivalutare l’uso dei difosfonati nei pazienti anche con stadi avanzati di CKD, con dati che in parte ridimensionano gli eventi avversi relativi allo sviluppo di nefrotossicità, di ipocalcemia o di sintomi gastroenterici, ascrivendo a questi farmaci anche un effetto protettivo a livello vascolare, relativamente in particolare alla progressione delle calcificazioni vascolari [42-44].

Denosumab

Risale a circa 20 anni fa la produzione di Denosumab, un anticorpo monoclonale completamente umanizzato (IgG2) diretto contro il ligando dell’attivatore recettoriale di NFkB (RANKL), proteina prodotta dagli osteoblasti. Denosumab, legandosi a RANKL, impedisce   l’interazione di quest’ultimo con il suo recettore specifico (RANK), espresso a livello della linea cellulare osteoclastica, bloccando la conseguente attivazione degli osteoclasti, con conseguente riduzione del riassorbimento osseo [46]. Tra le sue prime attese applicazioni vi è stato il suo utilizzo nei soggetti con osteoporosi nella popolazione generale [47], che, negli anni, ha consolidato i risultati di efficacia non solo nel migliorare alcuni parametri indicatori del metabolismo osseo (densitometria ossea, indicatori biochimici di riassorbimento osseo), ma anche e soprattutto nel ridurre in modo significativo il rischio di fratture ossee, con maggior efficacia rispetto ai difosfonati [48].

Viste le caratteristiche biologiche di questo nuovo farmaco, con mancanza dei problemi di accumulo presentati dai difosfonati, il suo utilizzo nei pazienti con CKD apparve sin da subito una nuova allettante opportunità [49]. Queste prospettive furono presto confermate da positivi risultati di efficacia nel suo utilizzo in pazienti con vario grado di riduzione della funzione renale, inclusi i pazienti portatori di trapianto renale [50-53].

Negli anni successivi, con l’uso sempre più diffuso e prolungato del farmaco, sono emersi alcuni problemi legati all’uso di Denosumab, non solo nella popolazione generale ma anche e soprattutto nei pazienti con CKD. Alcuni di questi problemi erano in comune con quelli descritti con l’uso dei difosfonati, come la possibilità di indurre una patologia ossea adinamica, oltre ad alcune segnalazioni di necrosi ossee mandibolari [54-57]. Tali eventi potrebbero comunque essere più gestibili nei pazienti trattati con Denosumab rispetto a quelli trattati con difosfonati, grazie alla mancanza dell’effetto di accumulo osseo che caratterizza questi ultimi farmaci, con possibilità pertanto di vedere ridurre l’effetto anti-riassorbitivo osseo in tempi relativamente brevi dopo la sospensione di Denosumab, ma non di un difosfonato.

I problemi invece di maggiore rilevanza clinica, in particolare nei pazienti con gradi avanzati di CKD o portatori di trapianto renale sono quelli che riguardano: a) una maggiore suscettibilità alle infezioni; b) episodi di ipocalcemia severa; c) rapida riduzione del contenuto minerale osseo, alla sospensione del Denosumab.

La possibilità che Denosumab possa aumentare il rischio di infezioni si basa sulla considerazione che il sistema RANKL-RANK è espresso a livello di gran parte delle cellule dell’apparato immunitario, coinvolte sia nella risposta immune innata che acquisita, concorrendo ad aumentarne l’efficacia anti-infettiva. Il blocco di RANKL con Denosumab potrebbe pertanto associarsi ad un maggior rischio di infezioni. Di fatto, i vari trial hanno in parte confermato un aumentato rischio infettivo, prevalentemente riguardo ad infezioni delle vie urinarie e sostanzialmente concentrato nelle fasi iniziali dell’uso del farmaco [58]. Questo problema potrebbe avere rilevanza clinica nei pazienti portatori di trapianto renale: nella nostra esperienza, abbiamo scelto di escludere da tale trattamento i pazienti trapiantati che avessero manifestato episodi infettivi urinari ripetuti nel periodo precedente all’indicazione all’uso di Denosumab, con il risultato di aver potuto osservare una bassa o nulla incidenza di eventi infettivi. Naturalmente, in assenza di esperienze più ampie e controllate, questo rimane un semplice suggerimento da utilizzare con atteggiamento critico e legato alla valutazione del singolo caso.

Di particolare rilievo clinico è invece il problema relativo agli eventi ipocalcemici gravi in corso di terapia con Denosumab, riportati con particolare maggiore frequenza nei pazienti in trattamento dialitico o in fasi avanzate di CKD. Un recente studio retrospettivo, condotto su un ampio numero di pazienti di genere femminile, con età uguale o superiore a 65 anni,  in trattamento dialitico cronico, delle quali 1523 erano in trattamento con Denosumab e 1281 con difosfonati per via orale,  ha riportato un’incidenza di ipocalcemia severa (< 7.5 mg/dL), richiedente in molti casi anche un ricovero, nel 41.1 % delle pazienti trattate con Denosumab, contro  il 2% di eventi simili osservati nel gruppo trattato con difosfonati per via orale [59]. Pertanto, è necessario valutare con particolare attenzione l’indicazione all’uso di Denosumab nei pazienti con CKD in fasi avanzate e in particolare nei soggetti di sesso femminile, età superiore ai 65 anni e in trattamento dialitico, evitando di trattare pazienti con livelli di calcemia e 25-OH-vitaminaD inferiori alla norma e comunque rinforzando la terapia con vitamina D e supplementazioni calciche sin dalle settimane precedenti l’inizio della terapia [60].

Il terzo altrettanto rilevante problema nell’uso di Denosumab è quello relativo all’ormai riconosciuto effetto rebound sullo stato mineralometrico osseo a seguito della sospensione del farmaco. Infatti, numerose evidenze indicano che, alla sospensione del farmaco, fa seguito una rapida demineralizzazione ossea associata ad un aumentato rischio di fratture già poche settimane dopo la sospensione [61, 62]. Questo problema rende particolarmente poco maneggevole e talvolta critico l’uso di Denosumab in pazienti con progressione del grado di malattia renale che induca, per qualsiasi motivo, a considerare la sospensione del trattamento. Al fine di quantomeno ridimensionare questo fenomeno, sono state recentemente proposte terapie sequenziali con l’uso di difosfonati, somministrati sia per via orale che endovenosa al momento  della sospensione del denosumab, che hanno ottenuto risultati parzialmente positivi [63-65].

In sintesi, sebbene Denosumab si presenti come un’ottima opportunità per ridurre il rischio di fratture scheletriche anche nei pazienti con CKD, l’indicazione all’uso deve essere valutata tenendo conto delle caratteristiche anagrafiche, biochimiche e cliniche del singolo paziente, mettendo in atto le misure precauzionali a cui si è accennato, per ridurre i rischi connessi all’uso e alla sospensione del farmaco.

Romosozumab

Sclerostina è una glicoproteina secreta dagli osteociti che, legandosi al Wnt espresso a livello della membrana degli osteoblasti, blocca le vie di segnale intracellulari secondarie all’attivazione di Wnt/BMP, inducendo una riduzione della proliferazione e dell’attività osteoblastica che si traducono in una ridotta neoformazione ossea [66]. Un decennio fa, si è reso disponibile un anticorpo monoclonale diretto contro la sclerostina, che pertanto presentava un profilo di azione molto favorevole alla stimolazione della formazione ossea, come dimostrato dai primi trial controllati [67]. L’entusiasmo per questa evidente efficacia venne però molto presto stemperata da numerose segnalazioni di eventi avversi cardiovascolari, alcuni anche mortali, che venivano riportati in particolare in soggetti con più elevato rischio di base per patologia cardiovascolare [68-70]. La considerazione che i pazienti con CKD presentano di base un rischio CV aumentato rispetto ai pari età della popolazione generale è stato certamente un fattore di freno nell’utilizzo di tale farmaco in questa tipologia di pazienti. Alcuni trial però, sebbene condotti in pazienti con una riduzione della funzione renale solo lieve o al più moderata, sembrerebbero rassicurare sia riguardo l’efficacia che la sicurezza nell’uso di Romosozumab nei pazienti con CKD [71, 72]. È comunque evidente che solo studi allargati nei pazienti con CKD in stadi più avanzati, incluso quello dialitico, potranno essere rassicuranti in termini di sicurezza. Sino a quel momento riteniamo ci si debba comportare con estrema cautela nell’uso di questo farmaco certamente promettente, riservandone l’uso a casi particolari in cui l’indicazione sia molto forte, come nel report riportato in bibliografia [73].

Teriparatide

Questo farmaco è una proteina, ottenuta con tecniche di ricombinazione genica, costituita dalla sequenza amino-acidica 1-34 del PTH, che rappresenta la porzione attiva di tale ormone, interagendo con i suoi principali recettori.  Teriparatide svolge pertanto le stesse attività del PTH, prima di tutto stimolando il riassorbimento osseo e, a seguire, la osteoformazione. Per tali caratteristiche ha trovato ampie applicazioni, oltre che nei casi di ipoparatiroidismo, anche e soprattutto nel campo dell’osteoporosi, in particolare in quelle forme con alta attività fratturante e segni biochimici di turnover osseo normale o basso [74, 75].

Sebbene il suo uso nei pazienti con CKD possa apparire contraddittorio, vista la prevalente presenza di un IPS di varia entità, è aumentata nel tempo la consapevolezza di una serie di condizioni nelle quali potrebbe esserci spazio per tale terapia. Giusto a titolo di esempio, ricordiamo che in pazienti sottoposti a paratiroidectomia totale è spesso presente un turnover osseo molto ridotto che potrebbe giovarsi di tale terapia [76]. Inoltre, un’altra possibile indicazione potrebbe essere quella presente in pazienti con CKD e livelli di PTH solo moderatamente elevati se non normali, che potrebbero non essere sufficienti a garantire un adeguato turnover osseo, determinando una condizione di basso turnover, che raggiunge talvolta il livello di una vera e propria forma adinamica dell’osso, fattore predisponente alle fratture [76]. Alcuni studi, sebbene molto limitati nel disegno e nella numerosità del campione, sembrerebbero comunque giustificare la possibilità dell’uso di Teriparatide in tali circostanze [77, 78]. Inoltre, un aumento del rischio di sviluppare fratture ossee, associato ad un turnover osseo normale o ridotto, è una condizione tutt’altro che rara nel paziente trapiantato renale, in particolare nelle prime fasi post-trapianto, quando l’esposizione ad elevate dosi di steroidi è evento frequente: alcune segnalazioni in letteratura sottolineano lo spazio terapeutico per Teriparatide in tali circostanze [79].

Per quanto riguarda un altro analogo del frammento 1-34 del PTH, Abaloparatide, accreditato di una maggiore affinità per il recettore del PTH rispetto a Teriparatide [80], i dati nel campo delle sue applicazioni nei pazienti con CKD sono molto limitati e non permettono al momento di esprimere un giudizio affidabile [81].

Globalmente parlando, è evidente che il supporto di evidenze sull’uso di questi analoghi del PTH nei pazienti con CKD è molto scarso, per cui non possono che valere le stesse raccomandazioni prudenziali nel loro uso in questi pazienti.

Vitamina K

La vitamina K svolge molteplici ruoli legati alla sua azione di cofattore nella carbossilazione dei residui di acido glutammico di numerose proteine, con la loro conseguente attivazione [82], tra le quali le più note sono quelle coinvolte nel complesso processo coagulativo ematico. Non di secondaria importanza è il ruolo svolto da una ampia serie di proteine γ-glutamil carbossilate (per citarne solo alcune, osteocalcina, MGP, GMP, etc.) che sono coinvolte sia nel mantenimento di una normale struttura e funzionalità del tessuto osseo, agendo sulle componenti cellulari (osteoblasti, osteoclasti) e matriciali, che all’inibizione del processo patologico della calcificazione vascolare [83, 84].

Il paziente con CKD si trova spesso in condizioni di deficit vitaminico K a causa di numerosi fattori: a) modificazioni della dieta, per la frequente e spesso poco giustificata riduzione dell’assunzione di alimenti vegetali, che rappresentano una delle sorgenti dietetiche principali di vitamina K1; b) modificazioni del microbiota intestinale,  che caratterizzano in particolare le fasi avanzate di CKD, con riduzione della produzione fermentativa di vitamina K2; c) il frequente uso dei dicumarolici, inibitori specifici dell’azione carbossilativa della vitamina K [85].

È lecito pertanto ipotizzare che il deficit vitaminico K possa concorrere alla patogenesi sia della patologia ossea che delle alterazioni vascolari che caratterizzano il quadro clinico della CKD-MBD [86]. Di fatto, una lunga serie di evidenze ha evidenziato una forte associazione tra deficit di vitamin K e aumento del rischio di frattura e di eventi CV nel paziente in CKD [87, 88].

Come spesso accade però, anche in questo campo, ai pur solidi presupposti fisiopatologici e ai numerosi risultati di studi di associazione, non si sono al momento affiancati risultati di studi di intervento che mostrino in modo inequivocabile un ruolo delle supplementazioni di vitamina K nella riduzione di esiti clinici relativi sia al sistema scheletrico che vascolare, vuoi nella popolazione generale e ancor meno in quella con CKD [89-91].

È pertanto improbabile che, al momento, possano essere fornite raccomandazioni basate su evidenze per suggerire una supplementazione con vitamina K e si dovrà rimanere in attesa di studi prospettici disegnati in modo tale da superare alcuni limiti metodologici, relativi al tipo e dosaggio delle supplementazioni di vitamina K, presenti nei pochi studi ad oggi disponibili, come sottolineato recentemente da alcuni autori [85].

In attesa, comunque, dei risultati di questi studi futuri, ci si potrebbe accontentare di provare a ridurre l’uso dei dicumarolici, quantomeno in alcune indicazioni che non trovano un chiaro consenso, o di un utilizzo più esteso dei nuovi anticoagulanti orali [92], che, per quanto ad oggi noto, sembrerebbero privi degli effetti negativi dei dicumarolici sia sullo scheletro che sull’apparato vascolare.

 

Conclusione

Il notevole sviluppo delle conoscenze scientifiche, anche nel campo della CKD-MBD, ha arricchito anche il paniere delle offerte terapeutiche in questo campo della Nefrologia, permettendo certamente di migliorare quantomeno il controllo dei parametri biochimici associati a tale specifica patologia. Rimangono, come già detto, numerosi aspetti e bisogni non soddisfatti, in particolare per quanto riguarda gli esiti clinici della CKD-MBD. Le ultime acquisizioni nel campo della terapia farmacologica ci forniscono qualche (modesto) avanzamento nel soddisfacimento di questi bisogni (come sintetizzato nella Figura 1).

Non dobbiamo però dimenticare che nel paziente con CKD molti fattori non direttamente connessi al metabolismo minerale sono coinvolti nel determinare l’aumentata incidenza degli esiti clinici negativi, sia ossei che cardiovascolari (la Tabella 2 raffigura alcuni di questi fattori coinvolti nella patogenesi delle problematiche ossee presenti nel paziente con CKD).

Non dobbiamo neppure sottovalutare quanto interventi non farmacologici, legati allo stile di vita, come l’abolizione del fumo, il consumo di una dieta che privilegi i cibi vegetali e, non ultima in importanza, una costante attività fisica [93], possano impattare in modo positivo sugli esiti clinici, forse anche in misura maggiore rispetto all’intervento farmacologico.

Fattori non direttamente legati al metabolismo minerale che possono influire sul rischio di frattura nel paziente con CKD
Figura 1. Fattori non direttamente legati al metabolismo minerale che possono influire sul rischio di frattura nel paziente con CKD. SNC: sistema nervoso centrale; SNP: sistema nervoso periferico
Valutazione qualitativa, basata sulle evidenze disponibili, del possibile soddisfacimento dei bisogni non soddisfatti dalla terapia
Tabella 2. Valutazione qualitativa, basata sulle evidenze disponibili, del possibile soddisfacimento dei bisogni non soddisfatti dalla terapia attualmente disponibile per la CKD-MBD da parte delle nuove proposte terapeutiche o con l’utilizzo di farmaci già da tempo in uso sulla base dei più recenti suggerimenti della letteratura. CV: cardiovascolare; EA: eventi avversi; n.a.: non applicabile + = effetto positivo; ++ = effetto molto positivo  – = effetto negativo; – – = effetto molto negativo ? = effetto non dimostrato

 

Bibliografia

  1. Slatopolsky E, Gonzalez E, Martin K. Pathogenesis and treatment of renal osteodystrophy. Blood Purif. 2003;21(4-5):318-26. doi: 10.1159/000072552. PMID: 12944733
  2. Messa P, Alfieri CM. Secondary and Tertiary Hyperparathyroidism. Front Horm Res. 2019; 51:91-108. doi: 10.1159/000491041. Epub 2018 Nov 19. PMID: 30641516
  3. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl (2011). 2017 Jul;7(1):1-59. doi: 10.1016/j.kisu.2017.04.001. Epub 2017 Jun 21. Erratum in: Kidney Int Suppl (2011). 2017 Dec;7(3):e1. doi: 10.1016/j.kisu.2017.10.001. PMID: 30675420; PMCID: PMC6340919.
  4. Floege J. Phosphate binders in chronic kidney disease: an updated narrative review of recent data. J Nephrol. 2020 Jun;33(3):497-508. doi: 10.1007/s40620-019-00689-w. Epub 2019 Dec 21. PMID: 31865608.
  5. Lenglet A, Liabeuf S, Guffroy P, Fournier A, Brazier M, Massy ZA. Use of nicotinamide to treat hyperphosphatemia in dialysis patients. Drugs R D. 2013 Sep;13(3):165-73. doi: 10.1007/s40268-013-0024-6. PMID: 24000048; PMCID: PMC3784056.
  6. Lenglet A, Liabeuf S, Esper NE, Brisset S, Mansour J, Lemaire-Hurtel AS, Mary A, Brazier M, Kamel S, Mentaverri R, Choukroun G, Fournier A, Massy ZA. Efficacy and safety of nicotinamide in haemodialysis patients: the NICOREN study. Nephrol Dial Transplant. 2017 Sep 1;32(9):1597. doi: 10.1093/ndt/gfx249. PMID: 29059402.
  7. Ketteler M, Wiecek A, Rosenkranz AR, Ose C, Rekowski J, Lorenz H, Hellmann B, Karus M, Ruhmann M, Ammer R. Modified-release nicotinamide for the treatment of hyperphosphataemia in haemodialysis patients: 52-week efficacy and safety results of the phase 3 randomized controlled NOPHOS trial. Nephrol Dial Transplant. 2023 Mar 31;38(4):982-991. doi: 10.1093/ndt/gfac206. PMID: 35751625; PMCID: PMC10064978.
  8. Fine modulo
  9. Block GA, Rosenbaum DP, Leonsson-Zachrisson M, Stefansson BV, Rydén-Bergsten T, Greasley PJ, Johansson SA, Knutsson M, Carlsson BC. Effect of Tenapanor on Interdialytic Weight Gain in Patients on Hemodialysis. Clin J Am Soc Nephrol. 2016 Sep 7;11(9):1597-1605. doi: 10.2215/CJN.09050815. Epub 2016 Jun 23. PMID: 27340281; PMCID: PMC5012484.
  10. King AJ, Siegel M, He Y, Nie B, Wang J, Koo-McCoy S, Minassian NA, Jafri Q, Pan D, Kohler J, Kumaraswamy P, Kozuka K, Lewis JG, Dragoli D, Rosenbaum DP, O’Neill D, Plain A, Greasley PJ, Jönsson-Rylander AC, Karlsson D, Behrendt M, Strömstedt M, Ryden-Bergsten T, Knöpfel T, Pastor Arroyo EM, Hernando N, Marks J, Donowitz M, Wagner CA, Alexander RT, Caldwell JS. Inhibition of sodium/hydrogen exchanger 3 in the gastrointestinal tract by tenapanor reduces paracellular phosphate permeability. Sci Transl Med. 2018 Aug 29;10(456):eaam6474. doi: 10.1126/scitranslmed.aam6474. PMID: 30158152; PMCID: PMC6454550.
  11. Block GA, Rosenbaum DP, Yan A, Chertow GM. Efficacy and Safety of Tenapanor in Patients with Hyperphosphatemia Receiving Maintenance Hemodialysis: A Randomized Phase 3 Trial. J Am Soc Nephrol. 2019 Apr;30(4):641-652. doi: 10.1681/ASN.2018080832. Epub 2019 Mar 7. PMID: 30846557; PMCID: PMC6442342.
  12. Akizawa T, Sato Y, Ikejiri K, Kanda H, Fukagawa M. Effect of Tenapanor on Phosphate Binder Pill Burden in Hemodialysis Patients. Kidney Int Rep. 2021 Jul 8;6(9):2371-2380. doi: 10.1016/j.ekir.2021.06.030. PMID: 34514198; PMCID: PMC8418975.
  13. Sprague SM, Weiner DE, Tietjen DP, Pergola PE, Fishbane S, Block GA, Silva AL, Fadem SZ, Lynn RI, Fadda G, Pagliaro L, Zhao S, Edelstein S, Spiegel DM, Rosenbaum DP. Tenapanor as Therapy for Hyperphosphatemia in Maintenance Dialysis Patients: Results from the OPTIMIZE Study. 2024 May 1;5(5):732-742. doi: 10.34067/KID.0000000000000387. Epub 2024 Feb 7. PMID: 38323855; PMCID: PMC11146652.
  14. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003 Oct;42(4 Suppl 3):S1-201. PMID: 14520607.
  15. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009 Aug;(113):S1-130. doi: 10.1038/ki.2009.188. PMID: 19644521.
  16. Messa P, Alfieri C, Rastaldi MP. Recent insights into vitamin D and its receptor. J Nephrol. 2011 May-Jun;24 Suppl 18:S30-7. doi: 10.5301/JN.2011.7767. PMID: 21623580.
  17. Messa P, Regalia A, Alfieri CM. Nutritional Vitamin D in Renal Transplant Patients: Speculations and Reality. Nutrients. 2017 May 27;9(6):550. doi: 10.3390/nu9060550. PMID: 28554998; PMCID: PMC5490529.
  18. Ketteler M, Bover J, Mazzaferro S. Treatment of secondary hyperparathyroidism in non-dialysis CKD: an appraisal 2022s. Nephrol Dial Transplant. 2023 May 31;38(6):1397-1404. doi: 10.1093/ndt/gfac236. PMID: 35977397; PMCID: PMC10229290.
  19. Germain MJ, Paul SK, Fadda G, Broumand V, Nguyen A, McGarvey NH, Gitlin MD, Bishop CW, Csomor P, Strugnell S, Ashfaq A. Real-world assessment: effectiveness and safety of extended-release calcifediol and other vitamin D therapies for secondary hyperparathyroidism in CKD patients. BMC Nephrol. 2022 Nov 11;23(1):362. doi: 10.1186/s12882-022-02993-3. PMID: 36368937; PMCID: PMC9650892.
  20. Strugnell SA, Csomor P, Ashfaq A, Bishop CW. Evaluation of Therapies for Secondary Hyperparathyroidism Associated with Vitamin D Insufficiency in Chronic Kidney Disease. Kidney Dis (Basel). 2023 Feb 10;9(3):206-217. doi: 10.1159/000529523. PMID: 37497207; PMCID: PMC10368011.
  21. Franchi M, Gunnarsson J, Gonzales-Parra E, Ferreira A, Ström O, Corrao G. Paricalcitol and Extended-Release Calcifediol for Treatment of Secondary Hyperparathyroidism in Non-Dialysis Chronic Kidney Disease: Results From a Network Meta-Analysis. J Clin Endocrinol Metab. 2023 Oct 18;108(11):e1424-e1432. doi: 10.1210/clinem/dgad289. PMID: 37235771; PMCID: PMC10583991.
  22. Brown EM. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev. 1991 Apr;71(2):371-411. doi: 10.1152/physrev.1991.71.2.371. PMID: 2006218.
  23. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993 Dec 9;366(6455):575-80. doi: 10.1038/366575a0. PMID: 8255296.
  24. Nemeth EF. Calcimimetic and calcilytic drugs: just for parathyroid cells? Cell Calcium. 2004 Mar;35(3):283-9. doi: 10.1016/j.ceca.2003.10.020. PMID: 15200152.
  25. Block GA, Martin KJ, de Francisco AL, Turner SA, Avram MM, Suranyi MG, Hercz G, Cunningham J, Abu-Alfa AK, Messa P, Coyne DW, Locatelli F, Cohen RM, Evenepoel P, Moe SM, Fournier A, Braun J, McCary LC, Zani VJ, Olson KA, Drüeke TB, Goodman WG. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004 Apr 8;350(15):1516-25. doi: 10.1056/NEJMoa031633. PMID: 15071126.
  26. Messa P, Macário F, Yaqoob M, Bouman K, Braun J, von Albertini B, Brink H, Maduell F, Graf H, Frazão JM, Bos WJ, Torregrosa V, Saha H, Reichel H, Wilkie M, Zani VJ, Molemans B, Carter D, Locatelli F. The OPTIMA study: assessing a new cinacalcet (Sensipar/Mimpara) treatment algorithm for secondary hyperparathyroidism. Clin J Am Soc Nephrol. 2008 Jan;3(1):36-45. doi: 10.2215/CJN.03591006. PMID: 18178780; PMCID: PMC2390975.
  27. Evenepoel P, Cooper K, Holdaas H, Messa P, Mourad G, Olgaard K, Rutkowski B, Schaefer H, Deng H, Torregrosa JV, Wuthrich RP, Yue S. A randomized study evaluating cinacalcet to treat hypercalcemia in renal transplant recipients with persistent hyperparathyroidism. Am J Transplant. 2014 Nov;14(11):2545-55. doi: 10.1111/ajt.12911. Epub 2014 Sep 15. PMID: 25225081.
  28. EVOLVE Trial Investigators; Chertow GM, Block GA, Correa-Rotter R, Drüeke TB, Floege J, Goodman WG, Herzog CA, Kubo Y, London GM, Mahaffey KW, Mix TC, Moe SM, Trotman ML, Wheeler DC, Parfrey PS. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012 Dec 27;367(26):2482-94. doi: 10.1056/NEJMoa1205624. Epub 2012 Nov 3. PMID: 23121374.
  29. Palmer SC, Nistor I, Craig JC, Pellegrini F, Messa P, Tonelli M, Covic A, Strippoli GF. Cinacalcet in patients with chronic kidney disease: a cumulative meta-analysis of randomized controlled trials. PLoS Med. 2013;10(4):e1001436. doi: 10.1371/journal.pmed.1001436. Epub 2013 Apr 30. PMID: 23637579; PMCID: PMC3640084.
  30. Block GA, Bushinsky DA, Cheng S, Cunningham J, Dehmel B, Drueke TB, Ketteler M, Kewalramani R, Martin KJ, Moe SM, Patel UD, Silver J, Sun Y, Wang H, Chertow GM. Effect of Etelcalcetide vs Cinacalcet on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism: A Randomized Clinical Trial. JAMA. 2017 Jan 10;317(2):156-164. doi: 10.1001/jama.2016.19468. PMID: 28097356.
  31. Kawata T, Tokunaga S, Murai M, Masuda N, Haruyama W, Shoukei Y, Hisada Y, Yanagida T, Miyazaki H, Wada M, Akizawa T, Fukagawa M. A novel calcimimetic agent, evocalcet (MT-4580/KHK7580), suppresses the parathyroid cell function with little effect on the gastrointestinal tract or CYP isozymes in vivo and in vitro. PLoS One. 2018 Apr 3;13(4):e0195316. doi: 10.1371/journal.pone.0195316. PMID: 29614098; PMCID: PMC5882164.
  32. Fukagawa M, Shimazaki R, Akizawa T; Evocalcet study group. Head-to-head comparison of the new calcimimetic agent evocalcet with cinacalcet in Japanese hemodialysis patients with secondary hyperparathyroidism. Kidney Int. 2018 Oct;94(4):818-825. doi: 10.1016/j.kint.2018.05.013. Epub 2018 Jul 24. PMID: 30049473.
  33. Ni Z, Liang X, Wu CC, Jin K, Kim YL, Lu KC, Chan TM, Fukagawa M, Kinoshita J, Nagai C, Kojima M, Yu X; Orchestra Study Group. Comparison of the Oral Calcimimetics Evocalcet and Cinacalcet in East Asian Patients on Hemodialysis with Secondary Hyperparathyroidism. Kidney Int Rep. 2023 Aug 29;8(11):2294-2306. doi: 10.1016/j.ekir.2023.08.034. PMID: 38025238; PMCID: PMC10658267.
  34. Hoy SM. Upacicalcet: First Approval. Drugs. 2021 Sep;81(13):1593-1596. doi: 10.1007/s40265-021-01578-y. PMID: 34390486.
  35. Sato H, Murakami S, Horii Y, Nishimura G, Iwai R, Goto M, Takahashi N. Upacicalcet Is a Novel Secondary Hyperparathyroidism Drug that Targets the Amino Acid Binding Site of Calcium-Sensing Receptor . Mol Pharmacol. 2022 Oct;102(4):183-195. doi: 10.1124/molpharm.122.000522. Epub 2022 Aug 5. PMID: 36122913.
  36. Goto M, Nishimura G, Sato H, Yamaguchi Y, Morimoto N, Hashimoto H, Takahashi N. Pharmacological profile of upacicalcet, a novel positive allosteric modulator of calcium-sensing receptor, in vitro and in vivo. Eur J Pharmacol. 2023 Oct 5;956:175936. doi: 10.1016/j.ejphar.2023.175936. Epub 2023 Aug 2. PMID: 37541363.
  37. Shigematsu T, Koiwa F, Isaka Y, Fukagawa M, Hagita K, Watanabe YS, Honda D, Akizawa T. Efficacy and Safety of Upacicalcet in Hemodialysis Patients with Secondary Hyperparathyroidism: A Randomized Placebo-Controlled Trial. Clin J Am Soc Nephrol. 2023 Oct 1;18(10):1300-1309. doi: 10.2215/CJN.0000000000000253. Epub 2023 Sep 11. PMID: 37696667; PMCID: PMC10578632.
  38. Inaguma D, Koiwa F, Tokumoto M, Fukagawa M, Yoneda S, Yasuzawa H, Asano K, Hagita K, Inagaki Y, Honda D, Akizawa T. Phase 2 study of upacicalcet in Japanese haemodialysis patients with secondary hyperparathyroidism: an intraindividual dose-adjustment study. Clin Kidney J. 2023 Sep 4;16(12):2614-2625. doi: 10.1093/ckj/sfad213. PMID: 38045997; PMCID: PMC10689153.
  39. Messa P. Skeletal fractures in patients on renal replacement therapy: how large still is the knowledge gap? Nephrol Dial Transplant. 2016 Oct;31(10):1554-6. doi: 10.1093/ndt/gfw055. Epub 2016 Apr 13. PMID: 27190341.
  40. Robinson DE, Ali MS, Strauss VY, Elhussein L, Abrahamsen B, Arden NK, Ben-Shlomo Y, Caskey F, Cooper C, Dedman D, Delmestri A, Judge A, Javaid MK, Prieto-Alhambra D. Bisphosphonates to reduce bone fractures in stage 3B+ chronic kidney disease: a propensity score-matched cohort study. Health Technol Assess. 2021 Mar;25(17):1-106. doi: 10.3310/hta25170. PMID: 33739919; PMCID: PMC8020200.
  41. Inizio modulo
  42. Miller PD. The kidney and bisphosphonates. Bone. 2011 Jul;49(1):77-81. doi: 10.1016/j.bone.2010.12.024. Epub 2011 Jan 11. PMID: 21232648.
  43. Robinson DE, Ali MS, Pallares N, Tebé C, Elhussein L, Abrahamsen B, Arden NK, Ben-Shlomo Y, Caskey FJ, Cooper C, Dedman D, Delmestri A, Judge A, Pérez-Sáez MJ, Pascual J, Nogues X, Diez-Perez A, Strauss VY, Javaid MK, Prieto-Alhambra D. Safety of Oral Bisphosphonates in Moderate-to-Severe Chronic Kidney Disease: A Binational Cohort Analysis. J Bone Miner Res. 2021 May;36(5):820-832. doi: 10.1002/jbmr.4235. Epub 2021 Feb 8. PMID: 33373491.
  44. Damasiewicz MJ, Nickolas TL. Bisphosphonate therapy in CKD: the current state of affairs. Curr Opin Nephrol Hypertens. 2020 Mar;29(2):221-226. doi: 10.1097/MNH.0000000000000585. PMID: 31833938; PMCID: PMC9341147.
  45. Hartle JE, Tang X, Kirchner HL, Bucaloiu ID, Sartorius JA, Pogrebnaya ZV, Akers GA, Carnero GE, Perkins RM. Bisphosphonate therapy, death, and cardiovascular events among female patients with CKD: a retrospective cohort study. Am J Kidney Dis. 2012 May;59(5):636-44. doi: 10.1053/j.ajkd.2011.11.037. Epub 2012 Jan 14. PMID: 22244796
  46. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, Holmes GB, Dunstan CR, DePaoli AM. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004 Jul;19(7):1059-66. doi: 10.1359/JBMR.040305. Epub 2004 Mar 1. PMID: 15176987.
  47. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, Peacock M, Miller PD, Lederman SN, Chesnut CH, Lain D, Kivitz AJ, Holloway DL, Zhang C, Peterson MC, Bekker PJ; AMG 162 Bone Loss Study Group. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med. 2006 Feb 23;354(8):821-31. doi: 10.1056/NEJMoa044459. PMID: 16495394.
  48. Curtis JR, Arora T, Liu Y, Lin TC, Spangler L, Brunetti VC, Stad RK, McDermott M, Bradbury BD, Kim M. Comparative effectiveness of Denosumab vs alendronate among postmenopausal women with osteoporosis. J Bone Miner Res. 2024 May 16:zjae079. doi: 10.1093/jbmr/zjae079. Epub ahead of print. PMID: 38753892.
  49. Westenfeld R, Ketteler M, Brandenburg VM. Anti-RANKL therapy–implications for the bone-vascular-axis in CKD? Denosumab in post-menopausal women with low bone mineral density. Nephrol Dial Transplant. 2006 Aug;21(8):2075-7. doi: 10.1093/ndt/gfl245. Epub 2006 May 15. PMID: 16702197.
  50. Jamal SA, Ljunggren O, Stehman-Breen C, Cummings SR, McClung MR, Goemaere S, Ebeling PR, Franek E, Yang YC, Egbuna OI, Boonen S, Miller PD. Effects of Denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res. 2011 Aug;26(8):1829-35. doi: 10.1002/jbmr.403. PMID: 21491487
  51. Block GA, Bone HG, Fang L, Lee E, Padhi D. A single-dose study of Denosumab in patients with various degrees of renal impairment. J Bone Miner Res. 2012 Jul;27(7):1471-9. doi: 10.1002/jbmr.1613. PMID: 22461041; PMCID: PMC3505375.
  52. Alfieri C, Binda V, Malvica S, Cresseri D, Campise M, Gandolfo MT, Regalia A, Mattinzoli D, Armelloni S, Favi E, Molinari P, Messa P. Bone Effect and Safety of One-Year Denosumab Therapy in a Cohort of Renal Transplanted Patients: An Observational Monocentric Study. J Clin Med. 2021 May 6;10(9):1989. doi: 10.3390/jcm10091989. PMID: 34066345; PMCID: PMC8124304.
  53. Fassio A, Andreola S, Gatti D, Pollastri F, Gatti M, Fabbrini P, Gambaro G, Ferraro PM, Caletti C, Rossini M, Viapiana O, Bixio R, Adami G. Long-Term Bone Mineral Density Changes in Kidney Transplant Recipients Treated with Denosumab: A Retrospective Study with Nonequivalent Control Group. Calcif Tissue Int. 2024 Jul;115(1):23-30. doi: 10.1007/s00223-024-01218-z. Epub 2024 May 10. PMID: 38730099; PMCID: PMC11153264.
  54. Haarhaus M, Evenepoel P; European Renal Osteodystrophy (EUROD) workgroup; Chronic Kidney Disease Mineral and Bone Disorder (CKD-MBD) working group of the European Renal Association–European Dialysis and Transplant Association (ERA-EDTA). Differentiating the causes of adynamic bone in advanced chronic kidney disease informs osteoporosis treatment. Kidney Int. 2021 Sep;100(3):546-558. doi: 10.1016/j.kint.2021.04.043. Epub 2021 Jun 5. PMID: 34102219.
  55. Liu FC, Luk KC, Chen YC. Risk comparison of osteonecrosis of the jaw in osteoporotic patients treated with bisphosphonates vs. Denosumab: a multi-institutional retrospective cohort study in Taiwan. Osteoporos Int. 2023 Oct;34(10):1729-1737. doi: 10.1007/s00198-023-06818-3. Epub 2023 Jun 16. PMID: 37326685; PMCID: PMC10511380.
  56. Everts-Graber J, Lehmann D, Burkard JP, Schaller B, Gahl B, Häuselmann H, Studer U, Ziswiler HR, Reichenbach S, Lehmann T. Risk of Osteonecrosis of the Jaw Under Denosumab Compared to Bisphosphonates in Patients With Osteoporosis. J Bone Miner Res. 2022 Feb;37(2):340-348. doi: 10.1002/jbmr.4472. Epub 2021 Nov 30. PMID: 34787342.
  57. de Boissieu P, Kanagaratnam L, Mahmoudi R, Morel A, Dramé M, Trenque T. Adjudication of osteonecrosis of the jaw in phase III randomized controlled trials of Denosumab: a systematic review. Eur J Clin Pharmacol. 2017 May;73(5):517-523. doi: 10.1007/s00228-017-2210-x. Epub 2017 Feb 10. PMID: 28188332.
  58. Huang ST, Chiu TF, Chiu CW, Kao YN, Wang IK, Chang CT, Li CY, Sun CS, Lin CL, Yu TM, Kao CH. Denosumab treatment and infection risks in patients with osteoporosis: propensity score matching analysis of a national-wide population-based cohort study. Front Endocrinol (Lausanne). 2023 May 19;14:1182753. doi: 10.3389/fendo.2023.1182753. PMID: 37274347; PMCID: PMC10235685.
  59. Bird ST, Gelperin K, Graham DJ. Denosumab-Associated Severe Hypocalcemia in Dialysis-Dependent Patients-Reply. 2024 Jun 4;331(21):1865-1866. doi: 10.1001/jama.2024.6842. PMID: 38717783.
  60. Kanagalingam T, Khan T, Sultan N, Cowan A, Thain J, Hoy C, Ledger S, Clemens KK. Reducing the risk of denosumab-induced hypocalcemia in patients with advanced chronic kidney disease: a quality improvement initiative. Arch Osteoporos. 2023 Nov 21;18(1):138. doi: 10.1007/s11657-023-01341-8. PMID: 37985504.
  61. Cosman F, Huang S, McDermott M, Cummings SR. Multiple Vertebral Fractures After Denosumab Discontinuation: FREEDOM and FREEDOM Extension Trials Additional Post Hoc Analyses. J Bone Miner Res. 2022 Nov;37(11):2112-2120. doi: 10.1002/jbmr.4705. Epub 2022 Oct 12. PMID: 36088628; PMCID: PMC10092421.
  62. Burckhardt P, Faouzi M, Buclin T, Lamy O; The Swiss Denosumab Study Group. Fractures After Denosumab Discontinuation: A Retrospective Study of 797 Cases. J Bone Miner Res. 2021 Sep;36(9):1717-1728. doi: 10.1002/jbmr.4335. Epub 2021 May 19. PMID: 34009703; PMCID: PMC8518625.
  63. Iseri K, Mizobuchi M, Winzenrieth R, Humbert L, Saitou T, Kato T, Nakajima Y, Wakasa M, Shishido K, Honda H. Long-Term Effect of Denosumab on Bone Disease in Patients with CKD. Clin J Am Soc Nephrol. 2023 Sep 1;18(9):1195-1203. doi: 10.2215/CJN.0000000000000213. Epub 2023 Jun 14. PMID: 37314764; PMCID: PMC10564351.
  64. Kamanda-Kosseh M, Shiau S, Agarwal S, Kondapalli A, Colon I, Kil N, Bucovsky M, Lappe JM, Stubby J, Shane E, Cohen A. Bisphosphonates Maintain BMD after Sequential Teriparatide and Denosumab in Premenopausal Women with Idiopathic Osteoporosis. J Clin Endocrinol Metab. 2024 Apr 12:dgae240. doi: 10.1210/clinem/dgae240. Epub ahead of print. PMID: 38605469.
  65. Grassi G, Ghielmetti A, Zampogna M, Chiodini I, Arosio M, Mantovani G, Eller Vainicher C. Zoledronate after denosumab discontinuation: Is repeated administrations more effective than single infusion? J Clin Endocrinol Metab. 2024 Apr 13:dgae224. doi: 10.1210/clinem/dgae224. Epub ahead of print. Erratum in: J Clin Endocrinol Metab. 2024 Jul 01:dgae429. doi: 10.1210/clinem/dgae429. PMID: 38609157.
  66. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005 Nov;19(13):1842-4. doi: 10.1096/fj.05-4221fje. Epub 2005 Aug 25. PMID: 16123173.
  67. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, Langdahl BL, Reginster JY, Zanchetta JR, Wasserman SM, Katz L, Maddox J, Yang YC, Libanati C, Bone HG. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014 Jan 30;370(5):412-20. doi: 10.1056/NEJMoa1305224. Epub 2014 Jan 1. PMID: 24382002.
  68. Lv F, Cai X, Yang W, Gao L, Chen L, Wu J, Ji L. Denosumab or romosozumab therapy and risk of cardiovascular events in patients with primary osteoporosis: Systematic review and meta- analysis. Bone. 2020 Jan;130:115121. doi: 10.1016/j.bone.2019.115121. Epub 2019 Oct 31. PMID: 31678488.
  69. Kawaguchi H. Global ‘Conditional’ Assurance of Romosozumab Safety: International Consensus on the Uniqueness of Adverse Cardiovascular Events in Japan. Calcif Tissue Int. 2024 Jul 30. doi: 10.1007/s00223-024-01267-4. Epub ahead of print. PMID: 39079979.
  70. Vestergaard Kvist A, Faruque J, Vallejo-Yagüe E, Weiler S, Winter EM, Burden AM. Cardiovascular Safety Profile of Romosozumab: A Pharmacovigilance Analysis of the US Food and Drug Administration Adverse Event Reporting System (FAERS). J Clin Med. 2021 Apr 13;10(8):1660. doi: 10.3390/jcm10081660. PMID: 33924496; PMCID: PMC8070537.
  71. Miller PD, Adachi JD, Albergaria BH, Cheung AM, Chines AA, Gielen E, Langdahl BL, Miyauchi A, Oates M, Reid IR, Santiago NR, Vanderkelen M, Wang Z, Yu Z. Efficacy and Safety of Romosozumab Among Postmenopausal Women With Osteoporosis and Mild-to-Moderate Chronic Kidney Disease. J Bone Miner Res. 2022 Aug;37(8):1437-1445. doi: 10.1002/jbmr.4563. Epub 2022 May 20. PMID: 35466448; PMCID: PMC9544335.
  72. Miyauchi A, Hamaya E, Nishi K, Tolman C, Shimauchi J. Efficacy and safety of romosozumab among Japanese postmenopausal women with osteoporosis and mild-to-moderate chronic kidney disease. J Bone Miner Metab. 2022 Jul;40(4):677-687. doi: 10.1007/s00774-022-01332-8. Epub 2022 May 31. PMID: 35639174.
  73. Suzuki T, Mizobuchi M, Yoshida S, Terado N, Aoki S, Sato N, Honda H. Romosozumab successfully regulated progressive osteoporosis in a patient with autosomal dominant polycystic kidney disease undergoing hemodialysis. Osteoporos Int. 2022 Dec;33(12):2649-2652. doi: 10.1007/s00198-022-06534-4. Epub 2022 Aug 18. PMID: 35980440.
  74. Puig-Domingo M, Díaz G, Nicolau J, Fernández C, Rueda S, Halperin I. Successful treatment of vitamin D unresponsive hypoparathyroidism with multipulse subcutaneous infusion of teriparatide. Eur J Endocrinol. 2008 Nov;159(5):653-7. doi: 10.1530/EJE-08-0269. Epub 2008 Aug 14. PMID: 18703565.
  75. Body JJ, Gaich GA, Scheele WH, Kulkarni PM, Miller PD, Peretz A, Dore RK, Correa-Rotter R, Papaioannou A, Cumming DC, Hodsman AB. A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1-34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002 Oct;87(10):4528-35. doi: 10.1210/jc.2002-020334. PMID: 12364430.
  76. Nogueira EL, Costa AC, Santana A, Guerra JO, Silva S, Mil-Homens C, Costa AG. Teriparatide efficacy in the treatment of severe hypocalcemia after kidney transplantation in parathyroidectomized patients: a series of five case reports. 2011 Aug 15;92(3):316-20. doi: 10.1097/TP.0b013e3182247b98. PMID: 21694663.
  77. Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int. 2007 Jan;18(1):59-68. doi: 10.1007/s00198-006-0189-8. Epub 2006 Sep 30. PMID: 17013567.
  78. Nishikawa A, Yoshiki F, Taketsuna M, Kajimoto K, Enomoto H. Safety and effectiveness of daily teriparatide for osteoporosis in patients with severe stages of chronic kidney disease: post hoc analysis of a postmarketing observational study. Clin Interv Aging. 2016 Nov 15;11:1653-1659. doi: 10.2147/CIA.S120175. PMID: 27895472; PMCID: PMC5117886.
  79. Cejka D, Benesch T, Krestan C, Roschger P, Klaushofer K, Pietschmann P, Haas M. Effect of teriparatide on early bone loss after kidney transplantation. Am J Transplant. 2008 Sep;8(9):1864-70. doi: 10.1111/j.1600-6143.2008.02327.x. PMID: 18786230.
  80. Boyce EG, Mai Y, Pham C. Abaloparatide: Review of a Next-Generation Parathyroid Hormone Agonist. Ann Pharmacother. 2018 May;52(5):462-472. doi: 10.1177/1060028017748649. Epub 2017 Dec 14. PMID: 29241341.
  81. Bilezikian JP, Hattersley G, Mitlak BH, Hu MY, Fitzpatrick LA, Dabrowski C, Miller PD, Papapoulos SE. Abaloparatide in patients with mild or moderate renal impairment: results from the ACTIVE phase 3 trial. Curr Med Res Opin. 2019 Dec;35(12):2097-2102. doi: 10.1080/03007995.2019.1656955. Epub 2019 Sep 11. PMID: 31418585.
  82. Dowd P, Ham SW, Naganathan S, Hershline R. The mechanism of action of vitamin K. Annu Rev Nutr. 1995;15:419-40. doi: 10.1146/annurev.nu.15.070195.002223. PMID: 8527228.
  83. Sugiyama T, Kawai S. Carboxylation of osteocalcin may be related to bone quality: a possible mechanism of bone fracture prevention by vitamin K. J Bone Miner Metab. 2001;19(3):146-9. doi: 10.1007/s007740170034. PMID: 11368299.
  84. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. 1997 Mar 6;386(6620):78-81. doi: 10.1038/386078a0. PMID: 9052783.
  85. Fusaro M, Evenepoel P. Efficacy of vitamin K on bone fragility: puzzling findings from which we should learn how to design a rigorous study. Nephrol Dial Transplant. 2023 Sep 29;38(10):2105-2108. doi: 10.1093/ndt/gfad117. PMID: 37279891; PMCID: PMC10539219.
  86. Fusaro M, Cianciolo G, Evenepoel P, Schurgers L, Plebani M. Vitamin K in CKD Bone Disorders. Calcif Tissue Int. 2021 Apr;108(4):476-485. doi: 10.1007/s00223-020-00792-2. Epub 2021 Jan 6. PMID: 33409597.
  87. Evenepoel P, Claes K, Meijers B, Laurent M, Bammens B, Naesens M, Sprangers B, Pottel H, Cavalier E, Kuypers D. Poor Vitamin K Status Is Associated With Low Bone Mineral Density and Increased Fracture Risk in End-Stage Renal Disease. J Bone Miner Res. 2019 Feb;34(2):262-269. doi: 10.1002/jbmr.3608. Epub 2018 Nov 14. PMID: 30427544.
  88. Fusaro M, Gallieni M, Aghi A, Rizzo MA, Iervasi G, Nickolas TL, Fabris F, Mereu MC, Giannini S, Sella S, Giusti A, Pitino A, D’Arrigo G, Rossini M, Gatti D, Ravera M, Di Lullo L, Bellasi A, Brunori G, Piccoli A, Tripepi G, Plebani M. Osteocalcin (bone GLA protein) levels, vascular calcifications, vertebral fractures and mortality in hemodialysis patients with diabetes mellitus. J Nephrol. 2019 Aug;32(4):635-643. doi: 10.1007/s40620-019-00595-1. Epub 2019 Feb 13. PMID: 30759309.
  89. Zhao QY, Li Q, Hasan Rashedi M, Sohouli M, Rohani P, Velu P. The effect of vitamin K supplementation on cardiovascular risk factors: a systematic review and meta-analysis. J Nutr Sci. 2024 Jan 11;13:e3. doi: 10.1017/jns.2023.106. PMID: 38282652; PMCID: PMC10808880.
  90. Moore AE, Dulnoan D, Voong K, Ayis S, Mangelis A, Gorska R, Harrington DJ, Tang JCY, Fraser WD, Hampson G. The additive effect of vitamin K supplementation and bisphosphonate on fracture risk in post-menopausal osteoporosis: a randomised placebo controlled trial. Arch Osteoporos. 2023 Jun 20;18(1):83. doi: 10.1007/s11657-023-01288-w. PMID: 37338608; PMCID: PMC10282078.
  91. Levy-Schousboe K, Marckmann P, Frimodt-Møller M, Peters CD, Kjærgaard KD, Jensen JD, Strandhave C, Sandstrøm H, Hitz MF, Langdahl B, Vestergaard P, Brasen CL, Schmedes A, Madsen JS, Jørgensen NR, Frøkjær JB, Frandsen NE, Petersen I, Hansen D. Vitamin K supplementation and bone mineral density in dialysis: results of the double-blind, randomized, placebo-controlled RenaKvit trial. Nephrol Dial Transplant. 2023 Sep 29;38(10):2131-2142. doi: 10.1093/ndt/gfac315. PMID: 36460034; PMCID: PMC10539208.
  92. Welander F, Renlund H, Dimény E, Holmberg H, Själander A. Direct oral anticoagulants versus warfarin in patients with non-valvular atrial fibrillation and CKD G3-G5D. Clin Kidney J. 2023 Jan 5;16(5):835-844. doi: 10.1093/ckj/sfad004. PMID: 37151425; PMCID: PMC10157779.
  93. Petrauskiene V, Hellberg M, Svensson P, Zhou Y, Clyne N. Bone mineral density after exercise training in patients with chronic kidney disease stages 3 to 5: a sub-study of RENEXC-a randomized controlled trial. Clin Kidney J. 2023 Nov 21;17(1):sfad287. doi: 10.1093/ckj/sfad287. PMID: 38186908; PMCID: PMC10768767.

Quasi quarant’anni di terapia eritropoietinica: successi e limiti

Abstract

L’anemia è una complicanza frequente della malattia renale cronica; se severa e non trattata comporta un peggioramento della qualità della vita e un aumentato rischio di ricorrere a emotrasfusioni.
Partendo dagli studi di fisiopatologia iniziati alla fine dell’Ottocento e poi proseguiti nel XX secolo, si è arrivati prima all’identificazione dell’eritropoietina, poi alla sua purificazione, identificazione del gene coinvolto e infine alla sintesi dell’eritropoietina ricombinante umana e dei suoi analoghi “long-acting”.
Oggi la terapia con gli agenti stimolanti l’eritropoiesi (ESA), spesso in associazione alla terapia marziale, rappresenta lo standard di cura dei pazienti con malattia renale cronica e anemia. Recentemente agli ESA si sono aggiuntigli inibitori della HIF-PHD. Purtroppo, entrambe le categorie di farmaci, seppur efficaci e ben tollerati nella maggior parte dei casi, possono essere associati ad un possibile aumento del rischio cardiovascolare e trombotico, soprattutto in particolari categorie di pazienti.
Per tale motivo, la scelta della terapia con ESA e HIF-PHD deve essere personalizzata sia in termine di target di emoglobina, che di tipo di molecola che in termini di dosaggi da usare.

Parole chiave: anemia, malattia renale cronica, eritropoietina, agenti stimolanti l’eritropoiesi malattia cardiovascolare, inibitori della HIF-PHD

Introduzione

L’anemia è una complicanza frequente della malattia renale cronica (MRC). Essa è una condizione multifattoriale, determinata principalmente da una carenza relativa di eritropoietina dai reni malati rispetto al grado di anemia. Oltre a ciò, è spesso presente una carenza marziale, relativa o assoluta, e uno stato infiammatorio cronico che contribuisce a un ridotto assorbimento intestinale di ferro e al sequestro dei depositi marziali e a una ridotta sensibilità del midollo osseo allo stimolo eritropoietico, sia esso endogeno o esogeno. Infine, diversi dati in letteratura hanno evidenziato la presenza di una ridotta sopravvivenza eritrocitaria, il contributo negativo di un aumento dello stress ossidativo, dell’iperparatiroidismo secondario, se di grado severo e dell’accumulo di tossine uremiche aggravato dai pazienti in dialisi da una dose dialitica insufficiente. Inoltre, nei pazienti in emodialisi, contribuiscono alla carenza marziale le perdite di sangue che rimane sequestrato nelle linee e filtri di dialisi dopo la reinfusione al termine della seduta dialitica. Infine, sono da considerare i frequenti prelievi ematici, le aumentate perdite gastro-intestinali, molto frequenti e spesso occulte nei pazienti con MRC, specialmente in emodialisi, la frequente malnutrizione, spesso severa, la carenza di folati e vitamina B12 e le frequenti neoplasie.

La comparsa di anemia è influenzata dalla severità della MRC; si stima che circa l’80% dei pazienti in dialisi nei sia affetto, con la conseguente necessità di ricevere una terapia con agenti stimolanti l’eritropoiesi (ESA) e/o ferro.

Si parla di anemia quando i valori di emoglobina (Hb) scendono al di sotto del limite di normalità definiti dall’Organizzazione Mondiale della Sanità. In particolare, nei pazienti con MRC si parla di anemia nei soggetti con concentrazione di Hb <13.0 g/dL negli uomini e <12.0 g/dL nelle donne [1].

In ambito nefrologico è ancora oggetto di dibattito quando e se l’anemia non di grado severo debba essere trattata. I dati di numerosi studi osservazionali hanno evidenziato con chiarezza che i pazienti con valori di Hb normali in assenza di terapia hanno la prognosi migliore. D’atra parte, una lieve anemia nella MRC viene considerata quasi parafisiologica e in parte protettiva dal rischio di trombosi o eventi cardiovascolari. Al contrario, la presenza di anemia severa si associa ad un aumento della mortalità cardiovascolare o da tutte le cause, del rischio di ospedalizzazione e della necessità di dovere ricorrere a emotrasfusioni. Sappiamo inoltre che l’anemia, quando severa, può peggiorare in modo significativo la qualità della vita e contribuire alla comparsa di cardiopatia.

Oggi gli ESA e la terapia marziale rappresentano il “gold standard” della terapia dell’anemia nella MRC. Ad esse si sono aggiunti solo da poco tempo gli inibitori della HIF-PHD [2]. Quest’ultimi si differenziano dagli ESA perché stimolano la produzione dell’eritropoietina endogena, sono somministrati per via orale e non parenterale, non necessitano della conservazione in frigorifero, potrebbero essere più efficaci nei pazienti infiammati e, infine, potrebbero aumentare l’assorbimento del ferro e la sua disponibilità dai siti di deposito.

 

La scoperta dell’eritropoietina

La storia dell’eritropoietina ha origine agli inizi del secolo scorso (1905), quando Carnot e Deflandre ipotizzarono l’esistenza di un fattor umorale, capace di regolare la sintesi dei globuli rossi. Trent’anni dopo (1936), Hjort dimostrò e confermò l’esistenza di questo fattore.

Negli anni ’50, Erslev dimostrò che la trasfusione di grandi quantità di plasma da ratti anemici in ratti normali determinava un aumento significativo dei reticolociti e, a seguire, dell’ematocrito [3]. L’EPO umana è stata infine purificata per la prima volta nel 1977 dalle urine di un paziente affetto da anemia aplastica [4]; il suo gene è stato poi clonato nel 1984 con la tecnica del DNA ricombinante [5, 6]. Veniva presto notato che l’eritropoietina ottenuta dal lievito o da Escherichia coli aveva una debole attività o era inefficace, mentre quella prodotta dal criceto cinese aveva un’attività nettamente superiore, a causa di differenti pattern di glicosilazione. Fu proprio quest’ultima modalità che venne scelta per lo sviluppo clinico dell’eritropoietina ricombinante umana (HuEPO) per la cura dell’anemia.

L’introduzione della rHuEPO nella pratica clinica alla fine degli anni ’80 ha rappresentato un’importante svolta nel trattamento dell’anemia dei pazienti con MRC. L’epoetina alfa, la prima a essere stata introdotta, è una glicoproteina di 34000 dalton, composta, come l’ormone nativo, da 165 aminoacidi. La parte proteica rappresenta il 60% del peso della molecola, mentre la componente polisaccaridica ne rappresenta il 40%. Sono inoltre presenti siti di glicosilazione che determinano una struttura globulare compatta contenente quattro alfa eliche.

 

Dagli albori della terapia con eritropoietina alla ricerca del target di emoglobina ottimale

Negli anni ’60 i pazienti con MRC si presentavano con sintomi di estrema stanchezza, dovuti alla severa anemia, associata ad una progressiva ritenzione di tossine uremiche. In quegli anni, il trattamento dell’anemia risultava complicato e molto insoddisfacente, ed erano spesso necessarie ripetute trasfusioni per consentire una correzione dell’anemia che, tuttavia, era solo in grado di consentire una sopravvivenza, ma era associata ad una pessima qualità di vita. Inoltre, le necessarie periodiche trasfusioni comportavano un elevato rischio di trasmissione di un’epatite allora sconosciuta, definita “non A-non B” (oggi chiamata C) e causavano enorme accumulo di ferro nel reticolo-endotelio, fegato compreso. Il ferro accumulato doveva a sua volta essere rimosso, per evitare i danni d’organo da eccessivo accumulo. Tuttavia, i chelanti del ferro, a base di desferriossamina, erano gravati da serie complicanze come la mucoviscidosi.

La pubblicazione del lavoro di Eschbach quasi 40 anni fa [7], relativo al trattamento dell’anemia con gli ESA, ha rivoluzionato la qualità̀ della vita dei pazienti con MRC. Si può quindi immaginare l’enorme entusiasmo con cui fu accolta da medici, infermieri e poi soprattutto dai pazienti, la possibilità di poter utilizzare l’eritropoietina ricombinante per il trattamento dell’anemia renale, in una prima fase per i soli pazienti in dialisi, ma successivamente anche per i pazienti in terapia conservativa. Pazienti che a malapena sopravvivevano con livelli di Hb anche inferiori a 5 g/dl, con una stanchezza indicibile e con innumerevoli sintomi, allora attribuiti all’intossicazione uremica, tornavano a vivere, vedendo sparire, o almeno drasticamente ridursi molti dei loro sintomi. Un’iniezione di eritropoietina nelle linee dei filtri di dialisi, 3 volte alla settimana, bastava a procurare ai pazienti un recupero di relativo benessere, comunque incomparabile rispetto alla situazione clinica precedente.

Un’intuizione ad utilizzare la somministrazione sottocute del farmaco anziché endovenosa, facilitò l’estensione dell’uso del farmaco anche ai pazienti in terapia conservativa, in dialisi peritoneale e successivamente anche ai trapiantati di rene, qualora la loro funzione renale si fosse deteriorata. La somministrazione sottocute evidenziò anche un altro vantaggio, per via di una più bassa concentrazione ematica dell’eritropoietina (alti dosaggi, come noto, sono potenzialmente associati a danneggiamento dell’endotelio dei vasi sanguigni) ed una più prolungata persistenza in circolo, consentendo la riduzione della frequenza di somministrazione a due ed anche una sola volta alla settimana, oltretutto con un risparmio del 30% della dose [8]. Tutto questo ha portato ad un radicale cambio di paradigma rispetto a quanto si era fatto sino ad allora. Era, infatti, necessaria una contemporanea somministrazione di ferro, non solo per la nota frequente carenza di ferro nei pazienti con MRC che non ricevevano più trasfusioni, perché non più necessarie, ma anche per la necessità di avere ferro sufficiente per produrre un’ulteriore quantità di globuli rossi per mantenere gli adeguati livelli di Hb, consentiti dal trattamento con eritropoietina.

Tale era l’entusiasmo dei nefrologi nel poter finalmente correggere efficacemente la grave anemia dei loro pazienti, che si arrivò ad una correzione troppo rapida ed eccessiva dei valori di Hb, con conseguenti complicanze, come un aumento dei valori pressori sino a severe crisi ipertensive e, a volte, convulsioni. Oggi si usa più cautela rispetto a quegli anni e i rialzi pressori sono spesso impercettibili, in quanto la correzione dell’anemia inizia gradualmente ed a livelli di Hb solitamente non inferiori a 10 g/dL, per raggiungere e mantenere un target di 10-12 g/dL, come suggerito dal “position statement” pubblicato sull’argomento dalla European Renal Best Practice (ERBP) [9].

Non c’è dubbio quindi che gli ESA siano farmaci efficaci, in grado di correggere l’anemia e mantenere adeguati livelli di Hb nella maggioranza dei pazienti con CKD, migliorando il loro senso di fatica e, più in generale, la loro qualità̀ di vita, riducendo drasticamente la necessità trasfusionale, vantaggio non da poco, anche in previsione di un eventuale successivo trapianto. Inoltre, gli studi osservazionali hanno evidenziato una chiara associazione positiva tra livelli di Hb e sopravvivenza, suggerendo l’esecuzione di trial randomizzati, con l’intento di dimostrare i vantaggi di una completa normalizzazione dei livelli di Hb. Ma i risultati hanno deluso le notevoli aspettative. Un trial randomizzato con pazienti in dialisi [10] e ben tre trial randomizzati con pazienti in fase conservativa [11-13], tra cui molti diabetici (20% nel CREATE [11], 50% nel CHOIR [12] e 100% nel TREAT [13]), hanno complessivamente dimostrato che l’uso degli ESA, con l’intento di raggiungere livelli di Hb più̀ elevati rispetto alla pratica clinica di allora, poteva avere un effetto neutro o addirittura aumentare il rischio di morte o eventi cardiovascolari.

Molto interessante è stata l’osservazione che l’aumento del rischio di complicanze si verificava soprattutto nei pazienti che non erano in grado di raggiungere i target di Hb prefissati dai trial, indipendentemente dal fatto che fosse il target più̀ alto o più̀ basso, nonostante (o forse anche per questo) l’uso di dosaggi elevati di ESA per cercare di raggiungere i target. È stato quindi ipotizzato che l’ipo-responsività agli ESA e, di conseguenza l’uso di dosi elevate di ESA, fossero fattori prognostici negativi più̀ significativi rispetto al raggiungimento di valori di Hb più elevati [14, 15]. Preoccupante era anche il rischio d’insorgenza di neoplasia o la progressione di un’eventuale neoplasia già̀ in essere [13]. D’altra parte, cercare di raggiungere valori di Hb più̀ elevati non aveva prodotto un chiaro e clinicamente significativo miglioramento della qualità̀ della vita (anche se una rianalisi dei dati dello studio TREAT ha mostrato un significativo miglioramento [16]). Di conseguenza le linee-guida internazionali (KDIGO [1], ERBP [9], NICE [17], KDOQI [18] e CARI [19]) sono state tutte concordi nel suggerire un approccio cauto, bilanciando i pro e i contro del trattamento in modo personalizzato e correggendo solo parzialmente l’anemia con gli ESA. In Europa si suggerisce un valore target di Hb compreso tra 10 g/dL e 12 g/dL [9], mentre le linee-guida KDIGO [1] e KDOQI [18] hanno un atteggiamento più conservativo, suggerendo valori di Hb <10 g/dL per iniziare il trattamento con ESA e la sospensione della terapia nei pazienti in fase conservativa o in dialisi la cui Hb superi 11,5 g/dL. Vi è, comunque, comune accordo che non si debba intenzionalmente cercare di raggiungere intenzionalmente valori di Hb >13 g/dL.

Nel valutare le scelte non uniformi dei target di Hb, vale la pena ricordare che la pubblicazione di questi trial è stata contemporanea al cambiamento della politica di rimborso del trattamento dialitico negli Stati Uniti, applicando il “bundle” (tutto incluso). Il rimborso dell’ESA è ora incluso nella tariffa forfettaria per il rimborso del costo del trattamento del paziente con CKD in dialisi, provocando una possibile influenza economica sulle indicazioni al trattamento, dosi da usare e target da raggiungere. L’introduzione del “bundle” ha fatto sì che trattare il paziente con ESA si traducesse in una perdita economica per la struttura, a causa del costo del farmaco, senza rimborso aggiuntivo.

 

Indicazioni attuali alla terapia con ESA sull’inizio della terapia

Il trattamento con ESA deve essere avviato dopo avere appurato la presenza di adeguate riserve marziali, vitaminiche ed esclusa la presenza di sanguinamenti attivi o altre cause di anemia potenzialmente curabili.

Il timing ottimale su quando iniziare la terapia con ESA è un argomento ancora controverso, come confermato dal fatto che le diverse linee guida-position papers danno indicazioni tra loro diverse.

Le linee guida KDIGO del 2012 sconsigliano di iniziare il trattamento con ESA in pazienti con MRC di stadio V per valori superiori a 10 g/dL, senza indicare una soglia oltre la quale si debba iniziare necessariamente la terapia con ESA. Per i pazienti in dialisi viene consigliato d’iniziare la terapia con ESA per valori di Hb compresi tra 9 e 10 g/dL.

L’anno successivo è stato pubblicato il position paper dell’ERBP, che si discosta dalle Linee Guida KDIGO in alcuni punti. In particolare, viene consigliato in generale d’iniziare la terapia con ESA nei pazienti con valori di Hb <10 g/dL. Veniva inoltre consigliato di tenere in considerazione il tasso di caduta della concentrazione di Hb, la precedente risposta alla terapia con ferro, il rischio di dover ricorrere a una trasfusione, i rischi correlati alla terapia con ESA e alla presenza di sintomi attribuibili all’anemia. Come nelle KDIGO, nel caso dei pazienti in emodialisi le ERBP consigliano di iniziare la terapia con ESA in caso di valori di Hb compresi tra 9 e 10 g/dL.

Sempre nel 2013 le linee guida KDOQI e della società canadese di nefrologia hanno fornito i medesimi valori come cut-off per cominciare la terapia con ESA.

Il gruppo di lavoro del National Institute for Health and care excellence (NICE) suggeriscono di iniziare il trattamento con ESA a valori di Hb <11 g/dL indifferentemente dalla classe di MRC o se fosse in terapia conservativa o in dialisi.

Nel 2025 sarà probabilmente disponibile la versione aggiornata delle linee guida KDIGO sulla terapia dell’anemia. Non si prevedono modifiche sostanziali su quando iniziare la terapia con ESA o sul target di Hb a cui mantenere i pazienti durante la terapia, ma ci saranno indicazioni relative agli HIF-PHD inibitori.

 

L’eritropoietina ricombinante umana, i suoi biosimilari e le molecole long-acting

L’epoetina alfa e l’epoetina beta sono praticamente uguali all’eritropoetina endogena, di cui conservano la medesima struttura aminoacidica, mentre differiscono minimamente nella componente glucidica. Per la loro relativamente breve emivita (8 ore se somministrate endovena, 24 ore se somministrate per via sottocutanea), vengono definite “short-acting”. Dai primi studi di registrazione, inizialmente il loro uso era raccomandato con somministrazioni trisettimanali, soprattutto se in fase di correzione. Si è poi visto che, in realtà, possono essere somministrati anche in modo più dilazionato, fino a una volta al mese, soprattutto nei pazienti con basse necessità di dosaggio. Tuttavia, la frequenza dilazionata viene ottenuta spesso a prezzo di un aumento della dose somministrata e di escursioni al di sopra ma anche al di sotto della zona ottimale di stimolo alla produzione di Hb (aumentato rischio cardiovascolare legato alle elevate concentrazioni ematiche e, all’opposto, apoptosi dei globuli rossi quando si scende al disotto di determinati livelli di concentrazione ematica).

Dopo l’immissione in commercio delle prime due epoetine, la ricerca scientifica ha cercato di modificare la struttura dell’eritropoietina, per migliorarne la farmacocinetica e la farmacodinamica, e poterne quindi dilazionare la frequenza di somministrazione. La prima molecola “long-acting” ottenuta, in ordine cronologico, è la darbepoetina alfa. Essa si differenzia dall’eritropoietina ricombinante umana nella struttura aminoacidica per due sostituzioni; ciò permette alla molecola di avere due ulteriori catene di carboidrati attaccate con legame azotato, che ne modificano la struttura tridimensionale e ne aumentano il peso molecolare. La molecola ottenuta ha una ridotta affinità recettoriale rispetto all’eritropoietina, ma un’emivita più lunga (24 ore per via endovenosa, 48 ore per via sottocutanea, ma sono riportate in letteratura anche durate maggiori) [20]. Può essere quindi somministrata con frequenza monosettimanale, fino ad arrivare a quella mensile, senza le problematiche evidenziate per le eritropoietine “short-acting”.

La seconda molecola “long-acting” è il metossipolietilene glicol epoetina beta, ottenuta mediante pegilazione con legame covalente [21]. La molecola ha un peso molecolare ancora più elevato della darbepoetina alfa, un maggior ingombro sterico, una minore affinità recettoriale e un’emivita ancora più lunga (tra le 100 e le 130 ore, sia per via sottocutanea che endovenosa). Viene somministrata con frequenza mensile. Come per la darbepoetina alfa, e differenziandosi dalle molecole “short-acting”, se somministrata per via endovenosa, non comporta la necessità di aumentare la dose rispetto alla somministrazione endovenosa. Inoltre, le molecole “long-acting” si differenziano da quelle “short-acting” per una maggiore stabilità a temperatura ambiente e quindi possono essere conservate anche per giorni fuori dal frigorifero prima di essere somministrate, se la temperatura ambiente è ottimale. Come per l’insulina, ciò può avvenire una sola volta. Come per gli “short-acting”, le molecole “long-acting” necessitano quindi di una stretta catena del freddo, partendo dai siti produttivi, passando al trasporto e poi all’immagazzinamento della catena distributiva, fino ai luoghi dove il farmaco viene conservato prima della somministrazione.

Circa 10 anni fa, è entrata in commercio negli Stati Uniti, per brevissimo tempo, un’altra molecola “long-acting”, la peginesatide. Essa si differenzia dagli altri ESA perché non è ottenuta con la tecnica del DNA ricombinante, dato che è una molecola di sintesi. Si tratta di un piccolo peptide, in grado di essere riconosciuto dal recettore dell’eritropoietina e determinarne l’attivazione, a cui è stata aggiunta una catena di carboidrati mediante pegilazione, per aumentarne l’emivita e renderlo utilizzabile in ambito clinico [22]. Il farmaco era estremamente interessante, perché aveva le caratteristiche delle molecole “long-acting”, ma con un processo produttivo molto più semplice ed economico, senza necessità di essere conservato in frigorifero e con un prezzo finale di vendita negli Stati Uniti persino inferiore o simile a quello dei biosimilari. Purtroppo, il farmaco è stato ritirato dal commercio solo dopo qualche mese a seguito di alcune severe reazioni allergiche, anche mortali [23]. Inoltre, nei pazienti con MRC in fase conservativa I pazienti randomizzati a peginesatide avevano avuto un rischio aumentato di raggiungere endpoint cardiovascolari (in particolare morte, angina instabile e aritmie) rispetto a quelli assegnati al trattamento con darbepoetina alfa [24]. In epoca recente, lo sviluppo clinico del farmaco è stato ripreso da una compagnia cinese [25].

In generale, la terapia con ESA è costosa. Al termine della durata del brevetto prima dell’epoetina alfa, poi dell’epoetina beta e della darbepoetina alfa, sono stati sviluppati diversi biosimilari di queste molecole, con il fine ultimo di potere abbassare i costi della terapia. Questo ha comportato a sua volta una riduzione del prezzo di vendita anche delle molecole “originator”, con un risparmio economico significativo. Allo scadere del brevetto, infatti, la struttura della molecola viene resa nota e quindi copiabile. Al contrario, il processo produttivo resta esclusivo dello sviluppatore del farmaco. Ne consegue che i produttori di biosimilari hanno dovuto sviluppare a loro volta i processi produttivi delle molecole, che in quanto biosimilari e non farmaci generici, hanno caratteristiche simili, ma non identiche alla molecola “originator”. In Europa e negli Stati Uniti la “European Medicine Agency (EMA) e la “Food and Drug Administration” (FDA) hanno sviluppato una precisa e stretta regolamentazione per lo sviluppo ed immissione in commercio dei farmaci biosimilari (definizione riservata dall’EMA ai farmaci approvati, mentre quelli non approvati sono definite copie), garantendo un profilo di sicurezza ed efficacia accettabili e stabilendo un range massimo di variabilità rispetto alla molecola “originator” [26]. Tuttavia, proprio perché il processo produttivo non è identico a quello del suo “originator”, piccole differenze possono portare alla produzione di lotti con efficacia diversa (sia maggiore che minore) o con una maggiore immunogenicità, con conseguente rischio di sviluppare una rara complicanza della terapia con ESA, l’aplasia midollare della serie rossa. Tale complicanza, non esclusiva dei biosimilari, ma descritta anche per gli “originator”, è stata principalmente riportata quando il farmaco viene somministrato per via sottocutanea [27]. Al contrario, il rischio di sviluppare aplasia midollare della serie rossa dopo somministrazione endovenosa è praticamente nullo. In generale quindi, è preferibile evitare di sostituire la molecola di ESA in corso di terapia con somministrazione sottocutanea, se non in presenza di motivazioni cliniche rilevanti. Al contrario il passaggio da una molecola ad un’altra risulta essere una pratica meno rischiosa, e ormai diffusa in ambito clinico, nei pazienti che ricevono il farmaco per via endovenosa (ad esempio quando iniziano il trattamento emodialitico sostitutivo) [28].

Pur se con differente affinità recettoriale ed emivita, tutti gli ESA hanno il medesimo meccanismo d’azione, riconoscendo tutti il recettore dell’eritropoietina e determinandone l’attivazione. Tuttavia, proprio le differenze farmacocinetiche e farmacodinamiche delle molecole potrebbero comportare sottili differenze nella modalità di attivazione del recettore, che potrebbero portare all’attivazione di diverse cascate enzimatiche [29]. Inoltre, i diversi picchi ematici di eritropoietina potrebbero comportare l’attivazione del recettore dell’eritropoietina su tessuti diversi, con differenti effetti pleiotropici (sia positivi che negativi). I nefrologi si sono concentrati per quasi due decenni sull’individuazione del target migliore di Hb a cui mirare con la terapia con ESA e hanno considerato solo in modo marginale la possibilità che le diverse molecole di ESA potessero avere un profilo di sicurezza tra loro differente. Peraltro, alcuni studi e metanalisi non avevano evidenziato segnali di rischio in tal senso [30]. Tuttavia, uno studio osservazionale giapponese di registro, su circa 200.000 pazienti, ha riportato un aumento del rischio di morte per ogni causa e per cause cardiovascolari nei pazienti trattati con molecole “long-acting” rispetto a quelle “short-acting” [31]. Questo era particolarmente vero nei soggetti trattati con elevate dosi di ESA. Lo studio però presentava una serie di bias che ne complicano l’interpretazione. In particolare, per motivi di rimborsabilità, i pazienti con elevati necessità di dose di ESA short acting (9.000 U.I./settimana) erano obbligatoriamente (autorità regolatorie giapponesi) passati a long acting. Inoltre, una quota importante di pazienti era stata esclusa dall’analisi per assenza di informazioni sulla terapia in corso con eritropoietina [31].

Risultati sovrapponibili sono stati ottenuti dallo studio DOPPS (Dialysis Outcomes and Practice Patterns Study), ma per il solo Giappone, ovviamente, essendo il database lo stesso. Al contrario, il rischio di morte era sovrapponibile, o addirittura inferiore, tra le molecole “short-acting” e “long-acting” nei pazienti americani ed europei.

Anche uno studio randomizzato, effettuato per fine registrativi di farmacovigilanza su una popolazione mista di pazienti in dialisi e non, non ha dimostrato differenze nel rischio di sviluppare eventi cardiovascolari o morte tra il trattamento con metossipolietilene glicol epoetina beta o altri ESA [32]. Dati opposti sono stati ottenuti da un altro studio osservazionale italiano, effettuato in pazienti con MRC in fase conservativa, con evidenza di un possibile aumento del rischio di morte e rischio di dialisi nei trattati con molecole “short-acting” ad alto dosaggio [33].

Recentemente, un’analisi di circa 60.000 pazienti emodializzati con Medicare negli Stati Uniti ha mostrato, come lo studio italiano sopracitato, un aumento del rischio di morte in chi riceveva le molecole “short-acting” rispetto alle “long-acting”, senza nessuna differenza sul rischio di endpoint cardiovascolari maggiori (MACE) [34].

Complessivamente, come anche dimostrato da una recente metanalisi, l’utilizzo delle singole molecole di ESA non sembra avere relazione con il rischio di morte ed eventi cardiovascolari se vengono rispettate le frequenze di somministrazione autorizzate [35]; i dati disponibili a supporto di possibili differenze sembrano essere influenzati principalmente da bias prescrittivi.

 

Le ombre della terapia con gli agenti stimolanti l’eritropoiesi

La terapia con ESA è, ormai da decenni, largamente diffusa nel mondo per la cura dell’anemia nei pazienti con MRC. Il farmaco si è dimostrato nel tempo relativamente sicuro e ben tollerato, anche grazie all’acquisizione da parte dei clinici di una maggiore esperienza nell’utilizzo di queste molecole.

Il recettore per l’eritropoietina umana, quando attivato dall’ormone, viene internalizzato, subisce un processo di degradazione dell’eritropoietina ad esso legato e viene nuovamente reso disponibile in superficie per un nuovo legame, evitando la saturazione dei recettori in superficie. Questa particolare cinetica è condizionata dalla concentrazione dell’ormone, rendendo possibile un’attivazione massiccia in caso di anemia severa [36]. Al contrario, però, manca un sistema di protezione in caso di utilizzo dell’eritropoietina esogena, soprattutto quando utilizzata ad alte dosi.

È noto che il recettore dell’eritropoietina è presente in diversi tessuti, tra cui il sistema nervoso centrale, l’endotelio, i cardiomiociti e le cellule lisce muscolari. Negli anni sono stati ipotizzati numerosi effetti pleiotropici, una parte di questi protettivi sia a livello cardiaco [37, 38] che neurologico [39-41].

D’altro canto, diversi dati sperimentali sono a supporto di una possibile azione dell’eritropoietina, soprattutto se somministrata ad alte dosi, nell’accentuare il rischio di trombosi ed eventi cardiovascolari, in modo indipendente dal solo aumento della viscosità ematica dato dalla correzione dell’anemia. Ad esempio, nelle cellule endoteliali, l’eritropoietina potrebbe avere un’azione di attivazione endoteliale, aumento dell’angiogenesi e produzione di endotelina 1 [42, 43]. Il meccanismo potrebbe essere accentuato dalla presenza di ischemia [44]. Il recettore dell’eritropoietina è espresso anche sui megacariociti, dove potrebbe accelerarne sia la maturazione e l’attività pro-trombotica [45]. È ancora oggi controverso come e in quale misura queste evidenze sperimentali possano contribuire ad un aumentato rischio cardiovascolare e trombotico nei pazienti trattati con ESA. Sebbene i primi studi effettuati con gli ESA non fossero finalizzati a dimostrare un effetto cardiovascolare, non hanno messo in luce un aumentato rischio di morte rispetto a placebo per valori di Hb intorno ai 10 g/dL [46]. Al contrario, la correzione dell’anemia severa comporta vantaggi in termini di miglioramento della qualità della vita, riduzione della necessità di emotrasfusioni e riduzione della massa ventricolare sinistra [47].

L’utilizzo degli ESA negli anni ’90 e 2000 in trial randomizzati, come trattato nella precedente sezione sul target ottimale di Hb a cui mirare con la terapia, ha invece messo in luce con chiarezza un aumentato rischio cardiovascolare e trombotico nei pazienti trattati con ESA a target di Hb prossimi alla normalizzazione. Risultano essere a particolare rischio di complicanze i pazienti affetti da diabete, con precedenti eventi cardiovascolari, o affetti da arteriopatia agli arti inferiori. È inoltre emerso che la presenza d’infiammazione e d’iporesponsività alla terapia con ESA possano rappresentare ulteriori ed importanti fattori di rischio per le complicanze trombotiche e cardiovascolari in corso di terapia [48-50].

Un’altra ombra della terapia con ESA riguarda un possibile effetto pro-oncogenico. Tale preoccupazione nasce in primis dal fatto che l’eritropoietina è un fattore di crescita. Oltre a ciò, negli anni la ricerca di base ha dimostrato l’espressione del recettore dell’eritropoietina nelle cellule tumorali; restano però ancora dubbi sull’entità della loro attivazione, soprattutto in corso di terapia con ESA, e il loro ruolo prognostico [51]. Inoltre, l’eritropoietina potrebbe avere un’azione sul “vascular endothelial growth factor” [52], contribuendo all’angiogenesi, con effetto di aumento della rapidità di crescita del tumore e della sua diffusione a distanza.

L’interpretazione dei dati sperimentali è resa ulteriormente complicata dal fatto che l’espressione del recettore dell’eritropoietina è influenzata dal tipo di tumore.

Infine, la terapia con ESA ha verosimilmente un effetto protrombotico, che potenzierebbe quello già di per sé aumentato dei pazienti oncologici [53].

Negli anni 2000 diversi trial randomizzati e metanalisi hanno evidenziato una possibile riduzione della sopravvivenza [54] o un aumento della crescita tumorale per alcuni tumori solidi in pazienti anemici trattati con ESA con un target di Hb prossimo alla normalità. Altre metanalisi non hanno confermato il dato [55, 56]. Sulla scorta di queste esperienze, oggi nei pazienti oncologici la terapia con ESA è riservata solo ai pazienti sottoposti a chemioterapia, mirando a target di Hb più bassi [57, 58].

I dati in letteratura su un possibile effetto prooncologici degli ESA nei pazienti con MRC sono limitati e poco conclusivi [13, 59]. La loro interpretazione è ulteriormente complicata dal fatto che la MRC di per sé è associata ad un aumento della prevalenza di neoplasie, in parte a causa di una riduzione delle difese immunitarie nei pazienti uremici [60]. A titolo precauzionale, è consigliato di soppesare il rischio beneficio nel singolo paziente oncologico con MRC di un’eventuale terapia con ESA, soprassedendo, ove possibile, nei pazienti dove si prevede una possibile cura della malattia oncologica [61].

 

Alternative terapeutiche e prospettive future

Da un paio di anni sono diventati disponibili nuove molecole per la cura dell’anemia nei pazienti con malattia renale cronica, gli inibitori delle HIF-PHD (hypoxia inducible factor prolyl hydroxylases). Queste molecole si differenziano dagli ESA perché agiscono andando a stimolare l’eritropoietina endogena, dimostrandosi efficaci anche nelle fasi più avanzate della MRC, fino ai pazienti anefrici. Date le ombre sui possibili rischi cardiovascolari degli ESA, gli enti regolatori (EMA e FDA) hanno imposto per la loro registrazione l’esecuzione di diversi trial randomizzati di fase 3, finalizzati non solo a dimostrare l’efficacia delle molecole (superiorità rispetto al placebo o non inferiorità rispetto agli altri ESA), ma anche a garantirne la sicurezza, soprattutto dal punto di vista cardiovascolare. A tale scopo sono stati arruolati nel mondo decine di migliaia di pazienti.

Delle sei molecole oggi disponibili nel mondo, tre sono state sviluppate solo in India o Estremo Oriente (molidustat, desidustat, enarodustat) e non sono quindi disponibili per uso clinico negli Stati Uniti o Europa. Le altre tre molecole (roxadustat, vadadustat, daprodustat) hanno avuto destini diversi in termini di approvazione e successiva commercializzazione in Europa e Stati Uniti, principalmente sulla base dei diversi risultati dei singoli trial clinici e di alcuni segnali di possibile aumento degli eventi cardiovascolari o delle trombosi emersi da analisi secondarie. Ad oggi, il roxadustat è in commercio in Europa sia per i pazienti in dialisi che per quelli in fase conservativa. Il vadadustat è approvato e in fase di commercializzazione in Europa e Stati Uniti solo per i pazienti in dialisi prevalenti. Analogamente, il daprodustat è stato approvato solo per i pazienti in dialisi da entrambi gli enti regolatori, ma non è stato commercializzato in Europa per una scelta aziendale.

Nonostante le aspettative verso questa nuova classe di farmaci fossero molte, soprattutto in termini di un miglior profilo di sicurezza cardiovascolare rispetto agli ESA, i risultati dei trials non hanno confermato l’ipotesi iniziale, ponendoli solo come una possibile alternativa terapeutica agli ESA, con un profilo di sicurezza a questi sovrapponibili nella maggior parte dei casi [62-64].

Dal punto di vista pratico, gli inibitori delle HIF-PHD si differenziano dagli ESA perché vengono somministrati per via orale e perché sono conservati a temperatura ambiente. Inoltre, grazie alla loro azione di stimolazione del sistema HIF, potrebbero aumentare l’assorbimento e la disponibilità del ferro ed essere più efficaci nei pazienti infiammati iporesponsivi agli ESA [65, 66].

Dal punto di vista delle prospettive future, dopo anni di intensa ricerca e sviluppo clinico per gli HIF-PHD inibitori, il panorama scientifico nel campo della terapia dell’anemia nei pazienti con MRC ha subito un notevole rallentamento, sia in termini di finanziamenti che di numero di nuove molecole innovative in sviluppo [67]. Ad oggi la strategia più promettente, e con maggiori possibilità di entrare nel breve-medio termine in commercio, sembra essere quella che va ad agire su alcune interleuchine, riducendo l’infiammazione e quindi migliorando gli outcome cardiovascolari. L’effetto antinfiammatorio comporta anche il miglioramento dell’anemia e/o la risposta agli ESA [68].

 

Conclusioni

La terapia con ESA, e in epoca recente con gli HIF-PHD inibitori, rappresentano una rivoluzione scientifica che ha permesso il trattamento dell’anemia sintomatica in milioni di persone nel mondo. Purtroppo, entrambe le categorie di farmaci, seppur efficaci e ben tollerati nella maggior parte dei casi, possono essere associati ad un possibile aumento del rischio cardiovascolare e trombotico, soprattutto in particolari categorie di pazienti.

Per tale motivo, la scelta della terapia con ESA o HIF-PHD inibitore deve essere personalizzata il più possibile, sia in termine di target di Hb, che di tipo di molecola che in termini di dosaggi da usare.

 

Bibliografia

  1. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int Suppl 2012;2:279-335.
  2. Locatelli F, Del Vecchio L, Esposito C, et al. Consensus commentary and position of the Italian Society of Nephrology on KDIGO controversies conference on novel anemia therapies in chronic kidney disease. J Nephrol. 2024;37(3):753-767. doi: 10.1007/s40620-024-01937-4. Epub 2024 May 6. PMID: 38705934; PMCID: PMC11150321.
  3. Erslev A. Humoral regulation of red cell production. 1953;8(4):349-57. PMID: 13032205.
  4. Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977 Aug 10;252(15):5558-64. PMID: 18467.
  5. Lin FK, Suggs S, Lin CH, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A. 1985;82(22):7580-4. doi: 10.1073/pnas.82.22.7580. PMID: 3865178; PMCID: PMC391376.
  6. Jacobs K, Shoemaker C, Rudersdorf R, et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313(6005):806-10. doi: 10.1038/313806a0. PMID: 3838366.
  7. Eschbach JW, Abdulhadi MH, Browne JK, et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med. 1989 Dec 15;111(12):992-1000. doi: 10.7326/0003-4819-111-12-992. PMID: 2688507.
  8. Besarab A, Reyes CM, Hornberger J. Meta-analysis of subcutaneous versus intravenous epoetin in maintenance treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002 Sep;40(3):439-46. doi: 10.1053/ajkd.2002.34881. PMID: 12200793.
  9. Locatelli F, Bárány P, Covic A, et al.; ERA-EDTA ERBP Advisory Board. Kidney Disease: Improving Global Outcomes guidelines on anaemia management in chronic kidney disease: a European Renal Best Practice position statement. Nephrol Dial Transplant. 2013 Jun;28(6):1346-59. doi: 10.1093/ndt/gft033. Epub 2013 Apr 12. PMID: 23585588.
  10. Besarab A, Bolton WK, Browne JK, et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998 Aug 27;339(9):584-90. doi: 10.1056/NEJM199808273390903. PMID: 9718377.
  11. Drüeke TB, Locatelli F, Clyne N, et al.; CREATE Investigators. Normalization of hemoglobin level in patients with chronic kidney disease and anemia. N Engl J Med. 2006 Nov 16;355(20):2071-84. doi: 10.1056/NEJMoa062276. PMID: 17108342.
  12. Singh AK, Szczech L, Tang KL, et al.; CHOIR Investigators. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006 Nov 16;355(20):2085-98. doi: 10.1056/NEJMoa065485. PMID: 17108343.
  13. Pfeffer MA, Burdmann EA, Chen CY, et al.; TREAT Investigators. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009 Nov 19;361(21):2019-32. doi: 10.1056/NEJMoa0907845. Epub 2009 Oct 30. PMID: 19880844.
  14. Solomon SD, Uno H, Lewis EF, et al.; Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT) Investigators. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N Engl J Med. 2010 Sep 16;363(12):1146-55. doi: 10.1056/NEJMoa1005109. PMID: 20843249.
  15. Szczech LA, Barnhart HX, Inrig JK, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008 Sep;74(6):791-8. doi: 10.1038/ki.2008.295. Epub 2008 Jul 2. PMID: 18596733; PMCID: PMC2902279.
  16. Pfeffer MA, Burdmann EA, Chen CY, et al.; TREAT Investigators. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009 Nov 19;361(21):2019-32. doi: 10.1056/NEJMoa0907845. Epub 2009 Oct 30. PMID: 19880844.
  17. Disponibile su: https://www.nice.org.uk/guidance/ng203 visionato il 28 agosto 2024.
  18. Disponibile su: http://www.ajkd.org/article/S0272-6386(13)00978-5/fulltext visionato il 28 agosto 2024
  19. Disponibile su https://www.cariguidelines.org/guidelines/chronic-kidney-disease/cardiovascular-disease/ visionato il 28 agosto 2024
  20. Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol. 2003 Apr;31(4):290-9. doi: 10.1016/s0301-472x(03)00006-7. PMID: 12691916.
  21. Locatelli F, Reigner B. C.E.R.A.: pharmacodynamics, pharmacokinetics and efficacy in patients with chronic kidney disease. Expert Opin Investig Drugs. 2007 Oct;16(10):1649-61. doi: 10.1517/13543784.16.10.1649. PMID: 17922628.
  22. Verma R, Green JM, Schatz PJ, Wojchowski DM. A dimeric peptide with erythropoiesis-stimulating activity uniquely affects erythropoietin receptor ligation and cell surface expression. Exp Hematol. 2016 Aug;44(8):765-769.e1. doi: 10.1016/j.exphem.2016.04.015. Epub 2016 May 9. PMID: 27174804; PMCID: PMC4956517.
  23. Locatelli F, Del Vecchio L. Peginesatide as a new approach for treating anemia of CKD patient: is it like a falling star? Expert Opin Pharmacother. 2013 Jul;14(10):1277-80. doi: 10.1517/14656566.2013.799139. Epub 2013 May 16. PMID: 23675762.
  24. Macdougall IC, Provenzano R, Sharma A, et al.; PEARL Study Groups. Peginesatide for anemia in patients with chronic kidney disease not receiving dialysis. N Engl J Med. 2013 Jan 24;368(4):320-32. doi: 10.1056/NEJMoa1203166. PMID: 23343062.
  25. Ping Zhang, Yan Jiang, Chunping Xu, et al. Pegmolesatide for the treatment of anemia in patients undergoing dialysis: a randomized clinical trial. eClinicalMedicine 2023;65:102273.
  26. Minghetti P, Rocco P, Del Vecchio L, Locatelli F. Biosimilars and regulatory authorities. Nephron Clin Pract. 2011;117(1):c1-7. doi: 10.1159/000319640. Epub 2010 Aug 3. PMID: 20689318.
  27. Macdougall IC. Antibody-mediated pure red cell aplasia (PRCA): epidemiology, immunogenicity and risks. Nephrol Dial Transplant. 2005 May;20 Suppl 4:iv9-15. doi: 10.1093/ndt/gfh1087. PMID: 15827058.
  28. Belleudi V, Trotta F, Addis A, et al.; Italian Biosimilar Network (ItaBioNet). Effectiveness and Safety of Switching Originator and Biosimilar Epoetins in Patients with Chronic Kidney Disease in a Large-Scale Italian Cohort Study. Drug Saf. 2019 Dec;42(12):1437-1447. doi: 10.1007/s40264-019-00845-y. PMID: 31228010; PMCID: PMC6858470.
  29. El-Komy MH, Schmidt RL, Widness JA, Veng-Pedersen P. Differential pharmacokinetic analysis of in vivo erythropoietin receptor interaction with erythropoietin and continuous erythropoietin receptor activator in sheep. Biopharm Drug Dispos 2011; 32(5): 276-288.
  30. Wilhelm-Leen ER, Winkelmayer WC. Mortality risk of darbepoetin alfa versus epoetin alfa in patients with CKD: systematic review and meta-analysis. Am J Kidney Dis. 2015; 66(1):69–74.
  31. Sakaguchi Y, Hamano T, Wada A, et al. Types of Erythropoietin-Stimulating Agents and Mortality among Patients Undergoing Hemodialysis. J Am Soc Nephrol 2019;30(6):1037–1048.
  32. Locatelli F, Hannedouche T, Fishbane S, et al. Cardiovascular safety and all-cause mortality of methoxy polyethylene glycol-epoetin beta and other erythropoiesis-stimulating agents in anemia of CKD: a randomized noninferiority trial. Clin J Am Soc Nephrol 2019;14(12):1701–1710.
  33. Minutolo R, Garofalo C, Chiodini P, et al. Types of erythropoiesis-stimulating agents and risk of end-stage kidney disease and death in patients with non-dialysis chronic kidney disease. Nephrol Dial Transplant. 2021;36(2):267-274.
  34. Desai R, Unigwe I, Riaz M, et al. Comparative Safety of Long-Acting vs. Short-Acting Erythropoiesis-Stimulating Agents Among Patients Undergoing Hemodialysis. Clin Pharmacol Ther. 2024 Jul;116(1):217-224. doi: 10.1002/cpt.3271. PMID: 38629679.
  35. Chung EY, Palmer SC, Saglimbene VM, Craig JC, Tonelli M, Strippoli GF. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis. Cochrane Database Syst Rev. 2023 Feb 13;2(2):CD010590. doi: 10.1002/14651858.CD010590.pub3. PMID: 36791280; PMCID: PMC9924302.
  36. Becker V, Schilling M, Bachmann J, et al. Covering a broad dynamic range: information processing at the erythropoietin receptor. Science. 2010;328(5984):1404-1408.
  37. Ruifrok WP, de Boer RA, Westenbrink BD, van Veldhuisen DJ, van Gilst WH. Erythropoietin in cardiac disease: new features of an old drug. Eur J Pharmacol 2008;585(2-3):270-277.
  38. Klopsch C, Furlani D, Gäbel R, et al. Intracardiac injection of erythropoietin induces stem cell recruitment and improves cardiac functions in a rat myocardial infarction model. J Cell Mol Med 2009;13(4):664-679.
  39. Yamada M, Burke C, Colditz P, Johnson DW, Gobe GC. Erythropoietin protects against apoptosis and increases expression of non-neuronal cell markers in the hypoxia-injured developing brain. J Pathol. 2011;224(1):101-109.
  40. Cherian L, Goodman JC, Robertson C. Improved cerebrovascular function and reduced histological damage with darbepoietin alfa administration after cortical impact injury in rats. J Pharmacol Exp Ther 2011;337(2):451-456.
  41. Juenemann M, Braun T, Schleicher N, et al. Neuroprotective mechanisms of erythropoietin in a rat stroke model. Transl Neurosci. 2020;11(1):48-59.
  42. Ashley RA, Dubuque SH, Dvorak B, Woodward SS, Williams SK, Kling PJ. Erythropoietin stimulates vasculogenesis in neonatal rat mesenteric microvascular endothelial cells. Pediatr Res. 2002;51(4):472-478.
  43. Larivière R, Lebel M. Endothelin‐1 in chronic renal failure and hypertension. Can J Physiol Pharmacol. 2003;81:607-621.
  44. Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT. Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. 2004;104:2073–2080.
  45. Fraser JK, Tan AS, Lin FK, Berridge MV. Expression of specific high-affinity binding sites for erythropoietin on rat and mouse megakaryocytes. Exp Hematol. 1989;17(1):10-16.
  46. Strippoli GF, Craig JC, Manno C, Schena FP. Hemoglobin targets for the anemia of chronic kidney disease: a meta-analysis of randomized, controlled trials. J Am Soc Nephrol. 2004;15(12):3154-3165.
  47. Parfrey PS, Lauve M, Latremouille-Viau D, Lefebvre P. Erythropoietin therapy and left ventricular mass index in CKD and ESRD patients: a meta-analysis. Clin J Am Soc Nephrol. 2009;4(4):755-762.
  48. Luo J, Jensen DE, Maroni BJ, Brunelli SM. Spectrum and burden of erythropoiesis-stimulating agent hyporesponsiveness among contemporary hemodialysis patients. Am J Kidney Dis. 2016;68(5):763-771.
  49. Kim T, Streja E, Soohoo M, et al. Serum Ferritin Variations and Mortality in Incident Hemodialysis Patients. Am J Nephrol. 2017;46(2):120-130.
  50. Szczech LA, Barnhart HX, Inrig JK, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008;74(6):791-798.
  51. Zhang Y, Zhu Y, Wang S, Feng YC, Li H. Erythropoietin receptor is a risk factor for prognosis: A potential biomarker in lung adenocarcinoma. Pathol Res Pract. 2023;251:154891. doi: 10.1016/j.prp.2023.154891. Epub 2023 Oct 13. PMID: 37844485.
  52. Liu P, Zhou Y, An Q, Song Y, Chen X, Yang GY, Zhu W. Erythropoietin Stimulates Endothelial Progenitor Cells to Induce Endothelialization in an Aneurysm Neck After Coil Embolization by Modulating Vascular Endothelial Growth Factor. Stem Cells Transl Med. 2016;5(9):1182-9. doi: 10.5966/sctm.2015-0264. Epub 2016 Jun 28. PMID: 27352930; PMCID: PMC4996438.
  53. Gao S, Ma JJ, Lu C. Venous thromboembolism risk and erythropoiesis-stimulating agents for the treatment of cancer-associated anemia: a meta-analysis. Tumour Biol. 2014 Jan;35(1):603-13. doi: 10.1007/s13277-013-1084-5. PMID: 23959477.
  54. Bohlius J, Schmidlin K, Brillant C, et al. Erythropoietin or Darbepoetin for patients with cancer–meta-analysis based on individual patient data. Cochrane Database Syst Rev. 2009 Jul 8;2009(3):CD007303. doi: 10.1002/14651858.CD007303.pub2. PMID: 19588423; PMCID: PMC7208183.
  55. Aapro M, Moebus V, Nitz U, et al. Safety and efficacy outcomes with erythropoiesis-stimulating agents in patients with breast cancer: a meta-analysis. Ann Oncol. 2015 Apr;26(4):688-695. doi: 10.1093/annonc/mdu579. Epub 2014 Dec 26. PMID: 25542926.
  56. Glaspy J, Crawford J, Vansteenkiste J, et al. Erythropoiesis-stimulating agents in oncology: a study-level meta-analysis of survival and other safety outcomes. Br J Cancer. 2010 Jan 19;102(2):301-15. doi: 10.1038/sj.bjc.6605498. Epub 2010 Jan 5. PMID: 20051958; PMCID: PMC2816662.
  57. Rizzo JD, Brouwers M, Hurley P, et al.; American Society of Hematology and the American Society of Clinical Oncology Practice Guideline Update Committee. American Society of Hematology/American Society of Clinical Oncology clinical practice guideline update on the use of epoetin and darbepoetin in adult patients with cancer. 2010 Nov 18;116(20):4045-59. doi: 10.1182/blood-2010-08-300541. Epub 2010 Oct 25. PMID: 20974674.
  58. Aapro M, Scherhag A, Burger HU. Effect of treatment with epoetin-beta on survival, tumour progression and thromboembolic events in patients with cancer: an updated meta-analysis of 12 randomised controlled studies including 2301 patients. Br J Cancer. 2008 Jul 8;99(1):14-22. doi: 10.1038/sj.bjc.6604408. Epub 2008 Jun 10. PMID: 18542079; PMCID: PMC2453026.
  59. Rashidi A, Garimella PS, Al-Asaad A, Kharadjian T, Torres MN, Thakkar J. Anemia Management in the Cancer Patient With CKD and End-Stage Kidney Disease. Adv Chronic Kidney Dis. 2022 Mar;29(2):180-187.e1. doi: 10.1053/j.ackd.2022.03.005. PMID: 35817525.
  60. Volovat SR, Volovat C, Miron I, et al. Oncogenic mechanisms in renal insufficiency. Clin Kidney J. 2020 Oct 23;14(2):507-515. doi: 10.1093/ckj/sfaa122. PMID: 33623673; PMCID: PMC7886561.
  61. Locatelli F, Covic A, Eckardt KU, Wiecek A, Vanholder R; ERA-EDTA ERBP Advisory Board. Anaemia management in patients with chronic kidney disease: a position statement by the Anaemia Working Group of European Renal Best Practice (ERBP). Nephrol Dial Transplant. 2009 Feb;24(2):348-54. doi: 10.1093/ndt/gfn653. Epub 2008 Nov 26. PMID: 19037082.
  62. Zheng Q, Wang Y, Yang H, et al. Cardiac and Kidney Adverse Effects of HIF Prolyl-Hydroxylase Inhibitors for Anemia in Patients With CKD Not Receiving Dialysis: A Systematic Review and Meta-analysis. Am J Kidney Dis. 2023 Apr;81(4):434-445.e1. doi: 10.1053/j.ajkd.2022.09.014. Epub 2022 Nov 15. PMID: 36396085.
  63. Yang J, Xing J, Zhu X, Xie X, Wang L, Zhang X. Effects of hypoxia-inducible factor-prolyl hydroxylase inhibitors vs. erythropoiesis-stimulating agents on iron metabolism in non-dialysis-dependent anemic patients with CKD: A network meta-analysis. Front Endocrinol (Lausanne). 2023 Mar 16;14:1131516. doi: 10.3389/fendo.2023.1131516. PMID: 37008953; PMCID: PMC10060950.
  64. Guimarães MGM, Tapioca FPM, Neves FC, Moura-Neto JA, Passos LCS. Association of Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors with Cardiovascular Events and Death in Dialysis Patients: A Systematic Review and Meta-Analysis. Blood Purif. 2023;52(7-8):721-728. doi: 10.1159/000531274. Epub 2023 Jul 17. PMID: 37459846.
  65. Ku E, Del Vecchio L, Eckardt KU, et al.; for Conference Participants. Novel anemia therapies in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2023 Oct;104(4):655-680. doi: 10.1016/j.kint.2023.05.009. Epub 2023 May 24. PMID: 37236424.
  66. Stoumpos S, Crowe K, Sarafidis P, et al. Hypoxia-inducible factor prolyl hydroxylase inhibitors for anaemia in chronic kidney disease: a document by the European Renal Best Practice board of the European Renal Association. Nephrol Dial Transplant. 2024 Apr 4:gfae075. doi: 10.1093/ndt/gfae075. Epub ahead of print. PMID: 38573822.
  67. Del Vecchio L, Girelli D, Vinchi F, et al. Iron biology. Nephrol Dial Transplant. 2024 Apr 24:gfae095. doi: 10.1093/ndt/gfae095. Epub ahead of print. PMID: 38658189.
  68. Pergola PE, Davidson M, Jensen C, et al. Effect of Ziltivekimab on Determinants of Hemoglobin in Patients with CKD Stage 3-5: An Analysis of a Randomized Trial (RESCUE). J Am Soc Nephrol. 2024 Jan 1;35(1):74-84. doi: 10.1681/ASN.0000000000000245. Epub 2023 Dec 13. PMID: 38088558; PMCID: PMC10786611.

The link between homocysteine, folic acid and vitamin B12 in chronic kidney disease

Abstract

Patients with chronic kidney disease or end-stage renal disease experience tremendous cardiovascular risk. Cardiovascular events are the leading causes of death in these patient populations, thus the interest in non-traditional risk factors such as hyperhomocysteinemia, folic acid and vitamin B12 metabolism is growing.  Hyperhomocysteinemia is commonly found in CKD patients because of impaired renal metabolism and reduced renal excretion. Folic acid, the synthetic form of vitamin B9, is critical in the conversion of homocysteine to methionine like vitamin B12. Folic acid has also been shown to improve endothelial function without lowering homocysteine, suggesting an alternative explanation for the effect of folic acid on endothelial function. Whether hyperhomocysteinemia represents a reliable marker of cardiovascular risk and cardiovascular mortality or a therapeutic target in this population remains unclear. However, it is reasonable to consider folic acid with or without methylcobalamin supplementation as appropriate adjunctive therapy in patients with CKD. The purpose of this review is to summarize the characteristics of homocysteine, folic acid, and vitamin B12 metabolism, the mechanism of vascular damage, and the outcome of vitamin supplementation on hyperhomocysteinemia in patients with CKD, ESRD, dialysis treatment, and in kidney transplant recipients.

Keywords: hyperhomocysteinemia, folic acid, vitamin B12, chronic kidney disease, end-stage renal disease, cardiovascular disease

Ci spiace, ma questo articolo è disponibile soltanto in inglese.

Introduction

Chronic Kidney Disease (CKD) represents an important economic burden for health systems around the world, with an estimated global prevalence of between 11 and 13%. Rationalized measures are needed to slow the progression to end-stage kidney disease (ESRD) and to decrease cardiovascular mortality [1]. Mortality rates remain in fact above 20% per year with the use of dialysis, with more than half of all deaths related to cardiovascular disease [2]. The problem of peripheral arteries disease (PAD) is also emerging, which is more common in patients with CKD and is associated with lower limb amputations and increased mortality [3].

Traditional factors such as hypertension, dyslipidaemia and diabetes mellitus are not sufficient to explain the dramatically increased cardiovascular risk in the population with CKD/ESRD. Thus, much attention shifted to other less studied aspects of CKD such as oxidative stress, endothelial dysfunction, chronic inflammation, vascular calcification in chronic kidney disease-mineral and bone disorder (CKD-MBD) and finally hyperhomocysteinemia (HHcy) [4].

The latter, since its discovery, proved to be a plausible risk factor for the development of atherosclerotic vascular disease processes leading to cardiovascular disease (CVD) and stroke. Levels of homocysteine (Hcy) higher than 20.0 μmol/L are associated with mortality 4.5 times higher. The “homocysteine hypothesis” is supported by the fact that subjects with problems in the enzymatic pathway of homocysteine metabolism have a higher level of homocysteine than the general population and a faster progression of arteriosclerosis. Therefore, the link between cardiovascular mortality and arteriosclerosis has been the subject of debate with conflicting results [5].

The high prevalence of HHcy in patients with CKD generated interest in a potential role of HHcy as a risk factor for CKD progression and CVD [5,8,9,10].

Hcy is a non-essential, sulfur-containing, non-proteinogenic amino acid, synthetized by transmethylation of the essential, diet-derived amino acid methionine (Figure 1). Aberrant Hcy metabolism could lead to redox imbalance and oxidative stress resulting in elevated protein, nucleic acid and carbohydrate oxidation and lipoperoxidation, products known to be involved in cytotoxicity [11].

Hcy levels can be significantly reduced by supplementation with folic acid (FA), vitamin B12 and vitamin B6. However, in several randomized and controlled studies the impact of vitamin supplementation seems to be disappointing in terms of cardiovascular mortality [6,7]. The debate is still open: some studies have reported a null or harmful effect of supplementation with FA and B vitamins, including cyanocobalamin [10], while others have confirmed a link between the homeostasis of the vitamins, cardiovascular risk and CKD progression [12]. These two outcomes are ultimately considered the result of a complex interaction between the effects of HHcy, FA, enzymatic activity/gene variants, and FA fortification programs that exist in some countries [13].

 

B vitamins and homocysteine metabolism

Folic acid/Vitamin B9

The term “folate” includes several forms of vitamin B9, including tetrahydrofolic acid (the active form), methyltetrahydrofolate (the primary circulating form), methenyltetrahydrofolate, folinic acid, folacin and pteroylglutamic acid. Since the human body is not able to synthesize folate, it must be provided through the diet [14]. Folic acid comes from polyglutamates that are converted into monoglutamates in the intestine, and then transported through mucous epithelium by a specific vector [15].

Cobalamin/Vitamin B12

Vitamin B12, also known as cobalamin, is a nutrient with a key role in human health: it is essential as a cofactor for the enzyme methionine synthase and other biochemical reactions, such as beta oxidation of fatty acids or DNA synthesis, and in the production of red blood cells [1718]. Vitamin B12 deficiency is a common cause of HHcy and a frequent feature of patients with CKD [1416].

Cobalamin is one of the most complex coenzymes in nature. The molecule consists of a corrinic ring and a part of dimethylbenzimidazole (DMB), and the focal point of the structure is the cobalt atom, held in the center of the corrinic ring which bonds some chemical groups, the most important of which are the hydroxyl group (hydroxocobalamin, OHCbl) and group CN (cyanocobalamin, CNCbl). These are the forms most commonly used in pharmaceutical formulations for vitamin B12 supplementation.

Vitamin B12, when ingested, is complexed with salivary haptocorrin, and cobalamin is released from pancreatic proteases in the duodenum. Then, cobalamin binds to an intrinsic factor secreted by the parietal cells of the stomach: when this complex reaches the distal ileum, it is endocytosed by enterocytes through cubilin. Then, it is transported into the plasma by a plasma transport protein called transcobalamin. B12 is filtered by the glomerulus; however, urinary excretion is minimal under normal conditions, due to reabsorption in the proximal tubule [19].

Metabolism of homocysteine and folate cycle

As mentioned above, Hcy plasma levels are determined by several factors, such as genetic alterations of the methionine metabolism enzymes, and vitamin B12, vitamin B6 and folic acid deficiency. FA, playing a pivotal role in Hcy metabolism, is inert and requires to be activated in tetrahydrofolic acid, a precursor of 5-methyltetrahydrofolate (5-MTHF). Methylenetetrahydrofolate reductase (MTHFR) is a key regulatory enzyme involved in folate dependent Hcy remethylation. MTHFR catalyzes the reduction of 5,10-methyltetrahydrofolate to 5-MTHF, necessary for the normal activity of the enzyme methionine synthetase (MTS), which uses vitamin B12 as a cofactor and converts homocysteine into methionine [20]. Methionine is transformed into S-adenosylmethionine (SAM) and then converted to S-adenosylhomocysteine (SAH) through a reaction catalyzed by methionine synthase reductase (MTRR). SAM is one of the most important donors of methyl groups and is fundamental in the catabolism of various amino acids and fatty acids [21].

Hcy is the final product, derived from the hydrolysis of SAH to Hcy and adenosine, and is located at the center of two metabolic pathways: it is irreversibly degraded through the path of transsulfuration into cysteine or is remethylated to methionine (folate cycle).

  1. Transsulfuration: Firstly, Hcy combines with serine by forming cystathionine via cystathionine-beta-synthase (CBS); then, cystathionine is hydrolyzed into cysteine and alpha-ketobutyrrate from cystathionine-gamma-lyase (CTH). Human CBS is expressed in the liver, kidneys, brain and ovaries and, during the first embryogenesis, in the neural and cardiac systems.
  2. Remethylation: Hcy conversion into methionine is catalyzed by the enzyme MTS and connects the cycle of folates with Hcy metabolism. While the MTS enzyme is expressed ubiquitously, another Hcy remethylation system, betaine-Hcy methyltransferase, is expressed mainly in the liver and kidneys [1].

The main reactions of Hcy metabolism are summarized in Figure 1.

Figure 1: Schematic representation of homocysteine metabolic pathway. DHF: dihydrofolate; DMG: N,N- dimethylglycine betaine; Met: methionine; SAH: S-adenosylhomocysteine; SAM: S-adenosylmethionine; THF: tetrahydrofolate
Figure 1: Schematic representation of homocysteine metabolic pathway. DHF: dihydrofolate; DMG: N,N- dimethylglycine betaine; Met: methionine; SAH: S-adenosylhomocysteine; SAM: S-adenosylmethionine; THF: tetrahydrofolate

 

Folic acid metabolism, vitamin B12 and homocysteine in CKD

Homocysteine

Patients with CKD and ESRD have been shown to have higher blood levels of Hcy than the general population [22]. The normal plasma level is <10 μmol/L; levels of Hcy <16 μmol/L are defined as mild HHcy, while severe HHcy is diagnosed when the levels are >100 μmol/L [23]. About 80-90% of the circulating Hcy is protein-bound; 10-20% of total homocysteine (tHcy) is present as Hcy-cysteine and Hcy mixed disulfide (Hcy dimer), and <1% is present in the reduced free form [14]. In CKD, studies show that the cause of HHcy is a reduced clearance rather than an increase in production, but the exact site of altered clearance remains controversial: under physiological conditions, only non-protein related Hcy is subjected to glomerular filtration and is then mostly reabsorbed into the tubules and oxidized into carbon dioxide and sulfate in kidney cells [24]. Some data support the hypothesis that decreased Hcy removal in CKD is caused by a decreased intrarenal metabolism, through both transsulfuration and remethylation [25].

Folic acid

It has also been shown that an anionic inhibition of the membrane transport of 5-MTHF occurs in patients with CKD with a depression in the intracellular incorporation rate of folates. These results suggest that the level of folates measured in the blood of uremic individuals does not reflect its intracellular use because the uptake is altered due to anionic inhibition [26].

Vitamin B12

Mainly linked to proteins in the blood, about 20% of circulating B12 is related to holotranscobalamin (TC2). The kidney plays an important role in TC2 metabolism, as TC2 is filtered into the glomerulus and is reabsorbed into the proximal tubule. Defects in protein resorption in the proximal tubule could therefore lead to a biologically active loss of CT2 in the urine. Increased levels of TC2 were observed in patients with CKD. Despite this, there is a decrease in TC2 absorption in cells that can lead to a paradoxical increase in cell Hcy levels, despite normal total B12. Thus, a functional deficiency of B12 can occur in patients with CKD as part of an increase in TC2 leaks in the urine, lower absorption of CT2 in the proximal tubule, and lower cellular absorption of TC2.

It is also important to consider that high levels of B12 could be harmful to individuals with CKD. This is related to cyanide metabolism, which is abnormal in individuals with CKD due to the decreased glomerular filtrate. Cyanocobalamin, the most common form of B12 replacement, is metabolized into active methylcobalamin, releasing small amounts of cyanide. Under normal circumstances, methylcobalamin binds to cyanide converting it to cyanocobalamin. However, in patients with CKD, reduced cyanide clearance prevents the conversion of cyanocobalamin into the active form, and therefore integration into this form is less effective in reducing Hcy levels. In addition, the excessive amount of supplementation with cyanocobalamin can release cyanide ions that are not excreted and contribute to the onset of complications in the patient with CKD (e.g. uremic neuropathy) [2728].

 

Methylenetetrahydrofolate reductase polymorphisms

MTHFR plays a key role in Hcy metabolism and catalyzes the conversion of 5, 10-methylenetetrahydrofolate to 5-methyl-THF, the predominant circulating form of folate [29]. The MTHFR gene encodes the enzyme methyltetrahydrofolate reductase and is localized on chromosome 1 (1p36.3). Genetic polymorphisms involved in the homocysteine-methyonine route have been shown to result in HHcy. Although several MTHFR gene variants have been identified, the most characterized are single nucleotide polymorphisms (SNPs) in position 677 (MTHFR 677C>T), in position 1298 (MTHFR 129 8A>C), in position 1317 (MTHFR 1317T>C) and in position 1793 (MTHFR 1793G>A). It has been proposed that the two common mutations, MTHFR C677T and A1298C, may be associated with congenital abnormalities, cardiovascular diseases, strokes, cancer and clotting abnormalities [30,31].

C677T polymorphism is characterized by a point mutation at position 677 of the MTHFR gene that converts a cytosine into a thymine. It is known that when alanine replaces valine in the enzyme at the folate binding site, this polymorphism is commonly called thermolabile, because the activity of the encoded enzyme is reduced by 50-60% at 37°C and by 65% at 46°C. People who are homozygous for C677T tend to have slightly increased blood Hcy levels if their folate intake is insufficient, but normal Hcy levels if folate intake is adequate [32]. Substitution 677C>T is the most common missense variation of MTHFR, with a global prevalence of 40%. The frequency of C677T homozygosis varies depending on the ethnicity: from 1% or less among blacks in Africa and the United States, to 25.3% or more among Italians, Hispanic Americans and Colombians [30]. In contrast, the frequency of the mutant T allele in the MTHFR C677T gene in the Chinese population is 41.7%, higher than in other populations and could be an independent risk factors of early renal damage in the hypertensive Chinese population [33].

A1298C polymorphism is characterized by a point mutation in position 1298 in exon 7 of the MTHFR gene responsible for an amino acid substitution of a glutamine with an alanine in the enzyme regulatory domain. The activity of the encoded enzyme decreases, but to a lesser extent than in the case of C677T polymorphism. Subjects who are homozygotes for the A1298C allele do not appear to have increased serum Hcy levels [30,31]. According to Trovato et al., MTHFR 677C>T and A1298A>C gene polymorphisms could have a protective role on renal function as suggested by the lower frequency of both polymorphisms among a population of 630 dialysis patients in end-stage renal failure [34]. Regarding the other most common SNPs, MTHFR 1317T>C is a silent mutation, while MTHFR 1793G>A results in amino acid replacement, but with no impact on the functional activity of the enzyme [31].

The link between Hcy level and MTHFR gene polymorphisms has been investigated by Malinow et al.: homozygote subjects for the MTHFR T677 allele have shown an important reduction in the plasma levels of tHcy after FA integration. On the other hand, C677 allele homozygosity, especially subjects with higher basal folate levels, have shown a lesser tHcy reduction after FA supplementation. Finally, the carriers of the T/T genotype have shown the sharpest decrease of tHcy with FA integration [35]. This result was confirmed by Anchour et al: the simultaneous supplementation of folate and vitamin B12 was only useful in the homozygotes for the C allele and the reduction of Hcy was significantly higher in the carriers of the TT genotype than in other genotypes (CC/CT) [36]. These findings are consistent with the China Stroke Primary Prevention Trial (CSPPT), in which the largest decrease in serum Hcy was seen in the carriers of the TT genotype [37]. The relationship between MTHFR polymorphism and coronary heart disease severity showed that Hcy levels were significantly higher in patients with coronary arteries disease (CAD) than in control subjects and the genotype of MTHFR 677C>T was associated with increased CAD severity in patients at high risk for this pathology [38]. In summary, most available evidence suggests that MTHFR polymorphisms may influence folic acid and vitamin B12 treatment response in terms of Hcy lowering and cardiovascular risk reduction in patients with CKD and ESRD although indication of routine testing is matter of debate [39].

 

Endothelial damage of homocysteine and impact of CVD in ESRD patients

The pathogenic role of HHcy on the cardiovascular system in CKD and ESRD is related to the progression of atherosclerosis in the context of an already increased risk of vascular damage caused by the uremic syndrome. The mechanisms by which endothelial damage occurs are (Figure 2):

  • Oxidative stress. HHcy helps generate reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive species of thiol, thus decreasing the bioavailability of nitrogen monoxide (NO). These processes trigger latent matrix-metalloproteinase (MMP) and make the tissue inhibitor of metalloproteinase (TIMP) inactive. This leads to adverse cardiovascular remodelling, with increased collagen deposit [40]. HHcy significantly reduces the expression of the endothelial synthase nitric oxide protein (eNOS) in a dose-dependent manner and ultimately causes impaired basal production of NO, formation of radicals and subsequent endothelial damage by decreasing the bioavailability and bioactivity of NO [41].
  • Inflammation. Through the activation of the nuclear factor kappa B (NF-κB), a transcription factor known to stimulate the production of cytokines, chemokines, leukocyte adhesion molecules, HHcy induces the expression of proinflammatory chemokines MCP-1 and IL-8 in endothelial cells by enhancing transendothelial migration of monocytes, vascular inflammation and atherogenesis [4243]. As for low-density lipoproteins (LDL), N-homocysteination produces aggregation, thus the accumulation of cholesterol, and facilitates the mediated absorption of oxidized LDL by macrophage scavenger receptors, resulting in the formation of foam cells in atherosclerosis [4344].
  • Proliferation of smooth muscle cells. HHcy can significantly promote vascular smooth muscle cells (VSMC) proliferation, by promoting the expression of adhesion molecules, chemokines and VSMC mitogen [45]. HHcy can act directly on glomerular cells by inducing sclerosis and trigger kidney damage by reducing the plasma and tissue level of adenosine. The decrease in plasma adenosine in turn leads to a greater proliferation of VSMC, accelerating the sclerotic process in the arteries and glomeruli. In a pattern of folate-free HHcy rat, glomerular sclerosis, mesangial expansion, podocyte dysfunction, and fibrosis all occurred due to increased local oxidative stress [46].
Figure 2: Main pathogenetic pathways of endothelial damage mediated by hyperhomocysteinemia
Figure 2: Main pathogenetic pathways of endothelial damage mediated by hyperhomocysteinemia

These pathways end up amplifying the atherosclerotic process and inflammatory state present in CKD [47]. For patients with CKD and ESRD, despite the increase in Hcy levels (average level of Hcy in the general population about 10-15 μmol/L versus 25-35 μmol/L in uremic patients), the role of Hcy as a cardiovascular risk and mortality factor is still uncertain and many retrospective and interventional studies have given rise to conflicting evidence [48].

 

Folic acid supplementation in patients suffering from CKD

There is a large body of evidence indicating that folate therapy improves HHcy in the general population, but the data is less clear in CKD and ERSD patients [39,49]. The main interventional studies on the use of folic acid and vitamin B12 in CKD patients are summarized in Table 1. The benefits of folate supplementation in subjects with reduced renal function do not seem to lie entirely in the lowering of serum Hcy. Endothelial dysfunction is a key process in atherosclerosis and independently predicts cardiovascular events. High-dose FA (5 mg per day), alone or in combination with other B vitamins, appears to improve endothelial function through a largely Hcy-independent mechanism [50]. Endothelial cells can be particularly vulnerable to HHcy, as they do not express CBS, the first enzyme of the transsulfuration pathway [51]. Therefore, endothelial cells can eliminate Hcy only through remethylation, and normal activity of the enzymatic route is thus essential to prevent the increase of Hcy to a pathological level [52]. FA improves endothelial function by reducing intravascular oxidative stress; also improves intracellular superoxide generation by increasing the half-life of NO [53]. Folate therapy reduces but does not normalizes Hcy levels, frequently elevated in CKD patients. The mechanisms of this folate resistance have not been fully elucidated, yet. The entry of folate into the cell is mediated by specific folate receptors, whose expression is also modulated by the folate state, through an Hcy-dependent regulation mechanism. In peripheral mononuclear cells of hemodialysis patients, FR2 expression decreased and did not respond to changes in Hcy concentration [54].

 

Use of folate and vitamin B12 in the prevention of cardiovascular mortality and in slowing the progression of CKD

The role of folic acid and vitamin B12 supplementation in reducing mortality and preventing progression to ESRD is still to be determined. According to the meta-analysis of Heinz et al. of retrospective, prospective and observational studies on total 5123 patients, HHcy emerged as a risk factor for cardiovascular events and mortality in ESRD, especially in those subjects who do not receive additional FA (in countries without fortification programmes). Prospective studies have shown that in patients with ESRD, a 5 μmol/L increase in Hcy concentration is associated with a 7% increase in the risk of total mortality and a 9% increase in the risk of cardiovascular events. The level of Hcy in these patients seems to have decreased of 13 to 31 μmol/L due to supplementation with B vitamins in intervention studies. This was associated with a 27% reduction in the risk of cardiovascular events, although mortality had not decreased [55].

The minimum dose of folic acid to achieve a reduction of Hcy is debated: non-diabetic ESRD patients can respond to a daily dose of 5 mg FA, but diabetic patients with ESRD may need up to 15 mg to reduce the Hcy level more than 20% and have benefits on CVD risk, regardless of FA fortification. In addition, simultaneous administration with vitamin B12 is more effective in counteracting HHcy [56]. In non-diabetic patients with mild to moderate CKD a treatment strategy with pravastatin, vitamin E and Hcy reduction therapy (vitamin B12 and folate) leads to a significant reduction in the progression of carotid stenosis and a significant improvement in endothelial function and urinary excretion of albumin. However, no significant effect on the eGFR has been observed [57]. Similar results have emerged in the meta-analysis of Quin et al. including studies carried out from 1966 to 2011, for a total of 3886 patients with ESRD and CKD, where the relationship between supplementation with B12, FA and CVD had been analyzed after 24 months of treatment. FA therapy reduced the risk of CVD by 15%. Greater benefits were observed in those trials with a treatment duration >24 months, a decrease in Hcy level >20% (P = 0.007), and no or partial FA fortification (P = 0.04). The positive effect was seen when Hcy levels decreased >20%, even in the presence of FA fortification [58]. However, a reduction in Hcy secondary to high-dose FA therapy does not correspond to an increase in survival nor to a reduction of cardiovascular events according to randomized double-blind studies [59]. In the meta-analysis by Pan et al. (10 studies of patients in CKD), Hcy-lowering therapy is not associated with reduction of CVD, stroke and all-cause mortality [60]. However, the cohort of patients recruited had a high number of diabetic patients from areas with a grain fortification program.

Although HHcy is associated with increased CKD progression and albuminuria [61], the DIVINE study investigated the effects of Hcy-lowering therapy with high doses of folate (40 mg/day), vitamin B12 (1000 mg/day) and vitamin B6 (2 mg/day) in patients with diabetic nephropathy and showed that this treatment regimen does not increase survival or slow progression in ESRD, but rather leads to a higher incidence of cardiovascular events and a greater decrease in eGFR [62]. A possible explanation for these negative results can be attributed to the high load of cardiovascular comorbidity and to suboptimal therapy compliance. In addition, the study considered the CKD and ESRD population together and not separately. The above-mentioned China Stroke Primary Prevention Trial (CSPPT), a large, randomized study among adults with high blood pressure without a history of stroke or myocardial infarction, found that a therapy with ACE inhibitors and FA significantly reduced the relative risk of first stroke by 21%, more than ACE inhibitors alone. Among individuals with MTHFR 677 CC or CT genotypes, those with the lowest basal folate levels have the highest risk of stroke and benefit the most from FA therapy. In addition, individuals with the TT genotype may require a higher dosage of FA to exceed biologically insufficient levels [37]. An exploratory analysis by subgroups to assess the effect of treatment on primary outcome in various subgroups of CKD participants showed that the reduction in the risk of CKD progression was more represented in the diabetes subgroup [63]. Of note, CSPPT study selected a population without fortification of cereals with folic acid.

Several factors including age, baseline Hcy levels, FA fortification of grains, B12 status, renal function, comorbidities, and medications could modify the effects of folic acid and vitamin B12 on cardiovascular risk. The available evidence regarding the effect of Hcy lowering therapies on CKD progression is controversial and further studies are needed, with CKD progression as primary endpoint and with a more homogeneous population selection [39].

 

The role of folate and vitamin B12 therapy

ESRD patients in chronic dialysis treatment

In many cases, the literature has shown that dialysis and ESRD patients are a peculiar population whose response to certain factors is opposite to that of the general population, a condition that has been called “reverse epidemiology” [64]. A curious example is hypocholesterolemia, identified as a predictor of higher mortality in dialysis patients [65]. Similarly, data from our group have previously shown that a higher BMI protects ESRD patients from coronary artery calcifications [66], in line with a meta-analysis by Lowrie et al, based on 43,334 hemodialysis patients, indicating an improved survival associated with increased BMI values [67].

In line with this theory, very low Hcy levels appear to be associated with worse clinical outcomes, longer hospitalization, and higher mortality from all causes, and cardiovascular mortality in ESRD patients [68]. The combined effect of protein-energy malnutrition and inflammation may partly explain the apparent paradox represented by the inverse relationship between Hcy level and mortality in patients with ESRD [14].

The study of Sohoo et al. examined a cohort of 12,968 hemodialysis patients treated with vitamin B12 for 5 years, to observe the relationship between serum folate/B12 and mortality. Concentrations of B12 ≥550 pg/mL are associated with increased mortality from all causes in hemodialysis patients, regardless of sociodemographic data and laboratory variables [12]. The effectiveness of high-dose folic acid in event prevention in ESRD was evaluated in a randomized study. A total of 510 patients on chronic dialysis were randomized to 1.5 or 15 mg of FA contained in a renal multivitamin with a median follow-up of 24 months. Composite mortality rates and cardiovascular events did not differ between the FA groups. High basal Hcy was associated with lower event rates, which would confirm an inverse relationship between Hcy and events in ESRD patients. The administration of FA at high doses did not affect event rates [69]. Similar studies have come to the same conclusion: the Atherosclerosis and Folic Acid Supplementation Trial (ASFAST) recruited a total of 315 subjects with chronic kidney failure (most of them in dialysis) who were randomized to 15 mg FA per day or placebo and followed for a median of 3.6 years. Total Hcy in plasma is reduced by 19% in the FA group but this does not slow down the progression of atherosclerosis nor improve morbidity or cardiovascular mortality in patients [57].

Supplementation with B vitamins along with FA could be an alternative in reducing vascular oxidative stress. However, the randomized multicenter study conducted in double-blind by Heinz et al. on 650 patients in hemodialysis undergoing supplementation with FA, vitamin B12 and vitamin B6, showed that such therapies did not reduce total mortality and had no significant effect on the risk of cardiovascular events in patients with end-stage kidney disease [62]. Normalization of Hcy levels is difficult to achieve in dialysis patients with FA alone: according to Righetti et al., only 12% of a cohort of 81 patients in chronic dialysis has reached normal levels of Hcy. However, this condition has again shown no benefit in terms of survival [70].

The changes in the uremic patient’s metabolism described in the previous sections leave an open question regarding FA and vitamin B12 supplementation in dialysis. Another study by Righetti suggested that folate therapy to lower Hcy can reduce cardiovascular events in dialysis patients [71]. In a study by our group on a population of 341 patients in chronic dialysis, group A was treated with 50 mg i.v. of 5-MTHF, and group B was treated with 5 mg/d of oral FA. Both groups received vitamin B6 and B12. Our data showed that I.V. 5-MTHF appears to improve survival in hemodialysis patients regardless of the lowering of Hcy [72]. This latest evidence confirms that the role of FA and vitamin B12 should be better understood in this category of patients, both at the biochemical level and at the level of clinical outcomes.

Study, year Duration, design Population Treatment Outcomes

Nanayakkara PW et al, 2007 [57]

2 yrs, double-blind RCT 93 patients with mild to moderate CKD Pravastatin, vitamin E, and homocysteine lowering therapy (daily 5 mg FA + 100 mg vitamin B6 + 1 mg vitamin B12) vs placebo

In the treatment group significant reduction in CC-IMT, increase in BA-FMD, improvement in endothelial function and urinary albumin excretion, no effect on eGFR

Jamison RL et al, 2008 [58]

7 yrs, double-blind RCT 2056 patients with CKD (n=1305) or ESRD (n=751) and HHcy (> 15 mmol/L) Daily 40 mg FA + 100 mg vitamin B6 + 2 mg vitamin B12 vs placebo

In the treatment group significant lowering of Hcy levels, no effect on secondary outcomes (MI, stroke, and amputations time to dialysis and mortality)

Zoungas S et al, 2006 [61]

3.6 yrs, double-blind RCT 315 patients with CKD Daily 15 mg FA vs placebo

In the treatment group lowering by 19% of Hcy levels, no effect on secondary outcomes (change of IMT, artery function MI, stroke, cardiovascular death and overall cardiovascular events)

Heinz J et al, 2010 [62]

6 yrs, double-blind RCT 650 ESRD patients under hemodialysis treatment 5 mg FA + 50 mg vitamin B12 + 20 mg vitamin B6 (active treatment) vs or 0.2 mg FA, 4 mg vitamin B12 + 1.0 mg vitamin B6 (placebo) 3 times/week for 2 yrs

No effect on total mortality and fatal or nonfatal cardiovascular events

Xu X et al, 2016 [63]

4.5 yrs, double-blind RCT 1671 patients with CKD Daily 10 mg enalapril + 0.8 mg FA (n=7545) vs 10 mg enalapril alone (n=7559)

In patients receiving enalapril + FA   the risk for CKD progression and the rate of eGFR decline were decreased by 56% and 44%, respectively

Wrone EM et al, 2004 [63]

2 yrs, RCT 510 ESRD patients under hemodialysis treatment Daily 1, 5, or 15 mg FA contained in a renal multivitamin

No effect of high-dose FA administration on the rates of cardiovascular events and mortality

Righetti M et al, 2003 [70]

1 yr, RCT 81 ESRD patients under hemodialysis treatment Daily 15 mg FA (n=25) vs 5 mg FA (n=26) vs untreated (n=30)

No significant improvement of HHcy, regardless of FA dose, but treated patients tended towards a decreased rate of cardiovascular events.

Righetti M et al, 2006 [71]

871 days (median follow-up, range 132-1825 days), single-center, open, randomized prospective trial 114 ESRD patients under hemodialysis treatment 5 mg daily FA, or 5 mg every other day (if serum FA levels were up the normal high limit of 16.8 ng/mL) + vitamin B complex (250 mg B1 + 250 mg B6 + 500 mg B12, if plasma vitamin B12 values were below the normal limit of 200 ng/L)

Lower rate of cardiovascular events in treated patients with low Hcy levels

Cianciolo G et al, 2008 [72]

55 months, randomized prospective study 341 ESRD patients under hemodialysis treatment Patients were randomized into two groups: group A (n=174) treated with I.V. 50 mg 5-MTHF (Prefolic) three times a week (end of each dialysis session) vs group B (n=167) treated with daily 5 mg FA. Both groups also received I.V. 300 mg vitamin + 1 g vitamin B12 at the end of the dialysis session.

Both FA acid and 5-MTHF decreased Hcy levels, and I.V. 5-MTHF improved survival in hemodialysis independent from Hcy lowering. CRP but not HHcy resulted to be the main risk factor for mortality in hemodialysis patients

Buccianti G et al, 2001 [74]

6 months, cross-sectional clinical study 55 ESRD patients under hemodialysis treatment 27 patients with macrocytosis treated the end of each dialysis session with I.V. 0.9 mg folinic acid + 0.5 mg cyanocobalamin + 1.5 mg hydroxycobalamin vs 28 untreated patients

Intermittent I.V. administration of folinic acid combined with vitamin B12 resulted in lower HHCy plasma concentration, but the effect was also related to genotype and dialysis modality

Bostom AG et al, 2011 [78]

5 yrs, multi-center

double-blind RCT

4110 stable kidney transplant recipients Participants were randomized to receive either a high dose (n=2056) of FA (5.0 mg), vitamin B6 (pyridoxine; 50 mg) and vitamin B12 (cyanocobalamin; 1.0 mg) or a low dose (n=2054) of vitamin B6 (1.4 mg) and vitamin B12 (2.0 µg) and no FA.

In the high dose treatment arm, a significant reduction in Hcy level was achieved, but without any beneficial impact on cardiovascular outcomes, all-cause mortality, or allograft failure

Table 1: Summary of major interventional studies on folic acid / vitamin B12 administration in patients with CKD

BA-FMD: brachial artery flow-mediated dilatation; CC-IMT: carotid intima-media thickness; CKD: chronic kidney disease; eGFR: estimated glomerular filtration rate; ESRD: end-stage renal disease; FA: folic acid; HHcy: homocysteinemia; I.V.: intravenous; MI: myocardial infarction; RCT: randomized controlled trial; yr(s): year(s)

Role of FA and B12 supplementation in CKD anemia

In uremia-related anemia, unless patients with CKD and ESRD show significant folate depletion, additional FA supplementation does not appear to have a beneficial effect on erythropoiesis or response to recombinant human erythropoietin therapy (rHuEPO). However, measurements of folate circulating in the serum do not necessarily reflect folate reserves in tissues, and folate measurements in red blood cells provide a more accurate representation. The low concentrations of folate in red blood cells in these patients suggest the need for FA supplement [73]. Megaloblastic anemia, that occurs in vitamin deficiencies frequently found in uremic patients, results from inhibition of DNA synthesis during the production of red blood cells [74]. When cobalamin levels become inadequate, DNA synthesis is compromised, and the cell cycle cannot progress from the G2 growth phase to the mitosis phase. This leads to continuous cell growth without division, and then to macrocytosis [14]. In patients with CKD, folate and vitamin B12 deficiency may represent an important factor in renal anemia and hyporesponsiveness to rHuEPO therapy [75].

Kidney transplant recipients

In kidney transplants, several factors such as dialysis vintage, anemia, immunosuppression, inflammatory state, and dysmetabolic alterations can affect the cardiovascular risk [76,77]. The effect of supplementation of FA, vitamin B12 and vitamin B6 on CVD and mortality reduction has been studied by the Folic Acid for Vascular Outcome Reduction in Transplantation (FAVORIT) study. Kidney transplant recipients were randomized to a daily multivitamin drug containing high doses of folate (5.0 mg), vitamin B12 (1.0 mg) and vitamin B6 (50 mg), or placebo. Despite the actual lowering the Hcy, the incidence of CVD, mortality from all causes and the onset of kidney failure dependent on dialysis did not differ between the two treatment arms [78]. A longitudinal ancillary study of the FAVORIT trial has recently indicated that the integration of high-dose B vitamins results in a modest cognitive benefit in patients with high base values. It should be noted that almost all subjects had no shortage of folate or B12, thus the potential cognitive benefits of folate and B12 supplementation in individuals with poor vitamin B status remain controversial [79].

 

Future perspectives and conclusion

At present, the results from available trials do not provide complete support for considering alterations in FA and vitamin B12 as reliable indices of CVD risk in CKD and ESRD population. Moreover, these factors do not represent a validated therapeutic target to cardiovascular risk reduction and CKD progression.

However, there is some evidence to indicate that the incidence of stroke and CKD progression might be controlled using more targeted FA therapy (baseline FA levels may have an impact on the efficacy of the FA intervention therapy), in particular among those with the MTHFR 677TT genotype and low to moderate folate levels and in countries without a grain fortification program [37,63]. However, in both general population and CKD patients, it remains a matter of debate if beneficial effects of FA therapy are due to its direct antioxidant effect or to a reduction in HHcy.

Discordant results in terms of CKD progression and cardiovascular risk, in the analyzed studies, result from differences in patient characteristics and FA treatment schemes among trials and may be influenced by the degree of cardiovascular and renal impairment.

In conclusion FA with or without vitamin B12 supplementation is an appropriate adjunctive therapy in patients with CKD and ESRD on dialysis treatment, in these cases FA may be supplemented pharmacologically after careful evaluation of folate status.

 

References

  1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, Hobbs FD. Global Prevalence of Chronic Kidney Disease – A Systematic Review and Meta-Analysis. PLoS One 2016 Jul 6; 11(7):e0158765. https://doi.org/10.1371/journal.pone.0158765
  2. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 2004 Sep 23; 351(13):1296-305. https://doi.org/10.1056/NEJMoa041031. Erratum in: N Engl J Med 2008; 18(4):4.
  3. Bourrier M, Ferguson TW, Embil JM, Rigatto C, Komenda P, Tangri N. Peripheral Artery Disease: Its Adverse Consequences With and Without CKD. Am J Kidney Dis 2020 May; 75(5):705-712. https://doi.org/10.1053/j.ajkd.2019.08.028
  4. Chrysant SG, Chrysant GS. The current status of homocysteine as a risk factor for cardiovascular disease: a mini review. Expert Rev Cardiovasc Ther 2018 Aug; 16(8):559-565. https://doi.org/10.1080/14779072.2018.1497974
  5. McCully KS. Homocysteine and vascular disease. Nat Med 1996 Apr; 2(4):386-9. https://doi.org/10.1038/nm0496-386
  6. Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ, Sides EG, Wang CH, Stampfer M. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004 Feb 4; 291(5):565-75. https://doi.org/10.1001/jama.291.5.565
  7. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, McQueen MJ, Probstfield J, Fodor G, Held C, Genest J Jr; Heart Outcomes Prevention Evaluation (HOPE) 2 Investigators. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006 Apr 13; 354(15):1567-77. https://doi.org/10.1056/NEJMoa060900. Erratum in: N Engl J Med 2006 Aug 17; 355(7):746.
  8. Marti F, Vollenweider P, Marques-Vidal PM, Mooser V, Waeber G, Paccaud F, Bochud M. Hyperhomocysteinemia is independently associated with albuminuria in the population-based CoLaus study. BMC Public Health 2011 Sep 26; 11:733. https://doi.org/10.1186/1471-2458-11-733
  9. Ponte B, Pruijm M, Marques-Vidal P, Martin PY, Burnier M, Paccaud F, Waeber G, Vollenweider P, Bochud M. Determinants and burden of chronic kidney disease in the population-based CoLaus study: a cross-sectional analysis. Nephrol Dial Transplant 2013 Sep; 28(9):2329-39. https://doi.org/10.1093/ndt/gft206
  10. House AA, Eliasziw M, Cattran DC, Churchill DN, Oliver MJ, Fine A, Dresser GK, Spence JD. Effect of B-vitamin therapy on progression of diabetic nephropathy: a randomized controlled trial. JAMA 2010 Apr 28; 303(16):1603-9. https://doi.org/10.1001/jama.2010.490
  11. Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, Halašová E, Lehotský J. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int J Mol Sci 2016 Oct 20; 17(10):1733. https://doi.org/10.3390/ijms17101733
  12. Soohoo M, Ahmadi SF, Qader H, Streja E, Obi Y, Moradi H, Rhee CM, Kim TH, Kovesdy CP, Kalantar-Zadeh K. Association of serum vitamin B12 and folate with mortality in incident hemodialysis patients. Nephrol Dial Transplant 2017 Jun 1; 32(6):1024-1032. https://doi.org/10.1093/ndt/gfw090
  13. Cianciolo G, De Pascalis A, Di Lullo L, Ronco C, Zannini C, La Manna G. Folic Acid and Homocysteine in Chronic Kidney Disease and Cardiovascular Disease Progression: Which Comes First? Cardiorenal Med 2017 Oct; 7(4):255-266. https://doi.org/10.1159/000471813
  14. Cappuccilli M, Bergamini C, Giacomelli FA, Cianciolo G, Donati G, Conte D, Natali T, La Manna G, Capelli I. Vitamin B Supplementation and Nutritional Intake of Methyl Donors in Patients with Chronic Kidney Disease: A Critical Review of the Impact on Epigenetic Machinery. Nutrients 2020 Apr 27; 12(5):1234. https://doi.org/10.3390/nu12051234
  15. Randaccio L, Geremia S, Demitri N, Wuerges J. Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules 2010 Apr 30; 15(5):3228-59. https://doi.org/10.3390/molecules15053228
  16. Mahajan A, Sapehia D, Thakur S, Mohanraj PS, Bagga R, Kaur J. Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci Rep 2019 Nov 26; 9(1):17602. https://doi.org/10.1038/s41598-019-54070-9
  17. Froese DS, Fowler B, Baumgartner MR. Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis 2019 Jul; 42(4):673-685. https://doi.org/10.1002/jimd.12009
  18. Buccianti G, Bamonti Catena F, Patrosso C, Corghi E, Novembrino C, Baragetti I, Lando G, De Franceschi M, Maiolo AT. Reduction of the homocysteine plasma concentration by intravenously administered folinic acid and vitamin B (12) in uraemic patients on maintenance haemodialysis. Am J Nephrol 2001 Jul-Aug; 21(4):294-9. https://doi.org/10.1159/000046264
  19. Kang SS, Wong PW, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr 1992; 12:279-98. https://doi.org/10.1146/annurev.nu.12.070192.001431
  20. Yi F, Li PL. Mechanisms of homocysteine-induced glomerular injury and sclerosis. Am J Nephrol 2008; 28(2):254-64. https://doi.org/10.1159/000110876
  21. Long Y, Nie J. Homocysteine in Renal Injury. Kidney Dis (Basel) 2016 Jun; 2(2):80-7. https://doi.org/10.1159/000444900
  22. Langan RC, Goodbred AJ. Vitamin B12 Deficiency: Recognition and Management. Am Fam Physician 2017 Sep 15; 96(6):384-389. PMID: 28925645.
  23. Perna AF, Ingrosso D, Satta E, Lombardi C, Acanfora F, De Santo NG. Homocysteine metabolism in renal failure. Curr Opin Clin Nutr Metab Care 2004 Jan; 7(1):53-7. https://doi.org/10.1097/00075197-200401000-00010
  24. Perna AF, Sepe I, Lanza D, Capasso R, Di Marino V, De Santo NG, Ingrosso D. The gasotransmitter hydrogen sulfide in hemodialysis patients. J Nephrol 2010 Nov-Dec; 23 Suppl 16: S92-6. PMID: 21170893.
  25. van Guldener C, Stehouwer CD. Homocysteine metabolism in renal disease. Clin Chem Lab Med 2003 Nov; 41(11):1412-7. https://doi.org/10.1515/CCLM.2003.217
  26. Jennette JC, Goldman ID. Inhibition of the membrane transport of folates by anions retained in uremia. J Lab Clin Med 1975 Nov; 86(5):834-43. PMID: 1185041.
  27. McMahon GM, Hwang SJ, Tanner RM, Jacques PF, Selhub J, Muntner P, Fox CS. The association between vitamin B12, albuminuria and reduced kidney function: an observational cohort study. BMC Nephrol 2015 Feb 2; 16:7. https://doi.org/10.1186/1471-2369-16-7
  28. Koyama K, Yoshida A, Takeda A, Morozumi K, Fujinami T, Tanaka N. Abnormal cyanide metabolism in uraemic patients. Nephrol Dial Transplant 1997 Aug; 12(8):1622-8. https://doi.org/10.1093/ndt/12.8.1622. Erratum in: Nephrol Dial Transplant 1998 Mar; 13(3):819.
  29. Cheng X. Updating the relationship between hyperhomocysteinemia lowering therapy and cardiovascular events. Cardiovasc Ther 2013 Aug; 31(4):e19-26. https://doi.org/10.1111/1755-5922.12014
  30. Sazci A, Ergul E, Kaya G, Kara I. Genotype and allele frequencies of the polymorphic methylenetetrahydrofolate reductase gene in Turkey. Cell Biochem Funct 2005 Jan-Feb; 23(1):51-4. https://doi.org/10.1002/cbf.1132
  31. Cristalli, C.P.; Zannini, C.; Comai, G.; Baraldi, O.; Cuna, V.; Cappuccilli, M.; Mantovani, V.; Natali, N.; Cianciolo, G.; La Manna, G. Methylenetetrahydrofolate reductase, MTHFR, polymorphisms and predisposition to different multifactorial disorders. Genes Genomics 2017, 39, 689–699.
  32. Böttiger AK, Hurtig-Wennlöf A, Sjöström M, Yngve A, Nilsson TK. Association of total plasma homocysteine with methylenetetrahydrofolate reductase genotypes 677C>T, 1298A>C, and 1793G>A and the corresponding haplotypes in Swedish children and adolescents. Int J Mol Med 2007 Apr; 19(4):659-65. PMID: 17334642.
  33. Yun L, Xu R, Li G, Yao Y, Li J, Cong D, Xu X, Zhang L. Homocysteine and the C677T Gene Polymorphism of Its Key Metabolic Enzyme MTHFR Are Risk Factors of Early Renal Damage in Hypertension in a Chinese Han Population. Medicine (Baltimore) 2015 Dec; 94(52):e2389. https://doi.org/10.1097/MD.0000000000002389
  34. Trovato FM, Catalano D, Ragusa A, Martines GF, Pirri C, Buccheri MA, Di Nora C, Trovato GM. Relationship of MTHFR gene polymorphisms with renal and cardiac disease. World J Nephrol 2015 Feb 6; 4(1):127-37. https://doi.org/10.5527/wjn.v4.i1.127 .
  35. Malinow MR, Nieto FJ, Kruger WD, Duell PB, Hess DL, Gluckman RA, Block PC, Holzgang CR, Anderson PH, Seltzer D, Upson B, Lin QR. The effects of folic acid supplementation on plasma total homocysteine are modulated by multivitamin use and methylenetetrahydrofolate reductase genotypes. Arterioscler Thromb Vasc Biol 1997 Jun; 17(6):1157-62. https://doi.org/10.1161/01.atv.17.6.1157
  36. Tremblay R, Bonnardeaux A, Geadah D, Busque L, Lebrun M, Ouimet D, Leblanc M. Hyperhomocysteinemia in hemodialysis patients: effects of 12-month supplementation with hydrosoluble vitamins. Kidney Int 2000 Aug; 58(2):851-8. https://doi.org/10.1046/j.1523-1755.2000.00234.x
  37. Xu X, Qin X, Li Y, Sun D, Wang J, Liang M, Wang B, Huo Y, Hou FF; investigators of the Renal Substudy of the China Stroke Primary Prevention Trial (CSPPT). Efficacy of Folic Acid Therapy on the Progression of Chronic Kidney Disease: The Renal Substudy of the China Stroke Primary Prevention Trial. JAMA Intern Med 2016 Oct 1; 176(10):1443-1450. https://doi.org/10.1001/jamainternmed.2016.4687
  38. Brustolin S, Giugliani R, Félix TM. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res 2010 Jan; 43(1):1-7. https://doi.org/10.1590/s0100-879×2009007500021. Epub 2009 Dec 4. PMID: 19967264; PMCID: PMC3078648.
  39. Capelli I, Cianciolo G, Gasperoni L, Zappulo F, Tondolo F, Cappuccilli M, La Manna G. Folic Acid and Vitamin B12 Administration in CKD, Why Not? Nutrients 2019 Feb 13; 11(2):383. https://doi.org/10.3390/nu11020383
  40. Steed MM, Tyagi SC. Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 2011 Oct 1; 15(7):1927-43. https://doi.org/10.1089/ars.2010.3721. Erratum in: Antioxid Redox Signal 2013 Feb 10; 18(5):601.
  41. Zhang X, Li H, Jin H, Ebin Z, Brodsky S, Goligorsky MS. Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 2000 Oct; 279(4):F671-8. https://doi.org/10.1152/ajprenal.2000.279.4.F671
  42. Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW. Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 2001 Jun 5; 103(22):2717-23. https://doi.org/10.1161/01.cir.103.22.2717
  43. Zeng XK, Guan YF, Remick DG, Wang X. Signal pathways underlying homocysteine-induced production of MCP-1 and IL-8 in cultured human whole blood. Acta Pharmacol Sin 2005 Jan; 26(1):85-91. https://doi.org/10.1111/j.1745-7254.2005.00005.x
  44. Thampi P, Stewart BW, Joseph L, Melnyk SB, Hennings LJ, Nagarajan S. Dietary homocysteine promotes atherosclerosis in apoE-deficient mice by inducing scavenger receptors expression. Atherosclerosis 2008 Apr; 197(2):620-9. https://doi.org/10.1016/j.atherosclerosis.2007.09.014
  45. Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R, Lee ME. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci U S A 1994 Jul 5; 91(14):6369-73. https://doi.org/10.1073/pnas.91.14.6369
  46. Deussen A, Pexa A, Loncar R, Stehr SN. Effects of homocysteine on vascular and tissue adenosine: a stake in homocysteine pathogenicity? Clin Chem Lab Med 2005; 43(10):1007-10. https://doi.org/10.1515/CCLM.2005.176
  47. Colì L, Donati G, Cappuccilli ML, Cianciolo G, Comai G, Cuna V, Carretta E, La Manna G, Stefoni S. Role of the hemodialysis vascular access type in inflammation status and monocyte activation. Int J Artif Organs 2011 Jun; 34(6):481-8. https://doi.org/10.5301/IJAO.2011.8466
  48. Suliman ME, Stenvinkel P, Jogestrand T, Maruyama Y, Qureshi AR, Bárány P, Heimbürger O, Lindholm B. Plasma pentosidine and total homocysteine levels in relation to change in common carotid intima-media area in the first year of dialysis therapy. Clin Nephrol 2006 Dec; 66(6):418-25. https://doi.org/10.5414/cnp66418
  49. Perna AF, De Santo NG, Ingrosso D. Adverse effects of hyperhomocysteinemia and their management by folic acid. Miner Electrolyte Metab 1997; 23(3-6):174-8. PMID: 9387111.
  50. Doshi SN, McDowell IF, Moat SJ, Payne N, Durrant HJ, Lewis MJ, Goodfellow J. Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation 2002 Jan 1; 105(1):22-6. https://doi.org/10.1161/hc0102.101388
  51. Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem 1990 May; 1(5):228-37. https://doi.org/10.1016/0955-2863(90)90070-2
  52. Debreceni B, Debreceni L. The role of homocysteine-lowering B-vitamins in the primary prevention of cardiovascular disease. Cardiovasc Ther 2014 Jun; 32(3):130-8. https://doi.org/10.1111/1755-5922.12064
  53. Stroes ES, van Faassen EE, Yo M, Martasek P, Boer P, Govers R, Rabelink TJ. Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ Res 2000 Jun 9; 86(11):1129-34. https://doi.org/10.1161/01.res.86.11.1129
  54. Perna AF, Lanza D, Sepe I, Conzo G, Altucci L, Ingrosso D. Altered folate receptor 2 expression in uraemic patients on haemodialysis: implications for folate resistance. Nephrol Dial Transplant 2013 May; 28(5):1214-24. https://doi.org/10.1093/ndt/gfs510
  55. Heinz J, Kropf S, Luley C, Dierkes J. Homocysteine as a risk factor for cardiovascular disease in patients treated by dialysis: a meta-analysis. Am J Kidney Dis 2009 Sep; 54(3):478-89. https://doi.org/10.1053/j.ajkd.2009.01.266
  56. Wu CC, Zheng CM, Lin YF, Lo L, Liao MT, Lu KC. Role of homocysteine in end-stage renal disease. Clin Biochem 2012 Nov; 45(16-17):1286-94. https://doi.org/10.1016/j.clinbiochem.2012.05.031
  57. Nanayakkara PW, van Guldener C, ter Wee PM, Scheffer PG, van Ittersum FJ, Twisk JW, Teerlink T, van Dorp W, Stehouwer CD. Effect of a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on carotid intima-media thickness, endothelial function, and renal function in patients with mild to moderate chronic kidney disease: results from the Anti-Oxidant Therapy in Chronic Renal Insufficiency (ATIC) Study. Arch Intern Med 2007 Jun 25; 167(12):1262-70. https://doi.org/10.1001/archinte.167.12.1262
  58. Qin, X., Huo, Y., Langman, C. B., Hou, F., Chen, Y., Matossian, D., Xu, X., & Wang, X. (2011). Folic acid therapy and cardiovascular disease in ESRD or advanced chronic kidney disease: a meta-analysis. CJASN; 6(3):482–488. https://doi.org/10.2215/CJN.05310610
  59. Jamison RL, Hartigan P, Kaufman JS, Goldfarb DS, Warren SR, Guarino PD, Gaziano JM; Veterans Affairs Site Investigators. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. JAMA 2007 Sep 12; 298(10):1163-70. https://doi.org/10.1001/jama.298.10.1163. Erratum in: JAMA 2008 Jul 9; 300(2):170. PMID: 17848650.
  60. Pan Y, Guo LL, Cai LL, Zhu XJ, Shu JL, Liu XL, Jin HM. Homocysteine-lowering therapy does not lead to reduction in cardiovascular outcomes in chronic kidney disease patients: a meta-analysis of randomised, controlled trials. Br J Nutr 2012 Aug; 108(3):400-7. https://doi.org/10.1017/S0007114511007033
  61. Zoungas S, McGrath BP, Branley P, Kerr PG, Muske C, Wolfe R, Atkins RC, Nicholls K, Fraenkel M, Hutchison BG, Walker R, McNeil JJ. Cardiovascular morbidity and mortality in the Atherosclerosis and Folic Acid Supplementation Trial (ASFAST) in chronic renal failure: a multicenter, randomized, controlled trial. J Am Coll Cardiol 2006 Mar 21; 47(6):1108-16. https://doi.org/10.1016/j.jacc.2005.10.064
  62. Heinz J, Kropf S, Domröse U, Westphal S, Borucki K, Luley C, Neumann KH, Dierkes J. B vitamins and the risk of total mortality and cardiovascular disease in end-stage renal disease: results of a randomized controlled trial. Circulation 2010 Mar 30; 121(12):1432-8. https://doi.org/10.1161/CIRCULATIONAHA.109.904672
  63. Xu X, Qin X, Li Y, Sun D, Wang J, Liang M, Wang B, Huo Y, Hou FF; investigators of the Renal Substudy of the China Stroke Primary Prevention Trial (CSPPT). Efficacy of Folic Acid Therapy on the Progression of Chronic Kidney Disease: The Renal Substudy of the China Stroke Primary Prevention Trial. JAMA Intern Med 2016 Oct 1; 176(10):1443-1450. https://doi.org/10.1001/jamainternmed.2016.4687
  64. Suliman M, Stenvinkel P, Qureshi AR, Kalantar-Zadeh K, Bárány P, Heimbürger O, Vonesh EF, Lindholm B. The reverse epidemiology of plasma total homocysteine as a mortality risk factor is related to the impact of wasting and inflammation. Nephrol Dial Transplant 2007 Jan; 22(1):209-17. https://doi.org/10.1093/ndt/gfl510
  65. Chmielewski M, Verduijn M, Drechsler C, Lindholm B, Stenvinkel P, Rutkowski B, Boeschoten EW, Krediet RT, Dekker FW. Low cholesterol in dialysis patients–causal factor for mortality or an effect of confounding? Nephrol Dial Transplant 2011 Oct; 26(10):3325-31. https://doi.org/10.1093/ndt/gfr008
  66. Cianciolo G, La Manna G, Donati G, Persici E, Dormi A, Cappuccilli ML, Corsini S, Fattori R, Russo V, Nastasi V, Colì L, Wratten M, Stefoni S. Coronary calcifications in end-stage renal disease patients: a new link between osteoprotegerin, diabetes and body mass index? Blood Purif 2010; 29(1):13-22. https://doi.org/10.1159/000245042
  67. Lowrie EG, Li Z, Ofsthun N, Lazarus JM. Body size, dialysis dose and death risk relationships among hemodialysis patients. Kidney Int 2002 Nov; 62(5):1891-7. https://doi.org/10.1046/j.1523-1755.2002.00642.x
  68. Kalantar-Zadeh K, Block G, Humphreys MH, McAllister CJ, Kopple JD. A low, rather than a high, total plasma homocysteine is an indicator of poor outcome in hemodialysis patients. J Am Soc Nephrol 2004 Feb; 15(2):442-53. https://doi.org/10.1097/01.asn.0000107564.60018.51
  69. Wrone EM, Hornberger JM, Zehnder JL, McCann LM, Coplon NS, Fortmann SP. Randomized trial of folic acid for prevention of cardiovascular events in end-stage renal disease. J Am Soc Nephrol 2004 Feb; 15(2):420-6. https://doi.org/10.1097/01.asn.0000110181.64655.6c
  70. Righetti M, Ferrario GM, Milani S, Serbelloni P, La Rosa L, Uccellini M, Sessa A. Effects of folic acid treatment on homocysteine levels and vascular disease in hemodialysis patients. Med Sci Monit 2003 Apr; 9(4):PI19-24. PMID: 12709680.
  71. Righetti M, Serbelloni P, Milani S, Ferrario G. Homocysteine-lowering vitamin B treatment decreases cardiovascular events in hemodialysis patients. Blood Purif 2006; 24(4):379-86. https://doi.org/10.1159/000093680
  72. Cianciolo G, La Manna G, Colì L, Donati G, D’Addio F, Persici E, Comai G, Wratten M, Dormi A, Mantovani V, Grossi G, Stefoni S. 5-methyltetrahydrofolate administration is associated with prolonged survival and reduced inflammation in ESRD patients. Am J Nephrol 2008; 28(6):941-8. https://doi.org/10.1159/000142363
  73. Bamgbola, O.F. Pattern of resistance to erythropoietin-stimulating agents in chronic kidney disease. Kidney Int 2011, 80, 464–474.
  74. Buccianti G, Bamonti Catena F, Patrosso C, Corghi E, Novembrino C, Baragetti I, Lando G, De Franceschi M, Maiolo AT. Reduction of the homocysteine plasma concentration by intravenously administered folinic acid and vitamin B(12) in uraemic patients on maintenance haemodialysis. Am J Nephrol 2001 Jul-Aug; 21(4):294-9. https://doi.org/10.1159/000046264
  75. Saifan C, Samarneh M, Shtaynberg N, Nasr R, El-Charabaty E, El-Sayegh S. Treatment of confirmed B12 deficiency in hemodialysis patients improves Epogen® requirements. Int J Nephrol Renovasc Dis 2013 Jun 5; 6:89-93. https://doi.org/10.2147/IJNRD.S44660
  76. La Manna G, Cappuccilli ML, Cianciolo G, Conte D, Comai G, Carretta E, Scolari MP, Stefoni S. Cardiovascular disease in kidney transplant recipients: the prognostic value of inflammatory cytokine genotypes. Transplantation 2010 Apr 27; 89(8):1001-8. https://doi.org/10.1097/TP.0b013e3181ce243f
  77. Korogiannou M, Xagas E, Marinaki S, Sarafidis P, Boletis JN. Arterial Stiffness in Patients With Renal Transplantation; Associations With Co-morbid Conditions, Evolution, and Prognostic Importance for Cardiovascular and Renal Outcomes. Front Cardiovasc Med 2019; 6:67. Published 2019 May 24. https://doi.org/10.3389/fcvm.2019.00067
  78. Bostom AG, Carpenter MA, Kusek JW, Levey AS, Hunsicker L, Pfeffer MA, Selhub J, Jacques PF, Cole E, Gravens-Mueller L, House AA, Kew C, McKenney JL, Pacheco-Silva A, Pesavento T, Pirsch J, Smith S, Solomon S, Weir M. Homocysteine-lowering and cardiovascular disease outcomes in kidney transplant recipients: primary results from the Folic Acid for Vascular Outcome Reduction in Transplantation trial. Circulation 2011 Apr 26; 123(16):1763-70. https://doi.org/10.1161/CIRCULATIONAHA.110.000588
  79. Scott TM, Rogers G, Weiner DE, Livingston K, Selhub J, Jacques PF, Rosenberg IH, Troen AM. B-Vitamin Therapy for Kidney Transplant Recipients Lowers Homocysteine and Improves Selective Cognitive Outcomes in the Randomized FAVORIT Ancillary Cognitive Trial. J Prev Alzheimers Dis 2017; 4(3):174-182. https://doi.org/10.14283/jpad.2017.15