Effects of Finerenone on Proteinuria and Progression of Chronic Kidney Disease

Abstract

A growing body of experimental and clinical evidence confirms that aldosterone contributes, independently from its classical homeostatic effects, to the pathogenesis and progression of chronic kidney disease (CKD).

In fact, the activation of the mineralocorticoid receptor (MR) in the kidney, present at the podocyte, mesangial, endothelial as well as at the tubulointerstitial levels, has been linked to podocyte damage and consequent apoptosis, proliferation of mesangial cells, inflammation of the tubulointerstitial compartment and, more generally, to the final outcome of interstitial fibrosis and glomerular sclerosis.

Therefore, blockade of the MR may represent an effective treatment of CKD.

Today, within the class of mineralocorticoid receptor antagonists (MRA), several molecules are available, with different pharmacokinetic and pharmacodynamic characteristics. In this brief review we will focus on the characteristics of these molecules and in particular on Finerenone, a new generation, non-steroidal MRA, characterized by minimal side effects and high pharmacological efficacy.

Keywords: mineralcorticoid receptor antagonists, chronic kidney disease, hyperkalemia, cardiovascular risk, finerenone

Sorry, this entry is only available in Italian.

Introduzione

Per molto tempo l’azione dell’aldosterone è stata ritenuta essere limitata al rene al fine di garantire il mantenimento dell’omeostasi del volume extracellulare e degli elettroliti.

Recentemente, però, tale approccio è stato rivisto alla luce della definizione di molti effetti biologici pleiotropici dell’aldosterone, che si aggiungono ai classici effetti esercitati sulle cellule tubulari renali.

Nel rene il recettore mineralcorticoide (MR) è infatti espresso praticamente in tutte le linee cellulari residenti: cellule della linea monocito-macrofagica, endoteliali, muscolari liscie, mesangiali, podocitarie e tubulari. La sua attivazione è stata correlata in molti modelli sperimentali al danno podocitario, alla proliferazione mesangiale, alla sclerosi glomerulare e alla fibrosi interstiziale. Gli stessi modelli hanno dimostrato che il blocco del MR induce una remissione del danno tissutale [1].

Pertanto, il riconoscimento dei molteplici effetti dell’aldosterone nella modulazione dell’emodinamica intrarenale, dell’infiammazione, della fibrosi, della funzione endoteliale e dello stress ossidativo si pone a supporto del crescente utilizzo dei farmaci bloccanti del recettore mineralcorticoide (MRA) nella pratica clinica nefrologica [2].

L’aldosterone è divenuto un bersaglio terapeutico nella CKD dal 2001, quando Chrysostomou et al. [3] dimostrarono in una coorte di pazienti affetti da CKD proteinurica che l’aggiunta dello spironolattone alla terapia con ACE inibitori riduceva la proteinuria senza effetti negativi sulla funzione renale. Cinque anni dopo, nel 2006, Epstein et al. [4] confermarono tali risultati per un altro MRA,  Eplerenone. Complessivamente nella prima decade del 2000 stati molti gli studi che, su coorti di dimensioni ridotte, hanno dimostrato in vari studi la  efficacia efficacia dei MRA in termini di riduzione della proteinuria e di stabilizzazione del GFR [5].

Bianchi et al. [6] dimostrarono in una coorte di pazienti con CKD non diabetica che l’effetto antiproteinurico dello spironolattone, già evidente dopo due settimane, era indipendente dai livelli basali di aldosterone.

Nel 2005 Sato et al. [7] confermarono l’effetto dello spironolattone nella CKD diabetica, dimostrando che l’impatto sulla proteinuria era maggiore nei pazienti che mostravano il fenomeno dell’Aldosterone Breakthrough.

“Aldosterone Breakthrough” è un termine coniato per definire un fenomeno che avviene nel 30-40% dei pazienti che avviano un trattamento con RAS inibitori, nei quali dopo un periodo di riduzione dei livelli sierici di aldosterone, si osserva un ritorno di tali livelli ai valori pre-trattamento; fenomeno che si accompagna ad una prognosi peggiore rispetto ai pazienti che mostrano una soppressione continua di questo ormone [8]. Sulla base di tale evidenza venne quindi riconosciuto un razionale fisiopatologico che potesse spiegare i benefici del blocco del recettore mineralcorticoide [9].

Dal punto di vista fisiopatologico, l’impiego degli MRA è stato poi giustificato da una serie di osservazioni che nel tempo hanno rivelato la notevole complessità del signalling mineralcorticoide.

Studi di biologia molecolare focalizzati sul MR hanno evidenziato infatti che quest’ultimo può essere attivato con un meccanismo aldosterone indipendente mediato dal RAC1, una proteina G nota nella patologia renale per essere implicata nei meccanismi di danno podocitario in risposta a stimoli quali il sovraccarico di sodio e glucosio, l’angiotensina II e multiple citochine [10, 11].

Sulla base delle evidenze cliniche e precliniche il blocco del MR guadagnava quindi un’attenzione crescente, e non soltanto in ambito nefrologico: infatti, i primi studi clinici randomizzati sugli MRA, il RALES con lo spironolattone, l’EPHESUS e l’EMPHASIS-HF con eplerenone [12, 13], avevano dimostrato che tali farmaci conferivano una protezione dal rischio di morte nei pazienti affetti da scompenso cardiaco, rendendo quindi gli MRA una classe di farmaci di straordinaria importanza nella terapia dello scompenso cardiaco.

Tuttavia, l’uso routinario degli MRA steroidei è stato limitato da ad una serie di rilevanti effetti collaterali quali l’iperpotassiemia, la ginecomastia e l’impotenza.

Particolarmente rilevante in ambito nefrologico il rischio di iperpotassiemia associato all’uso di MRA, raddoppiato nei pazienti in CKD non in dialisi ed aumentato di ben tre volte nei pazienti in trattamento dialitico rispetto a quanto osservato nei pazienti con normale funzione renale [14].

Questo ha spinto la ricerca allo sviluppo di MRA potenti ma più selettivi. Le nuove tecnologie di biologia molecolare hanno reso possibile lo sviluppo di una nuova classe di MRA, gli antagonisti del MR non steroidei. Le due molecole appartenenti a questa nuova classe di farmaci sono l’esaxerenone, il cui commercio è limitato al Giappone per la cura dell’ipertensione arteriosa, ed il finerenone, sul quale si è concentrata la ricerca in ambito nefrologico.

 

Peculiarità del finerenone

Eplerenone e spironolattone sono  MRA steroidei. Il finerenone è un MRA non steroideo, con una breve emivita e senza metaboliti attivi, mentre lo Spironolattone è profarmaco di molti metaboliti attivi che possono essere individuati nelle urine fino a 4 settimane dopo la sospensione del trattamento ed essere attivi farmacologicamente fino a circa 2 settimane dopo la sospensione. Il  finerenone si distribuisce equamente tra cuore e rene, a differenza di eplerenone e spironolattone che hanno una maggiore concentrazione a livello del rene con un conseguente  maggiore effetto sul bilancio di sodio e potassio.

Ci sono delle differenze anche nella farmacodinamica che avvantaggiano il finerenone: la IC50, cioè la concentrazione di farmaco richiesta per inibire del 50% l’attivazione del recettore MR, è pari a 17.8 per finerenone, ed è più bassa sia rispetto a spironolattone che eplerenone . D’altra parte, lo spironolattone ha una IC50 per il legame con il recettore degli androgeni (77 vs > 10.000 di finerenone) e i glucocorticoidi (2410 vs >10.000 di finerenone). Anche la concentrazione di farmaco richiesta per attivare il 50% del recettore del progesterone è nettamente minore per lo spironolattone (740 vs >10.000 di finerenone) [15, 16].

Inoltre, il finerenone inibisce il reclutamento di cofattori ai vari domini del MR (che in genere dipende dai livelli di aldosterone) ed in questo modo riduce l’espressione di geni pro-infiammatori e pro-fibrotici. Tale effetto è assente per quanto riguarda lo spironolattone, e nettamente inferiore per quanto riguarda l’eplerenone. Pertanto, la cascata di segnali a valle del recettore evocata da MRA steroidei e non steroidei è differente e questo giustifica la presenza (o assenza per finerenone) di effetti colleterali di tipo endocrino [17].

 

Effetti su proteinuria e protezione renale

I due principali trial compiuti utilizzando finerenone sono stati entrambi condotti in pazienti affetti da Diabete Mellito di tipo 2 e CKD.

Nel trial di fase 3 FIDELIO [18] sono stati arruolati 5734 pazienti randomizzati 1:1 a finerenone o placebo, follow-up 31 mesi. I criteri di inclusione erano: la presenza di CKD con eGFR 25-60 mL/min, UACR 30-300mg/g e retinopatia diabetica; oppure CKD con eGFR 25-75 mL/min e UACR>300 mg/g.

Il trial FIGARO [19] presentava un disegno simile con follow up di 41 mesi. I criteri di inclusione erano eGFR 25-90 mL/min e UACR 30-300 mg/g, oppure eGFR>60 mL/min e UACR 300-5000 mg/g).

Entrambi gli studi avevano gli stessi endpoint: la riduzione degli eventi per un composito renale di morte per cause renali, decremento sostenuto del GFR di almeno il 40% rispetto al basale, raggiungimento dell’ESRD; la riduzione degli eventi per un composito cardiovascolare di morte cardiovascolare, infarto miocardico non fatale, stroke e ospedalizzazione per scompenso cardiaco. Nel FIDELIO l’endpoint renale era il primario ed il cardiovascolare il secondario, nel FIGARO il contrario.

Dal punto di vista dell’endpoint primario renale nel FIDELIO il Finerenone ha raggiunto l’endpoint, con un HR di 0.82 (CI 0.75-0.93); nel FIGARO si è osservata una riduzione degli eventi renali sovrapponibile, ma non statisticamente significativa, con un HR di 0.87 (CI 0.76-1.01). In entrambi gli studi è stato raggiunto l’endpoint cardiovascolare.

I dati dei due trial sono stati successivamente aggregati in una pooled analysis nell’ambito del FIDELITY Trial Programme Analysis [20] a formare una eterogenea popolazione di 13026 pazienti con diabete mellito di tipo 2 e CKD in trattamento massimale con RAS inibitori: il 40% dei pazienti era in stadio 1-2 di CKD, il 60% dei pazienti in stadio 3-4; il 67% dei pazienti aveva una UACR maggiore di 300 mg/g, il 21.3% una UACR minore 300 mg/g, l’1.7% dei pazienti aveva una UACR < 30 mg/g.

È stato definito un outcome composito di un decremento sostenuto per 4 settimane del GFR ≥ del 57%, arrivo alla insufficienza renale terminale e morte per cause renali.

I risultati hanno dimostrato che nel gruppo trattato con Finerenone l’outcome composito è stato raggiunto nel 5.5% dei casi mentre nel gruppo placebo è stato raggiunto nel 7.1% dei casi. Tale differenza corrisponde ad una riduzione dell’HR del 23% per l’outcome composito (HR 0.77, CI 0.67-0.88).

Valutando i singoli eventi, la riduzione dell’HR per il peggioramento funzionale renale è stata del 30% (HR 0.70, CI 0.60-0.83); la riduzione dell’HR per l’arrivo alla insufficienza renale terminale è stata del 20% (HR 0.80, CI 0.64-0.99); l’incidenza della morte per cause renali è stata talmente bassa in entrambi i gruppi da precludere ogni tipo di analisi (2 pazienti nel gruppo trattato, 4 pazienti nel gruppo placebo).

Da questi risultati emerge che l’NNT stimato è 20, ossia che per prevenire un evento occorre trattare 60 pazienti con DM2 e malattia renale cronica negli stadi da 1 a 4, proteinurica o non proteinurica, per 3 anni.

Analizzando l’impatto del farmaco sulla proteinuria, nel FIDELITY il Finerenone ha dimostrato un marcato effetto antiproteinurico indipendente dall’entità della proteinuria al baseline: nei microalbuminurici la riduzione dell’UACR è stata del 33% nei pazienti trattati contro un aumento del 3% nel gruppo placebo, mentre nei macroalbuminurici la riduzione della proteinuria è stata del 39% nei pazienti trattati contro una riduzione del 12% nel gruppo placebo.

Tuttavia, a fronte di un effetto antiproteinurico sovrapponibile, l’analisi per sottogruppi mostra chiaramente come i benefici del finerenone siano concentrati sulla popolazione macroalbuminurica: in questi pazienti l’HR per l’outcome composito è di 0.75 (CI 0.65-0.87), mentre nei pazienti microalbuminurici il risultato è inconsistente, con un HR di 0.94 e CI compreso tra 0.60-1.47.

Tale differenza può essere imputata ad un’incidenza dell’outcome renale notevolmente ridotta nei pazienti microalbuminurici (78 eventi su 4099 pazienti) rispetto ai pazienti macroalbuminurici (745 eventi su 8692 pazienti).

Per spiegare questa differenza si possono analizzare i dati relativi agli eventi cardiovascolari, i quali hanno mostrato una distribuzione indipendente dall’UACR. Allo stesso modo il beneficio del trattamento sull’outcome cardiovascolari si è mantenuto a prescindere dall’UACR.

Mentre nei pazienti macroalbuminurici l’incidenza degli eventi cardiovascolari e di quelli renali è nello stesso ordine di grandezza (su 8692 pazienti si sono registrati 1185 eventi cardiovascolari e 745 eventi renali), su 4099 pazienti microalbuminurici si sono registrati 552 eventi cardiovascolari ma solo 78 eventi renali.

Premesso che i trial in esame hanno dimostrato che sia la malattia cardiovascolare che la malattia renale nel paziente diabetico siano allo stesso modo sostenute dall’attivazione del recettore mineralcorticoide, il beneficio del finerenone nei pazienti microalbuminurici potrebbe essere postulato considerando la riduzione degli eventi cardiovascolari.

Si può dunque ipotizzare che nel paziente microalbuminurico, per definizione a rischio minore di progressione della malattia renale, siano necessari tempi di osservazione più lunghi per provare un beneficio renale, e quindi necessario un follow-up maggiore per osservare un effetto significativo [21].

Un’attenta analisi dei due studi si è concentrata anche sull’iperkaliemia, effetto collaterale che nella pratica clinica ha costituito da sempre de facto la principale limitazione all’uso degli MRA. Nei due trial sono stati esclusi tutti i pazienti che, sotto trattamento massimale con RAS inibitori, avevano una kaliemia pari o superiore a 4.8 mmol/L. Nel gruppo trattato l’incidenza di iperkaliemia necessitante la sospensione del trattamento è stata del 2.4% contro lo 0.8% registrato nel gruppo placebo; l’incidenza di iperkaliemia necessitante ospedalizzazione nel gruppo trattato è stata dell’1.4% contro lo 0.3% registrato nel gruppo placebo. Nessun evento fatale attribuibile ad iperkaliemia è stato osservato nei due studi.

 

Conclusioni

Dati gli ottimi risultati ottenuti nell’ambito della malattia renale diabetica, è lecito chiedersi se l’effetto nefroprotettivo possa essere ipotizzabile anche nella malattia renale non diabetica.

A questa domanda risponderà il trial FIND-CKD [22], la cui conclusione è prevista nel 2026 il quale è stato progettato incentrando il disegno sulla nefroprotezione: l’outcome primitivo è infatti costituito dalla perdita di GFR.

Nello studio sono stati arruolati 1584 pazienti affetti da malattia renale cronica non diabetica con eGFR tra 25 e 90 mL/min e UACR tra 200 e 3500 mg/g, con esclusione dei pazienti affetti da malattia renale immunomediata o che abbiano ricevuto una terapia immunosoppressiva ed i pazienti affetti da rene policistico autosomico dominante. Il follow-up è compreso tra un minimo di 32 ed un massimo di 49 mesi. Tra gli endpoint è degno di nota un composito cardiorenale di decremento sostenuto del GFR ≥ 57%, ospedalizzazione per scompenso cardiaco e morte cardiovascolare.

Nella tabella 1 sono elencati i principali trial in corso sul finerenone. I risultati di tali trial, se favorevoli, probabilmente apriranno la strada per un impiego routinario del finerenone anche nel paziente con CKD non diabetico.

TRIAL CRITERI DI INCLUSIONE ENDPOINTS OBIETTIVI
FINEROD 

Osservazionale

In reclutamento (2500 pz), 2024

Diabete mellito di tipo 2

Malattia renale cronica stadio 2-4

UACR > 30 mg/g

Già in trattamento con Finerenone

Descrittivo Osservare una coorte di pazienti in trattamento con Finerenone
CONFIDENCE

RCT multicentrico Fase 2

Attivo (807 pz) 2025

Diabete mellito di tipo 2 con Hb glicata < 11%

Malattia renale cronica con eGFR 20-90 mL/min o 30-90 mL/min

UACR tra 100 e 5000 mg/g

Primari:

Variazione dell’UACR

Secondari:

Variazione del GFR

Incidenza di danno renale acuto

Incidenza di Iperpotasiemia

Incidenza di  eventi renali avversi acuti

Valutare il profilo di rischio e di efficacia del trattamento combinato Finerenone+Empagliflozin nel diabetico tipo 2 con malattia renale cronica
EFFEKTOR

RCT multicentrico Fase 2

In reclutamento (150), 2025

Riceventi di trapianto renale

eGFR> 25mL/min

UACR > 30 mg/g

Primari:

Reclutamento di un numero adeguato di pazienti

Secondari:

Sospensione del farmaco

Incidenza di eventi avversi

Incidenza di iperpotassiemia

Incidenza di eventi renali avversi acuti

Ospedalizzazione per scompenso cardiaco

% istologica di fibrosi interstiziale ed atrofia tubulare

Variazione dei parametri valutati con risonanza magnetica funzionale renale

Valutare il profilo di rischio e di efficacia del Finerenone nel paziente trapiantato con albuminuria, valutazione istologica dell’effetto del Finerenone
REDEFINE-HF

RCT multicentrico Fase 3

In reclutamento (5200 pz), 2026

Scompenso cardiaco a frazione di eiezione lievemente ridotta o preservata

NTproBNP>1000, BNP>250; NTproBNP>2000, BNP>500 se presente fibrillazione atriale

eGFR>25 mL/min

Primari:

Composito di ospedalizzazione o visita urgente per scompenso cardiaco, morte da causa cardiovascolare

Numero di eventi avversi

Numero di eventi avversi richiedenti sospensione del trattamento

Secondari:

Tempo di insorgenza degli outcome

Numero totale di HF

Valutare il profilo di rischio e di efficacia del Finerenone nello scompenso cardiaco a frazione d’eiezione lievemente ridotta o conservata
FIND-CKD

RCT multicentrico Fase 3

Attivo (1584 pz), 2026

Malattia renale cronica stadio 2-4 non diabetica, non immunomediata

eGFR 25-90 mL/min

UACR 200-3500

Trattamento massimale con RAS inibitori

Primari:

Variazione del GFR a 32 mesi

Secondari:

Composito di arrivo all’ESRD, perdita di GFR del 57%, scompenso cardiaco e morte cardiovascolare

Valutare il profilo di rischio e di efficacia del Finerenone nella malattia renale cronica non diabetica.
FINE-REAL

Osservazionale

In reclutamento (5500 pz)

2027

Diabete mellito di tipo 2

Malattia renale cronica

Già in trattamento con Finerenone

Descrittivo Osservare una coorte di pazienti in trattamento con Finerenone
Tabella 1. Principali Ongoing Trials sul Finerenone
Figura 1. In presenza di aldosterone, il MR viene attivato e recluta dei cofattori trascrizionali che permettono l’assemblaggio del complesso trascrizionale e la trascrizione dei geni bersaglio. In presenza di Finerenone, la funzione recettoriale del MR e la capacità di reclutare cofattori sono inibite. I geni bersaglio non sono trascritti. MR, mineralcorticoid reeptor; ASC2, activating signal cointegrator 2; NCoR, nuclear receptor corepressor 1; TIF1α: transcriptional intermediary factor α; TRAP220, mediator of RNA polymerase II transcription subunit 1

 

Bibliografia

  1. Epstein M. Aldosterone and Mineralocorticoid Receptor Signaling as Determinants of Cardiovascular and Renal Injury: From Hans Selye to the Present. Am J Nephrol. 2021;52(3):209-216. doi: 10.1159/000515622. Epub 2021 Apr 15. PMID: 33857953.
  2. Epstein M, Kovesdy CP, Clase CM, Sood MM, Pecoits-Filho R. Aldosterone, Mineralocorticoid Receptor Activation, and CKD: A Review of Evolving Treatment Paradigms. Am J Kidney Dis. 2022 Nov;80(5):658-666. doi: 10.1053/j.ajkd.2022.04.016. Epub 2022 Sep 1. PMID: 36057467.
  3. Chrysostomou A, Becker G. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med. 2001 Sep 20;345(12):925-6. doi: 10.1056/NEJM200109203451215. PMID: 11565535.
  4. Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, Patni R, Beckerman B. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006 Sep;1(5):940-51. doi: 10.2215/CJN.00240106. Epub 2006 Jul 19. PMID: 17699311.
  5. Bertocchio JP, Warnock DG, Jaisser F. Mineralocorticoid receptor activation and blockade: an emerging paradigm in chronic kidney disease. Kidney Int. 2011 May;79(10):1051-60. doi: 10.1038/ki.2011.48. Epub 2011 Mar 16. PMID: 21412221.
  6. Bianchi S, Bigazzi R, Campese VM. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 2006 Dec;70(12):2116-23. doi: 10.1038/sj.ki.5001854. Epub 2006 Oct 11. PMID: 17035949.
  7. Sato A, Hayashi K, Saruta T. Antiproteinuric effects of mineralocorticoid receptor blockade in patients with chronic renal disease. Am J Hypertens. 2005 Jan;18(1):44-9. doi: 10.1016/j.amjhyper.2004.06.029. PMID: 15691616.
  8. Schrier RW. Aldosterone ‘escape’ vs ‘breakthrough’. Nat Rev Nephrol. 2010 Feb;6(2):61. doi: 10.1038/nrneph.2009.228. PMID: 20111044.
  9. Jain G, Campbell RC, Warnock DG. Mineralocorticoid receptor blockers and chronic kidney disease. Clin J Am Soc Nephrol. 2009 Oct;4(10):1685-91. doi: 10.2215/CJN.01340209. Epub 2009 Sep 3. PMID: 19729430.
  10. Nagase M, Fujita T. Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease. Nat Rev Nephrol. 2013 Feb;9(2):86-98. doi: 10.1038/nrneph.2012.282. Epub 2013 Jan 8. PMID: 23296296.
  11. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y, Fujita T. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008 Dec;14(12):1370-6. doi: 10.1038/nm.1879. Epub 2008 Nov 23. PMID: 19029984.
  12. Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]). Am J Cardiol. 1996 Oct 15;78(8):902-7. doi: 10.1016/s0002-9149(96)00465-1. PMID: 8888663.
  13. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M; Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003 Apr 3;348(14):1309-21. doi: 10.1056/NEJMoa030207. Epub 2003 Mar 31. Erratum in: N Engl J Med. 2003 May 29;348(22):2271. PMID: 12668699.
  14. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B; EMPHASIS-HF Study Group. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011 Jan 6;364(1):11-21. doi: 10.1056/NEJMoa1009492. Epub 2010 Nov 14. PMID: 21073363.
  15. Trevisan M, de Deco P, Xu H, Evans M, Lindholm B, Bellocco R, Barany P, Jernberg T, Lund LH, Carrero JJ. Incidence, predictors and clinical management of hyperkalaemia in new users of mineralocorticoid receptor antagonists. Eur J Heart Fail. 2018 Aug;20(8):1217-1226. doi: 10.1002/ejhf.1199. Epub 2018 Apr 18. Erratum in: Eur J Heart Fail. 2019 Apr;21(4):540. doi: 10.1002/ejhf.1367. PMID: 29667759; PMCID: PMC6607478.
  16. Agarwal R, Kolkhof P, Bakris G, Bauersachs J, Haller H, Wada T, Zannad F. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021 Jan 7;42(2):152-161. doi: 10.1093/eurheartj/ehaa736. PMID: 33099609; PMCID: PMC7813624.
  17. Grune J, Beyhoff N, Smeir E, Chudek R, Blumrich A, Ban Z, Brix S, Betz IR, Schupp M, Foryst-Ludwig A, Klopfleisch R, Stawowy P, Houtman R, Kolkhof P, Kintscher U. Selective Mineralocorticoid Receptor Cofactor Modulation as Molecular Basis for Finerenone’s Antifibrotic Activity. Hypertension. 2018 Apr;71(4):599-608. doi: 10.1161/HYPERTENSIONAHA.117.10360. Epub 2018 Feb 5. PMID: 29437893.
  18. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G; FIDELIO-DKD Investigators. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. 2020 Dec 3;383(23):2219-2229. doi: 10.1056/NEJMoa2025845. Epub 2020 Oct 23. PMID: 33264825.
  19. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, Joseph A, Kolkhof P, Nowack C, Schloemer P, Ruilope LM; FIGARO-DKD Investigators. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med. 2021 Dec 9;385(24):2252-2263. doi: 10.1056/NEJMoa2110956. Epub 2021 Aug 28. PMID: 34449181.
  20. Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, Kolkhof P, Nowack C, Gebel M, Ruilope LM, Bakris GL; FIDELIO-DKD and FIGARO-DKD investigators. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022 Feb 10;43(6):474-484. doi: 10.1093/eurheartj/ehab777. Erratum in: Eur Heart J. 2022 May 21;43(20):1989. doi: 10.1093/eurheartj/ehab886. PMID: 35023547; PMCID: PMC8830527.
  21. Bakris GL, Ruilope LM, Anker SD, Filippatos G, Pitt B, Rossing P, Fried L, Roy-Chaudhury P, Sarafidis P, Ahlers C, Brinker M, Joseph A, Lawatscheck R, Agarwal R; FIDELIO-DKD and FIGARO-DKD Investigators. A prespecified exploratory analysis from FIDELITY examined finerenone use and kidney outcomes in patients with chronic kidney disease and type 2 diabetes. Kidney Int. 2023 Jan;103(1):196-206. doi: 10.1016/j.kint.2022.08.040. Epub 2022 Oct 28. PMID: 36367466.
  22. Heerspink HJL, Agarwal R, Bakris GL, Cherney DZI, Lam CSP, Neuen BL, Sarafidis PA, Tuttle KR, Wanner C, Brinker MD, Dizayee S, Kolkhof P, Schloemer P, Vesterinen P, Perkovic V; FIND-CKD investigators. Design and baseline characteristics of the Finerenone, in addition to standard of care, on the progression of kidney disease in patients with Non-Diabetic Chronic Kidney Disease (FIND-CKD) randomized trial. Nephrol Dial Transplant. 2024 Jun 11:gfae132. doi: 10.1093/ndt/gfae132. Epub ahead of print. PMID: 38858818.

Hyposodiemia and Electrolyte Disorders in Cancer Patients

Abstract

Onconephrology is a rising and rapidly expanding field of medicine in which nephrology and oncology meet each other. Besides multidisciplinary meetings, oncologists and nephrologists often discuss on timing of the treatment, dosage, and side effects management. Cancer patients often encounter different electrolyte disorders. They are mostly secondary to the tumor itself or consequences of its treatment. In the last years, the great efforts to find new therapies like targeted, immune, and cell-based led us to many new side effects. Hyponatremia, hypokalemia, hyperkalemia, hypercalcemia, and hypomagnesemia are among the most common electrolyte disorders. Data have shown a worse prognosis in patients with electrolytic imbalances. Additionally, they cause a delay in chemotherapy or even an interruption. It is important to diagnose promptly these complications and treat them. In this review, we provide a special focus on hyponatremia and its treatment as the most common electrolytes disorder in cancer patients, but also on newly described cases of hypo- and hyperkalemia and metabolic acidosis.

Keywords: hyposodiemia, cancer patients, electrolyte disorders, hyperkalemia

Sorry, this entry is only available in Italian.

Introduzione

I pazienti oncologici costituiscono una popolazione fragile e la sovrapposizione con patologie renali pre-esistenti o subentranti peggiora notevolmente la prognosi. Oltre ad AKI, proteinuria e ipertensione, spesso i pazienti oncologici presentano disturbi idroelettrolitici. Tra i più comuni sono l’iposodiemia, l’ipopotassiemia, l’iperpotassiemia, l’ipercalcemia e l’ipomagnesemia. Questi possono essere causati direttamente dal tumore, come nelle sindromi paraneoplastiche, o essere secondari a terapia. Tra le sindromi paraneoplastiche più comuni abbiamo la SIAD, sindrome da inappropriata antidiuresi, che porta a iposodiemia. Negli ultimi anni, lo sviluppo di nuovi farmaci ha portato a nuovi effetti collaterali, come l’ipomagnesemia indotta da anticorpi monoclonali anti EGFR o l’iposodiemia da agenti alchilanti e alcaloidi della vinca e le più recenti targeted therapies.

Questa review intende fornire gli elementi clinici più recenti per l’identificazione e il trattamento dei disturbi elettrolitici nei pazienti oncologici, focalizzandosi prevalentemente sulla iposodiemia.

 

Iposodiemia

L’iposodiemia è definita da una concentrazione sierica di sodio inferiore a 135 mmol/L. Si distinguono tre gradi in funzione della concentrazione di sodio: lieve (130-134 mmol/L), moderata (125-129 mmol/L) e severa (<125 mmol/L). In base alla modalità di insorgenza, distinguiamo l’iposodiemia in acuta (insorta da meno di 48 h) o cronica (> di 48h). I disordini della sodiemia sono da considerarsi disordini dell’omeostasi dell’acqua. Proprio la quantità di acqua corporea (TBW, total body water), è un indicatore clinico molto importante che ci permette di classificare l’iposodiemia in ipovolemica, euvolemica e ipervolemica. 

Il 14% di tutti i casi di iposodiemia in setting ospedaliero sono da riferire a pazienti oncologici [1].  Inoltre, il 47% dei pazienti oncologici alla prima ospedalizzazione presenta iposodiemia, di cui il 23% già al ricovero e il 24% la sviluppa durante la degenza [2]. 

In generale, l’iposodiemia aumenta il rischio di mortalità [3] e la sua correzione migliora la sopravvivenza, come dimostrato negli studi SALT-1, SALT-2 e EVEREST. Questo è particolarmente vero nei pazienti con cancro, dove l’iposodiemia severa e/o moderata raddoppia quasi la durata della degenza [2]. Il rischio di morte a 90 giorni dalla diagnosi di iposodiemia è di 4,74 nei pazienti con forme moderate e di 3,46 nei pazienti con forme severe [2]. Questi numeri presentano il peso dell’iposodiemia sui pazienti oncologici sia in termini di qualità di vita che di durata. 

I sintomi dell’iposodiemia sono variabili e spesso sfumati e dipendono dalla velocità e dall’entità con cui essa si instaura. Riguardano soprattutto la sfera neurologica, comprendendo confusione, alterato stato di coscienza, irritabilità, aumentato rischio di cadute e andatura instabile [4] e quindi un maggior rischio di fratture [5], fino ad arrivare al coma e alle convulsioni negli esordi acuti. 

L’iposodiemia nei pazienti oncologici può essere dovuta direttamente al tumore primitivo, può essere secondaria alla sua terapia o a comorbidità che spesso ne costituiscono la complessità di gestione. La causa principale di iposodiemia in questa popolazione è la SIAD (Sindrome da inappropriata antidiuresi), la più comune forma di iposodiemia euvolemica. Rappresenta più del 30% dei casi di iposodiemia nei pazienti con cancro [6]. Altre cause di SIAD includono l’insufficienza cardiaca, altre patologie polmonari e farmaci. In generale, circa l’1-2% dei pazienti oncologici presenta SIAD [7]. La SIADH, o Sindrome da inappropriata secrezione di ADH (ormone antidiuretico), è un termine coniato nel 1957 da Bartter & Schwartz [8] per descrivere quelle situazioni in cui, nonostante i livelli di osmolarità sierica siano < 275 mOsm/kg, ADH è inappropriatamente secreto dalla neuroipofisi o altri siti. Infatti, per valori di osmolalità sierica < 275 mOsm/kg la secrezione di questo ormone è annullata, quando questa situazione non si rileva si parla di inappropriato rilascio di ADH. Poiché il dosaggio sierico di ADH è spesso poco accurato per la labilità di questo peptide, sono necessari altri parametri per identificarne la sua presenza in circolo. Quello più economico e storicamente in uso è la osmolalità urinaria. Valori > 100 – 200 mOsm/kg H2O indicano la presenza in circolo di ADH (Tabella I). Dosaggi alternativi ematici sono rappresentati dalla copeptina, un peptide di rilascio equimolare con ADH, ma molto più stabile in circolo.

Criteri essenziali

Osmolalità sierica effettiva <275 mOsm/kg
Osmolalità urinaria >100 mOsm/kg
Euvolemia clinica
Concentrazione di sodio urinario >30 mmol/L con normale apporto di sale e acqua dalla dieta
Assenza di insufficienza surrenalica, tiroidea, ipofisaria o renale
Non uso recente di diuretici

Criteri supplementari

Acido urico sierico < 4 mg/dL

Azotemia < 21,6 mg/dL
Fallimento della correzione dell’iposodiemia con infusione salina 0,9%
FE Na >0,5%

FE Urea  >55%

FE Acido urico >12%
Correzione dell’iposodiemia con la restrizione dei fluidi

Tabella I. Criteri diagnostici della SIADH. Adattata da [8].

Il tumore solido più frequentemente associato a SIADH è il microcitoma polmonare, seguito poi da tumori del tratto gastrointestinale, tumori ematologici e carcinoma della mammella [9]. 

Tra i farmaci che più frequentemente si associano a SIADH, abbiamo i derivati del platino, gli agenti alchilanti (soprattutto ciclofosfamide), target therapy, immunoterapia e gli alcaloidi della vinca. L’eziologia del disturbo è multifattoriale e i meccanismi sono molteplici (Tabella II). Questi farmaci non agiscono solo tramite la secrezione di ADH: alcuni dei loro metaboliti hanno un’attività simil ADH (come nel caso della ciclofosfamide [10]), alcuni portano ad up-regulation dei recettori V2R e delle acquaporine-2 [11]. L’ipilimumab provoca insufficienza surrenalica che porta al mancato feedback negativo del cortisolo sull’ADH [12]. La vincristina, un alcaloide della vinca, ha un effetto diretto neurotossico a livello ipotalamico [13]. Inoltre, i derivati del platino spesso inducono nausea e vomito, i quali costituiscono di per sé un importante stimolo alla secrezione di ADH. I protocolli di idratazione aggressiva per prevenire la cistite emorragica nella terapia a base di ciclofosfamide peggiorano l’iposodiemia. Inoltre, insieme ai chemioterapici, spesso i pazienti oncologici sono trattati con oppioidi, antidepressivi come SSRI e triciclici, antiemetici come le fenotiazine [14] che aggravano lo squilibrio idroelettrolitico. Tutti questi fattori contribuiscono ad aumentare la complessità dell’eziologia dell’iposodiemia nei pazienti oncologici.

Chemioterapici             Meccanismo fisiopatologico
Alcaloidi della vinca

vincristina, vinblastina

SIADH (tossicità diretta ipotalamica)
Derivati del platino

Cisplatino, carboplatino

Aumentata secrezione ADH, Renal salt wasting, danno al DNA di NCC
Agenti alchilanti
ev cyclophosphamide, melphalan, ifosfamide
SIADH, infusione preventiva di sol. ipotoniche, upregulation di V2R
Target therapies

Bevacizumab, Ado-trastuzumab

SIADH, sindrome nefrosica, Cerebral Salt Wasting Syndrome

Ipilimumab, Nivolumab

Icrucumab, Etaracizumab, Volociximab

Insufficienza surrenalica da ipofisite autoimmune, nefrite interstiziale

Brivanib, Imatinib, Dasatinib,Cediranib Nilotinib,Sorafenib,
Sunitinib, Gefinitib, Pazopanib, Afatinib, Bosutinib

SIADH

Bortezomib TLS
Antimetaboliti

Metotrexate

SIADH, secrezione di peptride natriuretico
Inibitori topoisomerasi tipo I

Irinotecano

SIADH
 Tabella II. Principali meccanismi fisiopatologici dell’iposodiemia da agenti chemioterapici. Adattata da [15].

Terapia infusionale

La gestione dell’iposodiemia avviene su due fronti: il ripristiono dei livelli di sodiemia e il trattamento della causa scatenante. Essa prevede un diverso approccio a seconda della durata e severità dei sintomi. Nell’iposodiemia secondaria a SIAD acuta, severamente sintomatica, il trattamento consigliato è la soluzione ipertonica NaCl al 3% in bolo di 150 mL in 20 minuti, ripetibili fino ad un massimo di 3 volte, monitorando strettamente i livelli di sodiemia (ogni 2 ore e al limite ogni 4). L’obiettivo è correggere la sodiemia di 4-6 mEq/L nelle prime 6/8 ore [16]. Quando invece l’iposodiemia è moderata e i sintomi non sono severi, la correzione può essere più graduale (per evitare la sindrome da mielinolisi pontina) con obiettivo di correzione limite di 8-10 mEq/L nelle prime 24 ore e massimo 18 nelle 48 ore soprattutto nei pazienti anziani e fragili.

Approccio dietetico

Nel caso dell’iposodiemia cronica, è utile identificare il/i fattore/i scatenante/i. Tra questi, l’apporto idrico non è un fattore secondario. Il paziente oncologico è sottoposto a continue consulenze specialistiche ed assume diversi farmaci: è educato insomma ad associare l’introito idrico col benessere renale. Questo assioma è vero, finchè è conservata la capacità di diluizione delle urine. Purtroppo la perdita della massa nefronica con l’età e il decrescere del GFR anche negli stadi iniziali minano la capacità di diluire prontamente le urine, ovvero di ridurre in tempi rapidi l’osmolalità urinaria quando si introduce acqua.

Questo espone al rischio di sviluppare iposodiemie sostenute da comportamenti, almeno nelle intenzioni, benevoli. Pertanto bisogna educare il paziente a bere il giusto per soddisfare la sua sete e scegliere cibi ricchi in acqua in modo da ridurre l’acqua libera da soluti introdotta.

Questo punto diventa ancora più importante per quei pazienti oncologici che mangiano poco. Lo scarso introito di proteine e sale (le principali fonti di osmoli attive: Na, Cl e Urea) determina un carico osmolare renale quotidiano molto basso. Quando questi pazienti aumentano il loro introito idrico ai famosi 2 litri al giorno, diluiscono il loro carico di osmoli ed è come se si sottoponessero ad infusioni quotidiane di soluzioni ipotoniche e iposmotiche. Questo accelera lo sviluppo di iposodiemia laddove ci sono le condizionizioni fisiopatologiche di una SIADH.

Per il calcolo facilitato del carico osmotico con la dieta, noto anche come carico di soluti renale, si puo fare riferimento alla seguente formula derivata dagli studi di Ziegler e Fomon [17]:

Carico osmotico del cibo: mOsmoli = contenuto proteico totale (g) × 5,8 (× 4 se bambini)  + Na+ × 2 + K+ (mmoli)

Sebbene questa formula sia stata derivata per la nutrizione dei neonati e poi per la nutrizione parenterale o enterale, può essere estesa al cibo ingerito.

Per un paziente oncologico tipo di 50 kg (Figura 1) che assume 40 gr di proteine/die e segue una dieta di circa 3 gr di sale al giorno con limitazione dell’apporto di potassio a 50 mmol/die, il carico osmotico giornaliero calcolato è di circa 385 mOsm. Se questo carico osmotico è diluito in 2 L di acqua al die, il paziente assume un carico osmotico di circa 193 mOsm/L pari a meno della metà di quello previsto quotidianamente. Fatto 500 il set point osmolare del rene di un paziente oncologico anziano con SIADH, il nostro paziente tratterrà ben circa 620 mL di acqua per ogni litro di acqua bevuto (1 – (193/500)).

Pertanto, ridurre l’apporto idrico a 500 mL/die in questo esempio può essere molto efficace nell’incrementare di 4 volte l’osmolalità della soluzione in cui il carico osmotico effettivo è contenuta (385 mOsm / 0,5 litri = 770 mOsm/L). Una simile soluzione consentirebbe la perdita di 1,54 L di acqua per ogni litro di soluzione 770 mOsm, consentendo così di eliminare circa 540 ml di acqua libera da soluti per ogni litro di soluzione prevenendo così il rischio di iposodiemia.

Figura 1. Esempio di carico osmotico. Creato con BioRender.com.
Figura 1. Esempio di carico osmotico. Creato con BioRender.com.

Pertanto, è indispensabile nell’approccio al paziente oncologico con iposodiemia cronica valutare l’assetto nutrizionale ed idrico ancor prima di decidere ogni terapia.

Individuazione dei farmaci induttori di SIADH

La lista di farmaci che causano SIADH è in costante aggiornamento. Cinque classi di farmaci (antidepressivi, anticonvulsivanti, antipsicotici, farmaci citotossici e antidolorifici) sono la causa dell’82,3% di pazienti diagnosticati con SIADH indotta da farmaci [18]. I più frequentemente coinvolti sono gli inibitori del reuptake della serotonina e la carbamazepina. In ambito oncologico, la Tabella 2 riporta i farmaci per il trattamento delle neoplasie associati a SIADH. In generale, bisogna notare come farmaci di ampio utilizzo come gli inibitori di pompa protonica e gli ACE-inibitori possano associarsi a SIADH [19, 20].

Terapia orale

Al fine di aumentare il carico osmotico in alcuni paesi è approvata ed in uso corrente la terapia con cialde di urea. Questa terapia associata a restrizione idrica è efficace nell’incrementare la sodiemia, ma si associa ad alitosi e scarsa compliance dei pazienti [21].

Laddove consentito, per la presenza di eventuali altre comorbilità incluso ipertensione arteriosa, sindrome edemigene, etc., aumentare la quota di sale nella dieta è tra gli interventi più praticati per aumentare il carico osmolare in questi pazienti, tuttavia ci sono evidenze contrastanti a riguardo il beneficio rispetto alla sola restrizione idrica. Un recente studio randomizato controllato (EFFUSE-FLUID trial) ha dimostrato che l’aggiunta di supplementi di sale e/o furosemide non rappresenta un beneficio in termini di incremento della sodiemia rispetto alla sola restrizione idrica. Inoltre i pazienti che assumevano furosemide presentavano una più alta frequenza di Acute Kidney Injury (AKI) e ipopotassiemia [22].

Per le forme in cui le misure indicate sopra sono inefficaci, i vaptani devono essere considerati come ulteriore opzione terapeutica. I vaptani sono antagonisti del recettore V2R ed agiscono come acquaretici, cioè promuovendo la perdita di acqua libera da soluti. I vaptani permettono direttamente di diminuire il setpoint renale osmotico a valori appropriati per iposodiemia. Infatti, in corso di iposodiemia la secrezione di ADH dovrebbe essere completamente soppressa e quindi il set point osmolare renale molto basso (< 100 mOsm). Questo non è il caso in corso di SIADH, in cui nonostante l’iposodiemia il set point renale osmolare resta inappropriatamente alto. I vaptani ripristinano questa situazione riducendo il set point osmolare renale a circa 100 mOsm/kg H2O e favorendo così la clearance dell’acqua libera. Il tolvaptan, in uso in Italia, è molto efficace in questo senso già per dosaggi molto bassi, da 7,5 mg/die. Il tolvaptan ha dimostrato di indurre una rapida correzione dei livelli di sodio sierico e della sintomatologia nei pazienti con microcitoma polmonare [1]. L’efficacia e la rapidità d’azione permettono di non ritardare trattamenti chemioterapici.

 

Ipopotassiemia

L’ipopotassiemia è definita da livelli di potassio sierico inferiori a 3,5 mEq/L. È il secondo disordine elettrolitico per frequenza nella popolazione oncologica [23]. Spesso si accompagna ad altri disordini elettrolitici, come l’ipomagnesemia e l’iposodiemia. In base alla causa, possiamo dividere l’ipopotassiemia in 3 categorie: da ridotto apporto (malnutrizione, anoressia), aumentata perdita (renale e non) o redistribuzione all’interno delle cellule (farmaci, alcalosi). I principali chemioterapici che provocano ipopotassiemia sono indicati nella Tabella III.

Tra le cause meno comuni, ma di cui ci sono report sempre più frequenti, abbiamo la sindrome da secrezione ectopica di ACTH. L’EAS (Ectopic ACTH Syndrome) rappresenta il 5-10% dei casi di sindrome di Cushing e si associa maggiormente a tumori neuroendocrini, soprattutto con sede toracica come il microcitoma polmonare, il carcinoide bronchiale, il carcinoma midollare tiroideo e il carcinoma timico [24].

I sintomi comprendono habitus Cushingoide con ipertensione, alcalosi metabolica ipopotassiemica, ipercalciuria e poliuria per via dei bassi livelli di aldosterone. In questa condizione riscontriamo una secrezione di ACTH da parte del tumore che porta a eccesso di cortisolo secreto dalle ghiandole surrenali. Il cortisolo viene fisiologicamente metabolizzato in cortisone (biologicamente inattivo) grazie all’enzima 11-β-idrossisteroido-deidrogenasi tipo 2 nelle cellule principali a livello dei dotti collettori corticali e midollari [25]. Quando vi è un eccesso di cortisolo, l’enzima 11βHSD2 viene saturato e il cortisolo si lega al recettore dei mineralcorticoidi, per cui ha affinità. Questo quadro presenta similitudini con la sindrome AME (Apparent Mineralcorticoid Excess), condizione che si configura nell’ingestione cronica di liquirizia o geneticamente determinata da mutazioni a perdita di funzione della 11βHSD2. Ciò spiega perché viene trattato con successo grazie agli antagonisti del recettore dei mineralcorticoidi, come spironolattone ed eplerenone [26].

Altro caso degno di nota è la frequente associazione tra la leucemia mieloide acuta (soprattutto i sottotipi M4 e M5) e l’ipopotassiemia. Dal 40% al 60% di questi pazienti sviluppano ipopotassiemia nel decorso della patologia [23], associata spesso ad altri disordini come ipomagnesemia, iposodiemia, ipocalcemia, ipofosfatemia e acidosi metabolica. Questa condizione è stata associata a un danno tubulare provocato dal lisozima [27, 28], un enzima litico prodotto dai monociti e dalle loro varianti neoplastiche.

Chemioterapici              Meccanismo fisiopatologico
Derivati del platino

(Cisplatino, Carboplatino)

Perdita di potassio renale associato a ipomagnesemia, ridotto assorbimento per citotossicità intestinale
Agenti alchilanti

 Ifosfamide,

 bendamustina

Danno al tubulo prossimale (RTA, sindrome di Fanconi) per via del metabolita cloroacetaldeide

Tubulopatia distale (sindrome di Gitelman)

Target Therapies

Cetuximab, Panitumumab

Perdita di potassio renale associato a ipomagnesemia

Lumretuzumab, Pertuzumab (associati a paclitaxel)

Diarrea secretoria da farmaci

Bevacizumab
Temsirolimus, Everolimus
Danno al tubulo prossimale (sindrome di Fanconi)
Tabella III. Chemioterapici associati a ipopotassiemia. Adattata da [15].

 

Iperpotassiemia

L’iperpotassiemia è definita da livelli di potassio sierico superiori a 5,5 mEq/L. Si riscontra nella popolazione oncologica associata a AKI, CKD, rabdomiolisi, sindrome da lisi tumorale, insufficienza surrenalica (da metastasi), farmaci. Importante è fare la distinzione con la pseudoiperpotassiemia, una condizione nella quale si riscontra un aumentato livello di potassio nel sangue in seguito alla formazione di trombi o a centrifugazione (le cellule leucemiche sono particolarmente fragili e vanno più spesso incontro a lisi). Condizioni di trombocitosi, leucocitosi ed eritrocitosi possono portare ad iperpotassiemia.

La sindrome da lisi tumorale è un’emergenza medica in cui vi è distruzione delle cellule tumorali con rilascio in circolo delle componenti intracellulari.

La sindrome da lisi tumorale è definita dai criteri di Cairo-Bishop [29], distinti in laboratoristici e clinici. In breve, essa è caratterizzata da iperpotassiemia, ipocalcemia, iperuricemia, iperfosfatemia, acidosi metabolica e AKI. Può complicarsi con aritmie cardiache e convulsioni.
Il trattamento dell’iperpotassiemia nel paziente oncologico non prevede divergenze da quanto consigliato dalle linee guida nel trattamento dell’iperpotassiemia negli altri pazienti [30].

 

Ipomagnesemia

L’ipomagnesemia è definita da livelli di magnesio sierico inferiori a 1,5 mg/dL (o 1,2 mEq/L). Si può riscontrare come disordine isolato o più spesso associato a ipopotassiemia o ipocalcemia. Nei pazienti oncologici, l’ipomagnesemia è frequentemente secondaria all’utilizzo di farmaci e più raramente conseguenza del tumore. I derivati del platino, in particolare il cisplatino, sono fortemente associati a perdita di magnesio per danno diretto tubulare [31]. Il 90% dei pazienti dopo 3 cicli di cisplatino sviluppano ipomagnesemia [32] e necessitano di terapia suppletiva, spesso già prevista nei protocolli di infusione.

Il 34% dei pazienti in terapia con anticorpi monoclonali anti-EGFR sviluppa ipomagnesemia [33]. Il Panitumumab è associato a un’incidenza maggiore rispetto al Cetuximab. Gli anticorpi monoclonali anti-EGFR causano ipomagnesemia inibendo TRPM6 sul versante luminale delle cellule del tubulo contorto distale.

 

Ipofosfatemia

L’ipofosfatemia è definita da livelli di fosfato sierico inferiori a 2,5 mg/dL. Può avere diverse cause nella popolazione oncologica: malnutrizione, presenza di stomie intestinali, chemioterapici (TKI inibitori, ifosfamide [34]). I chemioterapici agiscono provocando danno diretto al tubulo prossimale, configurando spesso un quadro di sindrome di Fanconi acquisita.

Una causa rara di ipofosfatemia nei pazienti con cancro è la TIO (Tumor Induced Osteomalacia), anche conosciuta come osteomalacia oncogenica, una sindrome paraneoplastica riscontrabile in condrosarcomi, osteoblastomi e tumori di origine mesenchimale. Si caratterizza per ridotto riassorbimento di fosfato a livello tubulare, con bassi o normali livelli di vitamina D [35], causato da una ipersecrezione di FGF-23, un importante fattore fosfaturico che riduce l’assorbimento intestinale di fosfato tramite inibizione dell’attivazione della vitamina D. La terapia consiste nella resezione chirurgica del tumore quando possibile, in alternativa l’utilizzo di burosumab, anticorpo monoclonale contro l’FGF-23 [36].

 

Ipercalcemia

L’ipercalcemia è definita da livelli sierici di calcio superiori a 10,5 mg/dL o 2.5 mmol/L. In base al livello, l’ipercalcemia può essere classificata in lieve (10.5-11.9 mg/dL), moderata (12-13.9 mg/dL) o severa (14-16 mg/dL). A seconda della severità, i sintomi variano da astenia, malessere, anoressia, poliuria, dolori ossei a confusione e coma. Le cause dell’ipercalcemia nella popolazione oncologica possono essere divise in tre categorie. La più frequente è da produzione di sostanze con azione simile al PTH, come il PTHrp, che promuove il turnover osseo e aumenta il rilascio di calcio dalle ossa. Questo quadro si riscontra nel carcinoma squamoso polmonare, carcinoma della cervice uterina, carcinoma esofageo, linfomi [37]. La seconda categoria comprende tumori associati o a importanti metastasi osteolitiche, come il carcinoma della mammella, del polmone o il mieloma multiplo. Alla terza categoria appartengono quei tumori capaci di attivare la vitamina D, come il mieloma multiplo, il linfoma di Hodgkin e non Hodgkin [38].

Di recente si è identificata una forma di ipercalcemia secondaria all’uso degli inibitori del checkpoint immunitario [39]. Questi farmaci hanno l’abilità di riattivare il sistema immunitario e scatenare diverse risposte immuno-mediate che vanno sotto il nome di irAEs (immune related adverse events). Tra queste, i granulomi sarcoid-like, in cui i macrofagi contengono 1-alfa-idrossilasi, attivano la vitamina D a 1-25-diidrossicolecalciferolo e aumentano i livelli di calcio sierico.

Il trattamento, a seconda della causa, prevede un duplice obiettivo: ridurre il riassorbimento osseo e promuovere l’escrezione di calcio. In generale, prevede idratazione, utilizzo di bifosfonati (zoledronato e pamidronato) o denosumab ed eventualmente steroidi.

 

Acidosi metabolica

Diversi chemioterapici, in particolare gli inibitori del checkpoint (CPI) sono stati associati ad acidosi metabolica [40]. L’utilizzo di anti-PD1, in particolare il pembrolizumab, è stato associato allo sviluppo di acidosi tubulare renale (RTA) con ipopotassiemia. Il caso indice presentava incapacità di acidificare le urine (UpH > 5,3) nonostante una severa acidosi metabolica e di eliminare ammonio nelle urine. Conservata era la ipocitraturia. Tuttavia, il quadro bioptico renale eseguito per la persistenza della sintomatologia ancora a 3 mesi dalla sospensione del farmaco, non rivelava alterazioni istologiche ai danni del nefrone distale, ma una intensa vacuolizzazione del tubulo prossimale. La sintomatologia regrediva dopo 6 mesi dalla sospensione della terapia con anti-PD1 [41].

Una rara causa di acidosi metabolica a gap anionico aumentato nei pazienti con cancro è l’acidosi lattica tipo B, un’acidosi nella quale vi è un aumento dei livelli di lattato senza evidenza di ipoperfusione sistemica, quindi in condizione normossiemiche. Si osserva maggiormente in neoplasie ematologiche quali leucemie e linfomi, ma non mancano report in tumori solidi. La patogenesi non è chiara, anche se diverse ipotesi sono state proposte. Uno dei possibili meccanismi è l’effetto Warburg, in cui le cellule tumorali preferiscono le vie anaerobie di produzione del lattato, probabilmente indotte dal rilascio di HIF1alfa (hypoxia inducible factor 1alfa) da parte delle cellule tumorali [42], nonostante i normali livelli di ossiemia.

 

Conclusioni

I disordini elettrolitici sono spesso misconosciuti. Ciò è da ricondurre alla loro sintomatologia, spesso sfumata, alla loro ampia diffusione in ambiti diversi della medicina e alla scarsa prioritizzazione rispetto alla condizione di base. In una popolazione fragile come quella oncologica, diagnosticare tempestivamente e trattare uno squilibrio elettrolitico significa migliorare la prognosi del paziente ed evitare interruzioni e/o ritardi nelle cure chemioterapeutiche oltre che migliorare la qualità della vita migliorando alcuni sintomi. I disordini idroelettrolitici sono spesso associati tra loro come le tessere di un puzzle e come un puzzle non sempre la terapia è immediata e risolutrice senza l’ospedalizzazione. Gli avanzamenti terapeutici in oncologia hanno rivelato nuovi aspetti della regolazione dell’omeostasi renale idroelettrolitica come emerge ad esempio dal ruolo della modulazione del sistema immunitario.

Diventa essenziale per il clinico riconoscere questi disturbi e comprenderne la fisiopatologia che molto spesso è alla base della terapia. Anche in questo ambito l’interazione nefrologo ed oncologo è essenziale per il più opportuno management dei pazienti oncologici che manifestano disordini idrolelettrolitici.

 

Bibliografia

  1. Gill G, Huda B, Boyd A,et al. Characteristics and mortality of severe hyponatraemia–a hospital-based study. Clin Endocrinol (Oxf). 2006 Aug;65(2):246-9. https://doi.org/10.1111/j.1365-2265.2006.02583.x.
  2. Doshi SM, Shah P, Lei X,et al. Hyponatremia in hospitalized cancer patients and its impact on clinical outcomes. Am J Kidney Dis. 2012 Feb;59(2):222-8. https://doi.org/10.1053/j.ajkd.2011.08.029.
  3. Kovesdy CP, Lott EH, Lu JL,et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation. 2012 Feb 7;125(5):677-84. https://doi.org/10.1161/CIRCULATIONAHA.111.065391.
  4. Renneboog B, Musch W, Vandemergel X,et al. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med. 2006 Jan;119(1):71.e1-8. https://doi.org/10.1016/j.amjmed.2005.09.026.
  5. Gankam Kengne F, Andres C, Sattar L,et al. Mild hyponatremia and risk of fracture in the ambulatory elderly. QJM. 2008 Jul;101(7):583-8. https://doi.org/10.1093/qjmed/hcn061.
  6. Berghmans T, Paesmans M, Body JJ. A prospective study on hyponatraemia in medical cancer patients: epidemiology, aetiology and differential diagnosis. Support Care Cancer. 2000 May;8(3):192-7. https://doi.org/10.1007/s005200050284.
  7. Bartter FC, Schwartz WB. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med. 1967 May;42(5):790-806. https://doi.org/10.1016/0002-9343(67)90096-4.
  8. Schwartz WB, Bennett W, Curelop S,et al. A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med. 1957 Oct;23(4):529-42. https://doi.org/10.1016/0002-9343(57)90224-3.
  9. Balachandran K, Okines A, Gunapala R,et al. Resolution of severe hyponatraemia is associated with improved survival in patients with cancer. BMC Cancer. 2015 Mar 22;15:163. https://doi.org/10.1186/s12885-015-1156-6.
  10. Bode U, Seif SM, Levine AS. Studies on the antidiuretic effect of cyclophosphamide: vasopressin release and sodium excretion. Med Pediatr Oncol. 1980;8(3):295-303. https://doi.org/10.1002/mpo.2950080312.
  11. Kim S, Choi HJ, Jo CH,et al. Cyclophosphamide-induced vasopressin-independent activation of aquaporin-2 in the rat kidney. Am J Physiol Renal Physiol. 2015 Sep 1;309(5):F474-83. https://doi.org/10.1152/ajprenal.00477.2014.
  12. Barnard ZR, Walcott BP, Kahle KT,et al. Hyponatremia associated with Ipilimumab-induced hypophysitis. Med Oncol. 2012 Mar;29(1):374-7. https://doi.org/10.1007/s12032-010-9794-7.
  13. Robertson GL, Bhoopalam N, Zelkowitz LJ. Vincristine neurotoxicity and abnormal secretion of antidiuretic hormone. Arch Intern Med. 1973 Nov;132(5):717-20.
  14. Liamis G, Milionis H, Elisaf M. A review of drug-induced hyponatremia. Am J Kidney Dis. 2008 Jul;52(1):144-53. https://doi.org/10.1053/j.ajkd.2008.03.004.
  15. Verzicco I, Regolisti G, Quaini F,et al. Electrolyte Disorders Induced by Antineoplastic Drugs. Front Oncol. 2020 May 19;10:779. https://doi.org/10.3389/fonc.2020.00779.
  16. Sbardella E, Isidori AM, Arnaldi G,et al. the: Fluid and Electrolyte Disorders Club of the Italian Society of Endocrinology; Italian Society of Nephrology; and Italian Association of Medical Oncology. Approach to hyponatremia according to the clinical setting: Consensus statement from the Italian Society of Endocrinology (SIE), Italian Society of Nephrology (SIN), and Italian Association of Medical Oncology (AIOM). J Endocrinol Invest. 2018 Jan;41(1):3-19. https://doi.org/10.1007/s40618-017-0776-x.
  17. Ziegler EE, Fomon SJ. Fluid intake, renal solute load, and water balance in infancy. J Pediatr. 1971 Apr;78(4):561-8. https://doi.org/10.1016/s0022-3476(71)80456-0.
  18. Shepshelovich D, Schechter A, Calvarysky B, et al. Medication-induced SIADH: distribution and characterization according to medication class. Br J Clin Pharmacol. 2017 Aug;83(8):1801-1807. https://doi.org/10.1111/bcp.13256.
  19. Nakayama T, Fujisaki H, Hirai S,et al. Syndrome of inappropriate secretion of antidiuretic hormone associated with angiotensin-converting enzyme inhibitor therapy in the perioperative period. J Renin Angiotensin Aldosterone Syst. 2019 Jan-Mar;20(1):1470320319834409. https://doi.org/10.1177/1470320319834409.
  20. Ferreira F, Mateus S, Santos AR,et al. Pantoprazole-related Symptomatic Hyponatremia. Eur J Case Rep Intern Med. 2016 Jan 5;3(2):000341. https://doi.org/10.12890/2015_000341.
  21. Rondon-Berrios H, Tandukar S, Mor MK,et al. Urea for the Treatment of Hyponatremia. Clin J Am Soc Nephrol. 2018 Nov 7;13(11):1627-1632. https://doi.org/10.2215/CJN.04020318.
  22. Krisanapan P, Vongsanim S, Pin-On P,et al. Efficacy of Furosemide, Oral Sodium Chloride, and Fluid Restriction for Treatment of Syndrome of Inappropriate Antidiuresis (SIAD): An Open-label Randomized Controlled Study (The EFFUSE-FLUID Trial). Am J Kidney Dis. 2020 Aug;76(2):203-212. https://doi.org/10.1053/j.ajkd.2019.11.012.
  23. O’Regan S, Carson S, Chesney RW,et al. Electrolyte and acid-base disturbances in the management of leukemia. Blood. 1977 Mar;49(3):345-53.
  24. Deldycke A, Haenebalcke C, Taes Y. Paraneoplastic Cushing syndrome, case-series and review of the literature. Acta Clin Belg. 2018 Aug;73(4):298-304. https://doi.org/10.1080/17843286.2017.1373927.
  25. Bujalska I, Shimojo M, Howie A,et al. Human 11 beta-hydroxysteroid dehydrogenase: studies on the stably transfected isoforms and localization of the type 2 isozyme within renal tissue. Steroids. 1997 Jan;62(1):77-82. https://doi.org/10.1016/s0039-128x(96)00163-8.
  26. Lobo Ferreira T, Nunes da Silva T, Canário D,et al. Hypertension and severe hypokalaemia associated with ectopic ACTH production. BMJ Case Rep. 2018 Aug 16;2018:bcr2017223406. https://doi.org/10.1136/bcr-2017-223406.
  27. Goh TL, Carpenter L, Ly E. Lysozyme Nephropathy in Haematologically Stable Chronic Myelomonocytic Leukaemia. Nephrology (Carlton). 2018 Apr;23(4):377. https://doi.org/10.1111/nep.13056.
  28. Santoriello D, Andal LM, Cox R, D’Agati VD, Markowitz GS. Lysozyme-Induced Nephropathy. Kidney Int Rep. 2016 Sep 9;2(1):84-88. https://doi.org/10.1016/j.ekir.2016.09.002.
  29. Cairo MS, Bishop M. Tumour lysis syndrome: new therapeutic strategies and classification. Br J Haematol. 2004 Oct;127(1):3-11. https://doi.org/10.1111/j.1365-2141.2004.05094.x.
  30. Palmer BF, Carrero JJ, Clegg DJ,et al. Clinical Management of Hyperkalemia. Mayo Clin Proc. 2021 Mar;96(3):744-762. https://doi.org/10.1016/j.mayocp.2020.06.014.
  31. Perazella MA. Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin J Am Soc Nephrol. 2012 Oct;7(10):1713-21. https://doi.org/10.2215/CJN.02780312.
  32. Taguchi T, Nazneen A, Abid MR,et al. Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol. 2005;148:107-121. https://doi.org/10.1159/000086055.
  33. Wang Q, Qi Y, Zhang D,et al. Electrolyte disorders assessment in solid tumor patients treated with anti-EGFR monoclonal antibodies: a pooled analysis of 25 randomized clinical trials. Tumour Biol. 2015 May;36(5):3471-82. https://doi.org/10.1007/s13277-014-2983-9.
  34. Berman E, Nicolaides M, Maki RG,et al. Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med. 2006 May 11;354(19):2006-13. https://doi.org/10.1056/NEJMoa051140.
  35. Yin Z, Du J, Yu F,et al. Tumor-induced osteomalacia. Osteoporos Sarcopenia. 2018 Dec;4(4):119-127. https://doi.org/10.1016/j.afos.2018.12.001.
  36. Jan de Beur SM, Miller PD, Weber TJ,et al. Burosumab for the Treatment of Tumor-Induced Osteomalacia. J Bone Miner Res. 2021 Apr;36(4):627-635. https://doi.org/10.1002/jbmr.4233.
  37. Sone S, Yano S. Molecular pathogenesis and its therapeutic modalities of lung cancer metastasis to bone. Cancer Metastasis Rev. 2007 Dec;26(3-4):685-9. https://doi.org/10.1007/s10555-007-9081-z.
  38. Seymour JF, Gagel RF. Calcitriol: the major humoral mediator of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood. 1993 Sep 1;82(5):1383-94.
  39. Izzedine H, Chazal T, Wanchoo R, Jhaveri KD. Immune checkpoint inhibitor-associated hypercalcaemia. Nephrol Dial Transplant. 2022 Aug 22;37(9):1598-1608. https://doi.org/10.1093/ndt/gfaa326.
  40. Perazella MA, Shirali AC. Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do? Kidney Int. 2020 Jan;97(1):62-74. https://doi.org/10.1016/j.kint.2019.07.022.
  41. Shah CV, Lee HW, Clapp WL,et al. A Novel Form of Renal Tubular Acidosis Associated With Immune Checkpoint Inhibitors. Kidney Int Rep. 2022 Oct 26;8(1):197-201. https://doi.org/10.1016/j.ekir.2022.10.019.
  42. Dhup S, Dadhich RK, Porporato PE,et al. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des. 2012;18(10):1319-30. https://doi.org/10.2174/138161212799504902.
  43. Feldman BJ, Rosenthal SM, Vargas GA et al. Nephrogenic syndrome of inappropriate antidiuresis. New England Journal of Medicine. 2005. 352(18) 1884-1890. https://doi.org/10.1056/NEJMoa042743.
  44. Turcotte A, Achi S, Mamlouk O,et al. Electrolytes disturbances in cancer patients. Curr Opin Nephrol Hypertens. 2022 Sep 1;31(5):425-434. https://doi.org/10.1097/MNH.0000000000000819.

Finerenone for the treatment of patients with chronic kidney disease

Abstract

Chronic kidney disease (CKD) is a clinical condition associated with a high risk of cardiovascular (CV) events, mortality and progression to most severe stage of the disease, also known as kidney failure (KF). CKD is characterized by a wide variability of progression, which depends, in part, on the variability of individual response to nephroprotective treatments. Thus, a consistent proportion of patients have an elevated residual risk both CV and renal events, confirmed by the evidence that about 70% of CKD patients followed by the nephrologist have residual proteinuria. Among the new therapeutic strategies, which have been developed precisely with the aim of minimizing this residual risk, a class of particular interest is represented by the new non-steroidal mineralocorticoid receptor antagonists (non-steroidal MRA). These drugs exert an important anti-fibrotic and anti-proteinuric effect and, unlike steroid MRAs, are associated with a much lower incidence of adverse effects. The non-steroidal MRA molecule for which the most data is available, which is finerenone, is potent and extremely selective, and this partly explains the differences in efficacy and safety compared to steroid MRAs. In clinical trials, finerenone has been shown to significantly reduce the risk of progression to KF. Furthermore, there is also evidence that the combination of non-steroidal MRAs together with SGLT2 inhibitors may represent a valid alternative to reduce the residual risk in CKD patients. Given this evidence, non-steroidal MRAs are gaining momentum in the care, and particularly in individualized care, of CKD patients.

Keywords: CKD, epidemiology, aldosterone, iperkalaemia, kidney failure, cardiovascular risk

Sorry, this entry is only available in Italian.

Introduzione

La malattia renale cronica (nota su larga scala come Chronic Kidney Disease, CKD) è una condizione clinica definita da una o più delle seguenti alterazioni confermate e persistenti per almeno 3 mesi: una riduzione del tasso di filtrazione glomerulare stimato (eGFR) <60 mL/min/1.73m2, un livello anomalo di albuminuria (o proteinuria) > 30 mg/die alla raccolta delle urine delle 24 ore (30 mg/g se misurata attraverso il rapporto albuminuria-creatininuria o ACR, sulle urine del mattino in estemporanea), una anomalia di funzione o struttura dei reni diagnosticata con esami strumentali o clinici [1, 2]. L’eGFR e la albuminuria sono cruciali nella definizione e quindi nella diagnosi della CKD e sono anche conosciute, data la loro importanza prognostica come “kidney measures” o “fattori di rischio non tradizionali” per distinguerle da altri fattori di rischio cardiovascolare tradizionale quali possono essere l’età, il fumo di sigaretta o i livelli di pressione arteriosa sistolica [3]. La presenza di CKD espone il paziente ad una prognosi sfavorevole, intesa come un aumento significativo del rischio di incidenza di eventi cardiovascolari (CV) fatali e non fatali (infarto del miocardio, ictus, scompenso cardiaco, vasculopatia periferica), rapida progressione del danno renale verso la kidney failure (KF) che viene definita come lo stadio più avanzato della CKD con ricorso alla terapia sostitutiva, e la mortalità da ogni causa [4, 5]. Tali eventi sono complessivamente considerati “eventi maggiori”, sia nella pratica che nella ricerca clinica, in quanto condizionano in modo sostanziale la qualità della vita. I pochi dati fin qui riportati acquistano ancora maggiore enfasi se si considera che la CKD ha una prevalenza in netto aumento nella popolazione generale a livello globale [6]. Per arginare tale fenomeno, il cui trend in ascesa è già da tempo evidente, un grande sforzo è stato rivolto all’individuazione di trattamenti farmacologici in grado di minimizzare il rischio sia di progressione renale che di eventi CV. I primi trattamenti che hanno portato ad una riduzione della progressione della CKD sono stati gli inibitori del sistema renina-angiotensina-aldosterone (RAASi), in particolare gli ACE inibitori ed i sartani [7]. Tuttavia, circa il 40% dei pazienti con CKD non risponde a questi farmaci, rimanendo ad un rischio elevato di eventi futuri sfavorevoli cardiovascolari e renali [8, 9].

Tra il 2010 e il 2020, sono stati condotti altri studi clinici randomizzati che hanno testato nuovi trattamenti farmacologici come gli inibitori degli SGLT2 (es. dapagliflozin, canagliflozin), gli antagonisti recettoriali delle endoteline (ERA es. atrasentan), e i nuovi antagonisti non steroidei dei recettori dei mineralocorticoidi (MRA, es. finerenone). I rispettivi studi di intervento hanno dimostrato un effetto additivo significativo di questi farmaci se combinati con i RAASi, che ad oggi sono considerati lo standard-of-care nel rallentare la progressione della CKD sia in presenza che in assenza di diabete. In questa Review prendiamo in esame i nuovi MRA. Sulla base delle evidenze scientifiche disponibili, presenteremo il razionale di utilizzo degli MRA,378982 l’entità dell’effetto nefro- e cardio-protettivo nel contesto della complessità del paziente con CKD.

 

Epidemiologia e prognosi della CKD

La CKD ha acquisito nelle ultime decadi le caratteristiche di un problema di Sanità Pubblica globale [10]. Sulla base dei Registri disponibili, la prevalenza della CKD nella popolazione generale varia tra il 7% e il 13%, corrispondente ad una frequenza che spesso supera quella del diabete tipo 2 [11]. Inoltre, osservando i dati del Global Burden of Disease (GBD), che riporta il trend epidemiologico tra il 1990 e il 2016, la prevalenza e l’incidenza della CKD sono aumentate globalmente dell’87% e 89%, rispettivamente, in questo arco temporale, con un tasso di mortalità da cause renali quasi raddoppiato [6]. Inoltre, la CKD è, tra le malattie non trasmissibili, quella a più rapido incremento di incidenza. Il trend epidemiologico della CKD è in parte spiegato dalle modifiche epidemiologiche globali. Da una parte si è osservato, negli ultimi anni, una riduzione della mortalità generale da cause CV. Considerando il 1940 come anno di riferimento, la mortalità annua per infarto del miocardio e ictus si è ridotta del 56% e del 70% alla fine degli anni ‘90 [12]. Tale riduzione del rischio di morte da cause CV è stata attribuita all’introduzione di terapie preventive come le statine e ad un migliore controllo dei fattori di rischio tradizionali come il fumo di sigaretta e la pressione arteriosa. Parimenti, la mortalità associata a malattie infettive si è ridotta con il miglioramento delle terapie antibiotiche e dei vaccini, garantendo un incremento medio della durata della vita media di circa 20 anni [13]. La diffusione, quasi pandemica, della CKD è anche in linea con l’incremento della dimensione globale del diabete tipo 2. Nel 2019, circa 463 milioni di persone (9.3 % della popolazione globale) era affetto da diabete, di cui il 90% era rappresentato dal diabete tipo 2. È stato stimato che circa 2 pazienti su 5 affetti da diabete tipo 2 siano allo stesso tempo affetti da CKD [14]. L’incidenza di CKD associata al diabete (anche nota come ‘diabetic kidney disease’ DKD) è aumentata negli ultimi 30 anni in tutte le fasce di età [15]. Tale evidenza è ancora più allarmante se si considera che il diabete tipo 2, per il coinvolgimento di specifici meccanismi eziopatogenetici, è la principale cause di CKD e di KF, complessivamente. Di per sé, l’incidenza di KF, a differenza del positivo trend di morte CV, non si è ridotta negli ultimi anni, restando una condizione che espone il paziente ad alto rischio di morte. Ciò è vero in particolare per i pazienti affetti da diabete tipo 2, dei quali meno del 50% sopravvive a distanza di 5 anni dall’inizio del trattamento emodialitico sostitutivo [16].

La CKD è riconosciuta come un fattore di rischio indipendente di mortalità ed eventi CV oltre che di progressione verso la KF. Il termine indipendente fa riferimento in particolare, a fattori come l’età, il sesso e la presenza di altre comorbidità [17, 18].  È stato ampiamente dimostrato che la presenza di albuminuria, è associata indipendentemente allo sviluppo di eventi CV e progressione della CKD nel tempo [19]. Ancora più intrigante è l’osservazione che non vi sia un vero e proprio cut-off di albuminuria al di sopra del quale il rischio di progressione della CKD (ed anche il rischio CV) aumenti. In una meta-analisi del CKD-Prognosis Consortium, che includeva i dati di quasi 1.000.000 di soggetti di popolazione generale o ad alto rischio CV, il rischio di progressione della CKD verso la KF era già 5 volte aumentato per un livello di ACR di 30 mg/g, ed aumentava di oltre 13 volte per un livello di ACR di 300 mg/g [20]. Degno di nota è che i livelli di 30 e 300 mg/g sono considerati i limiti, inferiore e superiore, della categoria di proteinuria definita come moderatamente aumentata dalle linee guida KDIGO [1]. In uno studio osservazionale che includeva 3.957 pazienti con CKD seguiti dallo specialista Nefrologo in Italia, il rischio di KF aumentava di 2-3 volte passando da un livello di proteinuria 0.5 a 1.0 g/24h, con un rischio leggermente più alto nello stadio G3 rispetto al G4 [21]. Una simile associazione è stata osservata tra la proteinuria e gli eventi CV fatali e non fatali [22]. Il eGFR è per definizione la somma dei tassi di filtrazione di tutti i nefroni funzionanti e rappresenta il principale marcatore di funzione renale [23]. Negli studi prognostici, il eGFR rappresenta il più robusto predittore di progressione renale ed eventi CV. Infatti, al ridursi dei livelli di eGFR < 75 mL/min/1.73m2, il rischio di KF è di circa 30 volte più alto per livelli di 45 mL/min/1.73m2, e di circa 400 volte aumentato per livelli di 15 mL/min/1.73m2 [20]. L’associazione tra eGFR ed eventi CV ha un andamento simile seppure con una minore forza di associazione [22]. Albuminuria e eGFR sono considerati due parametri fondamentali sia per la stratificazione del rischio dei pazienti con CKD che per monitorare la risposta ai trattamenti. Una riduzione della albuminuria a 6 mesi di tempo, di circa il 30% rispetto al livello basale, si associa ad una riduzione del rischio di poco meno del 30% di progressione della CKD [24]. La riduzione del eGFR del 40% e quella del 50% sono considerati due surrogati di KF sia negli studi osservazionali che di intervento [25]. Nonostante la robustezza e affidabilità delle ‘kidney measures’, altri fattori di rischio tengono conto della scarsa prognosi dei pazienti con CKD.

È noto che la CKD è una condizione patologica multifattoriale dove più fattori di rischio rendono conto dell’outcome cardiorenale del paziente. Tra questi, accanto a eGFR e albuminuria, ipertensione arteriosa, iperpotassiemia, alterazioni del metabolismo calcio-fosforo, anemia, acidosi metabolica e dislipidemia sono quelli più noti [26].

 

Variabilità prognostica nella CKD: il problema del rischio residuo

Una delle caratteristiche principali della CKD risiede nella sua variabilità, concetto discusso già in varie pubblicazioni [8, 2730]. La variabilità, nel contesto della CKD, ha un duplice significato: prognostico e predittivo. Per variabilità prognostica si intende che pazienti con lo stesso grado di severità della malattia (ad es. livelli basali di proteinuria e eGFR) hanno una progressione ed un rischio CV completamente diversi. Questo concetto è insito nella eterogeneità della patogenesi del danno renale. In alcuni pazienti l’insorgenza di diabete tipo 2 è di per sé sufficiente, dopo un certo intervallo di tempo dalla sua comparsa, a generare un danno renale progressivo e severo. In questo caso il diabete è una causa sufficiente della CKD. In alcuni pazienti, la presenza del diabete tipo 2 incide meno sullo sviluppo della CKD che, se presente, si manifesta in genere in forma più lieve ed è secondaria perlopiù al danno da nefroangiosclerosi [2]. In questo caso, il diabete tipo 2 è una causa componente (ma non sufficiente) per lo sviluppo del danno renale cronico. Dunque, il peso di un fattore di rischio non è lo stesso in soggetti diversi. Per variabilità predittiva si intende che non tutti i pazienti rispondono ugualmente agli stessi farmaci. Nell’ambito della CKD è stato già dimostrato che una proporzione notevole di soggetti (circa il 30-40%) non risponde ai RAASi [31, 32].  Una variabilità di risposta tra pazienti è presente verso gli SGLT2i, in termini di riduzione della emoglobina glicosilata, peso corporeo, pressione arteriosa e proteinuria con circa la metà dei pazienti che non mostra una riduzione di almeno il 30% della proteinuria nei primi mesi di trattamento [33]. Similmente, ci sono evidenze di variabilità di risposta interindividuale anche verso gli ERA, in particolare atrasentan, dipendendo questa da fattori come la biodisponibilità del farmaco che è variabile e dal profilo di rischio CV del paziente [34]. Questo vuol dire che una quota significativa di pazienti continua ad avere proteinuria nel tempo e di conseguenza un alto rischio residuo di eventi CV e renali.

I dati sul rischio residuo sono attualmente allarmanti. In uno studio di coorte che ha arruolato 2.174 pazienti CKD seguiti negli ambulatori di Nefrologia in Italia, e tutti in terapia con RAASi al massimo dosaggio tollerato, Minutolo et al. hanno dimostrato che il 70% dei pazienti aveva una proteinuria >0.150 g/die, rimanendo ad elevato rischio sia CV (tasso di incidenza: 4.86 per 100 pazienti/anno) che di progressione verso la KF (tasso di incidenza: 5.26 per 100 pazienti/anno) (Figura 1) [35]. Questo dato è più che allarmante se si considera che i pazienti riferiti al nefrologo sono in generale quelli più intensivamente trattatati (e con dimostrato beneficio) per le complicanze e la progressione della CKD [2, 36]. Il dato del rischio residuo emerge anche dagli studi randomizzati più recenti. Nello studio SONAR, che ha testato l’efficacia dell’ERA atrasentan, in aggiunta al trattamento con RAASi, nei pazienti con CKD e diabete tipo 2, il tasso di incidenza di eventi cardiorenali (composito di KF, raddoppio della creatinina, morte CV, infarto del miocardio e ictus), era di 5.2 per 100 pazienti/anno nel gruppo atrasentan e di 6.1 per 100 pazienti/anno del gruppo placebo [37]. A discapito della significatività dell’effetto del trattamento, è evidente che anche nel gruppo trattato con il farmaco sperimentale il rischio assoluto di eventi resta molto alto. Similmente, nello studio DAPA-CKD, il tasso di incidenza dell’outcome primario (declino del 50% di eGFR, KF, morte da cause renali o CV) era di 4.6 per 100 pazienti/anno, molto lontano dal considerarsi minimo o abolito. Complessivamente, nonostante l’effetto significativo sulla prognosi renale, gli SGLT2i lasciano il 61% di rischio residuo sugli endpoint renali [38]. Questo dato collima con una analisi post-hoc del CREDENCE, la quale evidenziava che il 60% dei pazienti nel braccio trattato con canaglifozin non mostrava una riduzione di almeno il 30% della albuminuria nei primi 6 mesi del trial, e maggiore era la albuminuria al mese 6 maggiore era il rischio renale [39].

L’impressione collettiva è che si è raggiunto un buon successo in termini di rallentamento della progressione della CKD e del rischio CV ad essa associato, ma che allo stesso tempo questo alto rischio residuo sia la spia del fatto che non si sta accuratamente trattando la malattia di base con il farmaco più appropriato e indicato possibile [7]. Come fase successiva della ricerca, ci si è quindi concentrati da una parte sulla individuazione di nuovi trattamenti, e dall’altra sulla possibilità di individuare su base scientifica rigorosa, quale sia il farmaco giusto per ogni singolo paziente data l’ampia, già descritta, variabilità.

Figura 1: Meccanismi fisiopatologici associati all’iperattivazione del recettore dei mineralocorticoidi.
Figura 1: Meccanismi fisiopatologici associati all’iperattivazione del recettore dei mineralocorticoidi. Il pathway che coinvolge la serum glucocorticoid kinase-1 (Sgk1) conduce alla regolazione della ritenzione di sodio e dell’efflusso di potassio dalle cellule tubulari renali. La regolazione genica alterata in risposta ad eccessivi livelli di aldosterone conduce alla generazione di stimoli pro-infiammatiori e pro-fibrotici.

 

I nuovi antagonisti recettoriali dei mineralocorticoidi

Una classe di farmaci che ha suscitato interesse nell’effetto di rallentamento della progressione della CKD è rappresentata dagli MRA. Questi farmaci agiscono antagonizzando essenzialmente l’azione dell’aldosterone, ormone sintetizzato dalla zona glomerulosa del corticosurrene che promuove, dopo stimolazione diretta da parte dell’angiotensina II, la ritenzione di sodio e la perdita di potassio e magnesio [40]. Il trasporto del sodio attraverso le cellule epiteliali nella porzione distale del nefrone è il principale meccanismo in cui è coinvolto l’aldosterone attraverso il recettore dei mineralocorticoidi (MR) e la cascata di fattori ad esso associati. Il recettore dei MR appartiene alla sottofamiglia dei recettori nucleari che agiscono sia come recettori intranucleari che come fattori di trascrizione dopo traslocazione nel nucleo cellulare [41]. L’attivazione del MR porta alla espressione di geni target, tra cui quello chiave è serum glucocorticoid kinase (Sgk1). Sgk1 fosforila ed inattiva la ubiquitin ligasi Nedd4-2 che regola a sua volta la degradazione dei canali ENaC tramite il sistema dei proteasomi. In presenza dell’aldosterone, l’attività di Nedd4-2 è bloccata da Sgk1 che quindi porta ad una aumentata espressione e funzione degli ENaC sulla membrana dalle cellule tubulari renali. Quando invece i livelli plasmatici di aldosterone sono ridotti (fisiologicamente o per blocco farmacologico), la degradazione degli ENaC è aumentata. Oltre al trasporto del sodio, il MR regola anche l’escrezione di potassio e idrogeno sia tramite un meccanismo passivo di cariche elettron-neutre associato al trasporto del sodio sia attraverso stimolazione diretta della N+/K+ ATPasi e i canali renal outer medullary potassium channel (ROMK) [42]. Oltre al suo ruolo fisiologico, è stato dimostrato che l’attivazione anomala del MR sia associata ad una serie di meccanismi fisiopatologici che interessano vari organi tra cui il rene (Figura 1).

Livelli incrementati di aldosterone, infatti, promuovono il generarsi di fibrosi a livello del cuore, dei vasi sanguigni e del rene. La scoperta dell’effetto pro-fibrotico degli ormoni mineralocorticoidi risale alla dimostrazione, nel 1943, che la somministrazione di desossicorticosterone acetato nel topo, in combinazione con un altro introito di sale nella dieta, conduceva allo sviluppo clinico di ipertensione maligna e alla comparsa di nefroangiosclerosi e ipertrofia cardiaca [43]. Inoltre, successivi studi hanno dimostrato che l’iperaldosteronismo associato all’ipertensione arteriosa era in grado di promuovere ipertrofia cardiaca con coinvolgimento dei fibroblasti cardiaci [44]. Riguardo ai meccanismi molecolari che conducono alla fibrosi, sembra che l’aldosterone sia in grado di promuovere la sintesi di citochine pro-infiammatorie, come ad esempio l’osteopontina 1, l’espressione macrofagica di TGF-β1 ed il PAI-1 (prothrombotic protein plasminogen activator inhibitor-1), essendo quest’ultimo coinvolto direttamente nella deposizione di collagene nella matrice extracellulare e nell’iniziare la fibrosi interstiziale [45]. Tali meccanismi assumono un’importanza fondamentale se si considera che i fattori scatenanti l’infiammazione e la fibrosi sono i principali target delle terapie di rallentamento della progressione della CKD, nel futuro [46]. Inoltre, ancora da un punto di vista fisiopatologico, è noto che nonostante il blocco del RAAS attraverso l’utilizzo degli ACE e ARB, non tutta l’attività dell’aldosterone è abolita (fenomeno di “escape” dell’aldosterone), fattore che perpetua l’effetto pro-infiammatorio e pro-fibrotico di questo ormone [47].

Sulla base di questi meccanismi, l’antagonismo farmacologico dei MR rappresenta di per sé un importante bersaglio farmacologico. La prima molecola appartenente alla classe MRA, sviluppata nel 1957, fu lo spironolattone. Successivamente, fu sviluppato l’eplerenone. Sia eplerenone che spironolattone vengono classificati, in base alla loro struttura molecolare, come MRA steroidei. I primi studi clinici randomizzati, il RALES con l’aldosterone e poi l’EPHESUS e l’EMPHASIS-HF con eplerenone, avevano dimostrato che questi due MRA conferivano una protezione dal rischio di morte nei pazienti affetti da scompenso cardiaco o cardiopatia ischemica [4850]. Studi meno corposi, in termini di numerosità campionaria, condotti su pazienti CKD avevano mostrato che lo spironolattone riduceva i livelli di proteinuria e pressione arteriosa nei pazienti affetti da CKD [51]. Tuttavia, gli MRA steroidei sono associati ad una serie di effetti collaterali potenzialmente gravi come l’iperpotassiemia, la ginecomastia e l’impotenza. Il rischio di iperpotassiemia associato all’uso di MRA è raddoppiato nei pazienti in CKD non in dialisi ed aumenta di ben tre volte nei pazienti in trattamento dialitico [52]. Questo ha spinto la ricerca e l’industria farmaceutica allo sviluppo di MRA potenti ma più selettivi, quindi con un miglior profilo di ‘safety’. Le nuove tecnologie di biologia molecolare hanno, in particolare, reso possibile lo sviluppo di una nuova classe di MRA, gli MRA non steroidei. Due molecole appartenenti a questa nuova classe di farmaci sono l’esaxerenone, introdotto in Giappone per la cura dell’ipertensione arteriosa, ed il finerenone, del quale sono disponibili le più ampie evidenze sia sperimentali che cliniche. Il finerenone blocca il MR in modo potente e selettivo a differenza degli MRA steroidei come spironolattone (blocco potente ma non selettivo) ed eplerenone (blocco meno potente ma più selettivo di eplerenone) (Figura 2) [52].

Figura 2: Meccanismo d’azione specifico degli MRA non-steroidei.
Figura 2: Meccanismo d’azione specifico degli MRA non-steroidei. L’interazione ligando-recettore porta alla protrusione dell’a-elica 12 (H12) del MR e questo ne determina la sua destabilizzazione e degradazione. L’interazione ligando-recettore coinvolge la formazione di legami idrogeno con residui specifici del MR come Ala773 e Ser810.

Questa differenza nel meccanismo molecolare di antagonismo, insieme ad altre differenze nella distribuzione tissutale e nella farmacocinetica, spiegano la differente risposta clinica tra gli MRA steroidei e non. Le differenze dettagliate tra le due classi sono riportate in Tabella 1.

MRA steroidei MRA non steroidei
Meccanismo molecolare di antagonismo del recettore mineralcorticoide (MR)

Spironolattone

(prima generazione)

Non selettivo e potente

Passivo

Eplerenone

(seconda generazione)

Meno selettivo e potente dello spironolattone

Finerenone

Selettivo e potente

Passivo e ingombrante

Distribuzione tissutale in modelli animali

 

Spironolattone

Rene > cuore

Eplerenone

Rene > cuore

Finerenone

Rene = cuore

Farmacocinetica

Spironolattone

Profarmaco di numerosi metaboliti attivi;

lunga emivita

Eplerenone

No metaboliti attivi;

emivita 4-6 ore

Finerenone

No metaboliti attivi;

breve emivita

Effetto in vitro sul reclutamento del cofattore in assenza di aldosterone

Spironolattone ed eplerenone

Agonisti parziali nel reclutamento del cofattore

Finrenonene

Agonista inverso

 

Effetto in vitro sul reclutamento del cofattore in presenza di aldosterone

Spironolattone ed eplerenone

Inibiscono il reclutamento del cofattore

Finerenone

Più potente ed efficace dell’eplerenone nel bloccare il legame con il cofattore del MR e indurre il legame con il corepressore.

 

Effetto sulla mutazione (S810L) del MR in vitro

Spironolattone ed eplerenone

Agonisti

 

Finerenone

Antagonista

Effetto sull’infiammazione e sulla fibrosi in modelli di cuore murino

 

Eplerenone

Effetto poco significativo sull’infiammazione e sulla fibrosi

Finerenone

Inibisce significativamente l’infiammazione e la fibrosi

Effetto sull’infiammazione e sulla fibrosi renale nel modello murino “salt-deoxycorticosterone acetate” con malattia renale cronica

 

Eplerenone

Significativa riduzione della pressione arteriosa; meno efficace nella riduzione della proteinuria e del danno renale

Finerenone

Significativa riduzione della pressione arteriosa solo ad alte dosi; significativa riduzione dell’espressione di fattori profibrotici, proinfiammatori e del danno renale.

Tabella 1: Principali differenze tra MRA steroidei e non steroidei.

Esperimenti in modelli animali hanno mostrato come il finerenone si distribuisca, a livello tissutale, equamente tra cuore e rene, a differenza di eplerenone e spironolattone che invece hanno una maggiore concentrazione a livello del rene comportando un maggiore effetto sul bilancio di sodio e potassio [53, 54]. Inoltre, il finerenone confrontato con gli MRA steroidei ha una breve emivita e non ha metaboliti attivi [55]. Lo spironolattone invece è pro-farmaco di metaboliti attivi, tra cui il canrenone, che possono essere individuati nelle urine fino a 4 settimane dopo la sospensione del trattamento ed essere attivi farmacologicamente fino a circa 2 settimana dopo la sospensione. Ciò spiegherebbe in parte la persistenza dell’effetto iperpotassiemico dopo interruzione dello spironolattone, con un profilo di maneggevolezza decisamente a favore di finerenone. È interessante osservare come ci siano delle differenze anche nella farmacodinamica tra MRA steroidei e non. Il finerenone, a differenza degli MRA steroidei, inibisce il reclutamento di cofattori ai vari domini del MR (che in genere dipende dai livelli di aldosterone) ed in questo modo riduce l’espressione di geni pro-infiammatori e pro-fibrotici [56]. Quindi la cascata di segnali a valle del recettore evocata da MRA steroidei e non steroidei è differente. Confrontato con eplerenone, il finerenone a parità di dose ha un maggiore effetto anti-fibrotico ed ha azione antifibrotica anche a dosaggi non ancora sufficienti a ridurre la pressione arteriosa [53]. Il finerenone è di fatto l’unico farmaco tra gli MRA che combina una eccezionale potenza e selettività. La IC50, cioè la concentrazione di farmaco richiesta per inibire del 50% l’attivazione del recettore, è pari a 17.8 per finerenone, ed è più bassa sia rispetto a spironolattone (24) che eplerenone (990). Peraltro, lo spironolattone ha una IC50 bassa anche per il legame con il recettore degli androgeni (77 vs > 10.000 di finerenone) e i glucocorticoidi (2410 vs >10.000 di finerenone). Invece la EC50, cioè la concentrazione di farmaco richiesta per attivare il 50% del recettore del progesterone, è pericolosamente più bassa per lo spironolattone (740 vs >10.000 di finerenone). Questi parametri spiegano, nell’insieme, come mai lo spironolattone sia un farmaco molto potente ma poco selettivo [57, 58].

 

Il finerenone nella realtà clinica del paziente con CKD

Gli MRA non steroidei hanno compiuto ampia strada nell’ambito della ricerca clinica raggiungendo la fase III della sperimentazione con gli studi Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease (FIDELIO-DKD) e Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) [59, 60]. Nel FIDELIO-DKD, sono stati arruolati pazienti affetti da DKD albuminurici e già in trattamento con RAASi.  Lo studio ha dimostrato per la prima volta nella storia degli MRA una diminuzione del 18% dell’endpoint composito primario (KF, riduzione persistente di almeno il 40% del GFR, morte da causa renale) nel corso dei 2.6 anni di follow up, e con un basso number-needed-to-treat, associata ad un marcato e persistente effetto antialbuminurico associato al trattamento (31% di riduzione rispetto al placebo dopo 4 mesi di terapia). Dal punto di vista nefrologico il trial risponde al principale “medical need” nella DKD, ossia come ridurre la progressione della nefropatia, e ha arruolato popolazione tipicamente presente negli ambulatori di Nefrologia, con l’86% di pazienti con eGFR compreso tra 60 e 25 mL/min/1.73m2 e albuminuria già in terapia con RAASi. Inoltre, lo studio è long-term consentendo pertanto una maggiore affidabilità sulla analisi della “effectiveness”.  Va notato inoltre che il trial è stato dimensionato sulla nefroprotezione; pertanto, si è definita una dimensione campionaria sufficiente per ottenere il 90% di potenza nella discriminazione del rischio dell’endpoint primario (progressione malattia renale). Ciò nonostante, è risultata significativa anche la riduzione del 14% nel rischio dell’endpoint secondario cardiovascolare (composito di eventi cardiovascolari fatali e non-fatali e ospedalizzazione per scompenso cardiaco). I dati di ‘safety’ testimoniano una buona tollerabilità del finerenone con una simile incidenza di eventi avversi nonostante la popolazione in esame sia per definizione fragile e ad alto rischio. D’altra parte, è stata registrata una maggiore incidenza di uscita dal trial a causa dell’iperkalemia, seppure bassa in assoluto, nel braccio finerenone (2.3% vs 0.9%).  Il maggiore rischio di iperkalemia con finerenone, seppure inferiore rispetto agli MRA steroidei, era quindi un dato atteso.

Un ulteriore dato di interesse per la comunità Nefrologica deriva dall’analisi post-hoc dei 254 pazienti dello studio che ricevevano finerenone “on top” non solo di anti-Angiotensina II ma anche di inibitori di SGLT2 [61]. Tale analisi, seppure limitata dal basso numero di pazienti, suggerisce un effetto nefroprotettivo nel lungo termine simile tra pazienti trattati e non trattati con inibitori di SGLT2 (p dell’effetto di interazione: 0.21). Altrettanto rilevante è il dato sulla risposta antiproteinurica, anch’essa simile tra i due gruppi (p dell’effetto di interazione: 0.31). Una ulteriore analisi pooled degli studi FIGARO-DKD e FIDELIO-DKD (FIDELITY in più di 13.000 pazienti con malattia renale diabetica), ha confermato l’efficacia del finerenone, indipendente dall’uso di inibitori di SGLT2 [62]. Il FIGARO-DKD ha testato l’efficacia del finerenone in aggiunta a trattamento con RAASi nel ridurre il rischio di eventi CV, essendo l’endpoint primario misurato il composito di morte CV, infarto del miocardio non fatale, ictus non fatale e ospedalizzazione per scompenso cardiaco. Il trial ha dimostrato, in un follow-up di 3.4 anni, una riduzione del rischio significativa, del 13%, dell’endpoint primario nel gruppo finerenone rispetto al placebo. L’incidenza di iperpotassiemia era maggiore nel gruppo finerenone che nel gruppo placebo (10.8 vs. 5.3%).

 

I nuovi MRA e la nefrologia di precisione

L’interesse verso i nuovi MRA non-steroidei sta progressivamente aumentando visti i risultati dei primi studi clinici randomizzati. Al contempo, lo sviluppo clinico degli MRA è stato anche portato nell’ambito degli studi di ‘medicina di precisione’. La medicina di precisione (o nefrologia di precisione nel caso specifico) è una branca relativamente recente della ricerca che mira ad elaborare dei disegni di studio che forniscano stime, sia prognostiche che di risposta alle terapie, individualizzabili al singolo paziente [8]. Ciò non deve essere confuso con lo studio del singolo individuo. Gli studi di medicina di precisione sono comunque svolti su una moltitudine di soggetti, partendo dal concetto statistico che le stime frequentiste (quelle quindi fornite insieme ad un intervallo di confidenza e ad un parametro di variabilità) sono il risultato della sommatoria di tante singole stime individuali. Nel campo nefrologico, gli avanzamenti più recenti, da questo punto di vista, sono essenzialmente due: il miglioramento dei disegni degli studi clinici randomizzati, ad esempio attraverso l’inclusione di pazienti più omogenei e/o la randomizzazione di coloro che rispondono efficacemente al trattamento sperimentale (es. i disegni di studio adattivi) [37]; l’acquisizione, anche da altre branche della medicina, degli studi cross-over: questi particolari disegni di studio consistono nell’esporre uno stesso paziente a più sequenze di trattamento intervallate da sequenze libere dal farmaco (wash-out) [26]. È stato di recente completato uno studio cross-over in pazienti affetti da CKD, diabetica e non, che ha incluso l’MRA eplerenone, lo studio ROTATE-3 [63]. Nel ROTATE-3 sono stati arruolati con eGFR compreso tra 30 e 90 mL/min, albuminuria ≥ 100 mg/24h, ed in trattamento con RAASi. I pazienti sono stati randomizzati, dopo un breve periodo di run-in mirato a confermare la stabilità della albuminuria, a ricevere in tre successivi periodi di trattamento delle durate di quattro settimane ciascuno (intervallati da quattro settimane di wash-out) eplerenone 50 mg/die, dapagliflozin 10 mg/die oppure la combinazione di eplerenone 50 mg/die + dapagliflozin 10 mg/die. L’endpoint primario dello studio è stato quello di valutare l’entità di risposta in termini di riduzione della albuminuria in base al tipo di farmaco somministrato, ed inoltre comprendere se i pazienti rispondessero similmente ai farmaci somministrati. Lo studio ha mostrato che la albuminuria si riduceva in media del 20% in seguito alla somministrazione di dapagliflozin, del 34% in seguito a eplerenone e di ben il 53% in seguito alla combinazione dei due trattamenti. Questa osservazione è stata importante in quanto per la prima volta si è compreso l’entità della risposta antialbuminurica di un MRA in associazione ad un inibitore di SGLT2, entrambi in aggiunta allo standard of care (RAASi). Inoltre, altro risultato importante dello studio è stata l’assenza di correlazione significativa tra le risposte alle tre fasi di trattamento. Questo dimostra che gli stessi pazienti non rispondono contemporaneamente al MRA ed al SGLT2 che hanno un meccanismo di azione differente e, ancora più importante, che coloro che non rispondono ad un farmaco, possono rispondere all’altro. L’assenza di correlazione spiega quindi la maggiore efficacia antialbuminurica quando usati in contemporanea.

Il ROTATE-3 si inserisce negli studi di combinazione farmacologica, studi sempre più evocati nel setting della CKD vista, come detto nelle precedenti sezioni, la necessità di modificare più target di trattamento contemporaneamente. Le combinazioni di più farmaci con diverso meccanismo di azione hanno un razionale scientifico robusto in CKD [64]. Gli MRA, sia steroidei che non, hanno un effetto opposto sulla potassiemia rispetto agli inibitori di SGLT2, i primi associandosi ad un incremento dei livelli mentre i secondi ad una riduzione per inibizione del riassorbimento tubulare. Nello studio ROTATE-3 il trattamento di combinazione eplerenone+dapagliflozin era associato ad un numero di episodio di iperpotassiemia significativamente inferiore rispetto al trattamento con eplerenone da solo (p=0.003), portando quindi non solo ad un aumento dell’efficacia antialbmunirica ma anche ad una riduzione dell’incidenza di uno dei più temibili effetti avversi. Inoltre MRA e SGLT2i hanno effetti sinergici di nefroprotezione riducendo entrambi la glomerulosclerosi e la progressione del danno renale. Simili effetti sinergici sono presenti tra MRA e ERA e tra ERA e SGLT2i (Tabella 2).

Classe del farmaco Meccanismo di azione Reazioni avverse Effetto sinergico con ERA
 

ERA (agonisti selettivi del recettore dell’endotelina tipo A)

 

Aumentano il flusso renale, riducono le alterazioni dei podociti, lo stress ossidativo, la sclerosi glomerulare e l’infiammazione.

 

 

Ritenzione di liquidi o ipervolemia e anemia.

RAASi (inibitori del sistema renina angiotensina aldosterone)

Riducono la pressione intraglomerulare tramite la vasodilatazione delle arteriole efferenti e l’incremento della produzione di prostaglandine.

Riducono la glomerulosclerosi, la proliferazione cellulare, la fibrosi tubulo-interstiziale e l’infiammazione.

Aumento dei livelli creatinina sierica, iperkaliemia, anemia e tosse.

Sia l’ATII che l’endotelina

(ET) -1 causano un aumento della produzione della matrice extracellualare e della fibrosi tubulo interstiziale.

L’ATII e l’aldosterone stimolano la produzione di ET-1 nei dotti collettori.

Aldosterone e ET-1 hanno un effetto opposto a livello dell’Enac.

Negli studi di fase due il trattamento combinato con ERA e RAASi ha dimostrato una migliore efficacia nel controllo della proteinuria rispetto al trattamento con solo RAASi.

 

SGLT2i (inibitori del cotrasporto sodio glucosio)

Riducono il riassorbimento di sodio e glucosio nel tratto prossimale del tubulo renale.

Aumentano l’apporto di sodio alla macula densa con conseguente normalizzazione del feedback tubulo glomerulare e riduzione dell’iperfiltrazione.

Infezioni del tratto genito-urinario, amputazione degli arti inferiori, cheto acidosi e insufficienza renale acuta.

La natriuresi indotta dagli SGLT2i può controbilanciare la ritenzione di fluidi (effetto avverso frequente del trattamento con ERA).

Sia gli ERA che gli SGLT2i riducono la rigidità vascolare, la disfunzione endoteliale, la sclerosi glomerulare, lo stress ossidativo e l’infiammazione.

 

Antagonisti del recettore mineralcorticoide (MRA) non steroidei Presentano una maggiore selettività e affinità per il recettore mineralcorticoide rispetto agli MRA steroiodei. Promuovono la degradazione e l’inattivazione dell’ENac con conseguente natriuresi. Iperkaliemia.

Gli MRA non steroidei e gli ERA causano rispettivamente un incremento e una riduzione dell’attività dell’ENac. La somministrazione sinergica potrebbe quindi ridurre la probabile ritenzione di fluidi conseguente al trattamento con ERA.

Sia gli ERA che gli MRA non steroidei determinano una riduzione della fibrosi e dell’infiammazione renale.

Tabella 2: Meccanismo di azione e potenziale effetto sinergico degli ERA in associazione con RAASi, SGLT2i e MRA non steroidei.

L’implementazione degli studi di associazione farmacologica in pazienti CKD sarà nel prossimo futuro una tappa importante per la ricerca clinica.  Relativamente ai nuovi MRA, è già in corso uno studio, il COmbinatioN effect of FInerenone anD EmpaglifloziN in participants with chronic kidney disease and type 2 diabetes using an UACR Endpoint study (CONFIDENCE), che valuterà l’efficacia antiproteinurica della combinazione finerenone+empagliflozin rispetto ai singoli trattamenti, in pazienti con CKD nelle fasi iniziali di malattia [65].

 

Conclusioni

La progressione verso la KF è uno dei principali “unmet clinical need” nella CKD, anche rispetto al rischio cardiovascolare che, negli ultimi anni, ha mostrato una progressiva diminuzione secondaria alla introduzione di terapie cardiovascolari più efficaci.

Il mancato miglioramento della prognosi renale dei pazienti con CKD è da attribuirsi in larga parte alla assenza in questi anni di nuovi farmaci nefroprotettivi.  Il rischio residuo nei pazienti trattati con la terapia standard, cioè i RAASi, resta infatti molto alto.  Ai RAASi, di recente, si sono aggiunti gli inibitori di SGLT2. Tuttavia, anche dopo uso combinato di queste due diverse classi di farmaci, il rischio di progressione della nefropatia verso la fase dialitica permane ancora significativo.

Il finerenone rappresenta un importante avanzamento nella storia della nefroprotezione in quanto va a riempire il vuoto della terapia mirata in primis a ridurre l’infiammazione e la fibrosi nella CKD con la minimizzazione degli eventi avversi tipici dei MRA steroidei, in particolare l’iperpotassiemia. I dati del FIDELIO-DKD dimostrano l’efficacia di finerenone sulla nefroprotezione a lungo termine in pazienti diabetici e con CKD ad alto rischio di progressione verso la fase dialitica anche se trattati con RAASi e inibitori di SGLT2.

 

Bibliografia

  1. Kidney Disease Improving Global Outcomes Work Group (2013). Chapter 4: other complications of CKD:  CVD, medication dosage, patient safety, infections, hospitalizations, and caveats for investigating complications of CKD. Kidney Int. Suppl. 3, 91–111. https://doi.org/10.1038/kisup.2012.67
  2. De Nicola L, Provenzano M, Chiodini P, Borrelli S, Garofalo C, Pacilio M, Liberti ME, Sagliocca A, Conte G, Minutolo R. Independent Role of Underlying Kidney Disease on Renal Prognosis of Patients with Chronic Kidney Disease under Nephrology Care. PLoS One. 2015 May 20;10(5):e0127071. https://doi.org/10.1371/journal.pone.0127071
  3. Ballew SH, Matsushita K. Cardiovascular Risk Prediction in CKD. Semin Nephrol. 2018 May;38(3):208-216. https://doi.org/10.1016/j.semnephrol.2018.02.002
  4. Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL, Perkovic V. Chronic kidney disease. Lancet. 2021 Aug 28;398(10302):786-802. https://doi.org/10.1016/S0140-6736(21)00519-5.
  5. Provenzano M, Coppolino G, De Nicola L, Serra R, Garofalo C, Andreucci M, Bolignano D. Unraveling Cardiovascular Risk in Renal Patients: A New Take on Old Tale. Front Cell Dev Biol. 2019 Dec 3;7:314. https://doi.org/10.3389/fcell.2019.00314.
  6. Xie Y., Bowe B., Mokdad A. H., Xian H., Yan Y., Li T. et al. (2018). Analysis of the global burden of disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology, https://doi.org/10.1016/j.kint.2018.04.011.
  7. De Zeeuw D, Heerspink HJL. Time for clinical decision support systems tailoring individual patient therapy to improve renal and cardiovascular outcomes in diabetes and nephropathy. Nephrol Dial Transplant. 2020 Mar 1;35(Suppl 2):ii38-ii42. https://doi.org/10.1093/ndt/gfaa013.
  8. Provenzano M, De Nicola L, Pena MJ, Capitoli G, Garofalo C, Borrelli S, Gagliardi I, Antolini L, Andreucci M. Precision Nephrology Is a Non-Negligible State of Mind in Clinical Research: Remember the Past to Face the Future. Nephron. 2020;144(10):463-478. https://doi.org/10.1159/000508983.
  9. Mayer G. Editorial: precision medicine in nephrology. Nephrol Dial Transplant. 2021 Jun 22;36(Suppl 2):1-2. https://doi.org/10.1093/ndt/gfaa366.
  10. Webster AC, Nagler EV, Morton RL, Masson P. Chronic Kidney Disease. Lancet. 2017 Mar 25;389(10075):1238-1252. https://doi.org/10.1016/S0140-6736(16)32064-5.
  11. Provenzano M, Mancuso C, Garofalo C, De Nicola L, Andreucci M. [Temporal variation of Chronic Kidney Disease’s epidemiology]. G Ital Nefrol. 2019 Apr;36(2):2019-vol2. Italian. PMID: 30983174. https://pubmed.ncbi.nlm.nih.gov/30983174/
  12. Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of disease study 2010. Lancet 380, 2095–2128. https://doi.org/10.1016/S0140-6736(12)61728-0.
  13. Murray C. J., and Lopez A. D. (2013). Measuring the global burden of disease. N. Engl. J. Med. 369, 448–457. https://doi.org/10.1056/NEJMra1201534
  14. International Diabetes Federation 2019. IDF Diabetes Atlas, 9th edn. https://diabetesatlas.org/en/  [accessed 18 May 2020]; 2. Wu B, et al. BMJ Open Diabetes Res Care 2016;4:e000154
  15. Deng Y, Li N, Wu Y, et al. Global, Regional, and National Burden of Diabetes-Related Chronic Kidney Disease From 1990 to 2019. Front Endocrinol (Lausanne). 2021 Jul 1;12:672350. https://doi.org/10.3389/fendo.2021.672350.
  16. ERA-EDTA Registry: ERA-EDTA Registry Annual Report 2019. Amsterdam UMC, location AMC, Department of Medical Informatics, Amsterdam, the Netherlands, 2021. https://www.era-online.org/en/registry/publications/annual-reports/
  17. Nitsch D, Grams M, Sang Y, Black C, Chronic Kidney Disease Prognosis Consortium et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ. 2013 Jan 29;346:f324. https://doi.org/10.1136/bmj.f324.
  18. Chronic Kidney Disease Prognosis Consortium, Astor BC, Matsushita K, Gansevoort RT, van der Velde M. et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int. 2011 Jun;79(12):1331-40. https://doi.org/10.1038/ki.2010.550.
  19. Provenzano M, Garofalo C, Chiodini P, Mancuso C, Barbato E, De Nicola L, Andreucci M. Ruolo della proteinuria nella ricerca clinica: per ogni vecchia risposta, una nuova domanda [Role of proteinuria in clinical research: for each old-answer, a new key-question.]. Recenti Prog Med. 2020 Feb;111(2):74-81. Italian. https://doi.org/10.1701/3309.32797.
  20. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J; Chronic Kidney Disease Prognosis Consortium. Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int. 2011 Jul;80(1):93-104. https://doi.org/10.1038/ki.2010.531.
  21. Provenzano M, Chiodini P, Minutolo R, Zoccali C, Bellizzi V, Conte G, Locatelli F, Tripepi G, Del Vecchio L, Mallamaci F, Di Micco L, Russo D, Heerspink HJL, De Nicola L. Reclassification of chronic kidney disease patients for end-stage renal disease risk by proteinuria indexed to estimated glomerular filtration rate: multicentre prospective study in nephrology clinics. Nephrol Dial Transplant. 2020 Jan 1;35(1):138-147. https://doi.org/10.1093/ndt/gfy217.
  22. Matsushita K, Coresh J, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2015 Jul;3(7):514-25. https://doi.org/10.1016/S2213-8587(15)00040-6.
  23. Waijer SW, de Vries ST, Busch R, Xie D et al. Large Between-Patient Variability in eGFR Decline before Clinical Trial Enrollment and Impact on Atrasentan’s Efficacy: A Post Hoc Analysis from the SONAR Trial. J Am Soc Nephrol. 2021 Nov;32(11):2731-2734. https://doi.org/10.1681/ASN.2021040498.
  24. Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL, Chan TM, Hou FF, Lewis JB, Locatelli F, Praga M, Schena FP, Levey AS, Inker LA; Chronic Kidney Disease Epidemiology Collaboration. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019 Feb;7(2):128-139. https://doi.org/10.1016/S2213-8587(18)30314-0.
  25. Lambers Heerspink HJ, Weldegiorgis M, Inker LA, Gansevoort R, Parving HH, Dwyer JP, Mondal H, Coresh J, Greene T, Levey AS, de Zeeuw D. Estimated GFR decline as a surrogate end point for kidney failure: a post hoc analysis from the Reduction of End Points in Non-Insulin-Dependent Diabetes With the Angiotensin II Antagonist Losartan (RENAAL) study and Irbesartan Diabetic Nephropathy Trial (IDNT). Am J Kidney Dis. 2014 Feb;63(2):244-50. https://doi.org/10.1053/j.ajkd.2013.09.016.
  26. Provenzano M, Rotundo S, Chiodini P, Gagliardi I, Michael A, Angotti E, Borrelli S, Serra R, Foti D, De Sarro G, Andreucci M. Contribution of Predictive and Prognostic Biomarkers to Clinical Research on Chronic Kidney Disease. Int J Mol Sci. 2020 Aug 14;21(16):5846. https://doi.org/10.3390/ijms21165846.
  27. Perco P, Pena M, Heerspink HJL, Mayer G. Multimarker panels in diabetic kidney disease:  the way to improved clinical trial design and clinical practice?. Kidney Int Rep. 2018 Dec; 4(2): 212–21. https://pubmed.ncbi.nlm.nih.gov/30775618/
  28. Mayer G, Heerspink HJ, Aschauer C, Heinzel A, Heinze G, Kainz A, et al. Systems biology-derived biomarkers to predict progression of renal function decline in type 2 diabetes. Diabetes Care. 2017; 40(3): 391–7. https://pubmed.ncbi.nlm.nih.gov/28077457/
  29. De Vries JK, Levin A, Loud F, Adler A, Mayer G, Pena MJ. Implementing personalized medicine in diabetic kidney disease: stakeholders’ perspectives. Diabetes Obes Metab. 2018; 20(Suppl 3): 24–9, https://doi.org/10.1111/dom.13412.
  30. Pena MJ, Stenvinkel P, Kretzler M, Adu D, Agarwal SK, Coresh J, et al. Strategies to improve monitoring disease progression, assessing cardiovascular risk, and defining prognostic biomarkers in chronic kidney disease. Kidney Int. 2017 Oct; 7(2): 107–13. https://doi.org/10.1016/j.kisu.2017.07.005.
  31. Schievink B, de Zeeuw D, Parving H, Rossing P, Lambers Heerspink HJ. The renal protective effect of Angiotensin Receptor Blockers depends on intra- individual response variation in multiple risk markers. Br J Clin Pharmacol 2015:n/a-n/a. https://doi.org/10.1111/bcp.12655.
  32. Petrykiv SI, de Zeeuw D, Persson F, Rossing P, Gansevoort RT, Laverman GD, Heerspink HJL. Variability in response to albuminuria-lowering drugs: true or random? Br J Clin Pharmacol. 2017 Jun;83(6):1197-1204 https://doi.org/10.1111/bcp.13217.
  33. Provenzano M, Maritati F, Abenavoli C, Bini C, Corradetti V, La Manna G, Comai G. Precision Nephrology in Patients with Diabetes and Chronic Kidney Disease. Int J Mol Sci. 2022 May 20;23(10):5719. https://doi.org/10.3390/ijms23105719.
  34. Koomen JV, Stevens J, Bakris G, Correa-Rotter R, Hou FF, Kitzman DW, Kohan D, Makino H, McMurray JJV, Parving HH, Perkovic V, Tobe SW, de Zeeuw D, Heerspink HJL. Inter-individual variability in atrasentan exposure partly explains variability in kidney protection and fluid retention responses: A post hoc analysis of the SONAR trial. Diabetes Obes Metab. 2021 Feb;23(2):561-568. https://doi.org/10.1111/dom.14252.
  35. Minutolo R, Gabbai FB, Provenzano M, Chiodini P, Borrelli S, Garofalo C, Sasso FC, Santoro D, Bellizzi V, Conte G, De Nicola L. Cardiorenal prognosis by residual proteinuria level in diabetic chronic kidney disease: pooled analysis of four cohort studies. Nephrol Dial Transplant. 2018 Nov 1;33(11):1942-1949. https://doi.org/10.1093/ndt/gfy032.
  36. Minutolo R, Lapi F, Chiodini P, Simonetti M, Bianchini E, Pecchioli S, Cricelli I, Cricelli C, Piccinocchi G, Conte G, De Nicola L. Risk of ESRD and death in patients with CKD not referred to a nephrologist: a 7-year prospective study. Clin J Am Soc Nephrol. 2014 Sep 5;9(9):1586-93. https://doi.org/10.2215/CJN.10481013.
  37. Heerspink HJL, Parving HH, Andress DL, Bakris G et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet. 2019 May 11;393(10184):1937-1947. https://doi.org/10.1016/S0140-6736(19)30772-X.
  38. Giugliano D, Maiorino MI, Bellastella G, Esposito K. The residual cardiorenal risk in type 2 diabetes. Cardiovasc Diabetol. 2021 Feb 5;20(1):36. https://doi.org/10.1186/s12933-021-01229-2.
  39. Oshima M, Neuen BL, Li J, Perkovic V et al. Early Change in Albuminuria with Canagliflozin Predicts Kidney and Cardiovascular Outcomes: A PostHoc Analysis from the CREDENCE Trial. J Am Soc Nephrol. 2020 Dec;31(12):2925-2936. https://doi.org/10.1681/ASN.2020050723.
  40. Kolkhof P, Jaisser F, Kim SY, Filippatos G, Nowack C, Pitt B. Steroidal and Novel Non-steroidal Mineralocorticoid Receptor Antagonists in Heart Failure and Cardiorenal Diseases: Comparison at Bench and Bedside. Handb Exp Pharma-col. 2017;243:271-305. https://doi.org/10.1007/164_2016_76.
  41. Gomez-Sanchez E, Gomez-Sanchez CE. The multifaceted mineralocorticoid receptor. Compr Physiol 2014;4:965–994. https://doi.org/10.1002/cphy.c130044.
  42. Rogerson FM, Fuller PJ. Mineralocorticoid action. Steroids. 2000 Feb;65(2):61-73. https://doi.org/10.1016/s0039-128x(99)00087-2.
  43. Selye H, Hall CE, Rowley EM. Malignant Hypertension Produced by Treatment with Desoxycorticosterone Acetate and Sodium Chloride. Can Med Assoc J. 1943 Aug;49(2):88-92. PMID: 20322846; PMCID: PMC1827836. https://pubmed.ncbi.nlm.nih.gov/20322846/
  44. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation. 1991 Jun;83(6):1849-65. https://doi.org/10.1161/01.cir.83.6.1849.
  45. Chun TY, Pratt JH (2005) Aldosterone increases plasminogen activator inhibitor-1 synthesis in rat cardiomyocytes. Mol Cell Endocrinol 239:55–61. https://doi.org/10.1016/j.mce.2005.03.016.
  46. Provenzano M, Andreucci M, Garofalo C, Faga T, Michael A, Ielapi N, Grande R, Sapienza P, Franciscis S, Mastroroberto P, Serra R. The Association of Matrix Metalloproteinases with Chronic Kidney Disease and Peripheral Vascular Disease: A Light at the End of the Tunnel? Biomolecules. 2020 Jan 17;10(1):154. https://doi.org/10.3390/biom10010154.
  47. Staessen J, Lijnen P, Fagard R, Verschueren LJ, Amery A. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol. 1981 Dec;91(3):457-65. https://doi.org/10.1677/joe.0.0910457.
  48. Wei L, Struthers AD, Fahey T, Watson AD, Macdonald TM. Spironolactone use and renal toxicity: population based longitudinal analysis. BMJ 2010;340: c1768–c1768, https://doi.org/10.1136/bmj.c1768.
  49. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348:1309–1321. https://doi.org/10.1056/NEJMoa030207.
  50. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 2011;364:11–21. https://doi.org/10.1056/NEJMoa1009492.
  51. Charytan DM, Himmelfarb J, Ikizler TA, Raj DS et al. Safety and cardiovascular efficacy of spironolactone in dialysis-dependent ESRD (SPin-D): a randomized, placebocontrolled, multiple dosage trial. Kidney Int 2019;95:973–982. https://doi.org/10.1016/j.kint.2018.08.034.
  52. Agarwal R, Kolkhof P, Bakris G, Bauersachs J, Haller H, Wada T, Zannad F. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021 Jan 7;42(2):152-161. https://doi.org/10.1093/eurheartj/ehaa736.
  53. Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Ba¨rfacker L, Eitner F, Albrecht-Ku¨pper B, Scha¨fer S. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol 2014;64:69–78. https://doi.org/10.1097/FJC.0000000000000091.
  54. Platt D, Pauli H. Studies on organ- and subcellular distribution of 3H-spironolactone in animals. Arzneimittelforschung 1972;22:1801–1802. https://pubmed.ncbi.nlm.nih.gov/4677078/
  55. Heinig R, Kimmeskamp-Kirschbaum N, Halabi A, Lentini S. Pharmacokinetics of the Novel Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone (BAY 94-8862) in Individuals With Renal Impairment. Clin Pharmacol Drug Dev. 2016 Nov;5(6):488-501. https://doi.org/10.1002/cpdd.263.
  56. Grune J, Beyhoff N, Smeir E, Chudek R, Blumrich A, Ban Z, Brix S, Betz IR, Schupp M, Foryst-Ludwig A, Klopfleisch R, Stawowy P, Houtman R, Kolkhof P, Kintscher U. Selective mineralocorticoid receptor cofactor modulation as molecular basis for finerenone’s antifibrotic activity. Hypertension 2018;71:599–608. https://doi.org/10.1161/HYPERTENSIONAHA.117.10360.
  57. Bärfacker L, Kuhl A, Hillisch A, Grosser R, Figueroa-Pérez S, Heckroth H, Nitsche A, Ergüden JK, Gielen-Haertwig H, Schlemmer KH, Mittendorf J, Paulsen H, Platzek J, Kolkhof P. Discovery of BAY 94-8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem. 2012 Aug;7(8):1385-403. https://doi.org/10.1002/cmdc.201200081.
  58. Fagart J, Hillisch A, Huyet J, Bärfacker L, Fay M, Pleiss U, Pook E, Schäfer S, Rafestin-Oblin ME, Kolkhof P. A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule. J Biol Chem. 2010 Sep 24;285(39):29932-40. https://doi.org/10.1074/jbc.M110.131342.
  59. Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G; FIDELIO-DKD Investigators. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. 2020 Dec 3;383(23):2219-2229. https://doi.org/10.1056/NEJMoa2025845.
  60. Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, Joseph A, Kolkhof P, Nowack C, Schloemer P, Ruilope LM; FIGARO-DKD Investigators. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med. 2021 Dec 9;385(24):2252-2263. https://doi.org/10.1056/NEJMoa2110956.
  61. Rossing P, Filippatos G, Agarwal R, et al.; FIDELIO-DKD Investigators. Finerenone in Predominantly Advanced CKD and Type 2 Diabetes With or Without Sodium-Glucose Cotransporter-2 Inhibitor Therapy. Kidney Int Rep. 2021 Oct 14;7(1):36-45, https://doi.org/10.1016/j.ekir.2021.10.008.
  62. Rossing P, Anker SD, Filippatos G, Pitt B, Ruilope LM, Birkenfeld AL, McGill JB, Rosas SE, Joseph A, Gebel M, Roberts L, Scheerer MF, Bakris GL, Agarwal R. Finerenone in Patients With Chronic Kidney Disease and Type 2 Diabetes by Sodium-Glucose Cotransporter 2 Inhibitor Treatment: The FIDELITY Analysis. Diabetes Care. 2022 Aug 15:dc220294. https://doi.org/10.2337/dc22-0294.
  63. Provenzano M, Puchades MJ, Garofalo C, Jongs N, D’Marco L, Andreucci M, De Nicola L, Gorriz JL, Heerspink HJL; ROTATE-3 study group; ROTATE-3 study group members. Albuminuria-Lowering Effect of Dapagliflozin, Eplerenone, and Their Combination in Patients with Chronic Kidney Disease: A Randomized Crossover Clinical Trial. J Am Soc Nephrol. 2022 Aug;33(8):1569-1580. https://doi.org/10.1681/ASN.2022020207.
  64. Provenzano M, Andreucci M, Garofalo C, Minutolo R, Serra R, De Nicola L. Selective endothelin A receptor antagonism in patients with proteinuric chronic kidney disease. Expert Opin Investig Drugs. 2021 Mar;30(3):253-262. https://pubmed.ncbi.nlm.nih.gov/33356648/.
  65. Green JB, Mottl AK, Bakris G, Heerspink HJL, Mann JFE, McGill JB, Nangaku M, Rossing P, Scott C, Gay A, Agarwal R. Design of the COmbinatioN effect of FInerenone anD EmpaglifloziN in participants with chronic kidney disease and type 2 diabetes using an UACR Endpoint study (CONFIDENCE). Nephrol Dial Transplant. 2022 Jun 14:gfac198. https://doi.org/10.1093/ndt/gfac198.